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Abstract

Brain evolution is hypothesized to be driven by behavioral selection on neuroarchitecture. We developed a novel metric
of relative neuroanatomical investments involved in performing tasks varying in sensorimotor and processing demands
across polymorphic task-specialized workers of the leafcutter ant Atta cephalotes and quantified brain size and structure
to examine their correlation with our computational approximations. Investment in multisensory and motor integration for
task performance was estimated to be greatest for media workers, whose highly diverse repertoire includes leaf-quality dis-
crimination and leaf-harvesting tasks that likely involve demanding sensory and motor processes. Confocal imaging revealed
that absolute brain volume increased with worker size and functionally specialized compartmental scaling differed among
workers. The mushroom bodies, centers of sensory integration and learning and memory, and the antennal lobes, olfactory
input sites, were larger in medias than in minims (gardeners) and significantly larger than in majors (“soldiers”), both of
which had lower scores for involvement of olfactory processing in the performance of their characteristic tasks. Minims
had a proportionally larger central complex compared to other workers. These results support the hypothesis that variation
in task performance influences selection for mosaic brain structure, the independent evolution of proportions of the brain
composed of different neuropils.
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Abbreviations Introduction
AL Antennal lobe
CX Central complex Identifying the selective forces that contribute to the evolu-
DMSO Dimethylsulfoxide tion of brain size and patterns of investment in functionally
HEPES 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic specialized brain centers is key to understanding the organi-
acid zation of behavior. Social life is predicted to contribute to
MB Mushroom body selection for both increased (Dunbar 1998, 2009; Adolphs
OL Optic lobe 2003; Kamhi et al. 2016) and decreased brain size (Jaffe
PBS Phosphate-buffered saline and Perez 1989; Riveros et al. 2012; Sulger et al. 2014;
PBST Phosphate-buffered saline with Triton O’Donnell et al. 2018a; DeSilva et al. 2021; Reséndiz-
ROCB Remainder of central brain Benhumea et al. 2021), and/or brain compartment scaling
SEZ Subesophageal zone relationships (Muscedere and Traniello 2012; Smaers and

Soligo 2013; O’Donnell et al. 2015, 2018b; DeCasien and
Higham 2019). Assessments of sensory, motor, and process-
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Insects are important models to examine behavioral and/
or cognitive evolution (Boogert et al. 2018; Lihoreau et al.
2019; Godfrey and Gronenberg 2019; Simons and Tibbetts
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brains are composed of compartments responsible for vis-
ual and olfactory processing (optic lobes [OL] and antennal
lobes [AL], respectively), higher-order processing, learning,
and memory (mushroom bodies [MB]), navigation, orienta-
tion, and movement (central complex [CX]; also associated
with the MBs) (Le Moél et al. 2019; Green et al. 2019; Sun
et al. 2020; Pisokas et al. 2020; Kamhi et al. 2020; Currier
et al. 2020), and mandibular control and gustation (the sub-
oesophageal zone [SEZ]). The remainder of the central brain
(ROCB; see “Methods” for anatomical details) is composed
of several protocerebral regions thought to integrate sen-
sory information (Strausfeld 2012; Green et al. 2019; Currier
et al. 2020). Complexity in colony organization may involve
selection for either smaller, neurally differentiated worker
brains (Riveros Rivera and Gronenberg 2009; Riveros et al.
2012; Lihoreau et al. 2012; Sulger et al. 2014; O’Donnell
et al. 2015, 2018b; Feinerman and Traniello 2015), involv-
ing reductions in the volume of subsets of described insect
brain compartments, or larger brains (Wehner et al. 2007)
potentially able to metabolically offset increased production
and operation costs (Kamhi et al. 2016).

Division of labor in socially complex fungus-growing
ants is characterized by morphologically differentiated work-
ers in derived species (Schultz and Brady 2008; Holldobler
and Wilson 2010; Muratore and Traniello 2020). Colonies of
leafcutter ants, Atta, have strongly polymorphic workers cat-
egorized into size-based groups (subcastes) differing in labor
roles and efficiencies of task performance (Fig. 1) (Wilson
1980a, b). Worker size-related specializations include fungal
care, nursing immatures, leaf selection, cutting and trans-
port, waste management and hygienic behavior, and col-
ony defense. These tasks differ in the extent to which they
involve multimodal sensory integration and motor functions
associated with monitoring the growth of fungus and brood

Fig. 1 Confocal images of A.
cephalotes polymorphic worker
brains (top row). Structural dia-
grams of color-coded neuropils
(middle row; compartments

not drawn to scale). Blue=OL,
green=AL, orange=MB
medial calyces, red=MB lateral
calyces, yellow =MB pedun-

cle, purple=SEZ, pink=CX.
Tllustration of task performance

by polymorphic workers (bot- 1.0 mm
tom row; minim, two images

%

development, decoding plant chemistry, leaf harvesting,
navigation, recognizing infectious agents, detecting envi-
ronmental hazards, and combating predators and parasites
(Saverschek and Roces 2011; Groh et al. 2014; Arenas and
Roces 20164, b, 2017; Green and Kooij 2018; Goes et al.
2020; Buehlmann et al. 2020; Fleischmann et al. 2020). This
pattern of division of labor characterizes Atta cephalotes,
whose workers range in size from 0.5 to more than 4.5 mm
in head width and are divisible into groups according to
task repertoires (Table 1b). Brain size and structural varia-
tion could reflect differences in behavioral diversity: workers
displaying the broadest task repertoire and corresponding
behavioral and/or cognitive demands could have experienced
selection for a greater volume of neural tissue.

To examine factors contributing to brain evolution in
A. cephalotes, we evaluated the expected distribution of
the relative involvement of different modalities of sensory
perception, integration, and sensorimotor functions in
task performance across polymorphic workers. Our study
explores stable differences among adult worker brains that
have evolved with behavioral specialization as a likely
selective factor, rather than experience-dependent plas-
ticity occurring over the course of an individual’s lifespan.
We determined patterns of variation in behavioral demands
associated with task performance and work environments
to provide a semi-quantitative score reflecting how brain
tissue would be scaled to efficaciously perform tasks. This
is based on the assumption that neuropil volumes correlate
with the degree of involvement of task-associated sensory
processes. We acknowledge that this assumption does not
encompass all influences on brain region scaling, such
as limits on circuitry miniaturization (Seid et al. 2011;
Niven and Farris 2012; Groh et al. 2014), and that brain
compartment volumes are not necessarily equivalent to

of medias, major attacking an
army ant, an important preda-
tor)
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metrics such as glomeruli number in the antennal lobes
(Kelber et al. 2009b) in understanding the organization
of the brain. Nonetheless, brain size and compartmental
allometries correlate with variability in worker size and
task performance in ants (Muscedere and Traniello 2012;
Ilies et al. 2015; Gordon et al. 2017; Kambhi et al. 2019).
Furthermore, the volumes and structural elaboration of
visual and olfactory neuropils and the MBs in ants cor-
relate with processing capability and have ethological sig-
nificance (Gronenberg 2001; Farris 2011).

To identify how brain size, compartmental scaling,
and differential task performance demands of division of
labor correlate with our estimates, we quantified patterns
of sensory, higher-order processing, and motor neuropil
investment. This allowed us to correlate variation in task
repertoires and their associated sensory challenges among
workers to size scaling among functionally differentiated
brain compartments. Based on an assessment of worker size-
related sensory and motor functions, olfaction, and higher-
order processing, we hypothesized that intermediate-size
(media, leaf harvesting) workers would have higher MB
proportional volume than small (minims, fungus garden-
ing) or large (majors, defensive) workers. We also hypoth-
esized that our scores would accurately describe the pattern
of proportional AL volume, with this neuropil predicted to
be proportionally largest in medias due to selection for pro-
cessing diverse olfactory cues. We also determined the fit
of our scores to the proportional volumes of the CX (also a
neuropil of multisensory integration; Plath and Barron 2015;
Le Moél et al. 2019) and the OLs (a primary sensory input
neuropil).

Methods
Colony collection and culturing

Unrelated A. cephalotes colonies, recently founded by a
newly inseminated queen and having relatively few work-
ers and a small fungal comb, were collected in Trinidad in
2016. Colonies (Ac09, Acl16, Ac20, Ac21) were cultured
in a Harris environmental chamber under a 12-h light: 12-h
dark cycle at 55% humidity and 25 °C at Boston Univer-
sity. All colonies were housed in large plastic bins (30 cm
X 46 cm X 28 cm) that provided a foraging arena and area
for waste disposal. Plastic boxes (11 cm X 18 cm X 13 cm)
interconnected by plastic tubes (1 cm diameter) served as
chambers for the fungus. Colonies were provisioned with
washed pesticide-free leaves of rhododendron, rose, lilac,
andromeda, bramble, oak, sugar maple, willow, and beech
(as available), organic baby spinach, romaine, arugula, fri-
sée, and oat flakes.

Behavioral performance demands and estimates
of associated neuroanatomical support

We integrated fungus-growing ant brain morphology and
behavior (Wilson 1980a, b; Holldobler and Wilson 2010)
with data from the literature (references in Table 1) to inform
our estimate of needs for sensory integration and motor con-
trol in A. cephalotes worker task performance. Based on our
results of research on visual system evolution in A. cepha-
lotes (Arganda et al. 2020), we assumed greater volume in
neuropils such as the MBs, ALs, and CX would process
more diverse stimulus arrays and coordinate sensorimotor
processes. For example, tasks such as leaf selection, cutting,
and transport involve olfactory discrimination, propriocep-
tion and mechanosensory and muscular systems to control
the mandibles, appendages, head position, and direction of
movement while excising plant tissue (Khalife et al. 2018;
Green et al. 2019; Currier et al. 2020), whereas other tasks
differ significantly in these needs. Scores for task perfor-
mance frequency were based on results of studies of worker
size-related behavior (references listed in Table 1). Levels of
involvement of sensory integration and other cognitive pro-
cesses were based on overlap in known sensory capacities of
ants and documented instances of behaviors being disrupted
through manipulations of the brain or sensory pathways (see
references in Table 1).

Approximations of neuropil investment for sensory inte-
gration were calculated as the sum of each worker group task
performance process combination from scores in Table 1
according to the following equation:

n
D, = Z XtYwes
t=1

where D, is the score reflecting investment in neuronal
substrate to process and integrate sensory and/or sensori-
motor inputs for a given worker size group. A higher D,
value predicts greater investment (proportional volume) in
a given brain compartment functionally related to the pro-
cesses in question, x,is the multisensory integration-task
demand score, the estimated degree of sensory integration
involved in performing a given task ¢, y,,is the worker size
group task performance score, estimating the tendency of a
given worker group w to perform a given task #, nis the total
number of tasks.

This equation integrates contributions from the type of
neuropil investments likely to be necessary for the perfor-
mance of individual tasks with the frequency with which
polymorphic workers are likely to perform them to generate
hypotheses concerning the likelihood of selection acting to
prioritize or deprioritize sensory integration in the brains of
size-variable workers. x, was rated on a 0-3 scale according
to the role an input or process is considered to underpin a

@ Springer
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specific task: 0=not involved, 1 =possible role (little direct
empirical evidence but logical justification for hypothesizing
involvement, e.g., evidence in other insects), 2 =likely role
(evidence of involvement in ants, under certain conditions),
and 3 =significant role (compelling evidence of involvement
in ants, including A. cephalotes or closely related species).
v, was rated on a similar scale according to the likelihood
that a given worker size group performed a specific task
where: 0 =does not perform task, 1 =possible occasional
role in performing task, 2 =likely to contribute to task, and
3 =known to frequently perform task.

We recognize that task performance observations contrib-
uting to our scores included studies of lab and field colonies
that may vary in the type of behavioral data they generate.
For example, majors specialized on colony security may
not be exposed in lab cultures to stimuli that induce defen-
sive actions. However, we do not believe that such variation
affects the inferences of our computational model.

Immunohistochemistry and confocal microscopy

Mature workers, as identified by complete darkening and
hardening of the exoskeleton, collected from colonies Ac09,
Acl6, Ac20, and Ac21 were decapitated immediately prior
to brain dissection and fixation. We selected mature work-
ers to control for the influences of age and experience as
best as possible given the nature of our study. Individu-
als were sampled from five worker size groups identified
by head width (HW): minims (0.6 mm +0.1 mm), medias
(1.2mm=+0.1 mm, 1.8 +0.1 mm, or 2.4 mm =+ 0.1 mm), and
majors (3.0 mm or larger). HW was measured as the wid-
est distance from the outer margin of one eye to the other
across the face in front view. Brains (n=30) from workers
sampled from Ac09, Ac20, and Ac21 were dissected in ice-
cold HEPES-buffered saline, placed in 16% zinc-formalde-
hyde (Ott 2008), and fixed overnight at room temperature
on a shaker. Whole brains were processed to visualize the
presynaptic protein synapsin. Fixed brains were washed
in HEPES-buffered saline six times, 10 min per wash, and
fixed in Dent’s Fixative (80% MeOH, 20% DMSO) for mini-
mally 1 h. Brains were then washed in 100% methanol and
either stored at — 17 °C or immediately processed. Brains
were washed in 0.1 M Tris buffer (pH 7.4) and blocked in
PBSTN (5% normal goat serum, 0.005% sodium azide in
0.2% PBST) at room temperature for 1 h before incubation
for 3 days at room temperature in primary antibody (1:30
SYNOREF 1 in PBSTN; monoclonal antibody anti-synorf
3C11 obtained from DSHB, University of Iowa, IA, USA;
62). They were washed 6 X 10 min in 0.2% PBST and incu-
bated in the secondary antibody (1:100 AlexaFluor 488
goat anti-mouse in PBSTN) for 4 days at room tempera-
ture. Brains were then washed a final time (6 X 10 min in
0.2% PBST) and dehydrated in an ethanol and PBS series

@ Springer

(10 min per concentration, 30/50/70/95/100/100% ethanol in
1 X PBS), then cleared with and immersed in methyl salicy-
late, and mounted on stainless steel glass windowed slides
for imaging.

Brains were imaged with a Nikon C2 confocal micro-
scope and images were manually annotated using Amira
6.0 software to quantify neuropil volumes (not including
cell bodies). The individual who annotated all brains for
the study did not have any expectation of specific outcomes
and did not have knowledge of predictions generated by our
model. The annotation process involved using paintbrush-
or magic wand-style tools to select areas to be included in
a given neuropil in a given single scan of a 3D stack. The
margins of focal neuropil regions were identified visually
(or automatically when using the magic wand tool) based
on the presence of synapsin staining. The magic wand-style
tool was used primarily to annotate the antennal lobe glo-
meruli. Every third frame was annotated manually (or every
other frame in the case of the antennal lobes) and interven-
ing frames were filled in using the interpolation function of
Amira. Interpolated frames were also checked and edited for
accuracy. Annotated slices were then used to calculate the
3D volume of each neuropil using Amira and these data were
exported for analysis. We recorded the volumes of OL, AL,
MB, CX, SEZ, and ROCB. We use the term ROCB for sim-
plicity and to correspond with our ability to associate spe-
cific compartments with sensorimotor functions to describe
the tissue composed of the superior neuropils, lateral horn,
ventrolateral neuropils, inferior neuropils, and ventromedial
neuropils, as designated in a fruit fly brain (Ito et al. 2014).
For the ALs, only glomerular tissue was included (excluding
aglomerular neuropil and all soma layers). For the OLs, we
measured only the medulla and lobula neuropils, excluding
surrounding cell bodies. Similarly, measurements of the SEZ
did not include somata. We also measured and separately
examined substructures of the MB: the medial calyces (MB
medial calyces), lateral calyces (MB lateral calyces), and
peduncle and lobes (MB peduncle). Our peduncle measure-
ments incorporated vertical and medial lobes; these metrics
are included in all discussions of the peduncle. The vol-
umes of these components were combined to quantify total
MB size (total MB) across worker size groups. For bilateral
structures, one hemisphere was measured, and for compart-
ments located along the brain midline (SEZ and CX), the
whole structure was measured (Supplementary Table 1; Sup-
plementary Table 2). When calculating total brain volume,
we excluded all soma layers and used only neuropil volumes.

Volumetric analysis
Statistical comparisons among worker size groups and brain

compartment metrics were performed using R (version
3.6.2). We compared absolute volumes of total measured
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brain volume, total brain volume scaled to head width, all
individual brain compartments, and normalized brain com-
partments. Normalized volumes were calculated by dividing
the volume of the compartment of interest by total brain
volume. We invoke the central limit theorem due to our rela-
tively large sample size (n=50). To account for any une-
venness in the sampling of different worker groups across
colonies, we included colony identity as a random effect
within a linear mixed effects model (using the /mer package
in R; Bates 2005) and tested differences using ANOVA. If
ANOVA results showed a significant effect of worker size
group on the proportional size of a brain compartment, we
performed pairwise comparisons with a Bonferroni cor-
rection for multiple comparisons using the contrast and
eemeans (Lenth 2018) functions in R to determine the sig-
nificance of compartment size differences among groups.

Linear regression was used to assess the significance
of correlations between values of D,, for each worker size
group and either proportional volumes of brain compart-
ments or total brain volume scaled to worker size (i.e., the
sum of all measured neuropils/HW).

Principal component analysis (PCA) was performed on
log-transformed proportional volumes using the prcomp
function from the base stats package in R. Linear discri-
minant analysis (LDA) was performed using the lda func-
tion from the MASS package in R (Liaw and Wiener 2001).
Previously collected data of A. cephalotes brain volume
measurements taken by a different observer were used as a
training set (Supplementary Table 3).

Results

Division of labor and sensory involvement in task
performance

Scores for sensory integration were highest in medias
(1.2 mm D,=124, 1.8 mm=127, 2.4 mm=102) and the
score for minims (0.6 mm D, = 82) exceeded that for majors
(3 mm+ D,,=20) (Fig. 2). A linear regression of total MB
volume on D,, showed a significant correlation (p=0.002)
between our scores and the pattern of proportional volume
in the MBs (Table 2, Fig. 3). Similarly, MB peduncle volume
showed moderate but significant correlation to D,, values.
MB medial calyx, MB lateral calyx (and medial and lateral
calyx summed volume), OL, AL, CB, SEZ, and ROCB vol-
umes were also compared to D,, values, all explaining very
low levels of variance with mixed significance (Table 2).

Division of labor and neural phenotypes

Absolute total brain volume of increased with worker size
(Fig. 4a; Table 3a; Supplementary Table 5a). Only majors

150-

100

Head Width
o (mm)
3 * 06
% 7 A 12
50 s 2%
_ o 3
a
N
. Yz
0.6 1.2 1.8 2.4 3

Head Width (mm)

Fig.2 Calculated scores (D,) for neuronal substrate investment based
on tasks performed by A. cephalotes worker size groups. Y axis val-
ues are the sum of each sensory integration/sensorimotor function
task score multiplied by the corresponding worker group-size task
performance score (see “Methods”). Local regression curve approxi-
mates neuronal substrate investment score as a function of HW plus
HW squared (score~HW +HW?; blue line) and 95% confidence
interval (grey band). Heads are drawn to scale

had significantly larger brains. When adjusted for body
size, total brain volumes were not significantly different
(Fig. 4b; Table 3a; Supplementary Table 4b). The abso-
lute volumes of all compartments except the CX signifi-
cantly increased with worker size (Fig. 5; Table 3a; Sup-
plementary Table 5). Consistent with the pattern of total
brain size, many brain compartments were significantly
larger in majors. The proportional volumes of all brain
compartments except the MB medial calyces, MB lateral
calyces (as well as the proportional volume of the sum of
medial and lateral calyces), and the SEZ significantly dif-
fered among workers of different-size groups (Table 3b).
In contrast to the relatively uniform pattern of increase in
absolute volumes, the directions of these trends differed
(Fig. 6; Table 3b; Supplementary Table 6).

Principal component analysis of log-transformed pro-
portional brain volumes explained a significant portion
(PC1=15.83%, PC=66.04%) of the observed variance
(Fig. 7a). Linear discriminant analysis, using a model that
included proportional volumes of all neuropils except for
the ROCB (which was colinear with other variables) and
trained on a separate data set of A. cephalotes brain vol-
umes, classified samples in the main data set with 95.8%
accuracy (Fig. 7b). However, this result was found only
when 1.2, 1.8, and 2.4 mm worker groups were clustered
as medias. LDA using five worker size groups (0.6, 1.2,
1.8, and 3 mm+) and the same testing and training data
sets achieved 54.2% accuracy.
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Table 2 Fit of D,, scores

Brain compartment Multiple Adjusted R-squared F statistic p value

to observed patterns of R

. - -squared

proportional brain compartment

investment Total neuropil volume/HW 0.012 —0.008 0.597 0.4434
OL 0.351 0.338 25.990 5.770e—06
AL 0.001 -0.020 0.062 0.805
Total MB 0.186 0.169 10.960 0.002
MB medial calyces 0.087 0.087 0.068 0.037
MB lateral calyces 0.002 -0.019 0.071 0.791
MB medial and lateral calyces sum 0.039 0.019 1.952 0.169
MB peduncle 0.155 0.138 8.822 0.005
CX 0.104 0.085 5.559 0.023
SEZ 0.079 0.060 4.129 0.048
ROCB 0.025 0.005 1.250 0.269
Linear regression statistics for the fit of a subset of categories of behavioral performance/sensory/cogni-
tive process as predictors for the brain compartments whose function most closely corresponds to these
demands. Degrees of freedom=1, 48
ALantennal lobe, CXcentral complex, MBmushroom body, OLoptic lobe, ROCBremainder of central
brain, SEZ subesophageal zone

Discussion Modeling investment in sensory integration

We assessed how estimated sensory and motor aspects of
task performance involved in the agricultural division of
labor correlate with variation in brain size and compartmen-
tal allometries (i.e., mosaic structure) among polymorphic
workers of A. cephalotes. We identified significant differ-
ences in absolute size and proportional investment across
polymorphic task-differentiated workers, supporting the
hypothesis that variation in task performance has been a
contributing selective factor in the evolution of worker neu-
ral phenotypes. Scaling patterns broadly correlated with sen-
sory, somatosensory, and integrative information-process-
ing demands associated with the specialized repertoires of
polymorphic workers, consistent with demands in species
characterized by large colony size and task differentiation
(Riveros et al. 2012).

Behavioral performance challenges in social insects have
been typically inferred from interspecific and intraspecific
variation in neuropil scaling patterns and general assess-
ments of sensory environments and socioecological influ-
ences (Gronenberg et al. 1996; Gronenberg 1999; Muscedere
and Traniello 2012; Amador-Vargas et al. 2015; O’Donnell
et al. 2018b), casually correlated with sociobiological char-
acteristics such as colony size, foundation strategy and
queen/worker differentiation (for example the reduction in
MB volume in solitary compared to social wasps; O’Donnell
et al. 2015), and/or diet and life history (Sayol et al. 2020).
To the best of our knowledge, our study is the first to employ
a model that estimates contributing factors to selection on
brain investment in relation to sensorimotor integration and
to establish a significant correlation with neuroanatomy.

@ Springer

processes in the brain

We assessed the need for neuropil investment to serve sen-
sory input processing and sensorimotor functions, conserva-
tively evaluated the size-related involvement of polymor-
phic workers in performing these tasks (Fig. 2) and used this
metric to generate predictions concerning brain evolution.
Notably, our scores were broadly consistent with total MB
and MB peduncle scaling patterns, although the percent-
age of explained variance was moderate, lending modest
support to the concept that selection on brain compartment
volume optimizes for sensory involvement in task integra-
tion. However, several other factors likely contribute to
levels of investment. These may include differences in the
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Fig. 3 Normalized total MB volume as a function of sensory integra-
tion score (D,,) with regression line. R-squared =0.169. p=0.002
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Fig.4 a Absolute total brain
volume (sum of the OLs, ALs,
total MB, CX, SEZ, and ROCB)
across worker size groups
(p=0.002). b Total brain vol-
ume scaled to body size (total
volume/HW for each sample
across worker size groups
(p=0.143). Y axis values are
noted in scientific e notation

Table 3 Statistical analysis

of brain volume and brain
compartment absolute (a) and
proportional (b) volume among
worker size groups
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Head Width (mm) Head Width (mm)
Brain compartment Chi-squared p value
(a) Absolute total brain and compartmental volumes
Total of neuropils 17.245 0.002
Total neuropil volume/HW 6.872 0.143
OL 55.265 2.85%—11
AL 11.889 0.0182
Total MB 14.275 0.006
MB medial calyces 15.220 0.004
MB lateral calyces 15.646 0.004
MB medial and lateral calyces sum 15.460 0.004
MB peduncle 12.316 0.015
CX 3.127 0.537
SEZ 21.699 2.301e—04
ROCB 15.320 0.004
(b) Proportional brain compartment volumes
OL 332.680 <2.200e—16
AL 11.710 0.020
Total MB 14.237 0.007
MB medial calyces 6.454 0.168
MB lateral calyces 4.480 0.345
MB medial and lateral calyces sum 2.271 0.685
MB peduncle 14.961 0.005
CX 29.453 6.324e—06
SEZ 7.683 0.104
ROCB 12.933 0.012

Degrees of freedom=4

ALantennal lobe, CXcentral complex, MBmushroom body, OLoptic lobe, ROCBremainder of central

brain, SEZsubesophageal zone

@ Springer



Journal of Comparative Physiology A

Fig.5 a Absolute volume 2.56+06
of the OL (p=2.85%e—11);
b AL (b p=0.0182); ¢ total 7.56+05 7 50406
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i SEZ (p=2.301e—04); and

j ROCB (p=0.004) across
worker size groups. Y axis
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Fig.6 Relative investment
(compartment volume as a
percent of total brain vol-

ume, indicated on Y axis) in
the a OL (p <2.200e—16); b
AL (p=0.020); c total MB
(p=0.007); d MB medial
calyces (p=0.168); e MB
lateral calyces (p =0.345); f MB
medial and lateral calyces sum;
g MB peduncle (p=0.005);

h CX (p=6.324e—06); i SEZ
(p=0.104); and j ROCB
(p=0.012) across worker size
groups
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Fig.7 a Principal component analysis plot of all log-transformed
compartmental volumes normalized to total brain volume. b Lin-
ear discriminant analysis of samples according to worker size group
(minims: 0.5-0.7 mm, medias: 1.1-2.5 mm, majors: 3 mm+) based

amount of tissue involved in maintaining baseline neural
functions across workers that vary in body size and meta-
bolic expenses (Kamhi et al. 2016; Packard 2020), or other
size-related constraints (Finlay and Darlington 1995; Hercu-
lano-Houzel 2012; Herculano-Houzel et al. 2014; O’Donnell
et al. 2018b).

Differentiation of worker neural phenotypes

Principal component and linear discriminant analysis dis-
tinguished individual A. cephalotes brains from differ-
ent worker groups on the basis of compartment volumes.
LDA demonstrated that the degree to which brains can
accurately be classified in terms of worker body size
is greater when all media size classes (1.2, 1.8, and
2.4 mm) are pooled, but is nevertheless able to distin-
guish samples belonging to five different groups. These
results suggest that medias are readily distinguished in
terms of neuroanatomy from the largest and smallest
worker specialists in relation to task performance and
although differentiation among size groups of medias is
less substantial, it is consistent with our scores (Fig. 2).
Similarly, we identified relatively few significant differ-
ences in the proportional volume of any brain compart-
ment among different media size groups in contrast to the
differences identified in medias in comparison to minims
and medias in comparison to majors. Such a lack of dis-
tinction in the boundaries between media groups could
reflect evolutionary origins of worker differentiation in
A. cephalotes, in terms of how different groups “split
off” (Rajakumar et al. 2012) or may reflect constraint
from the task-diverse behavioral profile of most media
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workers (see Bernays and Funk 1999; Farris and Roberts
2005).

Absolute total brain volume

Interestingly, although total brain volume differed between
majors in comparison to minims and medias, we found no
significant change in total brain size in 0.6 to 2.4 mm work-
ers despite a fourfold increase in body size. Such a pattern
could theoretically result from limits on miniaturization
of total brain size in smaller workers (Groh et al. 2014),
making them undifferentiated with respect to total abso-
lute brain volume from medias. Alternatively, this could
result from either differential demands affecting the entire
brain that have an inflection point at majors or from broader
constraints/influences from specific developmental trajec-
tories governing worker size (Trible and Kronauer 2017,
O’Donnell et al. 2018b).

Antennal lobes

Medias were predicted to have greater sensory integration
needs than other worker groups (Fig. 2) due to their large
task repertoire and collaterally diverse behavioral chal-
lenges involved in selecting and harvesting plant material
and navigating to and from food sources (Wilson 1980b;
Hubbell et al. 1983, 1984; Blanton and Ewel 1985; Howard
1987; Howard et al. 1988; Falibene et al. 2015; Arenas and
Roces 2017). Media workers (specifically the 1.8 mm and
2.4 mm size groups) had greater AL proportional volume
compared with minims and majors. A significant change
in proportional AL size occurred in the transition from 1.2
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to 2.4 mm medias. Increased input to the AL from anten-
nal olfactory sensory neurons is associated with increased
olfactory sensitivity (Acebes and Ferris 2001; Kuebler et al.
2010). Consistent with their social roles, media worker ALs
are enlarged, potentially to process more diverse olfactory
information, similar to the linkage of AL enlargement and
olfaction-based tasks in Atta vollenweideri (Kleineidam
et al. 2005; Kelber et al. 2009a, b; Kuebler et al. 2010).
Nonetheless, little of the variance in AL volume could be
explained by our model, suggesting multiple factors may
influence investment in primary sensory neuropils, even
those potentially sensitive to diverse stimuli.

Mushroom bodies

Medias (1.8 mm) had significantly higher relative total MB
volume compared to majors and their total MB volume
tended to be larger than that of other workers. This trend
was consistent for the MB peduncle, which was significantly
enlarged in 1.8 mm medias relative to minims, and for the
MB medial calyces, although differences in proportional
MB medial calyces volume were not significant. The MB
lateral calyces, in contrast, showed no proportional increase
in either minims, medias, or majors. Further, when analyzed
as a sum, the combined absolute volume of the MB medial
calyces and MB lateral calyces did not significantly differ
among worker size groups. The functions of the MB medial
calyces and the MB lateral calyces may differ; differences
in the volume of the medial calyx in a bumblebee species
correlated to differences in experience (Riveros and Gronen-
berg 2010). The significant differences we found in total MB
volume were thus primarily driven by the volume of the MB
peduncle, a fibrous, bi-partite region containing Kenyon cell
neurites and neurites from MB extrinsic neurons connecting
to other brain compartments, embedded in the protocerebral
lobe and innervated by MB extrinsic neurons connecting
it to regions in the protocerebrum (Goll 1967; Rybak and
Menzel 1993; Ito et al. 2014; Schiirmann 2016). Our results
suggest that the nature and diversity of the leaf-harvesting
task repertoire of 1.8 mm medias contributes to selection
for relatively larger MBs, specifically MB peduncle. Since
the medial and lateral MB calyces process sensory inputs
while the MB peduncle relays outputs from the MBs to other
brain regions (Rybak and Menzel 1993; Schiirmann 2016),
the significant differences we observed in MB peduncle
proportional volume, but not in MB calyx proportional vol-
ume, may reflect increased selection in medias for efficient
higher-order processing in the MBs and signaling to other
areas of the brain. Task experience correlates with MB size
(Durst et al. 1994; Gronenberg et al. 1996; Fahrbach 2006)
and large MBs may be associated with increased behavioral
flexibility (Riveros Rivera and Gronenberg 2009; Riveros
et al. 2012; O’Donnell et al. 2015). Specifically, MBs play

an essential role in olfactory learning in insects (Connolly
et al. 1996; Zars 2000; Komischke et al. 2005; Busto et al.
2010) and investing more in this compartment may allow
medias to react with specificity to a wide array of learned
chemical cues associated with the suitability of plant mate-
rial for fungal growth. With respect to specialist or general-
ist beetles (Farris and Roberts 2005), the enlargement of
the MBs is consistent with the idea that generalists—in this
case, medias that have a larger task repertoire—are selected
to elaborate neural tissue to fulfill their diverse tasks. A.
vollenweideri workers show decreasing proportional vol-
ume in the MB calyces with increasing worker size (Groh
et al. 2014). Our data indicate greater (non-significant) MB
calyx investment in A. cephalotes medias, perhaps due to
their generalist plant tissue harvesting that contrasts with the
specialized grass harvesting of A. vollenweideri. However,
MB circuitry, rather than volume, may be related to task
specialization (Groh et al. 2012).

Additional compartmental allometries

We found that CX volume was proportionally largest in min-
ims, and inversely related to worker size. Greater investment
in the CX may represent circuitry to enable multisensory
navigation within dark three-dimensional labyrinthal fungal
comb chambers. Minims mainly perform fungal-gardening
tasks that likely rely on non-visual navigational strategies,
perhaps involving CX circuitry (Mamiya et al. 2018; Le
Moél et al. 2019; Green et al. 2019; Shiozaki et al. 2020;
Sun et al. 2020; Pisokas et al. 2020; Currier et al. 2020).

A. cephalotes worker OL proportional volume increases
with worker size and is highest in majors, which have greater
visual acuity (Arganda et al. 2020). In addition to enlarged
OLs, majors also possess a greater number of ommatidia,
the photoreceptive subunit of the compound eye, and have
larger ommatidia compared to medias and minims, although
ommatidia size relative to body size is largest in minims
(Arganda et al. 2020). The number and size of major worker
ommatidia relative to other worker groups is consistent with
their increased proportional and absolute volume of OL tis-
sue, enabling greater visual acuity. The repertoire of Atta
majors appears limited to defense (Wilson 1980a; Powell
and Clark 2004a), a task mainly taking place outside the nest
that likely involves target detection.

Total brain volume

Total brain volume sharply increased in the largest two
worker size groups. When scaled to body size, minims had
the largest brains, consistent with Haller’s rule (Rensch
1956), although these scaled differences were not signifi-
cant, perhaps due to limits on neural circuit miniaturization
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(Beutel et al. 2005; Chittka and Niven 2009; Seid et al. 2011;
Niven and Farris 2012; Groh et al. 2014). However, Haller’s
rule does not apply to all hymenopteran species, including
some parasitoid wasps smaller in size than A. cephalotes
minims (van der Woude et al. 2013; van der Woude and
Smid 2016; Groothuis and Smid 2017). A. cephalotes fungal
gardening and nursing tasks may select for more neural tis-
sue than involved in parasitoid behavior. Size-adjusted total
brain volume showed very little correlation to estimates
from our model reflecting task performance. Given the more
significant correlation found in some brain compartments
and coupling of scaling pattern of compartments to sensory
processing, total brain volume may be a too general and
imprecise metric to reflect behavioral differences (Chittka
and Niven 2009; Muscedere and Traniello 2012; Muscedere
et al. 2014; Logan et al. 2018) among A. cephalotes workers.

Conclusions

Our results provide insight into the associations between
task specializations and sensorimotor and higher-order pro-
cesses in brain evolution. Our estimates of the involvement
of processes in task performance and the extent to which
different worker groups perform these tasks allowed us to
model the influence of behavioral repertoire on brain scal-
ing. Selection on neuroanatomy in A. cephalotes polymor-
phic workers appears to support the social organization of
agricultural division of labor. The relationship of our score
to total MB and MB peduncle volumes suggests our method
effectively characterizes the involvement of neuropils that
integrate diverse stimuli and facilitate higher-order process-
ing, but does not adequately explain variances in investment
in specialized primary input neuropils. This is likely due to
the emphasis our model places on behavioral diversity, and
thus the integration and processing of multimodal stimuli,
and differences in the frequency with which different worker
groups perform tasks.
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