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Abstract
Brain evolution is hypothesized to be driven by behavioral selection on neuroarchitecture. We developed a novel metric 
of relative neuroanatomical investments involved in performing tasks varying in sensorimotor and processing demands 
across polymorphic task-specialized workers of the leafcutter ant Atta cephalotes and quantified brain size and structure 
to examine their correlation with our computational approximations. Investment in multisensory and motor integration for 
task performance was estimated to be greatest for media workers, whose highly diverse repertoire includes leaf-quality dis-
crimination and leaf-harvesting tasks that likely involve demanding sensory and motor processes. Confocal imaging revealed 
that absolute brain volume increased with worker size and functionally specialized compartmental scaling differed among 
workers. The mushroom bodies, centers of sensory integration and learning and memory, and the antennal lobes, olfactory 
input sites, were larger in medias than in minims (gardeners) and significantly larger than in majors (“soldiers”), both of 
which had lower scores for involvement of olfactory processing in the performance of their characteristic tasks. Minims 
had a proportionally larger central complex compared to other workers. These results support the hypothesis that variation 
in task performance influences selection for mosaic brain structure, the independent evolution of proportions of the brain 
composed of different neuropils.

Keywords  Social brain evolution · Distributed cognition · Task performance · Mushroom body · Sensory processing

Abbreviations
AL	� Antennal lobe
CX	� Central complex
DMSO	� Dimethylsulfoxide
HEPES	� 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic 

acid
MB	� Mushroom body
OL	� Optic lobe
PBS	� Phosphate-buffered saline
PBST	� Phosphate-buffered saline with Triton
ROCB	� Remainder of central brain
SEZ	� Subesophageal zone

Introduction

Identifying the selective forces that contribute to the evolu-
tion of brain size and patterns of investment in functionally 
specialized brain centers is key to understanding the organi-
zation of behavior. Social life is predicted to contribute to 
selection for both increased (Dunbar 1998, 2009; Adolphs 
2003; Kamhi et al. 2016) and decreased brain size (Jaffe 
and Perez 1989; Riveros et al. 2012; Sulger et al. 2014; 
O’Donnell et  al. 2018a; DeSilva et  al. 2021; Reséndiz-
Benhumea et al. 2021), and/or brain compartment scaling 
relationships (Muscedere and Traniello 2012; Smaers and 
Soligo 2013; O’Donnell et al. 2015, 2018b; DeCasien and 
Higham 2019). Assessments of sensory, motor, and process-
ing demands for behavioral performance should inform pre-
dictions about brain size and scaling given the cost of neural 
tissue, but the nature and extent of such demands are rarely 
estimated in analyses that link behavior and neuroanatomy.

Insects are important models to examine behavioral and/
or cognitive evolution (Boogert et al. 2018; Lihoreau et al. 
2019; Godfrey and Gronenberg 2019; Simons and Tibbetts 
2019; Muratore and Traniello 2020). Social insect worker 
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brains are composed of compartments responsible for vis-
ual and olfactory processing (optic lobes [OL] and antennal 
lobes [AL], respectively), higher-order processing, learning, 
and memory (mushroom bodies [MB]), navigation, orienta-
tion, and movement (central complex [CX]; also associated 
with the MBs) (Le Moël et al. 2019; Green et al. 2019; Sun 
et al. 2020; Pisokas et al. 2020; Kamhi et al. 2020; Currier 
et al. 2020), and mandibular control and gustation (the sub-
oesophageal zone [SEZ]). The remainder of the central brain 
(ROCB; see “Methods” for anatomical details) is composed 
of several protocerebral regions thought to integrate sen-
sory information (Strausfeld 2012; Green et al. 2019; Currier 
et al. 2020). Complexity in colony organization may involve 
selection for either smaller, neurally differentiated worker 
brains (Riveros Rivera and Gronenberg 2009; Riveros et al. 
2012; Lihoreau et al. 2012; Sulger et al. 2014; O’Donnell 
et al. 2015, 2018b; Feinerman and Traniello 2015), involv-
ing reductions in the volume of subsets of described insect 
brain compartments, or larger brains (Wehner et al. 2007) 
potentially able to metabolically offset increased production 
and operation costs (Kamhi et al. 2016).

Division of labor in socially complex fungus-growing 
ants is characterized by morphologically differentiated work-
ers in derived species (Schultz and Brady 2008; Hölldobler 
and Wilson 2010; Muratore and Traniello 2020). Colonies of 
leafcutter ants, Atta, have strongly polymorphic workers cat-
egorized into size-based groups (subcastes) differing in labor 
roles and efficiencies of task performance (Fig. 1) (Wilson 
1980a, b). Worker size-related specializations include fungal 
care, nursing immatures, leaf selection, cutting and trans-
port, waste management and hygienic behavior, and col-
ony defense. These tasks differ in the extent to which they 
involve multimodal sensory integration and motor functions 
associated with monitoring the growth of fungus and brood 

development, decoding plant chemistry, leaf harvesting, 
navigation, recognizing infectious agents, detecting envi-
ronmental hazards, and combating predators and parasites 
(Saverschek and Roces 2011; Groh et al. 2014; Arenas and 
Roces 2016a, b, 2017; Green and Kooij 2018; Goes et al. 
2020; Buehlmann et al. 2020; Fleischmann et al. 2020). This 
pattern of division of labor characterizes Atta cephalotes, 
whose workers range in size from 0.5 to more than 4.5 mm 
in head width and are divisible into groups according to 
task repertoires (Table 1b). Brain size and structural varia-
tion could reflect differences in behavioral diversity: workers 
displaying the broadest task repertoire and corresponding 
behavioral and/or cognitive demands could have experienced 
selection for a greater volume of neural tissue.

To examine factors contributing to brain evolution in 
A. cephalotes, we evaluated the expected distribution of 
the relative involvement of different modalities of sensory 
perception, integration, and sensorimotor functions in 
task performance across polymorphic workers. Our study 
explores stable differences among adult worker brains that 
have evolved with behavioral specialization as a likely 
selective factor, rather than experience-dependent plas-
ticity occurring over the course of an individual’s lifespan. 
We determined patterns of variation in behavioral demands 
associated with task performance and work environments 
to provide a semi-quantitative score reflecting how brain 
tissue would be scaled to efficaciously perform tasks. This 
is based on the assumption that neuropil volumes correlate 
with the degree of involvement of task-associated sensory 
processes. We acknowledge that this assumption does not 
encompass all influences on brain region scaling, such 
as limits on circuitry miniaturization (Seid et al. 2011; 
Niven and Farris 2012; Groh et al. 2014), and that brain 
compartment volumes are not necessarily equivalent to 

Fig. 1   Confocal images of A. 
cephalotes polymorphic worker 
brains (top row). Structural dia-
grams of color-coded neuropils 
(middle row; compartments 
not drawn to scale). Blue = OL, 
green = AL, orange = MB 
medial calyces, red = MB lateral 
calyces, yellow = MB pedun-
cle, purple = SEZ, pink = CX. 
Illustration of task performance 
by polymorphic workers (bot-
tom row; minim, two images 
of medias, major attacking an 
army ant, an important preda-
tor)
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metrics such as glomeruli number in the antennal lobes 
(Kelber et al. 2009b) in understanding the organization 
of the brain. Nonetheless, brain size and compartmental 
allometries correlate with variability in worker size and 
task performance in ants (Muscedere and Traniello 2012; 
Ilieş et al. 2015; Gordon et al. 2017; Kamhi et al. 2019). 
Furthermore, the volumes and structural elaboration of 
visual and olfactory neuropils and the MBs in ants cor-
relate with processing capability and have ethological sig-
nificance (Gronenberg 2001; Farris 2011).

To identify how brain size, compartmental scaling, 
and differential task performance demands of division of 
labor correlate with our estimates, we quantified patterns 
of sensory, higher-order processing, and motor neuropil 
investment. This allowed us to correlate variation in task 
repertoires and their associated sensory challenges among 
workers to size scaling among functionally differentiated 
brain compartments. Based on an assessment of worker size-
related sensory and motor functions, olfaction, and higher-
order processing, we hypothesized that intermediate-size 
(media, leaf harvesting) workers would have higher MB 
proportional volume than small (minims, fungus garden-
ing) or large (majors, defensive) workers. We also hypoth-
esized that our scores would accurately describe the pattern 
of proportional AL volume, with this neuropil predicted to 
be proportionally largest in medias due to selection for pro-
cessing diverse olfactory cues. We also determined the fit 
of our scores to the proportional volumes of the CX (also a 
neuropil of multisensory integration; Plath and Barron 2015; 
Le Moël et al. 2019) and the OLs (a primary sensory input 
neuropil).

Methods

Colony collection and culturing

Unrelated A. cephalotes colonies, recently founded by a 
newly inseminated queen and having relatively few work-
ers and a small fungal comb, were collected in Trinidad in 
2016. Colonies (Ac09, Ac16, Ac20, Ac21) were cultured 
in a Harris environmental chamber under a 12-h light: 12-h 
dark cycle at 55% humidity and 25 °C at Boston Univer-
sity. All colonies were housed in large plastic bins (30 cm 
× 46 cm × 28 cm) that provided a foraging arena and area 
for waste disposal. Plastic boxes (11 cm × 18 cm × 13 cm) 
interconnected by plastic tubes (1 cm diameter) served as 
chambers for the fungus. Colonies were provisioned with 
washed pesticide-free leaves of rhododendron, rose, lilac, 
andromeda, bramble, oak, sugar maple, willow, and beech 
(as available), organic baby spinach, romaine, arugula, fri-
sée, and oat flakes.

Behavioral performance demands and estimates 
of associated neuroanatomical support

We integrated fungus-growing ant brain morphology and 
behavior (Wilson 1980a, b; Hölldobler and Wilson 2010) 
with data from the literature (references in Table 1) to inform 
our estimate of needs for sensory integration and motor con-
trol in A. cephalotes worker task performance. Based on our 
results of research on visual system evolution in A. cepha-
lotes (Arganda et al. 2020), we assumed greater volume in 
neuropils such as the MBs, ALs, and CX would process 
more diverse stimulus arrays and coordinate sensorimotor 
processes. For example, tasks such as leaf selection, cutting, 
and transport involve olfactory discrimination, propriocep-
tion and mechanosensory and muscular systems to control 
the mandibles, appendages, head position, and direction of 
movement while excising plant tissue (Khalife et al. 2018; 
Green et al. 2019; Currier et al. 2020), whereas other tasks 
differ significantly in these needs. Scores for task perfor-
mance frequency were based on results of studies of worker 
size-related behavior (references listed in Table 1). Levels of 
involvement of sensory integration and other cognitive pro-
cesses were based on overlap in known sensory capacities of 
ants and documented instances of behaviors being disrupted 
through manipulations of the brain or sensory pathways (see 
references in Table 1).

Approximations of neuropil investment for sensory inte-
gration were calculated as the sum of each worker group task 
performance process combination from scores in Table 1 
according to the following equation:

 where Dw is the score reflecting investment in neuronal 
substrate to process and integrate sensory and/or sensori-
motor inputs for a given worker size group. A higher Dw 
value predicts greater investment (proportional volume) in 
a given brain compartment functionally related to the pro-
cesses in question, xt is the multisensory integration-task 
demand score, the estimated degree of sensory integration 
involved in performing a given task t, ywt is the worker size 
group task performance score, estimating the tendency of a 
given worker group w to perform a given task t, n is the total 
number of tasks.

This equation integrates contributions from the type of 
neuropil investments likely to be necessary for the perfor-
mance of individual tasks with the frequency with which 
polymorphic workers are likely to perform them to generate 
hypotheses concerning the likelihood of selection acting to 
prioritize or deprioritize sensory integration in the brains of 
size-variable workers. xt was rated on a 0–3 scale according 
to the role an input or process is considered to underpin a 

Dw =

n
∑

t=1

xtywt,
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specific task: 0 = not involved, 1 = possible role (little direct 
empirical evidence but logical justification for hypothesizing 
involvement, e.g., evidence in other insects), 2 = likely role 
(evidence of involvement in ants, under certain conditions), 
and 3 = significant role (compelling evidence of involvement 
in ants, including A. cephalotes or closely related species). 
ywt was rated on a similar scale according to the likelihood 
that a given worker size group performed a specific task 
where: 0 = does not perform task, 1 = possible occasional 
role in performing task, 2 = likely to contribute to task, and 
3 = known to frequently perform task.

We recognize that task performance observations contrib-
uting to our scores included studies of lab and field colonies 
that may vary in the type of behavioral data they generate. 
For example, majors specialized on colony security may 
not be exposed in lab cultures to stimuli that induce defen-
sive actions. However, we do not believe that such variation 
affects the inferences of our computational model.

Immunohistochemistry and confocal microscopy

Mature workers, as identified by complete darkening and 
hardening of the exoskeleton, collected from colonies Ac09, 
Ac16, Ac20, and Ac21 were decapitated immediately prior 
to brain dissection and fixation. We selected mature work-
ers to control for the influences of age and experience as 
best as possible given the nature of our study. Individu-
als were sampled from five worker size groups identified 
by head width (HW): minims (0.6 mm ± 0.1 mm), medias 
(1.2 mm ± 0.1 mm, 1.8 ± 0.1 mm, or 2.4 mm ± 0.1 mm), and 
majors (3.0 mm or larger). HW was measured as the wid-
est distance from the outer margin of one eye to the other 
across the face in front view. Brains (n = 30) from workers 
sampled from Ac09, Ac20, and Ac21 were dissected in ice-
cold HEPES-buffered saline, placed in 16% zinc-formalde-
hyde (Ott 2008), and fixed overnight at room temperature 
on a shaker. Whole brains were processed to visualize the 
presynaptic protein synapsin. Fixed brains were washed 
in HEPES-buffered saline six times, 10 min per wash, and 
fixed in Dent’s Fixative (80% MeOH, 20% DMSO) for mini-
mally 1 h. Brains were then washed in 100% methanol and 
either stored at − 17 °C or immediately processed. Brains 
were washed in 0.1 M Tris buffer (pH 7.4) and blocked in 
PBSTN (5% normal goat serum, 0.005% sodium azide in 
0.2% PBST) at room temperature for 1 h before incubation 
for 3 days at room temperature in primary antibody (1:30 
SYNORF 1 in PBSTN; monoclonal antibody anti-synorf 
3C11 obtained from DSHB, University of Iowa, IA, USA; 
62). They were washed 6 × 10 min in 0.2% PBST and incu-
bated in the secondary antibody (1:100 AlexaFluor 488 
goat anti-mouse in PBSTN) for 4 days at room tempera-
ture. Brains were then washed a final time (6 × 10 min in 
0.2% PBST) and dehydrated in an ethanol and PBS series 

(10 min per concentration, 30/50/70/95/100/100% ethanol in 
1 × PBS), then cleared with and immersed in methyl salicy-
late, and mounted on stainless steel glass windowed slides 
for imaging.

Brains were imaged with a Nikon C2 confocal micro-
scope and images were manually annotated using Amira 
6.0 software to quantify neuropil volumes (not including 
cell bodies). The individual who annotated all brains for 
the study did not have any expectation of specific outcomes 
and did not have knowledge of predictions generated by our 
model. The annotation process involved using paintbrush- 
or magic wand-style tools to select areas to be included in 
a given neuropil in a given single scan of a 3D stack. The 
margins of focal neuropil regions were identified visually 
(or automatically when using the magic wand tool) based 
on the presence of synapsin staining. The magic wand-style 
tool was used primarily to annotate the antennal lobe glo-
meruli. Every third frame was annotated manually (or every 
other frame in the case of the antennal lobes) and interven-
ing frames were filled in using the interpolation function of 
Amira. Interpolated frames were also checked and edited for 
accuracy. Annotated slices were then used to calculate the 
3D volume of each neuropil using Amira and these data were 
exported for analysis. We recorded the volumes of OL, AL, 
MB, CX, SEZ, and ROCB. We use the term ROCB for sim-
plicity and to correspond with our ability to associate spe-
cific compartments with sensorimotor functions to describe 
the tissue composed of the superior neuropils, lateral horn, 
ventrolateral neuropils, inferior neuropils, and ventromedial 
neuropils, as designated in a fruit fly brain (Ito et al. 2014). 
For the ALs, only glomerular tissue was included (excluding 
aglomerular neuropil and all soma layers). For the OLs, we 
measured only the medulla and lobula neuropils, excluding 
surrounding cell bodies. Similarly, measurements of the SEZ 
did not include somata. We also measured and separately 
examined substructures of the MB: the medial calyces (MB 
medial calyces), lateral calyces (MB lateral calyces), and 
peduncle and lobes (MB peduncle). Our peduncle measure-
ments incorporated vertical and medial lobes; these metrics 
are included in all discussions of the peduncle. The vol-
umes of these components were combined to quantify total 
MB size (total MB) across worker size groups. For bilateral 
structures, one hemisphere was measured, and for compart-
ments located along the brain midline (SEZ and CX), the 
whole structure was measured (Supplementary Table 1; Sup-
plementary Table 2). When calculating total brain volume, 
we excluded all soma layers and used only neuropil volumes.

Volumetric analysis

Statistical comparisons among worker size groups and brain 
compartment metrics were performed using R (version 
3.6.2). We compared absolute volumes of total measured 
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brain volume, total brain volume scaled to head width, all 
individual brain compartments, and normalized brain com-
partments. Normalized volumes were calculated by dividing 
the volume of the compartment of interest by total brain 
volume. We invoke the central limit theorem due to our rela-
tively large sample size (n = 50). To account for any une-
venness in the sampling of different worker groups across 
colonies, we included colony identity as a random effect 
within a linear mixed effects model (using the lmer package 
in R; Bates 2005) and tested differences using ANOVA. If 
ANOVA results showed a significant effect of worker size 
group on the proportional size of a brain compartment, we 
performed pairwise comparisons with a Bonferroni cor-
rection for multiple comparisons using the contrast and 
eemeans (Lenth 2018) functions in R to determine the sig-
nificance of compartment size differences among groups.

Linear regression was used to assess the significance 
of correlations between values of Dw for each worker size 
group and either proportional volumes of brain compart-
ments or total brain volume scaled to worker size (i.e., the 
sum of all measured neuropils/HW).

Principal component analysis (PCA) was performed on 
log-transformed proportional volumes using the prcomp 
function from the base stats package in R. Linear discri-
minant analysis (LDA) was performed using the lda func-
tion from the MASS package in R (Liaw and Wiener 2001). 
Previously collected data of A. cephalotes brain volume 
measurements taken by a different observer were used as a 
training set (Supplementary Table 3).

Results

Division of labor and sensory involvement in task 
performance

Scores for sensory integration were highest in medias 
(1.2 mm Dw = 124, 1.8 mm = 127, 2.4 mm = 102) and the 
score for minims (0.6 mm Dw = 82) exceeded that for majors 
(3 mm + Dw = 20) (Fig. 2). A linear regression of total MB 
volume on Dw showed a significant correlation (p = 0.002) 
between our scores and the pattern of proportional volume 
in the MBs (Table 2, Fig. 3). Similarly, MB peduncle volume 
showed moderate but significant correlation to Dw values. 
MB medial calyx, MB lateral calyx (and medial and lateral 
calyx summed volume), OL, AL, CB, SEZ, and ROCB vol-
umes were also compared to Dw values, all explaining very 
low levels of variance with mixed significance (Table 2).

Division of labor and neural phenotypes

Absolute total brain volume of increased with worker size 
(Fig. 4a; Table 3a; Supplementary Table 5a). Only majors 

had significantly larger brains. When adjusted for body 
size, total brain volumes were not significantly different 
(Fig. 4b; Table 3a; Supplementary Table 4b). The abso-
lute volumes of all compartments except the CX signifi-
cantly increased with worker size (Fig. 5; Table 3a; Sup-
plementary Table 5). Consistent with the pattern of total 
brain size, many brain compartments were significantly 
larger in majors. The proportional volumes of all brain 
compartments except the MB medial calyces, MB lateral 
calyces (as well as the proportional volume of the sum of 
medial and lateral calyces), and the SEZ significantly dif-
fered among workers of different-size groups (Table 3b). 
In contrast to the relatively uniform pattern of increase in 
absolute volumes, the directions of these trends differed 
(Fig. 6; Table 3b; Supplementary Table 6).

Principal component analysis of log-transformed pro-
portional brain volumes explained a significant portion 
(PC1 = 15.83%, PC = 66.04%) of the observed variance 
(Fig. 7a). Linear discriminant analysis, using a model that 
included proportional volumes of all neuropils except for 
the ROCB (which was colinear with other variables) and 
trained on a separate data set of A. cephalotes brain vol-
umes, classified samples in the main data set with 95.8% 
accuracy (Fig. 7b). However, this result was found only 
when 1.2, 1.8, and 2.4 mm worker groups were clustered 
as medias. LDA using five worker size groups (0.6, 1.2, 
1.8, and 3 mm+) and the same testing and training data 
sets achieved 54.2% accuracy.

Fig. 2   Calculated scores (Dw) for neuronal substrate investment based 
on tasks performed by A. cephalotes worker size groups. Y axis val-
ues are the sum of each sensory integration/sensorimotor function 
task score multiplied by the corresponding worker group-size task 
performance score (see “Methods”). Local regression curve approxi-
mates neuronal substrate investment score as a function of HW plus 
HW squared (score ~ HW + HW2; blue line) and 95% confidence 
interval (grey band). Heads are drawn to scale
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Discussion

We assessed how estimated sensory and motor aspects of 
task performance involved in the agricultural division of 
labor correlate with variation in brain size and compartmen-
tal allometries (i.e., mosaic structure) among polymorphic 
workers of A. cephalotes. We identified significant differ-
ences in absolute size and proportional investment across 
polymorphic task-differentiated workers, supporting the 
hypothesis that variation in task performance has been a 
contributing selective factor in the evolution of worker neu-
ral phenotypes. Scaling patterns broadly correlated with sen-
sory, somatosensory, and integrative information-process-
ing demands associated with the specialized repertoires of 
polymorphic workers, consistent with demands in species 
characterized by large colony size and task differentiation 
(Riveros et al. 2012).

Behavioral performance challenges in social insects have 
been typically inferred from interspecific and intraspecific 
variation in neuropil scaling patterns and general assess-
ments of sensory environments and socioecological influ-
ences (Gronenberg et al. 1996; Gronenberg 1999; Muscedere 
and Traniello 2012; Amador-Vargas et al. 2015; O’Donnell 
et al. 2018b), casually correlated with sociobiological char-
acteristics such as colony size, foundation strategy and 
queen/worker differentiation (for example the reduction in 
MB volume in solitary compared to social wasps; O’Donnell 
et al. 2015), and/or diet and life history (Sayol et al. 2020). 
To the best of our knowledge, our study is the first to employ 
a model that estimates contributing factors to selection on 
brain investment in relation to sensorimotor integration and 
to establish a significant correlation with neuroanatomy.

Modeling investment in sensory integration 
processes in the brain

We assessed the need for neuropil investment to serve sen-
sory input processing and sensorimotor functions, conserva-
tively evaluated the size-related involvement of polymor-
phic workers in performing these tasks (Fig. 2) and used this 
metric to generate predictions concerning brain evolution. 
Notably, our scores were broadly consistent with total MB 
and MB peduncle scaling patterns, although the percent-
age of explained variance was moderate, lending modest 
support to the concept that selection on brain compartment 
volume optimizes for sensory involvement in task integra-
tion. However, several other factors likely contribute to 
levels of investment. These may include differences in the 

Table 2   Fit of Dw scores 
to observed patterns of 
proportional brain compartment 
investment

Linear regression statistics for the fit of a subset of categories of behavioral performance/sensory/cogni-
tive process as predictors for the brain compartments whose function most closely corresponds to these 
demands. Degrees of freedom = 1, 48
AL antennal lobe, CX central complex, MB mushroom body, OL optic lobe, ROCB remainder of central 
brain, SEZ subesophageal zone

Brain compartment Multiple 
R-squared

Adjusted R-squared F statistic p value

Total neuropil volume/HW 0.012 – 0.008 0.597 0.4434
OL 0.351 0.338 25.990 5.770e−06
AL 0.001 – 0.020 0.062 0.805
Total MB 0.186 0.169 10.960 0.002
MB medial calyces 0.087 0.087 0.068 0.037
MB lateral calyces 0.002 – 0.019 0.071 0.791
MB medial and lateral calyces sum 0.039 0.019 1.952 0.169
MB peduncle 0.155 0.138 8.822 0.005
CX 0.104 0.085 5.559 0.023
SEZ 0.079 0.060 4.129 0.048
ROCB 0.025 0.005 1.250 0.269

Fig. 3   Normalized total MB volume as a function of sensory integra-
tion score (Dw) with regression line. R-squared = 0.169. p = 0.002
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Fig. 4   a Absolute total brain 
volume (sum of the OLs, ALs, 
total MB, CX, SEZ, and ROCB) 
across worker size groups 
(p = 0.002). b Total brain vol-
ume scaled to body size (total 
volume/HW for each sample 
across worker size groups 
(p = 0.143). Y axis values are 
noted in scientific e notation

Table 3   Statistical analysis 
of brain volume and brain 
compartment absolute (a) and 
proportional (b) volume among 
worker size groups

Degrees of freedom = 4
AL antennal lobe, CX central complex, MB mushroom body, OL optic lobe, ROCB remainder of central 
brain, SEZ subesophageal zone

Brain compartment Chi-squared p value

(a) Absolute total brain and compartmental volumes
 Total of neuropils 17.245 0.002
 Total neuropil volume/HW 6.872 0.143
 OL 55.265 2.859e−11
 AL 11.889 0.0182
 Total MB 14.275 0.006
 MB medial calyces 15.220 0.004
 MB lateral calyces 15.646 0.004
 MB medial and lateral calyces sum 15.460 0.004
 MB peduncle 12.316 0.015
 CX 3.127 0.537
 SEZ 21.699 2.301e−04
 ROCB 15.320 0.004

(b) Proportional brain compartment volumes
 OL 332.680  < 2.200e−16
 AL 11.710 0.020
 Total MB 14.237 0.007
 MB medial calyces 6.454 0.168
 MB lateral calyces 4.480 0.345
 MB medial and lateral calyces sum 2.277 0.685
 MB peduncle 14.961 0.005
 CX 29.453 6.324e−06
 SEZ 7.683 0.104
 ROCB 12.933 0.012
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Fig. 5   a Absolute volume 
of the OL (p = 2.859e−11); 
b AL (b p = 0.0182); c total 
MB (p = 0.006); d MB medial 
calyces (p = 0.004); e MB 
lateral calyces (p = 0.004); f MB 
medial and lateral calyces sum 
(p = 0.004); g. MB peduncle 
(p = 0.015); h CX (p = 0.537), 
i SEZ (p = 2.301e−04); and 
j ROCB (p = 0.004) across 
worker size groups. Y axis 
values are noted in scientific e 
notation
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Fig. 6   Relative investment 
(compartment volume as a 
percent of total brain vol-
ume, indicated on Y axis) in 
the a OL (p ≤ 2.200e−16); b 
AL (p = 0.020); c total MB 
(p = 0.007); d MB medial 
calyces (p = 0.168); e MB 
lateral calyces (p = 0.345); f MB 
medial and lateral calyces sum; 
g MB peduncle (p = 0.005); 
h CX (p = 6.324e−06); i SEZ 
(p = 0.104); and j ROCB 
(p = 0.012) across worker size 
groups
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amount of tissue involved in maintaining baseline neural 
functions across workers that vary in body size and meta-
bolic expenses (Kamhi et al. 2016; Packard 2020), or other 
size-related constraints (Finlay and Darlington 1995; Hercu-
lano-Houzel 2012; Herculano-Houzel et al. 2014; O’Donnell 
et al. 2018b).

Differentiation of worker neural phenotypes

Principal component and linear discriminant analysis dis-
tinguished individual A. cephalotes brains from differ-
ent worker groups on the basis of compartment volumes. 
LDA demonstrated that the degree to which brains can 
accurately be classified in terms of worker body size 
is greater when all media size classes (1.2, 1.8, and 
2.4 mm) are pooled, but is nevertheless able to distin-
guish samples belonging to five different groups. These 
results suggest that medias are readily distinguished in 
terms of neuroanatomy from the largest and smallest 
worker specialists in relation to task performance and 
although differentiation among size groups of medias is 
less substantial, it is consistent with our scores (Fig. 2). 
Similarly, we identified relatively few significant differ-
ences in the proportional volume of any brain compart-
ment among different media size groups in contrast to the 
differences identified in medias in comparison to minims 
and medias in comparison to majors. Such a lack of dis-
tinction in the boundaries between media groups could 
reflect evolutionary origins of worker differentiation in 
A. cephalotes, in terms of how different groups “split 
off” (Rajakumar et al. 2012) or may reflect constraint 
from the task-diverse behavioral profile of most media 

workers (see Bernays and Funk 1999; Farris and Roberts 
2005).

Absolute total brain volume

Interestingly, although total brain volume differed between 
majors in comparison to minims and medias, we found no 
significant change in total brain size in 0.6 to 2.4 mm work-
ers despite a fourfold increase in body size. Such a pattern 
could theoretically result from limits on miniaturization 
of total brain size in smaller workers (Groh et al. 2014), 
making them undifferentiated with respect to total abso-
lute brain volume from medias. Alternatively, this could 
result from either differential demands affecting the entire 
brain that have an inflection point at majors or from broader 
constraints/influences from specific developmental trajec-
tories governing worker size (Trible and Kronauer 2017; 
O’Donnell et al. 2018b).

Antennal lobes

Medias were predicted to have greater sensory integration 
needs than other worker groups (Fig. 2) due to their large 
task repertoire and collaterally diverse behavioral chal-
lenges involved in selecting and harvesting plant material 
and navigating to and from food sources (Wilson 1980b; 
Hubbell et al. 1983, 1984; Blanton and Ewel 1985; Howard 
1987; Howard et al. 1988; Falibene et al. 2015; Arenas and 
Roces 2017). Media workers (specifically the 1.8 mm and 
2.4 mm size groups) had greater AL proportional volume 
compared with minims and majors. A significant change 
in proportional AL size occurred in the transition from 1.2 

Fig. 7   a Principal component analysis plot of all log-transformed 
compartmental volumes normalized to total brain volume. b Lin-
ear discriminant analysis of samples according to worker size group 
(minims: 0.5–0.7 mm, medias: 1.1–2.5 mm, majors: 3 mm +) based 

on compartmental volumes (excluding the ROCB, which was colin-
ear with other variables) normalized to total brain size. Classification 
accuracy = 95.8%
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to 2.4 mm medias. Increased input to the AL from anten-
nal olfactory sensory neurons is associated with increased 
olfactory sensitivity (Acebes and Ferrús 2001; Kuebler et al. 
2010). Consistent with their social roles, media worker ALs 
are enlarged, potentially to process more diverse olfactory 
information, similar to the linkage of AL enlargement and 
olfaction-based tasks in Atta vollenweideri (Kleineidam 
et al. 2005; Kelber et al. 2009a, b; Kuebler et al. 2010). 
Nonetheless, little of the variance in AL volume could be 
explained by our model, suggesting multiple factors may 
influence investment in primary sensory neuropils, even 
those potentially sensitive to diverse stimuli.

Mushroom bodies

Medias (1.8 mm) had significantly higher relative total MB 
volume compared to majors and their total MB volume 
tended to be larger than that of other workers. This trend 
was consistent for the MB peduncle, which was significantly 
enlarged in 1.8 mm medias relative to minims, and for the 
MB medial calyces, although differences in proportional 
MB medial calyces volume were not significant. The MB 
lateral calyces, in contrast, showed no proportional increase 
in either minims, medias, or majors. Further, when analyzed 
as a sum, the combined absolute volume of the MB medial 
calyces and MB lateral calyces did not significantly differ 
among worker size groups. The functions of the MB medial 
calyces and the MB lateral calyces may differ; differences 
in the volume of the medial calyx in a bumblebee species 
correlated to differences in experience (Riveros and Gronen-
berg 2010). The significant differences we found in total MB 
volume were thus primarily driven by the volume of the MB 
peduncle, a fibrous, bi-partite region containing Kenyon cell 
neurites and neurites from MB extrinsic neurons connecting 
to other brain compartments, embedded in the protocerebral 
lobe and innervated by MB extrinsic neurons connecting 
it to regions in the protocerebrum (Goll 1967; Rybak and 
Menzel 1993; Ito et al. 2014; Schürmann 2016). Our results 
suggest that the nature and diversity of the leaf-harvesting 
task repertoire of 1.8 mm medias contributes to selection 
for relatively larger MBs, specifically MB peduncle. Since 
the medial and lateral MB calyces process sensory inputs 
while the MB peduncle relays outputs from the MBs to other 
brain regions (Rybak and Menzel 1993; Schürmann 2016), 
the significant differences we observed in MB peduncle 
proportional volume, but not in MB calyx proportional vol-
ume, may reflect increased selection in medias for efficient 
higher-order processing in the MBs and signaling to other 
areas of the brain. Task experience correlates with MB size 
(Durst et al. 1994; Gronenberg et al. 1996; Fahrbach 2006) 
and large MBs may be associated with increased behavioral 
flexibility (Riveros Rivera and Gronenberg 2009; Riveros 
et al. 2012; O’Donnell et al. 2015). Specifically, MBs play 

an essential role in olfactory learning in insects (Connolly 
et al. 1996; Zars 2000; Komischke et al. 2005; Busto et al. 
2010) and investing more in this compartment may allow 
medias to react with specificity to a wide array of learned 
chemical cues associated with the suitability of plant mate-
rial for fungal growth. With respect to specialist or general-
ist beetles (Farris and Roberts 2005), the enlargement of 
the MBs is consistent with the idea that generalists—in this 
case, medias that have a larger task repertoire—are selected 
to elaborate neural tissue to fulfill their diverse tasks. A. 
vollenweideri workers show decreasing proportional vol-
ume in the MB calyces with increasing worker size (Groh 
et al. 2014). Our data indicate greater (non-significant) MB 
calyx investment in A. cephalotes medias, perhaps due to 
their generalist plant tissue harvesting that contrasts with the 
specialized grass harvesting of A. vollenweideri. However, 
MB circuitry, rather than volume, may be related to task 
specialization (Groh et al. 2012).

Additional compartmental allometries

We found that CX volume was proportionally largest in min-
ims, and inversely related to worker size. Greater investment 
in the CX may represent circuitry to enable multisensory 
navigation within dark three-dimensional labyrinthal fungal 
comb chambers. Minims mainly perform fungal-gardening 
tasks that likely rely on non-visual navigational strategies, 
perhaps involving CX circuitry (Mamiya et al. 2018; Le 
Moël et al. 2019; Green et al. 2019; Shiozaki et al. 2020; 
Sun et al. 2020; Pisokas et al. 2020; Currier et al. 2020).

A. cephalotes worker OL proportional volume increases 
with worker size and is highest in majors, which have greater 
visual acuity (Arganda et al. 2020). In addition to enlarged 
OLs, majors also possess a greater number of ommatidia, 
the photoreceptive subunit of the compound eye, and have 
larger ommatidia compared to medias and minims, although 
ommatidia size relative to body size is largest in minims 
(Arganda et al. 2020). The number and size of major worker 
ommatidia relative to other worker groups is consistent with 
their increased proportional and absolute volume of OL tis-
sue, enabling greater visual acuity. The repertoire of Atta 
majors appears limited to defense (Wilson 1980a; Powell 
and Clark 2004a), a task mainly taking place outside the nest 
that likely involves target detection.

Total brain volume

Total brain volume sharply increased in the largest two 
worker size groups. When scaled to body size, minims had 
the largest brains, consistent with Haller’s rule (Rensch 
1956), although these scaled differences were not signifi-
cant, perhaps due to limits on neural circuit miniaturization 
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(Beutel et al. 2005; Chittka and Niven 2009; Seid et al. 2011; 
Niven and Farris 2012; Groh et al. 2014). However, Haller’s 
rule does not apply to all hymenopteran species, including 
some parasitoid wasps smaller in size than A. cephalotes 
minims (van der Woude et al. 2013; van der Woude and 
Smid 2016; Groothuis and Smid 2017). A. cephalotes fungal 
gardening and nursing tasks may select for more neural tis-
sue than involved in parasitoid behavior. Size-adjusted total 
brain volume showed very little correlation to estimates 
from our model reflecting task performance. Given the more 
significant correlation found in some brain compartments 
and coupling of scaling pattern of compartments to sensory 
processing, total brain volume may be a too general and 
imprecise metric to reflect behavioral differences (Chittka 
and Niven 2009; Muscedere and Traniello 2012; Muscedere 
et al. 2014; Logan et al. 2018) among A. cephalotes workers.

Conclusions

Our results provide insight into the associations between 
task specializations and sensorimotor and higher-order pro-
cesses in brain evolution. Our estimates of the involvement 
of processes in task performance and the extent to which 
different worker groups perform these tasks allowed us to 
model the influence of behavioral repertoire on brain scal-
ing. Selection on neuroanatomy in A. cephalotes polymor-
phic workers appears to support the social organization of 
agricultural division of labor. The relationship of our score 
to total MB and MB peduncle volumes suggests our method 
effectively characterizes the involvement of neuropils that 
integrate diverse stimuli and facilitate higher-order process-
ing, but does not adequately explain variances in investment 
in specialized primary input neuropils. This is likely due to 
the emphasis our model places on behavioral diversity, and 
thus the integration and processing of multimodal stimuli, 
and differences in the frequency with which different worker 
groups perform tasks.
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