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Abstract—Public blockchains have spurred the growing pop-
ularity of decentralized transactions and smart contracts, es-
pecially on the financial market. However, public blockchains
exhibit their limitations on the transaction throughput, storage
availability, and compute capacity. To avoid transaction gridlock,
public blockchains impose large fees and per-block resource
limits, making it difficult to accommodate the ever-growing high
transaction demand. Previous research endeavors to improve
the scalability and performance of blockchain through various
technologies, such as side-chaining, sharding, secured off-chain
computation, communication network optimizations, and efficient
consensus protocols. However, these approaches have not attained
a widespread adoption due to their inability in delivering a
cloud-like performance, in terms of the scalability in transaction
throughput, storage, and compute capacity.

In this work, we determine that the major obstacle to public
blockchain scalability is their underlying unstructured P2P net-
works. We further show that a centralized network can support
the deployment of decentralized smart contracts. We propose a
novel approach for achieving scalable decentralization: instead of
trying to make blockchain scalable, we deliver decentralization
to already scalable cloud by using an Ethereum smart contract.
We introduce Blockumulus, a framework that can deploy de-
centralized cloud smart contract environments using a novel
technique called overlay consensus. Through experiments, we
demonstrate that Blockumulus is scalable in all three dimensions:
computation, data storage, and transaction throughput. Besides
eliminating the current code execution and storage restrictions,
Blockumulus delivers a transaction latency between 2 and 5
seconds under normal load. Moreover, the stress test of our
prototype reveals the ability to execute 20,000 simultaneous
transactions under 26 seconds, which is on par with the average
throughput of worldwide credit card transactions.
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I. INTRODUCTION

Bitcoin is the first decentralized digital currency powered

by blockchain with proof-of-work (PoW) consensus, which

effectively prevents data tampering by anyone with less than

half of the total computational power of the network [1].

Recently, Dembo et al. delivered a formal proof of the cor-

rectness of the above statement with respect to the original

PoW Nakamoto consensus [2]. Although Bitcoin’s original

purpose was to serve as a cryptocurrency transaction ledger,

the unique properties of blockchain soon attracted researchers

and engineers to re-purpose the technology for a plethora

of decentralized applications, commencing the era of smart
contracts.

Smart contracts are decentralized immutable programs that

allow to establish custom mediator-free protocols between par-

ties that do not trust one another. For example, a smart contract

can be used to help conduct an election in a decentralized

manner [3], [4]. Another popular use case is fungible tokens,

which can represent corporate shares, gift card balances, and

even custom currencies. Recently, researchers and businesses

proposed a wide variety of smart contract applications [5]–

[7], some of which have already been adopted by nations’

governments and large industries [8]. However, the unique

features of blockchain and smart contracts come at a high

price of mediocre performance and bounded scalability.

One way to address the performance and scalability issues

of blockchain is to use a private permissioned blockchain

framework, such as Hyperledger Fabric [9], which only uses

pre-installed smart contracts (called chaincode) and splits

the voting power between a small number of fixed partic-

ipants. Although such blockchains deliver performance im-

provement over public blockchains, the requirement to estab-

lish a trustworthy consortium of organizations running these

blockchains prevents its wide adoption in many applications,

such as cryptocurrencies and decentralized voting. Thus, pub-

lic blockchains cannot be replaced by permissioned ones.

Recently, a number of solutions have been developed to ad-

dress the inherent performance and scalability issues of public

blockchain, including partial off-chain computation [10], side-

chaining [11], cross-chaining [12], sharding [13], [14], pay-

ment channels [15], [16], efficient consensus protocols [17],

new blockchain architecture [18], and network optimiza-

tions [19]. However, all these solutions suffer from at least

one of the following limitations. First, they could not deliver

scalability in transaction throughput, data storage, and com-

putation capacity at the same time. Second, the performance

improvement is often incremental, but could be insufficient

for many applications, such as retail payments. Third, they

either do not support smart contracts, or their smart contracts

are not Turing-complete [20], making it impossible to realize

certain programming patterns. A recent blockchain scalability

survey by Zhou et al. [21] concludes that a desired solution still

has not been found. In this paper, we propose a conceptually

new approach to the blockchain scalability problem: we use
an existing blockchain as-is to enable smart contracts on an
already scalable system: the cloud.
Observation 1: Centralized Service for Scalable Decen-
tralized Contracts. The operation of decentralized systems is

often supported by underlying centralized and/or permissioned

services. For example, the decentralization of Domain Name
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System (DNS) is based on the assumption that the Internet

Corporation for Assigned Names and Numbers (ICANN),

which oversees the system, is functional and trustworthy [22].

Such pattern is also observed in public blockchains. Kwon et

al. [23] formally demonstrate that classic public blockchains

exhibit partial centralization incurred by concentration of

compute power around a few mining pools. Moreover, the

decentralized nodes of blockchains use the Internet as a

communication medium, which is subsequently enabled by a

network of centralized routers and Internet service providers

(ISPs), whose owners must comply with the regulations of

local and federal jurisdictions. In this work, we extrapolate

the above principle (i.e., the reconciliation of centralization

and decentralization) to show that it is feasible and beneficial

to build an environment that uses a centralized cloud as an

underlying communication, storage and compute service for

decentralized smart contracts. Particularly, this work demon-
strates that cloud resources, such as storage and computation,
can be treated as a utility (offered by a third party), which can
support the operation of a decentralized network.
Observation 2: High Cost of Permissionless Network.
Public blockchains are supported by unstructured permission-

less P2P networks, where nodes can freely join and leave.

To support such a flexibility, the blockchains use a gossip

protocol for peer communication. In this protocol, the peers are

unaware of the current configuration of the network, so they

achieve the network-wide propagation of broadcast messages

by forwarding them through a subset of known peers. This

incurs a significant message propagation latency and strict

limits on the amount of data that can be transferred [13], [24].

Moreover, to prevent Sybil attacks, in which an adversary cre-

ates a large number of fake identities for gaining greater voting

power, the PoW consensus algorithm has been used by Bitcoin,

Ethereum, and many other popular blockchains. The PoW

consensus involves a heavy computation, resulting in enor-

mous electricity consumption. As such, public blockchains pay

a very high price for the flexibility of the underlying P2P

network. In this work, we show that a smart contract can
be used to facilitate a decentralized consensus in an overlay
smart contract environment built upon a centralized network
of cloud providers, which drastically reduces communication
and computational overhead.

Putting together the above observations, we develop the

concept of overlay consensus, which aims to deliver decen-

tralization to smart contracts in a centralized cloud instead

of random P2P network nodes. As a result, a consortium of

clouds can host a permissionless smart contract environment

and sell the access to it, but it cannot control the execution

of these contracts or interfere with the data stored by these

contracts. To achieve this, we use a smart contract deployed

on a public blockchain to accrue periodic proofs of decentral-

ization reported by the cloud consortium. The smart contract

is designed in a way that any attempt of a foul play would

inevitably generate a publicly-verifiable proof for the action

of breaking the consensus protocol.

In summary, we make the following contributions:

TABLE I: Comparison of Blockumulus with state-of-the
art solutions.

Solution General-purpose smart Scalability improvement
contract support TPSa Storage Compute

Algorand [14] � � � �
RapidChain [13] � � � �
Lightning [15] � � � �

Ekiden [10] � � � �
Arbitrum [25] � � � �

Jidar [26] � � � �
Monoxide [27] � � � �

Plasma [11] � � ? �
OmniLedger [28] � � � �

Blockumulus � � � �
aTransaction throughput (transactions per second).

• We introduce Blockumulus1, a distributed framework for

cloud smart contracts (bContracts2) based on the novel

concept of overlay consensus.

• We implement the full Blockumulus stack along with a

sample bContract, called FastMoney, for payment pro-

cessing.

• We evaluate our Blockumulus implementation and the

FastMoney bContract to show that the framework delivers

low transaction latency, high transaction throughput, and

affordable operation cost.

II. RELATED WORK

Table I compares the state-of-the art solutions aiming to

address the blockchain scalability and performance limitations.

Although these studies improve the blockchain scalability, they

could not simultaneously accommodate the growing demand

for transaction throughput, data storage, and heavy computa-

tion, in applications such as cryptography, AI, and big data

analytics. In contrast, Blockumulus brings general-purpose

smart contracts (i.e., the smart contract suitable for a variety of

applications beyond cryptocurrency transactions) on the cloud,

which improves blockchain scalability in terms of transaction

throughput, data storage, and computation simultaneously.

Off-chain Execution. Off-chain execution is an arrangement

that allows to perform computation of some portions of smart

contracts outside of the blockchain to improve performance

and reduce costs. Ekiden [10] addresses the lack of confiden-

tiality and poor performance of blockchain by securing an off-

chain computation via trusted execution environment (TEE)

technology. Despite significant performance improvement, the

operation of Ekiden relies on the availability of crowdsourced

consensus and compute nodes. The security of the system is

founded on the assumption that the participants have Sybil-

resistant identities (i.e., they cannot create multiple fake ac-

counts). The requirement for a participation deposit to prevent

Sybil attacks may not only be ineffective against wealthy

attackers, but may also reduce the incentive for community

participation. Another off-chain execution solution, ZEXE, is

1The name Blockumulus is the portmanteau of the words “blockchain” and
“cumulus” — a type of cloud with the traditional puffy texture.

2bContract stands for “Blockumulus contract”.
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proposed for abundant private off-chain computation [29]. Un-

like Ekiden, ZEXE does not require hardware TEE enclaves,

and therefore can be used in a wider scope of platforms.

However, this system focuses on improving the computation

scalability and reducing communication overhead, whereas the

scalability issue in storage and transaction throughput remains

unaddressed.

Side-Chaining and Cross-Chaining. Side-chaining is an ar-

rangement in which some smart contract execution is out-

sourced to a different blockchain, while cross-chaining is a

way for independent blockchains to share resources and use

common assets. Plasma [11] attempts to reduce fees and

improve performance of Ethereum blockchain by linking a

smart contract to a tree of child blockchains. Although Plasma

distributes the computation load of the master smart contract

among multiple chains, the transaction throughput remains a

likely bottleneck, and there is no solid evidence of significant

improvement of storage capacity. A popular cross-chaining

solution called Polkadot [12] improves transaction throughput

by creating a network of interoperable blockchains. However,

the solution does not directly address the storage and compute

capacity for smart contracts.

Sharding and Alternative Consensus. The concept of shard-

ing involves selecting a subset of nodes to serve as temporary

representatives in a decentralized consensus, which curbs

the performance degradation associated with gossip broad-

casts in large blockchain networks. Algorand [14] proposes

a blockchain with improved performance using a sharding

scheme based on a verifiable random function. Algorand deliv-

ers a significant increase in transaction throughput compared

to classic public blockchains, but its operation relies on a set of

assumptions that can be refuted by massive denial-of-service

or Sybil attacks. Specifically, Algorand assumes that at least

95% of all honest users must be able to send messages to

other honest users, and the overall share of honest participants

must be greater than 2/3. Another solution with sharding-based

consensus is Rapidchain [13], which delivers high transaction

throughput. However, Rapidchain is not scalable in terms of

data storage and compute capacity.

Some alternative consensus models attempt to replace a

compute-heavy PoW algorithm with lightweight alternatives,

such as proof-of-stake (PoS), in which the voting power

is determined by the amount of funds in possession of a

node. Ouroboros [30] is a provably secure blockchain with

PoS consensus. Unfortunately, existing alternative consensuses

fail to address the full spectrum of scalability problems,

and they introduce a significant fairness challenges, such as

“monetary hegemony”. Yu et al. [31] propose a lightweight

consensus protocol, OHIE, to improve blockchain scalability

by leveraging a parallel execution of the Nakamoto consensus.

Despite the improvement in transaction throughput and avail-

able bandwidth, the scalability of storage and computation is

not considered in OHIE.

Network Optimizations and Payment Channels. Off-chain

payment channels have been proposed to improve performance

and reduce fees associated with financial transactions. The

Fig. 1: Blockumulus overview.

Lightning Network protocol [15] allows to create off-chain

micropayment channels. Perun [16] is another proposal of a

payment channel that improves routing of transactions. Al-

though off-chain payment channels have been adopted by real-

world applications, they cannot serve as alternatives of public

blockchains because of their specific focus (only for payment)

and the necessity to orchestrate a network of crowdsourced

participants.

Alternative Architectures. Researchers have been re-thinking

the architecture of blockchain in order to improve performance

and scalability. SPECTRE [18] proposes a reorganization of a

traditional Nakamoto blockchain into a directed acyclic graph

(DAG). Although it improves the speed of transactions, it

could not be used for general-purpose smart contracts that

may require abundant data storage and heavy computation.

III. SYSTEM DESIGN

In this section, we introduce the Blockumulus framework

and its operation protocol.

A. Blockumulus Overview

Blockumulus is a framework that builds a decentralized en-

vironment for executing smart contracts upon a cloud consor-
tium — a fixed set of M cloud nodes called cells, synchronized

by the overlay consensus. The overlay consensus is empow-

ered by a smart contract deployed on a third-party public

blockchain, with independent auditors running software for an

automated verification of Blockumulus workflow (see Fig. 1).

Next, we introduce the major concepts of Blockumulus.

1) Blockumulus Code Execution Model: The code ex-

ecution in Blockumulus is performed in decentralized

Blockumulus smart contracts called bContracts, as shown in

Fig. 2. The code of bContracts is openly accessible, so that

the execution of transactions could be verified by anyone. The

functions of bContracts are invoked through signed transac-

tions arriving at the network, and the code in bContracts can

be executed by appropriate interpreters. bContracts can be

written in different programming languages, such as Python

or JavaScript.
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Fig. 2: Blockumulus state transition and data model.

2) Blockumulus Data Model: All data in Blockumulus is

openly accessible and managed via custom models imple-

mented in the deployed bContracts. In order to store data

as part of Blockumulus, each bContract must implement

two interfaces: data fingerprinting and data cloning. Data

fingerprinting is a function that produces a fingerprint of the

bContract’s current state or previously saved state. The data

cloning function asks the contract to temporarily save its cur-

rent state of data for subsequent fingerprinting. Blockumulus

then combines all the fingerprints reported by the bContracts

into a single hash called the data snapshot fingerprint.

3) Overlay Consensus: The core idea of Blockumulus

overlay consensus is to periodically report the hashes of data

snapshots to a dedicated smart contract deployed on a public

blockchain, as shown in Fig. 3. Once the report is submitted,

it cannot be altered. Subsequently, if the report does not match

the publicly available and independently verifiable snapshot,

the cell cannot be trusted. In essence, the Ethereum smart

contract serves as an online barometer of liveness and integrity

of the Blockumulus deployment.

Blockumulus overlay consensus has two major differences

with the traditional Nakamoto consensus observed in popular

public blockchains. First, Blockumulus consensus uses cor-

rectness check instead of voting — all incoming transactions

are recorded, and there is only one correct way to execute

them such that the existence of two conflicting transactions in

different cells is ruled out (see Section III-D3 for details). Sec-

ond, all transactions are executed immediately, during the open

session with the client, with a pre-defined decision deadline

— as a result, a consensus partitioning (called fork) is impos-

sible in Blockumulus. Unlike in a distributed database, which

stipulates identical query execution in all tables, Blockumulus

provides autonomous but distinct execution environments for

each individual bContract. The contracts with mismatching

fingerprints can be excluded from the consensus, and timely

fingerprint reports can be guaranteed even if some contracts are

unable to establish consensus within their respective contexts.

The goal of each bContract is to assure that a transaction is

executed identically across all the cells. To enforce this, after

each transaction, the called bContract produces a fingerprint of

its current data. If the fingerprints do not match, the bContract

is temporarily excluded from the snapshot. As a result, each

transaction entails an identical state transition of each cell

in Blockumulus. If a cell becomes irresponsible or fails the

verification, it is excluded from the consensus until the next

report cycle.

Fig. 3: Reporting of current cell state to the smart contract.

4) Report Timing: Prior to deployment, the cloud consor-

tium determines the system invariants that cannot be changed

during the lifetime of the system. One of these invariants is

the snapshot report period, denoted λ, which is measured

in seconds. In Blockumulus, the report deadlines are all

timestamps divisible by λ. Therefore, the last report deadline

can be calculated as td = tc MOD λ, where tc is the current

timestamp. Thus, the upcoming report deadline is calculated as

tnext = λ+ tc MOD λ. Every data snapshot, denoted Si, has

a serial number i, which is called the report cycle, represented

as td−t0
λ , where t0 is the deadline of the very first snapshot in

the Blockumulus deployment. Subsequently, the Blockumulus

protocol requires that each cell reports the snapshot Si by the

end of cycle i + 1 in order to be treated as valid during the

cycle i+ 2.

B. Blockumulus Components

Next, we introduce the major components of Blockumulus:

consortium of cloud cells, decentralized Blockumulus smart

contracts (bContracts), clients, Ethereum smart contract, and

independent auditors.

1) Cloud Consortium: The cloud consortium is a pre-

defined set of Blockumulus cells. The number of cells should

be sufficient to guarantee the availability of the system, but it

should not be too large (i.e., 10 or less) to avoid performance

degradation. Unlike peers in blockchain, multiple cells in

Blockumulus are used to achieve the accessibility and fault-

tolerance, rather than the consensus, which will be detailed in

Sections III-D4 and IV. Moreover, since clouds allow vertical

scalability (i.e., adding resources to existing entities), a large

number of cells (horizontal scalability) is not needed for

performance advancement either. The size of the consortium

and the set of identities of the participating cells are the

invariants that must be decided at the time of deployment.

2) Blockumulus Cell: A Blockumulus cell is a network

node on the cloud, which is sufficient for participating in

Blockumulus consensus. A cell can be represented by a virtual

machine, physical dedicated server, or a compute cluster —

whichever meets the demands of the system.

3) bContracts: Blockumulus smart contracts (bContracts),

are decentralized programs deployed on Blockumulus, whose
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functionality is similar to smart contracts in Ethereum or

chaincode in Hyperledger Fabric. There are two types of

bContracts: system bContracts and community bContracts.

The system bContracts are pre-deployed in Blockumulus,

and they cannot be removed. The community bContracts are

developed and deployed by clients.

4) Blockumulus Clients: Blockumulus client is a per-

son or software that interacts with a deployed bContract.

Blockumulus is a permissionless environment for clients,

which means that clients do not have to register a Blockumulus

account. However, akin to the ISP model for Internet access,

a client should have a subscription to Blockumulus through

one of the cells. The subscription, however, does not incur

any control over the use of Blockumulus. The purpose of the

subscription is to charge for data transferred or time period

during which the subscription is active. This contrasts with

the transaction fee collection observed in public blockchains.

As a result, Blockumulus offers flexibility that allows cells to

establish their own pricing policies to compete for customers.

5) Ethereum Smart Contract: Each Blockumulus deploy-

ment has a smart contract on Ethereum blockchain, which

stores hashes of the reported snapshots. To avoid retrospective

modification, the repeated reporting for the same timestamp is

prohibited by the logic of the smart contract.

6) Blockumulus Auditors: Akin to public blockchain,

Blockumulus is an open-data system with transparent exe-

cution, i.e., Blockumulus data is available to everyone, and

everyone can independently trace state transition between a

given pair of subsequent data snapshots. Auditors are voluntary

permissionless participants that run software to oversee the

integrity of the Blockumulus deployment. The community

auditing model, which demonstrated its efficiency in pub-

lic blockchains, is also employed in Blockumulus. Auditors

can be a paid participants, community enthusiasts, security

bounty hunters, or academic researchers. Moreover, cells in the

consortium can perform cross-audit. The process of auditing

requires only a server and the auditing software that is running

on this server to monitor the integrity of Blockumulus. Fig. 4

shows the procedure of the Blockumulus audit. The auditing

software performs two major tasks: snapshot succession audit

and data integrity audit. The snapshot succession audit is the

verification that all the transactions processed by all bContracts

between two reports indeed entail a state transition from one

data snapshot into another. The data integrity check verifies

that: a) the snapshot fingerprints have been reported to the

smart contract on time; and b) the fingerprints in reports match

the actual data in the cells.

C. Blockumulus Cell Architecture

In this section, we take a closer look at the architecture of

a cell, which is shown in Fig. 5.

1) Blockumulus Core: Blockumulus cell Core is responsi-

ble for networking, cryptography, synchronization, protocol,

process and thread management, signature and authenticity

verification, transaction parsing, data encoding and decoding,

and communication with the smart contract.

Fig. 4: Blockumulus audit procedure.

Fig. 5: Blockumulus components and bContracts.

2) Uniform RESTful Interface: Blockumulus assumes six

vectors of communication: client-cell, cell-cell, auditor-

cell, cell-blockchain, auditor-blockchain, and client-auditor.

The client-cell, cell-cell, and auditor-cell communications

have a uniform RESTful interface. Specifically, each re-

quest is either GET or POST HTTP request with the

body formally represented as the set M = {P =
〈As, Ar, O, η, τ, t,D〉, Sigs(P)}, where P is the payload of

the message, and Sigs is the ECDSA signature calculated via

the private key of the sender. The tuple P has the following

components: As is the public address of the sender, Ar is the

public address of the intended recipient, O is the operation

code, η is a random nonce used as a message ID, τ is the

ID of the message that M is replying to (if applicable), t
is the current timestamp, and D is the data, whose format is

determined by O.

3) Keys: Each cell uses an Ethereum account to represent

itself within Blockumulus. The set of public addresses3 of

Blockumulus cells is fixed for each deployment and is hard-

coded in the Ethereum smart contract.

4) System Invariants: Some parameters of a Blockumulus

deployment that remain constant for a lifetime are called the

system invariants. Examples of system invariants are: unique

deployment ID, identities of the cells, reporting period λ,

initial timestamp t0, etc. However, the IP addresses of cells

are not among the invariants, which allows cells to change

location, or network configuration — we assume that these

settings are exchanged between cells.

5) System bContracts: The system bContracts are pre-

implemented as part of Blockumulus, and they cannot be

removed. These bContracts deliver essential functionality to

3In Ethereum, a public address of an account is the 160-bit prefix of the
Keccak256 hash of the account’s public key.
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Fig. 6: Blockumulus lifecycle.

the system, and their number can grow as Blockumulus

framework evolves. The current version of Blockumulus in-

cludes two system bContracts: community bContract deployer,

and content-addressable storage (CAS). The community app

deployer serves as an interface for developers to add their

community bContracts to Blockumulus. The CAS contract has

two major functions: a) it allows to store large files outside

of data models of community bContracts, thereby significantly

improving the performance of fingerprinting and cloning; and

b) it establishes a secure communication channel between

bContracts, which are otherwise autonomous and isolated.

6) Community bContracts: Community bContracts are de-

veloped and deployed by users of Blockumulus. The cells have

no power to modify, censor, or control these contracts. The

deployer of a community bContract can specify the ownership

and other parameters of the contract, including the ability to

destroy one.

7) bContract Interface: In order to create a bContract, the

developer should implement a standard bContract interface,

which includes smart contract data model, data fingerprinting,

and snapshot cloning. Then, the developer writes the bContract

code for the interpreter specified in the configuration.

D. Blockumulus Protocol

1) Data Snapshots and Fingerprinting: Blockumulus data

is stored in bContracts according to their respective data

models. For example, one bContract can store data in binary

files, while others may use SQLite. To prevent operations

with large data instances, bContracts can upload data blobs to

Blockumulus CAS, and refer to these blobs via their hashes.

Blockumulus performs CAS reference counting, purging CAS

entries only when their reference counters reach zero.

2) Operation Lifecycle: Fig. 6 shows the lifecycle of

Blockumulus involving an oscillation of two stages: main
stage and report stage. In the main stage, which is longer

than the report stage, Blockumulus actively accepts and pro-

cesses incoming transactions that shape the current data snap-

shot. During the main stage, auditors download the previous

data snapshot for review and storage. In the report stage,

Blockumulus accepts transactions, but instead of executing

them, it queues them in a buffer. Once the current snapshot is

fingerprinted, Blockumulus continues executing incoming and

queued transactions. Also, as soon as the fingerprint is ready,

the cell saves it in the smart contract. However, at this point,

the execution of the incoming transactions resumes because

Fig. 7: Blockumulus transaction workflow. �: Client creates

a transaction and commits it to the the blockumulus cell with

which they have a Blockumulus access subscription; �: the

service cell verifies the authenticity of the transaction, and

forwards it to all the other cells in the consortium; �: the

cells of the consortium process the transaction and send a

signed confirmation back to the service cell within a strict

deadline; �: the service cell executes the transaction, serializes

the confirmations into an aggregated receipt, and sends it to

the client as a reply to the initial commit request.

the execution inhibition is needed only for calculating the

fingerprint, not for smart contract submission.

3) Transactions: Fig. 7 shows a general overview of a

Blockumulus transaction. The transaction begins with a client

creating a transaction message M, which is signed and sent to

the the Blockumulus cell, called the service cell, with which

the client has an access subscription. The service cell first

authenticates the transaction by confirming that the transaction

message is signed by the user with the same identity (public

address) as the one found in the transaction message. Then,

the service cell forwards the transaction to all the cells in

the consortium. After that, the cells of the consortium verify

and execute the transaction and send a signed confirmation

back to the service cell within a pre-determined short time

frame. If the forwarded transaction is not processed by all

cells until the established deadline, the transaction reverts. If

a cell misses the deadline more often than a pre-determined

threshold, it is temporarily excluded from the consensus upon

mutual agreement with the other cells. Finally, the service cell

verifies the fingerprints of the resulting data snapshots reported

by the other cells, and executes the transaction by itself. If the

result of the execution matches the fingerprints reported by the

other cells, the service cell serializes the confirmations into an

aggregated receipt, and sends it to the client as a reply to

the initial commit request, which constitutes the transaction

confirmation event with a multi-signature cryptographic proof

(in the format described in Section III-C2).

4) Incentive for Cooperation: Here, the incentive for

cooperation is discussed through the P2P network perspec-

tive. Unlike in public blockchain consensus (e.g., Nakamoto

consensus), Blockumulus is designed in a way to encourage

cooperation and make cheating unbeneficial. The combination

of synchronous execution, fixed cell topology, open data,
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transparent execution, and payment model separated from con-

sensus create an arrangement in which cells have no incentive

to cheat. Moreover, each cell benefits from fast and successful

execution of transactions by all other cells in the system. The

following theorem confirms that competition for voting power,

typical for blockchains, is not pertinent to Blockumulus.

Theorem 1: The minimum required number of valid cells in
Blockumulus overlay consensus is the same for all M ≥ 2.
Proof: As per design of Blockumulus, the auditor software

verifies that the deployment has at least one cell i that main-

tains the succession of reported snapshots Si,j and correctness

of the corresponding smart contract reports Ri,j , i.e.:

∃ 1 ≤ i ≤ M ∀ 1 ≤ j ≤ tc MOD λ−t0
λ :

Si,j
succession−−−−−−−→ Si,j+1 ∧ H(Si,j) = Ri,j , (1)

where H is the hash function used for fingerprinting in

Blockumulus. Suppose that M = 2, one cell is valid, while

all other cells may or may not be compromised or cheating.

In this case, formula (1) evaluates to “true”, because either

Cell 1 is valid, or Cell 2 is valid, or both of them are valid.

Now, suppose that M = Q (Q > 2), and one cell is valid,

while all other cells may or may not be compromised or

cheating. In this case, formula (1) again evaluates to “true”,

because there is a cell with an index in the range [1, Q],
which maintains succession of snapshots and correctness of

the fingerprint reports. Therefore, the minimal number of cells

required for the overlay consensus is always 1. �

IV. SCALABILITY ANALYSIS

In this section, we formally explore the scalability of

Blockumulus through an asymptotic complexity analysis. All

the assumptions in this section follow the real implementation

of the system described later in Section VI.

Here, we assume that K clients submit N successful

transactions to a Blockumulus deployment with M cells. We

use the symbol c to denote a constant value that does not grow

as the system scales.

Number of Cells. Unlike blockchain, in which an in-

crease of the number of nodes benefits decentralization, the

Blockumulus overlay consensus requires only one valid cell to

sustain normal operation, including prevention of conflicting

transactions, such as double spending. As per Theorem 1,

proven in Section III, adding more cells does not enhance

the decentralization of a Blockumulus deployment. Thus, we

neither require the number of cells M to be scalable, nor

do we assume its scalability. The two reasons for using

multiple cells in Blockumulus is to enhance availability of

the system through replication and to increase the diversity of

Blockumulus access providers.

A. Transaction Latency

Transaction latency is the total delay experienced by the

client between the initiation of a transaction until the con-

firmation of its completion. The cumulative transaction de-

lay in the system, denoted Ldelay , can be expressed as

Ldelay = N · (D1 + maxMi=2 (Di +D∗
i ) + Dc), where D1

is the delay of sending a transaction to the service cell, Di

is the delay in forwarding the transaction to cell i, D∗
i is

the delay of response from cell i to the service cell, and

Dc is the delay of sending the response to the client. We

also assume that Di + D∗
i < δ for all i > 1, where δ

is maximum transaction forwarding delay. Each of the N
transactions begins with the client sending it to the service

node, which simultaneously forwards the transaction to all the

other cells, followed by an immediate parallel response from

these cells to the service cell. Then, it finishes by sending

the aggregate response to the client from the service cell.

Now, since D1, δ, and M do not grow with increased number

of transactions, the transaction latency complexity can be

presented as Ldelay = N · (c+ c · c+ c) = O(N). Therefore,

the transaction latency in Blockumulus grows linearly with

the number of transactions. Section VI-C further shows that

the transaction latency remains low even when the cells are

deployed on low-tier cloud servers with an extreme transaction

load.

B. Communication Overhead

Transaction communication overhead is the cumulative

amount of data transferred within Blockumulus in the course

of N transactions. The communication overhead Ldata of N
Blockumulus transactions can be expressed as follows:

Ldata = N · [Hc + Pc + (M − 1) · (H1 +Hc + Pc)

+
M∑

i=2

(Hi + Pi) +
M∑

i=1

(Hi + Pi)], (2)

where Hc is the header sent by a client, Pc is the payload

sent by a client, Hi is the header sent by a cell i, and Pi is

the payload sent by the cell i. Since headers and payloads of

messages do not become bigger with more transactions, and

the number of cells remains constant, Eq. (2) can be reduced as

Ldata = N ·[2c+c·3c+c·2c+c·2c] = O(N). Therefore, as the

number of transactions grows, the communication overhead

also experiences a linear increase. In Section IV-B we show

that this complexity is practically amenable and does not lead

to bottlenecks even under an extreme transaction load.

C. Data Storage

We assume that each transaction in Blockumulus leaves a

data footprint Ui, which is replicated across participating cells,

and also appears in three snapshots4: the snapshot currently

being built, and also two previous snapshots left for auditing.

The data storage can be written as Lstorage = 3 ·M ·∑N
i=1 Ui.

Since the number of cells M and each of the size of stored

data items Ui do not grow with the increasing number of

transactions and users, the following reduction takes place:

Lstorage = 3·c·N ·c = O(N). Therefore, the complexity of the

stored data is linear with respect to the number of transactions.

4Blockumulus uses the CAS subsystem to prevent unnecessary replication
of the same data across several snapshots. However, since our analysis pursues
the upper bound complexity, we assume 100% replication of the data.
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D. Computation

In our Blockumulus compute analysis we take into con-

sideration the processing performed both by cells and by

auditors. We further assume that the number of auditors is

linearly proportional to the number of users K, i.e., certain

percentage of users serve as auditors. Then, the cumulative

computation overhead can be represented as Lcompute =

K · ∑N
i=1 (Ci) + M · ∑N

i=1 (Ci), where Ci is the amount

of computation required for processing a single transaction

i on a single computer. Since each computational load and

the number of cells remain the same with growing number of

transactions and users, we perform the following reduction:

Lcompute = K · N · c + c · N · c = O(KN). Therefore, the

compute overhead of Blockumulus has a linear dependency

upon both the number of users and the number of transactions,

which suggests that the cells may require to proportionally

increase their compute power as the number of users grows.

Since users are expected to pay for Blockumulus access, the

above requirement is unlikely to form a scalability bottleneck.

E. Snapshot Reporting

Each Blockumulus cell reports fingerprints to the smart

contract with constant frequency F = 1
λ . By representing the

report timeline through R, the blockchain fee overhead is as

follows: Lfee = M · R · F . Since the number of cells M
is fixed, the fee does not change over time, and the report

frequency is also fixed, i.e., Lfee = c ·c ·c = O(1). Therefore,

as a Blockumulus deployment grows, the fee overhead remains

in the same order.

V. SECURITY ANALYSIS

Blockchain is a target of a wide range of security threats,

from consensus-based attacks [1] to social engineering at-

tacks [32], and Blockumulus is not an exception. In this

section, we scrutinize critical scenarios that pose security

threats to a Blockumulus deployment, and we show how

Blockumulus addresses these challenges.

A. Double Spending

A double spending is a situation in which two mutually

exclusive transactions are executed by a distributed system,

such as repeated transfer of the same cryptocurrency balance.

Consider a situation in which Alice, who has 10 crypto coins,

creates a transaction that sends 10 coins to Bob, and another

transaction with identical timestamp that sends 10 coins to

Charlie. After that, Alice simultaneously submits one of these

transactions to Blockumulus through Cell 1, and another

one through Cell 2. Assume that the transaction storage of

Blockumulus is properly implemented with a mutex-based

storage (i.e., the one that does not permit simultaneous writing

operations), which can be achieved through file locks or ACID

databases. The two transactions will be saved in the ledger in

the order of their arrival. Subsequently, the transaction that

is executed second will be rejected, effectively preventing

the double spending. Furthermore, Blockumulus transactions

are executed synchronously by all cells. Unlike blockchain,

which allows a temporary partition into peers that have already

processed a transaction and peers that have not, Blockumulus

prohibits temporary asynchrony using the synchronous exe-

cution with a mutex-based storage. Therefore, the situation

where Bob received 10 coins from Alice according to one

cell and Charlie received 10 coins according to another cell is

impossible.

B. Transactions Filtering Attack

Blockumulus cells might prevent routing of a certain trans-

action to a bContract via a transactions filtering attack. For

example, consider a bContract that re-invests dividends if an

investor fails to withdraw them until a certain deadline. The

invested business might bribe the cloud consortium to filter out

the withdrawal transaction — in which case the auditors will

not be able to detect any anomaly. In Blockumulus, we address
this issue by enforcing the execution of a transaction via the
Ethereum smart contract. If a transaction is censored, it can

be submitted directly to the smart contract, and the system

protocol stipulates the necessity to execute all transactions

submitted in this way. Since the smart contract is not under any

party’s control, users have the ability to enforce a transaction

even when Blockumulus has only one operational cell.

C. Consortium Conspiracy

The cells might conspire to tamper with the snapshots in

three possible ways: 1) by modifying an existing transaction,

2) by removing an existing transaction, or 3) by injecting a

new transaction. If an existing transaction is modified, it will

immediately break the verification of the transaction signature

generated by the sender. If an existing transaction is removed

before the report is submitted to the smart contract, the receipt

of this transaction signed by the cell becomes the proof of

malice by the cell. Finally, if a new transaction is added before

the report, it is a legitimate way to change data in the snapshot

and does not need to be defended against. Another type of

consortium conspiracy is a system-wide subscription ban of a

user by all Blockumulus providers. Fortunately, this type of

conspiracy can be easily prevented in the same way as in the

case of transaction filtering attack (see Section V-B), i.e., by

letting users submit contingency transactions to the Ethereum

smart contract.

D. Compromised Cells

An attacker might compromise one or several Blockumulus

cells to skew the overlay consensus. Let us consider the worst-

case scenario, in which the attacker gained full access to

the majority of cells in a Blockumulus deployment to cause

the Byzantine Fault event. In this case, a consensus node

cannot verify the true state of the system based on the tes-

timonies from the other nodes. However, Blockumulus is not

prone to the Byzantine Fault scenario, because the Ethereum

smart contract, deployed on a Byzantine Fault Tolerant (BFT)

blockchain, prevents the cells from delivering inconsistent

testimonies to different parties.
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VI. IMPLEMENTATION AND EVALUATION

We implement Blockumulus framework and evaluate its

transaction latency, communication overhead, transaction

throughput, and operation cost. To account for different config-

urations, we test the system performance with three different

sizes of the cloud consortia: N = 2, N = 4, and N = 8.

A. Implementation

We implement the full stack of Blockumulus for evalu-

ation and proof of concept. The Blockumulus API is im-

plemented using Web3.js 1.3.0, and node-rest-client 1.3.1.

The Blockumulus core framework is implemented us-

ing Node.js 10, Express 4.17, and Web3.js 1.3. We de-

ploy 8 Blockumulus cells on individual Ubuntu 20.04

servers on Microsoft Azure cloud. Then, we implement

the Ethereum smart contract using Solidity 0.8.0, with

the test deployment available on Ropsten network at

0x2F2980067A524a9A12C46354D62B8D769Ee119AB. The

implementation includes 2,553 lines of code. To demonstrate

the performance of Blockumulus, we implement a sample

bContract called FastMoney using Python 3.6 and Web3.py

5.13 (for fingerprinting), which delivers a decentralized digital

currency. Then, we implement the user clients for FastMoney
and CAS in JavaScript and Web3.js, which are used for

automated evaluation, as described below.

B. Test Setup

System Under Test. Our system under test (SUT) includes a

set of cell deployments and an Ethereum smart contract on the

Ropsten testnet. For latency evaluation, we use Blockumulus

cell deployments with three different sizes of cloud consortia:

N = 2, N = 4, and N = 8. For each cell, we deploy an

Azure B1ms instance with Ubuntu 20.04 LTS.

Test Harness. We use Blockumulus API to create custom

test clients with the additional functionality of generating a

random account for each request to simulate different clients

and avoid potential caching of data related to a single account.

Then, we deploy 8 client pools, which are Azure Virtual

Machines running Ubuntu 20.04 LTS each, scattered across

different geographic regions for better simulation of a real-

world distribution of clients.

Evaluation Metrics. We evaluate transaction latency, commu-

nication overhead, transaction throughput, and operational cost

of our prototype.

C. Transaction Latency

We evaluate the transaction latency of our Blockumulus

deployment by measuring the time between submitting a

transaction until the acquisition of the receipt. We conduct two

latency evaluation tests: distribution of delays of standalone

transactions under normal load, and transaction latency under

the load of a large number of simultaneous transactions.

The results of the first experiment are shown in Fig. 8.

In this experiment, we measure transaction latency for the

funds transfer in FastMoney bContract with the sizes of the

cloud consortia of 2, 4, and 8 cells. For each consortium size,

TABLE II: Communication overhead in FastMoney (bytes).

Communicationa 2 cells 4 cells 8 cells
in out in out in out

CL ↔ C: fingerprint 1,200 516 2,179 516 4,135 520
CL ↔ C: payment 1,140 559 2,059 559 3,895 563
CL ↔ C: forward 667 947 667 946 667 947

a CL ↔ C: between client and cell; C ↔ C: between two cells.

we execute 500 consecutive transactions and measure their

confirmation delays. When the size of consortium is 2, 90%

of transactions execute in under 2 seconds. When we double

the size of consortium, the upper boundary of the confirmation

delay of 90% of transactions increases by around 50%, which

is slower than the increase of the number of cells. By doubling

the number of cells again up to 8, we observe again that 90%

of transactions finished in under 5 seconds, which is around

66% greater than in the case of 4 cells. Thus, the result is

indicative that the growth of the transaction latency is slower

than the number of cells.

In the second transaction latency measurement, we con-

duct a stress test with multiple transactions issued at the

same time. For this experiment, we use the CAS system

bContract, and run 9 experiments: with 5,000, 10,000, and

20,000 transactions, for each of the consortia sizes seen in

the previous experiment, i.e., 2 cells, 4 cells, and 8 cells.

Similar to the previous experiment, we can observe that in

each configuration, as the number of transactions doubles, the

transaction confirmation time increases by a lesser factor.

D. Communication Overhead

Table II shows the TCP overhead observed in Blockumulus

while processing a transfer transaction with FastMoney bCon-

tract. In order to observe the communication between cells, we

create a 2-cell Blockumulus deployment on a local machine

and run WireShark, in which we use the Follow TCP Stream
function to observe the cumulative traffic of each commu-

nication for each direction. The results shows that, in the

worst case, the largest communication is around 4 Kbytes

per transaction in downlink direction. A speed test using the

Ookla software on several Azure servers revealed the available

bandwidth around 8.5 Gbps in the downlink direction and

around 1 Gbps in the uplink direction. Since the overhead of

a FastMoney transaction does not exceed 4 Kbyte, the 1 Gbps

server bandwidth is capable to transfer the data of more than

30,000 transactions per second, which exceeds the average

throughput of all credit card transactions in the world [33].

E. Transaction Throughput

For this evaluation, we transfer a small amount of funds

from one FastMoney account into another, measuring the full

delay between the submission of the transaction until receiving

the confirmation. We do not generate any failing transactions,

nor do we observe any failures during the stress test. We run

9 experiments, matching three deployment configurations (2,

4, and 8 cells) with three sizes of transaction load (5,000,

10,000, and 20,000 simultaneous transactions), with the result

shown in Fig. 10. The result demonstrates that: while the
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(a) 2 cells (b) 4 cells (c) 8 cells

Fig. 8: Transaction latency for FastMoney funds transfer with different sizes of cloud consortia based on 500 requests.

(a) 2 cells (b) 4 cells (c) 8 cells

Fig. 9: Transaction latency for simultaneous CAS upload
requests with different sizes of cloud consortia.

increased number of cells reduces the transaction throughput,

the growing number of transactions makes the throughput

larger, which is expected because the latency is growing slower

than the number of simultaneous transactions, as was shown

earlier. We attribute this “bulk discount” effect to the benefits

of parallel execution, caching, and a significant reserve of

available bandwidth due to the low communication overhead

of Blockumulus.

F. Operational Cost

Blockumulus delivers transaction performance similar to

credit card providers, alongside with decentralization prop-

erties seen in cryptocurrencies such as Bitcoin. This rec-

onciliation of performance and decentralization comes at a

price of delayed final settlement of transactions. Specifically,

any confirmed transaction hinges upon trust towards the cells

until the corresponding snapshot is submitted to the Ethereum

smart contract. Therefore, the frequency of snapshot reports

defines the speed of final irreversible settlement of recent

transaction sets in Blockumulus. Table III shows how much

each of the participating clouds will pay in Ethereum fees

in 24 hours for data validation based on the frequency of

the reports. Depending on the projected user participation and

other goals of the Blockumulus deployment, the consortium

Fig. 10: Transaction throughput in Blockumulus.

TABLE III: Cost of Blockumulus smart contract fees for
participating cloud services based on the report period.

Report Cost per 24 hours per cloud provider
Period Gas Approx. USDa

10 min 7,083,792 218.08
30 min 2,361,264 72.69
1 hour 1,180,632 36.35
8 hours 147,579 4.54
24 hours 49,193 1.51
aWith the market price of Ether $733 and gas price 22 GWei.

can balance cost and frequency of reports. For comparison, the

average price per Ethereum transaction on January 13, 2021 is

$5.72 [34], with approximately 1,000 daily transactions [35].

With the same number of daily transactions, the Blockumulus

fee overhead per transaction would be 218.08/1000 = $0.218
with 10-minute report frequency, which is about 26 times

less than that in Ethereum. Moreover, the more subscribers

a Blockumulus cell has, the lesser the amount of money is

required per user to cover the reporting fee. For example, if a

Blockumulus cell has 10,000 active subscribers, the monthly

reporting fee overhead per user would be only $0.65. We

do not add the cost of auditing to the overall cost because

cross-auditing is already a part of the normal cell operation,

and the third-party auditing does not incur any expense for

Blockumulus cell operators.

VII. CONCLUSION

We propose Blockumulus, the first scalable framework

for deploying decentralized smart contracts on the cloud, to

address the blockchain scalability limitations on three dimen-

sions: transaction throughput, data storage, and computation.
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The core idea of Blockumulus is to exploit a novel overlay

consensus which delivers decentralization to smart contracts

in a centralized cloud instead of random P2P network nodes.

Concretely, a consortium of centralized cloud computing nodes

can host a permissionless smart contract environment where

clients can control the execution of their customized contracts

and manage the data stored by these contracts. Our evaluation

on Microsoft Azure shows that Blockumulus can execute

tens of thousands of transactions within a minute, which

is on par with the average throughput of worldwide credit

card transactions. By integrating the decentralization of smart

contracts and the scalability feature of the cloud, Blockumulus

takes the first step towards high-performance data-rich smart

contracts with high transaction throughput.
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