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Abstract— Long-term deployment of a fleet of mobile robots
requires reliable and secure two-way communication channels
between individual robots and remote human operators for
supervision and tasking. Existing open-source solutions to this
problem degrade in performance in challenging real-world
situations such as intermittent and low-bandwidth connectivity,
do not provide security control options, and can be com-
putationally expensive on hardware-constrained mobile robot
platforms. In this paper, we present Robofleet, a lightweight
open-source system which provides inter-robot communication,
remote monitoring, and remote tasking for a heterogenous fleet
of ROS-enabled service-mobile robots that is designed with the
practical goals of resilience to network variance and security
control in mind.

Robofleet supports multi-user, multi-robot communication
via a central server. This architecture deduplicates network
traffic between robots, significantly reducing overall network
load when compared with native ROS communication. This
server also functions as a single entrypoint into the system,
enabling security control and user authentication. Individual
robots run the lightweight Robofleet client, which is respon-
sible for exchanging messages with the Robofleet server. It
automatically adapts to adverse network conditions through
backpressure monitoring as well as topic-level priority control,
ensuring that safety-critical messages are successfully transmit-
ted. Finally, the system includes a web-based visualization tool
that can be run on any internet-connected, browser-enabled
device to monitor and control the fleet.

We compare Robofleet to existing methods of robotic commu-
nication, and demonstrate that it provides superior resilience to
network variance while maintaining performance that exceeds
that of widely-used systems.

I. INTRODUCTION

Remote management, multi-agent communication, and
user tasking for service-mobile robots is essential for long-
term deployments — some long-term projects such as the
CoBots [1] and STRANDS [2] have relied on custom remote
monitoring and tasking interfaces to fulfil this need, but
a more general open-source solution for arbitrary and het-
erogenous fleets of robots remains elusive. In this paper, we
present Robofleet — a simple, robust, and reusable solution
to this problem.

An effective multi-robot, multi-user fleet management
system must satisfy several key criteria — the system must
1) support multiple simultaneously deployed robots, 2) sup-
port communication both between robots as well as oper-
ators and robots, 3) have minimal compute overhead and
be capable of running on low-powered devices, 4) support
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secure communications and secure access controls, and 5) be
resilient to fluctuating network bandwidth and availability.

While there is no single open-source solution that meets all
such criteria, several partial solutions for remote robot mon-
itoring and multi-robot communication include the Robot
Web Tools [3], Rosbridge [4], and the native inter-process
communication of Robot Operating System (ROS). While
these solutions are effective at meeting the use case of single-
robot deployments or short-range remote monitoring over a
single reliable network, they exhibit degraded performance
in challenging conditions such as intermittent network con-
nectivity or with a large number of clients.

Robofleet includes several features to meet the aforemen-
tioned needs of reliable multi-robot, multi-user fleet manage-
ment. It supports message deduplication and automatic detec-
tion of adverse network conditions using backpressure moni-
toring. In addition, it supports configuration for rate limiting
of topics combined with priority-based topic scheduling,
ensuring that safety-critical messages take precedence over
others. Its single-server architecture prevents duplication of
message streams between robots, further decreasing network
load in the case of multi-robot communication. Robofleet
uses a compact message format to minimize bandwidth
usage and enable high throughput rates when compared
with Rosbridge. Robofleet also provides topic-level access
control, user authentication, and supports static [P address-
based traffic control by leveraging a secure VPN. In addition
to a central server, transport layer, and robot client, Robofleet
includes an extensible web-based visualizer and tasking
tool tailored towards autonomous mobile robot deployment,
which enables connection to the Robofleet system from any
browser-enabled device.

We provide experimental results to demonstrate
Robofleet’s superior performance compared to existing
state-of-the-art solutions in the case of adverse network
conditions and multi-robot interactions. We observe
that Robofleet gracefully recovers from intermittent
connectivity ~ 5 times faster than Rosbridge, and is able
to maintain near constant latency as the number of robots
increases compared to compared to linear degradation
using ROS. Robofleet is available as open source code at
https://github.com/ut—-amrl/robofleet.

II. RELATED WORK

Beyond the explicit goals of monitoring and tasking, suc-
cessfully sharing information between robots enables a wide
variety of research initiatives beyond long-term autonomous
deployment. Waibel et al. [5] introduce a platform consisting
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Fig. 1: Robofleet System Diagram. The central Robofleet Server facilitates communication between compute-constrained mobile robots
on a potentially unreliable network, as well as communication with human robot administrators over the open Internet.

of communication layers [6] and databases to construct a
shared “world model” between robots, allowing them to
succeed at a wide range of tasks. While these works seek
to allow robots to share information over long time scales,
in this paper we focus on the short-term, time-sensitive
information exchange necessary to enable tasking and mon-
itoring. In addition to long-term autonomous deployment,
multiagent communication is instrumental for applications
such as collaborative mapping [7], [8], distributed control [9],
and cooperative team behaviors such as robot soccer [10].

There has been a significant amount of interest in this
short-term communication task in the robotics community,
resulting in a variety of widely-used utilities. Robot Web
Tools includes an ecosystem of different tools that use
the common Rosbridge transport layer. These tools include
visualization layers such as Ros2DIJS, client libraries such as
RosLibJS and RosLibPy, and interactive dashboards [3] [4].
There has also been recent research interest in developing in-
terfaces for human operators to interact with fleets of remote
robots [11]. Each of these tools individually address discrete
parts of the technical pipeline required to successfully de-
ploy autonomous robots, but stitching them together into a
coherent workflow currently involves significant overhead.
Additionally, the core Rosbridge transport layer has critical
performance and bandwidth consumption issues that limit
practical use cases of these tools. A common alternative to
Rosbridge is using ROS itself to facilitate communication.
A shared ROS master can enable fast robot-to-robot com-
munication when compared with Rosbridge. There has been
research in systems which enable communication using a
shared ROS master between robots across the internet using
port forwarding [12]. However, this architecture lacks au-
thentication support, degrades in performance as the number
of robots increases, requires that all the machines in the
system run ROS, and requires special network configuration.

Robofleet outperforms Rosbridge in adverse network con-
ditions and surpasses the remote ROS network in large fleets
of robots in addition to providing features such as topic-level
access control and user authentication.

II1. SYSTEM OVERVIEW

In this section we present the details of the Robofleet
system. Integral to Robofleet is the wire serialization format
used for message transmission, which is the universal lan-
guage that allows the various components of the Robofleet
system to communicate with each other. As illustrated by
figure 1, Robofleet consists of three major components. The

TABLE [: COMPARISON OF ENCODING SIZES FOR ROS
MESSAGES

Encoded Message Size (B)

ROS Message Type Native ROS Robofleet  Rosbridge

Binary  Flatbuffer JSON
LaserScan 7,260 7,328 28,000
NavSatFix 127 224 251
CompressedImage 75,188 75,224 267,650

Robofleet Client is deployed on each robot in the system,
and is responsible for communication between the robot’s
local ROS system and the Robofleet Server, including han-
dling of adverse network conditions. The Robofleet Server
is responsible for authenticating requests, relaying messages,
and maintaining subscription information. Robofleet Webviz
is a browser-based front-end that supports any browser-
enabled device and enables robot monitoring and tasking.

A. Serialization

After a survey of various encoding methods, Robofleet
was built using Flatbuffers to encode ROS messages [13].
This widely-supported binary serialization format is sig-
nificantly more compact than higher-level representations
like JSON, while being more widely accessible than the
native ROS binary format. Table I shows a comparison of
these encoding formats for common ROS message types.
Flatbuffers supports a variety of languages including C++
and JavaScript, and have guarantees about the backwards
compatibility of message binaries. Another common encod-
ing format, protobuf, was also considered, but Flatbuffers
has been shown to have significantly faster encoding and
decoding performance [14], which is critical to our use case.
Robofleet contains a central, extensible serialization library
defining encoding and decoding specifications for various
ROS message types, which is implemented in both C++ and
TypeScript.

B. Robofleet Client

Robofleet Client is a lightweight ROS node which is
deployed on every robot in the Robofleet system. It is respon-
sible for facilitating fast, high-throughput communication
between the Robofleet Server and the local ROS ecosystem.
This client is implemented in C++, ensuring it has a small
compute and memory footprint, as is showcased in our exper-
imental results. The Robofleet Client, like other components
of the Robofleet system, uses WebSocket communication to
send encoded ROS messages across the network. It supports
a publisher/subscriber model similar to ROS itself, allowing



for individual robotic platforms to decide which topics to
advertise to the world and which topics from other robots
to consume, creating strong topic isolation between robots.
To determine the current connectivity conditions, Robofleet
Client uses WebSocket’s recommended PING/PONG proto-
col, which is a form of backpressure monitoring. Robofleet
Client sends a PING after each message, and waits for
the server’s corresponding PONG response, and uses this
information to track how many messages are currently in
flight. The client has a message scheduler that uses this
information to prevent runaway queuing of messages in
the case of a network-constrained environment. The fol-
lowing sections describe in detail the configuration, runtime
state, and message handling algorithms implemented by the
Robofleet Client

Client Configuration The configuration of Robofleet
Client consists of two sets of tuples T, Ty, and a network
backpressure threshold ny. The set T, = {(r%,wi)¥

specifies N, remote topics to subscribe to, where 7 is a
remote topic name and w, is a topic type. The set T} =
{(r, Wi, pt, i, d)N Y specifies NV local topics to publish
to the Robofleet Server. Here 7 is a local topic name, w.
is a topic type, pr is a non-negative topic priority, . is
a publication rate in Hz, and d, € {true,false} is a flag
indicating if 7 should be treated as a no_drop topic. The
threshold nr determines how many messages may be in-
flight between the client and server before the message
scheduler begins to limit the rate of message transmission.
Each of these values can be tuned on a per-client basis simply
by editing a configuration file, to allow robot deployers to

optimize the system for their needs.

Client State During execution, the Robofleet Client’s state
is comprised of two queues Q, Qf for message handling,
as well as a network backpressure counter n to track network
availability. Each queue contains tuples (m.,7), where m.,
is a local ROS message on topic 7. The no_drop queue
Qn is a first-in-first-out queue containing messages from
topics configured with d, = true. The fair priority
queue Q¢ is a priority queue containing one entry per topic
configured with d, = false. This queue is ordered by f. =
pr - t;, where ¢, is the time elapsed since the last message
was successfully transmitted on topic 7. When retrieving
topics from this queue, they are returned in descending order
of f;, ensuring that long-waiting and high-priority topics
are returned first. The network backpressure counter n is
computed as the number of sent messages for which we have
not yet received a PONG from the server.

Publishing Local Messages Robofleet Client’s message
publication flow consists of two primary stages. First, it pop-
ulates the publication queues by subscribing to the configured
local ROS topics and performing rate limiting. Algorithm 1
illustrates the logic for using an incoming ROS message to
update local state. It uses the helper function PUSH to add
a new element at the appropriate position in the queue, and
the helper function UPDATE to perform an in-place update
to the message in an existing entry in the queue.

Algorithm 1 LoCAL ROS MESSAGE HANDLING

. Existing State: Queues Qn, Qf

. Existing Configuration: -, d,.

: Input: message m,, topic 7, elapsed time ¢,
cif s < % then

1
2
3
4
5: returﬁ;
6
7
8

: end if
. if d; == 1 then
: PUSH(Qn, (m~-,T))
9: else if d. == 0 then
10: if CONTAINS(Q¢, 7) then

11: UPDATE(Qs¢, T, m.r)
12: else

13: PUSH(Qs¢, (mr,T))
14: end if

15: end if

The second component of message publication is the mes-
sage scheduler. By implementing a scheduler in Robofleet
Client, we both enable the prioritization of important mes-
sages and prevent runaway latency caused by queuing in the
face of adverse network conditions. Algorithm 2 summarizes
how the scheduler uses local state to decide which messages
to publish at a given point in time. Here, the helper function
PUBLISH is responsible for sending message m., across the
WebSocket connection. The helper function UPDATEBP-
COUNTER is responsible for incrementing n when a new
message is sent, and updating it based on the most recently
received PONG message. Section IV presents empirical re-
sults showcasing the performance benefits of this algorithm.

Algorithm 2 ROBOFLEET CLIENT MESSAGE SCHEDULER

. Existing State: Queues Qn, Q¢, Integer n.
. if n > np then
return;
end if
while — ISEMPTY(Qn) and n < nr do
mr, T < POP(Qn)
PUBLISH(mM.,, T)
n < UPDATEBPCOUNTER()
. end while
: while = ISEMPTY(Q¢) and n < nr do
mr, T < POP(Qs)
PUBLISH(mM+, T)
n < UPDATEBPCOUNTER()
: end while
: PING()

A A

e

Receiving Remote Messages In order to receive re-
mote messages on a particular topic or set of topics,
clients in Robofleet must a send a message of a special
type, subscription, to the Robofleet Server. A sub-
scription message mg = (e,,action) specifies a regular
expression e, indicating topic names and an action €
{subscribe,unsubscribe}. Robofleet Client sends a
subscription message with action = subscribe for
each (1,w,) € T, at startup, and corresponding messages
with action = unsubscribe at shutdown. Section III-D
describes how the Robofleet Server handles these messages.
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Fig. 2: Robofleet Webviz Interface. (Top) Stereo camera images
and 3d lidar point cloud. (Bottom) Visualization showing 2d lidar
scan (orange), localization estimate, and navigation plan (green).

C. Robofleet Webviz

Robofleet Webviz is a web visualizer built specifically for
the task of managing fleets of service-mobile robots capable
of long-term autonomy. To the rest of Robofleet system,
it just appears as another client, meaning that Robofleet
Webviz is interchangeable with any other client-facing front-
end able to communicate with the Robofleet Server. This
design decision allows for the Robofleet system to be more
easily extended to new domains, as discussed in section V-A.

Robofleet Webviz has no dependence on the ROS ecosys-
tem, allowing for it to be deployed on any browser-enabled
device, which is ideal for remote monitoring and tasking.
This web interface contains an interactive list of currently
live robots, as well as coarse status information from
recently-deployed robots. For each live robot, authorized
users can use Webviz to view a) camera images b) 2d lidar
¢) 3d lidar d) odometry information e) localization estimates
and f) arbitrary visualizations similar to ROS’s Marker
messages . Finally, Webviz has the ability to send navigation
and localization commands to the robot. Figure 2 shows
sample screenshots from the Webviz interface.

D. Robofleet Server

The Robofleet Server runs on a single, networked server
and is the central point of communication for the Robofleet
system. It is responsible for authenticating and relaying
WebSocket messages from robots, managing subscription
information, maintaining persistent robot information, and
authenticating and servicing user requests. Robofleet Server
uses static IP address based authentication for robot clients.
To ensure the security of the system, we deploy the robots
on a VPN with crypto-based routing, WireGuard [15]. This
VPN uses private/public key pairs to validate the identity
of machines on the network, preventing the spoofing of IP
addresses and allows for simple, low-compute authentication

of robots. For incoming requests from the open internet, for
example from Robofleet Webviz, Robofleet supports Google
SSO authentication. The following sections describe in de-
tail the configuration, runtime state, and message handling
algorithm of the Robofleet Server.

Server Configuration Robofleet Server configuration pri-
marily involves defining an authorization map M : u —
{(e’,0p")} N2, from sender identity u to a list of N, au-
thorization rules. Sender identity u is either an IP address,
a range of IP addresses, or an email address. Authorization
rules are tuples where e is a regular expression to specify
the topics to which this rule should apply, and op €
{send, receive, both} specifies the permissions as-
sociated with this rule.

Server State While running, the Robofleet Server retains
a subscription map S from each topic 7 to a list of the
of all active clients subscribing to 7. The server’s message
handling algorithm is responsible for updating S according
to incoming subscription messages.

Message Handling Algorithm Algorithm 3 describes how
the Robofleet Server handles new incoming messages from
clients. The helper function ISAUTHORIZED first extracts
relevant sender information from the request, then uses the
authorization map M in conjunction with the requested topic
7 and operation op to decide if the given action should
be permitted. If the authorization check succeeds, Robofleet
Server uses the helper function ISSUBSCRIPTIONMESSAGE
to decide whether to update its subscription map S (lines
7-12), or relay the message to the appropriate clients in S[r]
(lines 14-18).

Algorithm 3 ROBOFLEET SERVER MESSAGE HANDLING

Existing State: Subscriptions map S
Input: message m-, topic 7, sender u
if !ISAUTHORIZED (u, 7, SEND) then
exit
end if
if [ISSUBSCRIPTIONMESSAGE(m,) then
Ts, action <— EXTRACTSUBSCRIPTIONINFO(m.;)
if action = subscribe and
9: [SAUTHORIZED(u, Ts, RECEIVE) then
10: S[7s] < S[rs] U {u}
11: else if action = unsubscribe then
12: S[rs] « S[rs] \ {u}
13: end if
14: else
15: for each u, € S[r] do
16: if [SAUTHORIZED(us, 7, RECETIVE) then
17: SEND(mr, ts)
18: end if
19: end for
20: end if

gl O Wb B

Robofleet’s single-server architecture provides a few key
benefits to the system. First, it inherently provides message
deduplication in a many-robot scenario. In a traditional ROS-
based approach, each robot is responsible for sending its data
stream to all its consumers, which can be costly for network-
constrained mobile platforms. In Robofleet, each robot only



sends a single data stream, to the server, which then relays
this data to the relevant consumers. Section IV-B presents
empirical evidence of the benefits of this architecture for
multi-robot systems. Additionally, as the only entry point
into the system, authentication can be implemented only at
the server level, leaving clients free to interact without having
to dedicate compute resources to security concerns.

IV. EXPERIMENTAL RESULTS

To validate the performance of the Robofleet system, we
performed a series of benchmarks comparing its performance
to the two most widely-used robot communication archi-
tectures today: ROS Native and Rosbridge. We first show
that Robofleet uses only a small fraction of the onboard
compute resources of Rosbridge. We then compare Robofleet
to both existing systems by measuring throughput (messages
transmitted in a fixed time frame) and latency (time for
a message to reach its destination) under ideal network
conditions. We continue these comparisons for simulated
adverse network conditions, as well as real-world robot
deployments and multi-robot scenarios.

A. Computational Load

TABLE II: COMPUTE USAGE OVER 15 SECONDS OF 10 Hz
PoINTCLOUDZ2 MESSAGE TRANSMISSION

Mobile Robotic Platform
Jetson TX2

Desktop Workstation
Intel i7-9750H CPU

Comm.

Client CPU Usage (%) Memory (MB)  CPU Usage (%) Memory (MB)
Robofleet 1.3+0.0 4525+ 0.0 151+ 0.5 425.6+0.0
Rosbridge 166+4.1 1,339.6+ 1019 155.9 £ 0.0 732.94+0.0

Robotic platforms are compute-bound due to the abun-
dance of concurrent tasks they must perform, such as per-
ception and navigation, making it critical that processes run-
ning on robots are as efficient as possible. This experiment
compares the computational load of running the Robofleet
client with running a sample Rosbridge client (in this case,
RosLibPy). Note that both of these clients run in addition
to native ROS, which is not included in this comparison.

This experiment was conducted by playing a 15 second
sequence of PointCloud2 messages from a fixed bag file
at 10 Hz, while running a communication client responsi-
ble for sending these messages to a remote machine. We
measure the CPU utilization and virtual memory footprint
on a desktop workstation and a mobile robotic platform,
repeating the experiment 10 times to collect information
on variance. Table II shows the aggregated results of this
experiment, demonstrating Robofleet’s significantly smaller
computational load when compared to Rosbridge. In this
table CPU usage is computed as e Lme allowing

. Wall Clock Time’
usage to exceed 100% on multi-core processors.

B. Message Transmission

The remainder of the experiments conducted compare the
transmission properties of Robofleet with existing systems.
Throughout these experiments we use a sample set of ROS
messages of standard types including PointCloud2 and
Odometry, and the Robofleet system is configured with
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Fig. 3: Latency and Throughput for PointCloud2 Messages
over 100Mbit client network.

1. We have observed behavior similar to what is
presented here with a variety of topic types, though the
magnitude of the differences between the systems changes.
We measure latency as the time it takes for a message sent
from one client to reach another, and throughput as the
number of messages that reach a client per second.

Figure 3 illustrates the effect of increasing the publication
rate of point cloud messages given a stable 100Mbit con-
nection for each client. The system labeled Robofleet (No
Drop) is a Robofleet system where all topics are configured
with the no_drop flag set to true, meaning no messages
will be dropped to alleviate network backpressure. These
results clearly show the explicit trade-off being made by the
Robofleet system, sacrificing message throughput to ensure
low latency and message liveness. For these large messages
under ideal network conditions, Native ROS’s binary encod-
ing allows it to outperform both Robofleet and Rosbridge.

Adverse Network Conditions When navigating in the
wild, robots will often experience a variety of network
adversities, such as temporary network dropout and gradual
network degradation. We performed simulated experiments
to demonstrate how Robofleet compares to existing systems
in its handling of these conditions. To perform these exper-
iments, we leveraged Linux’s tc utilities to limit network
traffic in a controlled manner on the client sending the mes-
sages. As before, these experiments measure transmission
from a single robot client to a remote machine.

Figure 4 presents a sample time series of message trans-
mission in the presence of a temporary network dropout,
simulating a mobile robot switching access points, or briefly
entering a Wi-Fi dead zone. Because Rosbridge has no
client-side traffic control, the WebSocket connection on the
client’s side quickly becomes backlogged with messages.
By contrast, Robofleet simply drops messages that will not
reach the destination in a reasonable time, allowing it to
quickly recover to reasonable message latencies, retaining
performance similar to native ROS. Critical messages are
retained on the queue to be delivered once the network
returns to normal. We observe that after the network dropout,

nr —
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Fig. 5: Latency under simulated bandwidth degradation

Robofleet is able to return to nominal latency around 5 times
more quickly than Rosbridge.

Figure 5 shows a similar time series demonstrating
the communication behavior under bandwidth degradation,
where we linearly decrease the available bandwidth on the
sending client from 100 Mbit down to 4Mbit over the
course of the 15 second test, simulating a robot traveling
increasingly far from its nearest access point, and therefore
observing degrading network quality. We see in this case that
due to the Rosbridge’s large encoded message size, it quickly
experiences major performance degradation in the presence
of this constrained network. We additionally observe that
ROS retains acceptable performance longer due to its more
compact message size, but eventually also degrades due to a
lack of client-side backpressure monitoring.

Multi-Robot Experiments To demonstrate the challenges
a native ROS-based system encounters in the presence of
multiple robots, we performed a simple experiment where a
single robot client sent point cloud messages at 5 Hz to a
varying number of clients. In this situation, the sending robot
client was allowed a 12 Mbit network connection, to simulate
upload the upload speed of a typical 4G LTE connection.
Figure 6 illustrates the message transmission latency and
throughput as the number of consumers increases. Due to the
peer-to-peer nature of ROS native, for each new consumer,
the robot client needed to send a new data stream across the
wire. This results in the duplication of data, causing the linear
increase in latency observed in the experiment. By contrast,
in Robofleet and Rosbridge, there is only a single stream of
data sent from the robot to a central server, which then relays
the information to any relevant consumers on a significantly
less constrained network. It is worth noting that for the large
PointCloud2 messages in this test, Rosbridge performs
significantly slower than ROS Native in the single robot
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Fig. 7: Message latency during on-campus deployment with
localization, image, and laser scan streams.

scenario, but becomes comparable as the number of robots
increases. In addition, Robofleet dramatically outperforms
both systems in terms of latency, while retaining comparable
throughput, as the number of consumers increases.

Real-World Deployment To validate the results of our
synthetic experiments, we deployed Robofleet, Rosbridge,
and native ROS on a robot deployed at a university cam-
pus. For this experiment, we deployed each system on a
Clearpath Husky connected to the campus Wi-Fi network,
and repeated a short 50m trip, transmitting its estimated
localization information as PoseStamped at 10 Hz, the
current lidar scan as LaserScan at 10 Hz, and images
from one of its cameras as CompressedImage at 2 Hz.
Figure 7 shows the observed latency of messages sent during
this deployment. Along the trajectory, there was one primary
region (marked in red), which suffered from poor Wi-Fi
coverage, and we observed very large spikes in network
latency when the robot entered this area across all systems,
starting around message number 430. However, we clearly
see that these negative conditions affected Rosbridge for
a significantly longer period of time than the other two
systems, as expected from our synthetic experiments.

In summary, the experimental results presented here show
that Robofleet outperforms Rosbridge for message transmis-
sion, and has performance comparable to that of native ROS
in most conditions. Its performance relative to these two
systems increases dramatically when there are network con-



straints such as limited bandwidth or intermittent connectiv-
ity issues. Additionally, Robofleet dramatically outperforms
native ROS in multi-robot scenarios.

V. DISCUSSION & FUTURE WORK

The development and deployment of Robofleet on a fleet
of autonomous robots has uncovered key points of discussion
and areas of future work. First, we discuss the potential
to extend Robofleet to domains in robotics beyond long-
term autonomy. Then, we explore the similarities between
Robofleet communication and the ROS2 transport layer, and
discuss their symbiotic nature.

A. Extension to New Domains

The communication protocol underlying Robofleet is do-
main agnostic. By design, there is nothing in the Robofleet’s
communication architecture which limits its use to com-
munication for autonomous robot platforms, and supporting
new domains would simply involve extending the encoding
library to support any new topic types. This process involves
auto-generating type definitions from the ROS message def-
initions, and implementing encode and decode functions
for these messages, and is extensively documented in the
Robofleet code repository. An additional possible extension
is implementing a remote procedure call mechanism similar
to ROS Actions to support use cases for which the publish-
er/subscriber model is insufficient.

In addition to the communication protocol, Robofleet
provides the Robofleet Webviz interface, which is tailored
towards autonomy tasks. However, alternative interfaces can
be implemented to support new use cases, with the only
dependency being the Robofleet encoding library, which
supports both TypeScript and C++. Alternate front-ends to
the system are being actively developed, including a native
Microsoft HoloLens ! AR interface for robotic communica-
tion (Video: https://www.youtube.com/watch?v=
F36ZeBUTR6R).

B. ROS2 Ecosystem

The design of ROS2’s transport layer recognized many
of the shortcomings of traditional ROS, and the design of
the new transport layer shares conceptual similarities with
Robofleet. It introduces the concept of “Quality of Service”
[16], which coincides with the message transmission con-
cepts introduced in this paper. As such, a future adaptation of
Robofleet could fit into this new ecosystem in a way coherent
with ROS2’s design principles.

VI. CONCLUSION

In this paper we have highlighted the need for secure,
low-latency, reliable two-way robotic communication. We
then presented Robofleet, an open-source communication and
management system for fleets of autonomous mobile robots.
Our experimental results highlighted the low computational
overhead of the Robofleet system, demonstrated its resilience
to a variety of adverse network conditions, and showcased its

https://www.microsoft.com/en-us/hololens

ability to scale to large numbers of robotic clients. Finally, we
discussed future extensions for Robofleet, which will bring
its benefits to the wider robotics community.
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