
Robofleet: Open Source Communication and Management for

Fleets of Autonomous Robots

Kavan Singh Sikand1 Logan Zartman1 Sadegh Rabiee1 Joydeep Biswas1

Abstract— Long-term deployment of a fleet of mobile robots
requires reliable and secure two-way communication channels
between individual robots and remote human operators for
supervision and tasking. Existing open-source solutions to this
problem degrade in performance in challenging real-world
situations such as intermittent and low-bandwidth connectivity,
do not provide security control options, and can be com-
putationally expensive on hardware-constrained mobile robot
platforms. In this paper, we present Robofleet, a lightweight
open-source system which provides inter-robot communication,
remote monitoring, and remote tasking for a heterogenous fleet
of ROS-enabled service-mobile robots that is designed with the
practical goals of resilience to network variance and security
control in mind.

Robofleet supports multi-user, multi-robot communication
via a central server. This architecture deduplicates network
traffic between robots, significantly reducing overall network
load when compared with native ROS communication. This
server also functions as a single entrypoint into the system,
enabling security control and user authentication. Individual
robots run the lightweight Robofleet client, which is respon-
sible for exchanging messages with the Robofleet server. It
automatically adapts to adverse network conditions through
backpressure monitoring as well as topic-level priority control,
ensuring that safety-critical messages are successfully transmit-
ted. Finally, the system includes a web-based visualization tool
that can be run on any internet-connected, browser-enabled
device to monitor and control the fleet.

We compare Robofleet to existing methods of robotic commu-
nication, and demonstrate that it provides superior resilience to
network variance while maintaining performance that exceeds
that of widely-used systems.

I. INTRODUCTION

Remote management, multi-agent communication, and

user tasking for service-mobile robots is essential for long-

term deployments – some long-term projects such as the

CoBots [1] and STRANDS [2] have relied on custom remote

monitoring and tasking interfaces to fulfil this need, but

a more general open-source solution for arbitrary and het-

erogenous fleets of robots remains elusive. In this paper, we

present Robofleet – a simple, robust, and reusable solution

to this problem.

An effective multi-robot, multi-user fleet management

system must satisfy several key criteria – the system must

1) support multiple simultaneously deployed robots, 2) sup-

port communication both between robots as well as oper-

ators and robots, 3) have minimal compute overhead and

be capable of running on low-powered devices, 4) support

1Computer Science Department, University of Texas at Austin, USA.
{kvsikand, logan.zartman, srabiee, joydeepb}
@utexas.edu

secure communications and secure access controls, and 5) be

resilient to fluctuating network bandwidth and availability.

While there is no single open-source solution that meets all

such criteria, several partial solutions for remote robot mon-

itoring and multi-robot communication include the Robot

Web Tools [3], Rosbridge [4], and the native inter-process

communication of Robot Operating System (ROS). While

these solutions are effective at meeting the use case of single-

robot deployments or short-range remote monitoring over a

single reliable network, they exhibit degraded performance

in challenging conditions such as intermittent network con-

nectivity or with a large number of clients.

Robofleet includes several features to meet the aforemen-

tioned needs of reliable multi-robot, multi-user fleet manage-

ment. It supports message deduplication and automatic detec-

tion of adverse network conditions using backpressure moni-

toring. In addition, it supports configuration for rate limiting

of topics combined with priority-based topic scheduling,

ensuring that safety-critical messages take precedence over

others. Its single-server architecture prevents duplication of

message streams between robots, further decreasing network

load in the case of multi-robot communication. Robofleet

uses a compact message format to minimize bandwidth

usage and enable high throughput rates when compared

with Rosbridge. Robofleet also provides topic-level access

control, user authentication, and supports static IP address-

based traffic control by leveraging a secure VPN. In addition

to a central server, transport layer, and robot client, Robofleet

includes an extensible web-based visualizer and tasking

tool tailored towards autonomous mobile robot deployment,

which enables connection to the Robofleet system from any

browser-enabled device.

We provide experimental results to demonstrate

Robofleet’s superior performance compared to existing

state-of-the-art solutions in the case of adverse network

conditions and multi-robot interactions. We observe

that Robofleet gracefully recovers from intermittent

connectivity ∼ 5 times faster than Rosbridge, and is able

to maintain near constant latency as the number of robots

increases compared to compared to linear degradation

using ROS. Robofleet is available as open source code at

https://github.com/ut-amrl/robofleet.

II. RELATED WORK

Beyond the explicit goals of monitoring and tasking, suc-

cessfully sharing information between robots enables a wide

variety of research initiatives beyond long-term autonomous

deployment. Waibel et al. [5] introduce a platform consisting





for individual robotic platforms to decide which topics to

advertise to the world and which topics from other robots

to consume, creating strong topic isolation between robots.

To determine the current connectivity conditions, Robofleet

Client uses WebSocket’s recommended PING/PONG proto-

col, which is a form of backpressure monitoring. Robofleet

Client sends a PING after each message, and waits for

the server’s corresponding PONG response, and uses this

information to track how many messages are currently in

flight. The client has a message scheduler that uses this

information to prevent runaway queuing of messages in

the case of a network-constrained environment. The fol-

lowing sections describe in detail the configuration, runtime

state, and message handling algorithms implemented by the

Robofleet Client

Client Configuration The configuration of Robofleet

Client consists of two sets of tuples Tr,Tl, and a network

backpressure threshold nT . The set Tr = {〈τ i, ωi
τ 〉

Nr

i=1
}

specifies Nr remote topics to subscribe to, where τ is a

remote topic name and ωτ is a topic type. The set Tl =

{〈τ i, ωi
τ , p

i
τ , r

i
τ , d

i
τ 〉

Nl

i=1
} specifies Nl local topics to publish

to the Robofleet Server. Here τ is a local topic name, ωτ

is a topic type, pτ is a non-negative topic priority, rτ is

a publication rate in Hz, and dτ ∈ {true, false} is a flag

indicating if τ should be treated as a no drop topic. The

threshold nT determines how many messages may be in-

flight between the client and server before the message

scheduler begins to limit the rate of message transmission.

Each of these values can be tuned on a per-client basis simply

by editing a configuration file, to allow robot deployers to

optimize the system for their needs.

Client State During execution, the Robofleet Client’s state

is comprised of two queues Qn, Qf for message handling,

as well as a network backpressure counter n to track network

availability. Each queue contains tuples 〈mτ , τ〉, where mτ

is a local ROS message on topic τ . The no drop queue

Qn is a first-in-first-out queue containing messages from

topics configured with dτ = true. The fair priority

queue Qf is a priority queue containing one entry per topic

configured with dτ = false. This queue is ordered by fτ =

pτ · tτ , where tτ is the time elapsed since the last message

was successfully transmitted on topic τ . When retrieving

topics from this queue, they are returned in descending order

of fτ , ensuring that long-waiting and high-priority topics

are returned first. The network backpressure counter n is

computed as the number of sent messages for which we have

not yet received a PONG from the server.

Publishing Local Messages Robofleet Client’s message

publication flow consists of two primary stages. First, it pop-

ulates the publication queues by subscribing to the configured

local ROS topics and performing rate limiting. Algorithm 1

illustrates the logic for using an incoming ROS message to

update local state. It uses the helper function PUSH to add

a new element at the appropriate position in the queue, and

the helper function UPDATE to perform an in-place update

to the message in an existing entry in the queue.

Algorithm 1 LOCAL ROS MESSAGE HANDLING

1: Existing State: Queues Qn,Qf

2: Existing Configuration: rτ , dτ .
3: Input: message mτ , topic τ , elapsed time tτ
4: if tτ < 1

rτ
then

5: return;
6: end if
7: if dτ == 1 then
8: PUSH(Qn , 〈mτ , τ〉)
9: else if dτ == 0 then

10: if CONTAINS(Qf , τ ) then
11: UPDATE(Qf , τ , mτ )
12: else
13: PUSH(Qf , 〈mτ , τ〉)
14: end if
15: end if

The second component of message publication is the mes-

sage scheduler. By implementing a scheduler in Robofleet

Client, we both enable the prioritization of important mes-

sages and prevent runaway latency caused by queuing in the

face of adverse network conditions. Algorithm 2 summarizes

how the scheduler uses local state to decide which messages

to publish at a given point in time. Here, the helper function

PUBLISH is responsible for sending message mτ across the

WebSocket connection. The helper function UPDATEBP-

COUNTER is responsible for incrementing n when a new

message is sent, and updating it based on the most recently

received PONG message. Section IV presents empirical re-

sults showcasing the performance benefits of this algorithm.

Algorithm 2 ROBOFLEET CLIENT MESSAGE SCHEDULER

1: Existing State: Queues Qn,Qf , Integer n.
2: if n ≥ nT then
3: return;
4: end if
5: while ¬ ISEMPTY(Qn) and n < nT do
6: mτ , τ ← POP(Qn)
7: PUBLISH(mτ , τ )
8: n← UPDATEBPCOUNTER()
9: end while

10: while ¬ ISEMPTY(Qf ) and n < nT do
11: mτ , τ ← POP(Qf )
12: PUBLISH(mτ , τ )
13: n← UPDATEBPCOUNTER()
14: end while
15: PING()

Receiving Remote Messages In order to receive re-

mote messages on a particular topic or set of topics,

clients in Robofleet must a send a message of a special

type, subscription, to the Robofleet Server. A sub-

scription message mS = 〈eτ , action〉 specifies a regular

expression eτ indicating topic names and an action ∈
{subscribe,unsubscribe}. Robofleet Client sends a

subscription message with action = subscribe for

each 〈τ, ωτ 〉 ∈ Tr at startup, and corresponding messages

with action = unsubscribe at shutdown. Section III-D

describes how the Robofleet Server handles these messages.









straints such as limited bandwidth or intermittent connectiv-

ity issues. Additionally, Robofleet dramatically outperforms

native ROS in multi-robot scenarios.

V. DISCUSSION & FUTURE WORK

The development and deployment of Robofleet on a fleet

of autonomous robots has uncovered key points of discussion

and areas of future work. First, we discuss the potential

to extend Robofleet to domains in robotics beyond long-

term autonomy. Then, we explore the similarities between

Robofleet communication and the ROS2 transport layer, and

discuss their symbiotic nature.

A. Extension to New Domains

The communication protocol underlying Robofleet is do-

main agnostic. By design, there is nothing in the Robofleet’s

communication architecture which limits its use to com-

munication for autonomous robot platforms, and supporting

new domains would simply involve extending the encoding

library to support any new topic types. This process involves

auto-generating type definitions from the ROS message def-

initions, and implementing encode and decode functions

for these messages, and is extensively documented in the

Robofleet code repository. An additional possible extension

is implementing a remote procedure call mechanism similar

to ROS Actions to support use cases for which the publish-

er/subscriber model is insufficient.

In addition to the communication protocol, Robofleet

provides the Robofleet Webviz interface, which is tailored

towards autonomy tasks. However, alternative interfaces can

be implemented to support new use cases, with the only

dependency being the Robofleet encoding library, which

supports both TypeScript and C++. Alternate front-ends to

the system are being actively developed, including a native

Microsoft HoloLens 1 AR interface for robotic communica-

tion (Video: https://www.youtube.com/watch?v=

F36ZeBU7R6A).

B. ROS2 Ecosystem

The design of ROS2’s transport layer recognized many

of the shortcomings of traditional ROS, and the design of

the new transport layer shares conceptual similarities with

Robofleet. It introduces the concept of “Quality of Service”

[16], which coincides with the message transmission con-

cepts introduced in this paper. As such, a future adaptation of

Robofleet could fit into this new ecosystem in a way coherent

with ROS2’s design principles.

VI. CONCLUSION

In this paper we have highlighted the need for secure,

low-latency, reliable two-way robotic communication. We

then presented Robofleet, an open-source communication and

management system for fleets of autonomous mobile robots.

Our experimental results highlighted the low computational

overhead of the Robofleet system, demonstrated its resilience

to a variety of adverse network conditions, and showcased its

1https://www.microsoft.com/en-us/hololens

ability to scale to large numbers of robotic clients. Finally, we

discussed future extensions for Robofleet, which will bring

its benefits to the wider robotics community.

VII. ACKNOWLEDGEMENTS

This work has taken place in the Autonomous Mobile

Robotics Laboratory (AMRL) at UT Austin. AMRL re-

search is supported in part by NSF (CAREER-2046955,

IIS-1954778, SHF-2006404), ARO (W911NF-19-2-0333),

DARPA (HR001120C0031), Amazon, JP Morgan, and

Northrop Grumman Mission Systems. The views and con-

clusions contained in this document are those of the authors

alone. The authors would like to thank Jack Borer, Max

Svetlik, Can Pehlivanturk, and UT’s Nuclear and Applied

Robotics Group for helping validate Robofleet by deploying

it on multiple robotic platforms.

REFERENCES

[1] J. Biswas and M. Veloso, “The 1,000-km challenge: Insights and
quantitative and qualitative results,” IEEE Intelligent Systems, vol. 31,
no. 3, pp. 86–96, 2016.

[2] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mu-
drova, J. Young, J. Wyatt, D. Hebesberger, T. Kortner, et al., “The
strands project: Long-term autonomy in everyday environments,” IEEE

Robotics & Automation Magazine, vol. 24, no. 3, pp. 146–156, 2017.
[3] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski,

M. Wills, and S. Chernova, “Robot web tools: Efficient messaging for
cloud robotics,” in IEEE/RSJ Intelligent Robots and Systems (IROS),
2015, pp. 4530–4537.

[4] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Ros-
bridge: ROS for Non-ROS Users,” in Robotics Research. Springer,
2017, pp. 493–504.

[5] M. Waibel, M. Beetz, J. Civera, R. d’Andrea, J. Elfring, D. Galvez-
Lopez, K. Häussermann, R. Janssen, J. Montiel, A. Perzylo, et al.,
“Roboearth,” IEEE Robotics & Automation Magazine, vol. 18, no. 2,
pp. 69–82, 2011.

[6] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta:
A cloud robotics platform,” IEEE Transactions on Automation Science

and Engineering, vol. 12, no. 2, pp. 481–493, 2014.
[7] D. Zou and P. Tan, “CoSLAM: Collaborative Visual SLAM in

Dynamic Environments,” IEEE transactions on pattern analysis and

machine intelligence, vol. 35, no. 2, pp. 354–366, 2012.
[8] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,

“Cloud-based collaborative 3d mapping in real-time with low-cost
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp. 423–431, 2015.

[9] J. Wei, T. Li, S. Chaudhuri, I. Dillig, and J. Biswas, “OneVision: Cen-
tralized to Distributed Controller Synthesis with Delay Compensation,”
in IEEE/RSJ Intelligent Robots and Systems (IROS), 2021.

[10] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” in International Conference on Au-

tonomous Agents, 1997, p. 340–347.
[11] J. J. Roldán, E. Peña-Tapia, D. Garzón-Ramos, J. León, M. Garzón,

J. Cerro, and A. Barrientos, “Multi-robot systems, virtual reality and
ros: Developing a new generation of operator interfaces,” in Robot

Operating System (ROS): The Complete Reference (Volume 3), 2019.
[12] S. Hajjaj and K. Sahari, “Establishing remote networks for ROS

applications via Port Forwarding: A detailed tutorial,” International

Journal of Advanced Robotic Systems, vol. 14, 05 2017.
[13] Flatbuffers white paper. [Online]. Available: https://google.github.io/

flatbuffers/flatbuffers white paper.html
[14] Flatbuffers: C++ benchmarks. [Online]. Available: https://google.

github.io/flatbuffers/flatbuffers benchmarks.html
[15] J. A. Donenfeld, “WireGuard: Next Generation Kernel Network Tun-

nel,” in Network and Distributed System Security Symposium, 2017.
[16] ROS2: About Quality of Service settings.

[Online]. Available: https://docs.ros.org/en/foxy/Concepts/
About-Quality-of-Service-Settings.html


