
OneVision: Centralized to Distributed Controller Synthesis

with Delay Compensation

Jiayi Wei1, Tongrui Li1, Swarat Chaudhuri1, Isil Dillig1, and Joydeep Biswas1

Abstract— We propose a new algorithm to simplify the con-
troller development for distributed robotic systems subject to
external observations, disturbances, and communication delays.
Unlike prior approaches that propose specialized solutions to
handling communication latency for specific robotic applica-
tions, our algorithm uses an arbitrary centralized controller as
the specification and automatically generates distributed con-
trollers with communication management and delay compen-
sation. We formulate our goal as nonlinear optimal control—
using a regret minimizing objective that measures how much
the distributed agents behave differently from the delay-free
centralized response—and solve for optimal actions w.r.t. local
estimations of this objective using gradient-based optimization.
We analyze our proposed algorithm’s behavior under a linear
time-invariant special case and prove that the closed-loop
dynamics satisfy a form of input-to-state stability w.r.t. unex-
pected disturbances and observations. Our experimental results
on both simulated and real-world robotic tasks demonstrate
the practical usefulness of our approach and show significant
improvement over several baseline approaches.

I. INTRODUCTION

We are interested in distributed multi-agent control of

robots in environments with unknown conditions or obsta-

cles. Examples of such settings include autonomous convoy

driving following a human driver and autonomous formation

control of a fleet that needs to change formations in response

to obstacles. Unlike in applications with fixed formation [21],

[10] or trajectory control [12], the agents’ behavior can

vary significantly based on environmental observations, such

as the observed trajectory of the lead car in the convoy

setting or a narrow tunnel for the formation switching setting.

Thus, it is preferable to specify the behavior of the robotic

fleet, rather than their execution, as a desired ideal central

controller. Unfortunately, such ideal central controllers can-

not be executed directly in a distributed setting since each

agent is only capable of observing their own local state,

and communication latency leads to delayed observations

of other agents. While there have been a few specialized

solutions for handling communication latency for specific

controllers such as formation control [19] and coordinated

path following [11], synthesizing distributed controllers from

arbitrary central controllers while accounting for communi-

cation delays has remained an open problem until now.

In this paper, we present OneVision, an algorithm for

distributed control of multi-agent systems with local ob-

servations, in the presence of external disturbances and

communication delays. OneVision accepts an ideal central

1Computer Science Department, University of Texas at Austin,
USA. {jiayi, tongrui, swarat, isil, joydeepb}
@cs.utexas.edu

control function for a multi-agent system as well as a system

dynamics and observation model. Given the ideal central

control function, OneVision generates local plans at every

time step by minimizing a regret loss using gradient-based

optimization. This regret loss is defined as the difference

between the predicted future states and actions and an

ideal fleet trajectory computed by forward-predicting the

central controller on delay-compensated local observations

from all agents. Since the ideal fleet trajectory cannot be

locally computed in real time due to communication delays,

each synthesized distributed controller also computes a local

approximation of the ideal fleet trajectory and plans its future

actions against this approximated objective.

Although OneVision works with arbitrary discrete-time

multi-agent controllers, we limit our theoretical analysis

to cases where the system dynamics and centralized con-

troller are linear time-invariant. We prove that the distributed

agents’ execution generated by OneVision converges to the

ideal fleet trajectory and is stable in the sense that smaller

external disturbances lead to staying closer to the ideal

trajectory. In addition, we provide empirical evidence of con-

vergence and stability for a number of non-linear examples.

We summarize our contributions as follows:

• We present OneVision, a general algorithm for synthe-

sizing distributed controllers from a centralized con-

troller specification, under the presence of unknown

local observations and disturbances.

• We analyze the close-loop behavior of our algorithm

in a linear time-invariant special case and provide the-

oretical guarantees on the resulting performance. Our

analysis provides an error bound that is independent of

the amount of the delays.

• We implement the proposed algorithm, experimentally

evaluate our algorithm on 4 multi-agent tasks, and

demonstrate the practical usefulness of our approach.

II. RELATED WORK

a) Synthesis Techniques for Multi-Robot Systems:

There has been a long line of work on synthesizing reactive

controllers from temporal logic specifications for multi-

robot systems [14], [15]. These approaches typically create

a discrete abstraction of the system and synthesize hybrid

controllers that fulfill the logical specifications. In contrast,

we focus on synthesizing continuous distributed controllers

from a centralized controller specification.

b) Model Predictive Control (MPC): MPC has found

use in several domains that are related to this work, in-

cluding controlling distributed multi-agent systems [23] and

distributed systems with time delays [18]. Recently, MPC has

also been applied to robotics applications such as trajectory

tracking [13], vehicle control [5], flight control [2], and

cooperative landing [22]. Unlike many prior approaches

where MPC is used to directly optimize a global performance

objective defined across multiple agents, we use MPC mainly

as a local control planning strategy to reduce the discrepancy

between each agent’s own trajectory and the corresponding

(centrally predicted) ideal fleet trajectory.

c) Distributed Control Designs and Applications: In

recent control and robotics literature, many specialized dis-

tributed controllers have been proposed for various applica-

tion domains such as coordinated trajectory tracking and path

following [1], [11], vehicle formation control [10], traffic

control [24], and information consensus [25], [26]. In this

work, we take a different approach and instead aim at re-

ducing the future effort required to develop these distributed

systems using a general controller synthesis framework ap-

plicable to different robotic applications.

d) Centralized Formation Control: Lastly, there are

many prior works on multi-vehicle formation control using

a centralized control law [17], [7]; some also deal with the

challenging case of nonholonomic robots [9], [6]. In our

2D formation experiments, we employ a simple centralized

control scheme based on reference point tracking [8] and

rotational repulsive forces [7].

III. PROBLEM DEFINITION

Formally, our goal is to synthesize distributed robotic con-

trollers from a given centralized controller, dynamics model,

and observation model—subject to sensor noise, external

disturbances and communication, actuation, and observation

delays—such that the joint behaviors of the synthesized

controllers approximate that of the centralized controller. For

a setting with N robots, the inputs to our problem are:

(a) f̂i, the discrete-time dynamics models of robot i, for

i ∈ {1 . . . N}, given in the form

xi(t+ 1) = f̂i(xi(t), ui(t), t) , (1)

where t ∈ N is the time index, xi(t) ∈ R
nx

i and ui(t) ∈
R

nu

i is robot i’s state and actuation vector at time step

t, respectively. Note that f̂i can be different from the

true dynamics fi, with the difference being modeled as

external disturbance. f̂i may be provided either as an

analytic kinematic function, or a learned kino-dynamic

function [27].

(b) ĥi, the local observation model of robot i, for i ∈
{1 . . . N}, given in the form

zi(t+ 1) = ĥi(zi(t), t) , (2)

where zi ∈ R
nz

i is the observation of robot i.1 Similarly,

ĥ can be different from h, resulting in unexpected

observations.

1Note that here we require observations to be defined as some state-
independent quantities. For example, instead of using the distance to an
obstacle as z (which depends on the position of the robot) we can define z

as the obstacle’s position (whose true value does not depend on where we
perform the measurement).

(c) πc, the centralized controller of the form

u(t) = πc(x(t), z(t), t) , (3)

where x(t) = [x1(t), . . . , xN (t)]⊺ ∈ R
Nnx

is the

global state vector formed by vertically concatenate all

robot states, and similarly, z(t) = [z1(t), . . . , zN (t)]⊺

∈ R
Nnz

and u(t) = [u1(t), . . . , uN (t)]⊺ ∈ R
Nnu

.

(d) T x, Tu, T c ∈ N
+, the discrete-time observation, actua-

tion, and communication delay of this robotic fleet.

From the inputs given above, we want to synthesize N

distributed controllers πd
i , ∀i ∈ {1 . . . N} of the form

ui(t+ Tu) = πd
i (Xi(t),Zi(t),Ui(t), t) (4)

where Xi(t),Zi(t),Ui(t) denote the parts of the entire fleet’s

state history, observation history, and actuation history that

are available to agent i at time t, subject to constraints

imposed by the delays. For example, we have Xi(t) =
{xi(τ)|τ ≤ t− T x} ∪ {xj(τ)|j 6= i, τ ≤ t− T x − T c}.

Since our goal is to make the distributed agents behave

like they were controlled by the centralized controller πc,

we need to formally define a loss that measures the distance

between πd and πc. In this work, we have considered two

different ways to define such a loss.

Option 1: Action Loss Since our goal is to make every

agent take actions similar to the ones given by the centralized

controller, an intuitive way to define such a loss is as

ℓact(t) = ‖πc(x(t), z(t), t)− u(t)‖ ,

which simply measures the difference between the actuation

output by the centralized controller (given the current state

and observation) and the actual actuation u(t) output by the

distributed controllers.

Minimizing this loss requires each agent to accurately

predict the current state x(t) and observation z(t) of the

entire fleet, such that we can define the output of πd
i as

πc
i (x̂

(i)(t), ẑ(i)(t), t), where x̂(i)(t) ≈ x(t), ẑ(i)(t) ≈ z(t)
are the ith agent’s prediction of the current fleet state and

observation.

However, predicting x̂ and ẑ in the closed-loop dynamics

can lead to an infinite recursion. To see this, note that each

agent’s actuation depends on its prediction of other agent’s

states since

∀i, ui(t) = πc
i (x̂

(i)(t), ẑ(i)(t), t) .

But for agent i to predict agent j’s state, it will further need

to predict j’s action at the previous time step t′ = t− 1:

∀i, j, x̂
(i)
j (t) = f̂j(x̂

(i)
j (t′), u

(i)
j (t′), t′) .

But this in turn requires predicting how agent j would have

predicted other agent’s states:

∀i, j, u
(i)
j (t′) = πc

j(x̂
(i,j)(t′), ẑ(i,j)(t), t′) ,

where the notation x̂(i,j)(t′) denotes agent i’s prediction

(made at t) of agent j’s prediction (made at t′) of the fleet

state at time t′. Therefore, we can keep unrolling the right

hand side, resulting in an infinite recursion.

subject to the initial condition

x̄i(τ − T x) = xi(τ − T x) . (11)

This gives the self state estimation x̄i(τ + Tu), which will

be used in the next step.

3. Local Planning. Every robot i then uses the predicted

x̃(i) and ũ(i) from step 1 as the most probable approximation

to the ideal fleet trajectory x∗ and u∗ and tries to locally min-

imize its future regret by solving the following optimization

problem for the control time span τ+Tu ≤ t < τ+Tu+H:

Minimize
{ûi(t)|t}

τ+Tu+H−1
∑

t=τ+Tu

ℓi(t) , (12)

where

ℓi(t) = ‖x̂i(t)− x̃
(i)
i (t)‖Qx

+ ‖ûi(t)− ũ
(i)
i (t)‖Qu

,

subject to the initial condition

x̂i(t) = x̄i(t) , for t = τ + Tu (13)

and the dynamics constraints

x̂i(t+ 1) = f̂(x̂i(t), ûi(t), t) , (14)

for τ + Tu ≤ t < τ + Tu +H . Robot i then takes the first

actuation from the optimal solution as its next actuation, i.e.,

we have ui(τ + Tu) = ûi(τ + Tu|τ) .
Initialization OneVision needs an initial history of x, z,

and u to start with. In our implementation, we assume the

initial condition of the entire fleet is available to all robots

during initialization, and we simply initialize the history

trajectories as constant functions whose value equals the

corresponding initial condition2.

Remark (algorithm scalability). The running time of the

OneVision algorithm is O(N) for each agent due to the

forward prediction step (whereas both self state estimation

and local planning take constant time w.r.t. N). Hence,

this work mainly targets middle-ground applications where

the number of coordinating agents are not too large. For

larger applications, applying distributed control algorithms or

exploiting some form of sparsity structure will be necessary,

which we leave as future work.

V. THEORETICAL ANALYSIS

In this section, we analyze our algorithm’s closed-loop

behavior in the special case of linear time-invariant (LTI)

dynamics and controller. Our main goal is to answer the

following two questions: 1) When our model error δx and

δz is zero, how fast does the true fleet trajectory x converge

to the ideal fleet trajectory x∗? 2) When δx and δz is small,

does x stays close to x∗? We will answer these questions in

Proposition V.5 at the end of this section, stated in the form

of input-to-state stability.

2Our algorithm is not sensitive to the errors introduced during initializa-
tion as long as the initialization guarantees that all robots make the same
forward prediction x̃

(i) initially.

Lemma V.1 (Inital condition of forward prediction). Initial

condition (8) in the forward prediction step initializes x̃(i)

to the ideal fleet state x∗ (as shown in Figure 1). i.e.,

x̃
(i)
j (τinit|τ) = x∗

j (τinit), ∀j, ∀τ ≥ 0 .

Proof. We prove this by induction. The base case at τ = 0,

x̃
(i)
j (τinit|τ) = x∗

j (τinit) holds because of the initialization

step. For the inductive case, assume x̃
(i)
j (τinit|τ) = x∗

j (τinit) at

time τ , we aim to show that x̃
(i)
j (τinit+1|τ+1) = x∗

j (τinit+1).
Compare the dynamics (6) of x∗ with the dynamics (7) of

x̃(i) , we see that they become identical if δx̃(i)(t) = δx(t)
and δz̃(i)(t) = δz(t). And from the history constraints (9),

we see that this is indeed the case at t = τinit; hence, we

have x̃
(i)
j (τinit +1|τ) = x∗

j (τinit +1). Finally, apply the initial

condition (8), we have x̃
(i)
j (τinit+1|τ+1) = x∗

j (τinit+1) . �

Next, we introduce the following LTI assumptions about

the system dynamics and controllers.3

Assumption 1. For t ≥ 0, all robots have the LTI dynamics

of the form

f̂i(xi, ui, t) = Aixi +Biui + ŵi(t) , (15)

fi(xi, ui, t) = Aixi +Biui + w∗
i (t) , (16)

in which Ai and Bi are constant matrices, and the time-

dependent terms satisfy w∗
i (t) − ŵi(t) = δx(t). We also

assume that norm |λk| ≤ 1 for all eigenvalues λk of Ai, i.e.,

the system dynamics is not exponentially unstable.

Assumption 2. For t ≥ 0, the observation dynamics have

LTI dynamics of the form

ĥ(zi, t) = Cizi + µ̂i(t) , (17)

h(zi, t) = Cizi + µ∗
i (t) , (18)

in which Ci has all its eigenvalues λk’s norm |λk| ≤ 1, and

µ∗(t)− µ̂i(t) = δz(t).

Assumption 3. For t ≥ 0, the centralized controller πc is

also LTI w.r.t. x and z and has the form

πc(x, z, t) = −Kxx+Kzz + v(t) ,

and Kx stabilizes the closed-loop dynamics, i.e., |λk| < 1
for all eigenvalues λk of the matrix A − BKx. Here, A =
diag{Ai| ∀i} and B = diag{Bi| ∀i} are the block-diagonal

matrices of the overall system.

We next prove the following error bounds of the forward

prediction and self state estimation step.

Lemma V.2 (Self estimation error). Let ∆x̄i = x̄i − xi,

∆ŵi = ŵi − w∗
i . At any given time τ ≥ 0, we have

‖∆x̄i(τ + Tu)‖ ≤ βi(T
x + Tu) ⌈∆ŵi⌉ ,

3For mildly nonlinear systems, the following assumptions can hold
temporarily by linearizing the system behavior around the current operating
point.

where βi is a positive definite polynomial of order mi (when

Ai is stable, βi reduces to a constant), mi depends on the

number of unit-norm eigenvalues of Ai, and

⌈∆ŵi⌉ = max
−Tx≤t≤Tu

‖∆ŵi(τ + t)‖

is the maximal norm of ∆ŵi between τ − T x and τ + Tu .

Proof. Using (1), (10), we can write down the error dynam-

ics as

∆x̄i(t+ 1) = Ai∆x̄i(t) + ∆ŵi(t) (19)

with the initial condition (due to (11))

∆x̄i(τ − T x) = 0 .

Solving this linear system gives us the value of ∆x̄ at τ+Tu:

∆x̄i(τ + Tu) =

Tx+Tu

∑

t=1

(Ai)
t∆ŵi(τ + Tu − t) .

Since Ai contains no eigenvalues whose norm is greater than

1, (Assumption 1), we can bound ‖(Ai)
t‖ by a polynomial

of order m′
i on t, where m′

i is the number of unit-norm

eigenvalues of Ai whose algebraic multiplicity 6= geometric

multiplicity. Also bound ‖∆ŵi(t)‖ by ⌈∆ŵi⌉, we arrive at

the conclusion by setting mi = m′
i + 1. �

Similarly, we now provide a bound for the prediction error

∆x̃(i)(t|τ) = x̃(i)(t|τ)− x∗(t) and ∆z̃(i)(t|τ) = z̃(i)(t|τ)−
z∗(t) .

Lemma V.3 (Forward prediction error). At any time τ ≥ 0,

we have

‖∆z̃(i)(τ + Tu|τ)‖ ≤ γi(T
all)⌈∆µ̂⌉ , (20)

‖∆x̃(i)(τ + Tu|τ)‖ ≤ ai⌈∆µ̂⌉+ b⌈∆ŵ⌉ . (21)

where T all = T x + Tu + T c. γi is a polynomial of order

ni that depends on the eigenvalues of Ci’s, and ai, b are

constants that depends on A,B,Kx,Kz, and C. ∆µ̂ = µ̂−
µ∗ is the prediction model error, and ⌈∆µ̂⌉ and ⌈∆ŵ⌉ are

the corresponding maximal error norms between τ−T x−T c

and τ + Tu.

Proof. Take the difference of the dynamics of z̃
(i)
i and z∗i

using (17), we can write down the error dynamics of ∆z̃
(i)
i (t)

as

∆z̃
(i)
j (t+ 1) = Cj∆z̃

(i)
j (t) + ∆µj(t)

with the initial condition (which can be obtained from the

history constraints (9))
{

∆z̃
(i)
i (τinit + T x) = 0 , j = i

∆z̃
(i)
i (τinit) = 0 , j 6= i .

And since Ci has no eigenvalues whose norm is greater than

1, similar to the argument in the proof of Lemma V.2, ∆z̃
(i)
i

only grows at most at polynomial speed, hence we have

‖∆z̃(i)(τ+Tu)‖ ≤ γ′
i(T

all−T x)⌈∆µ̂i⌉+
∑

j 6=i

γ′
j(T

all)⌈∆µ̂j⌉ .

We can then bound the right-hand-side with γi(T
all)⌈∆µ̂⌉

and arrive at (20).

Now using the linear form of πc given by Assumption 3,

we can also write down the dynamics of ∆x̃(i) as

∆x̃(i)(t+ 1) = (A−BKx)∆x̃(i)(t)

+BKz∆z̃(i)(t) + ∆w̃
(i)
j (t)

with the initial condition (which holds by Lemma V.1)

∆x̃(i)(τinit) = 0 .

Since |λk| < 1 for all eigenvalues λk of A−BKx (Assump-

tion 3), and ∆z̃(i) grows at most at polynomial speed, we

can bound ∆x̃(i)(τ + Tu|τ) using (21). �

To simplify the analysis of local planning, we also assume

that the prediction horizon H is very long such that the

resulting optimal action is linear feedback.

Assumption 4. The prediction horizon H → ∞.

Lemma V.4 (Local planning provides linear feedback). The

optimal actuation given by the local planning step has the

form

ui(t) = ũ
(i)
i (t|t− Tu)−KL

i (x̄i(t)− x̃
(i)
i (t|t− Tu)) ,

where KL
i is some constant matrix that stabilizes the system.

Proof. Take the difference between (14) and (7), and notice

that there are no history constraints during t ≥ τ + Tu, we

obtain

x̂i(t+ 1)− x̃
(i)
i (t+ 1) = Ai (x̂i(t)− x̃

(i)
i (t|τ))

+Bi (ûi(t)− ũ
(i)
i (t|τ))

for t ≥ τ + Tu, which—when combined with the objective

(12) and the assumption H ≈ ∞—matches the form of a

linear quadratic regulator (LQR) problem. Hence, the optimal

solution is a linear feedback law given by

ûi(t)− ũ
(i)
i (t|τ) = −KL

i (x̂i(t|τ)− x̃
(i)
i (t|τ)) ,

where the gain KL
i stabilizes the system and can be obtained

by solving the discrete-time algebraic Riccati equation [16].

Take t = τ + Tu in the above, and notice that x̂i(τ +
Tu|τ) = x̄i(τ + Tu) (equation (13)), we arrive at the

conclusion. �

We are now ready to prove our main result.

Theorem V.5 (closed-loop stability). Let ∆x = x − x∗ be

the distance between the actual fleet trajectory and the ideal

fleet trajectory, we have the following bound

‖∆x(t)‖ ≤ c1e
−λt‖∆x(0)‖+ d1⌈∆ŵ⌉+ d2⌈∆µ̂⌉ , (22)

where c1, λ, d1, and d2 are all constants independent of the

delays, and the maximal norm ⌈·⌉ is defined on the interval

0 ≤ t < ∞.

Proof. We have the actual closed-loop dynamics

x(t+ 1) = Ax(t) +Bu(t) + w∗(t) ,

