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ABSTRACT: The enormous structural and chemical diversity of
metal−organic frameworks (MOFs) forces researchers to actively
use simulation techniques as often as experiments. MOFs are
widely known for their outstanding adsorption properties, so a
precise description of the host−guest interactions is essential for
high-throughput screening aimed at ranking the most promising
candidates. However, highly accurate ab initio calculations cannot
be routinely applied to model thousands of structures due to the
demanding computational costs. Furthermore, methods based on
force field (FF) parametrization suffer from low transferability. To
resolve this accuracy−efficiency dilemma, we applied a machine
learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including
partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy
similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions
typical for MOF−adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can
also readily facilitate hybrid atomistic simulation/ML workflows.

■ INTRODUCTION
Metal−organic frameworks (MOFs) are soft solids that form
the most extensive subspace of the nanoporous materials
genome.1 Their building blocksmetal ions/clusters and
organic linkersare assembled into edge-transitive nets.2−4

The structural variety of MOFs gives rise to diverse physical
behavior.5 Some structures possess unconventional properties
for soft matter, including high electrical conductivity,6,7

superconductivity,8,9 and exotic topological bands.10 However,
the keen interest in MOFs is mainly due to the outstanding
adsorption properties. In particular, their ultrahigh porosity
enables record-breaking volumetric and gravimetric uptakes,11

whereas specific adsorption sites help to capture the target
molecule selectively.12 MOFs are useful for the storage and
separation of a wide range of gases and their mixtures,
including hydrogen,13 methane,14,15 carbon dioxide,16,17 and
noble gases.18,19 Unfortunately, complete experimental char-
acterization of a representative candidate set is technically
infeasible,20 since tens of thousands of MOFs have been
synthesized to date.21,22 The hypothetical structures generated
in silico are even more numerous.23,24 For this reason,
computational studies have been carried out to reveal the
structure−property relationships in MOFs as often as experi-
ments.1,17,20,25−28

The accuracy−efficiency dilemma is especially acute for
MOFs due to their hybrid organic−inorganic nature and the
relatively large sizes of the unit cells (the typical number of
atoms is hundreds or even thousands). The level of theory

used to describe host−guest interactions depends on the
specific task faced by researchers; a broad set of approx-
imations, differing in electronic coarse graining, have been
applied.29,30 Ab initio methods based on Møller−Plesset
second-order perturbation theory and coupled cluster
approaches provide accurate binding energies.31−35 Due to
the high computational demands, MOF−adsorbate systems are
represented as cluster models that contain adsorption sites and
gas molecules, resulting in a loss of a reliable description of the
dispersion interactions. The hybrid quantum mechanics/
molecular mechanics approach has been successfully adopted
to solve this issue.33 Density functional theory (DFT), a
workhorse of computational materials science, has been
intensively used to model the adsorption properties of MOFs
as well. However, most of the popular exchange−correlation
functionals based on the generalized gradient approximation
do not account for intermolecular interactions properly.
Therefore, long-range dispersion correction plays a critical
role in the modeling of MOFs within the DFT framework.
There are several generations of the empirical scheme
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proposed by Grimme and co-workers, which are usually
labeled as D1,36 D2,37 D3,38 and D4.39 The van der Waals
density functional method40 implemented in the growing set of
exchange−correlation functionals41 captures the van der Waals
forces via a nonlocal correlation component. General trends of
the adsorption of carbon dioxide,42−51 methane,44,47,48,50

water,47,50,52 and noble gases53,54 in a series of isostructural
MOFs have been revealed by employing DFT-based studies.
Ab initio and DFT methods cannot provide the scalability

required for screening large MOF subsets. A few exceptions are
related to the calculations of the intrinsic properties of
structures,55−57 regardless of their interactions with adsorbates.
Thus, classical simulation techniques, such as the grand
canonical Monte Carlo method, provide a theoretical basis
for the high-throughput screening of small-molecule adsorp-
tion in MOFs.12,23,24,58−62 In these studies, host−guest
interactions are described via the nonbonded terms of force
fields (FFs),63 i.e., interaction potentials. The universal force
field64 and DREIDING65 are the most popular generic FFs in
MOF studies, but they have several well-known drawbacks. In
particular, the polarization effects of the adsorbate molecules
induced by open metal sites present a significant challenge for
conventional FFs.66−68 Extended versions of the universal force
field69,70 and more specialized FFs71,72 have also been
proposed. Ab initio derived73−75 and explicitly polarizable76−78

FFs help to significantly improve the description of
intermolecular interactions only for a small series of
isoreticular structures, leaving the aforementioned dilemma
largely unaddressed. Therefore, to facilitate high-throughput
screening adsorption studies, it is necessary to develop a fast
automatized procedure for the generation of FF components
that will be suitable for the various atomic types present in
MOFs. In the rigid framework approximation, only nonbonded
FF terms are needed.
Recently, Chen and Manz79 have presented a collection of

FF precursors that can be implemented to fully describe
noncovalent interactions that are typical for MOF−adsorbate
systems: electrostatic, dispersion, polarization, and short-range
repulsion. A FF precursor is a computed quantitative chemical
descriptor such as net atomic charge, atom-in-material
polarizability, atom-in-material dispersion coefficient, etc. that
is useful as a building block to construct FFs. Within this
framework, partial charges calculated by the density derived
electrostatic and chemical (DDEC)80−83 approach are used to
define Coulombic interactions. Dispersion in the dipole
approximation is described via fluctuating polarizabilities and
dispersion coefficient C6.

84 Nondirectionally screened polar-
izabilities are intended to incorporate interactions between
induced dipoles and external electric fields, charged atoms,
permanent multipoles, or other induced dipoles into polar-
izable FFs.84 In the quantum Drude oscillator (QDO)
parametrization scheme,85−87 (many-body) multipole disper-
sion and polarization interactions are set through the
corresponding QDO parameters: mass, frequency, and charge.
The electron cloud parameters fit the electron density tail of an
atom to an exponential decay function. They are applicable to
describe short-range exchange repulsion.88

Several recent studies89−92 have partially achieved the fast
generation of the FF components using machine learning
(ML). Particularly, ML algorithms make it possible to predict
partial charges in MOFs within the accuracy of the underlying
DDEC approach. At the same time, ML techniques are

comparable for empirical charge equilibration93 methods in
terms of scalability.
In this study, we applied a data-driven approach to derive a

full suite of atom-in-material quantities required for advanced
FF parametrization. Taking a collection of high-quality FF
precursors extracted for 3056 MOFs as initial data, we
implemented gradient boosting models on top of a diverse
set of features that described the local site environment. The
combination of a state-of-the-art approximation algorithm and
a data representation scheme outperformed previous ap-
proaches for partial charge assignment. The trained models
for other FF precursors demonstrated high accuracy in terms
of the correlation coefficients. The relative contributions of
these features to the model performance were estimated by
means of two methods, including a game-theoretic approach.
In addition, we outlined future opportunities for the presented
ML approach.

■ MATERIALS AND METHODS
Reference Database. We used a collection of 3056

MOFs79 as a starting data set. Each structure included the
atomic coordinates and the corresponding FF precursors. For
further consideration, the following nine FF precursors were
selected:
1. Atomic partial charge: This parameter quantifies the net

charge of an atom in a material. This quantity is a real number.
2. Dispersion coefficient C6: The long-range London

dispersion interaction due to fluctuating dipoles is proportional
(to leading order) to −C6/r6, where r is the distance between
two atoms. Each atom in the material had its own C6 value that
was used a FF precursor; this represents the C6 coefficient for
each atom interacting with a like atom. This quantity is a
positive real number.
3. Fluctuating polarizability: For each atom, the fluctuating

polarizability is the polarizability applicable to fluctuating
dipole moments associated with the London dispersion
interaction. These fluctuating dipole moments have short-
range directional order and long-range directional disorder.
This quantity is a positive real number.
4. Nondirectionally screened (aka FF) polarizability: The

polarizability of each atom computed with no directional
alignment of atomic dipole moments. This polarizability is
appropriate for use in classical FFs, because the directional
alignment of atomic dipoles occurs during the classical
molecular dynamics or Monte Carlo simulation when using
the FF. To avoid double counting, the directional alignment of
dipoles must not be included in the underlying FF polar-
izability. This quantity is a positive real number.
5. QDO reduced mass: This is the effective mass of the

pseudoelectron in the QDO model. This quantity is a positive
real number.
6. QDO effective charge: This is the effective charge of the

pseudoelectron in the QDO model. This quantity is a negative
real number.
7. QDO effective frequency: This is the effective frequency

of the QDO oscillator. This quantity is a positive real number.
8. Electron cloud parameter a: The electron cloud

parameters a and b were defined and computed by the least-
squares fit of ln(ρA

avg(rA)) to the model function a − brA for the
atom’s tail region, where rA is the distance from atom A’s
nucleus and ρA

avg(rA) is the spherically averaged electron density
of atom A at distance rA. This least-squares fit was performed
over the region where 10−4 ≤ ρA

avg(rA) ≤ 10−2 electron/bohr3.79
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Thus, ρA
avg(rA) ≈ exp(a − brA) in the atom’s tail region. This

quantity is a real number.
9. Electron cloud parameter b: This is the quantity b in the

above model. This quantity is a positive real number.
Manz and Chen79 extracted partial charges and electron

cloud parameters using the DDEC6 charge partitioning
scheme.80−83 The dispersion coefficients, polarizabilities, and
QDO parameters were calculated with the MCLF method84,94

applied to the DDEC6 electron density partitions. (MCLF is
an acronym from the last names of the authors introducing the
method.84) The selected FF precursors represent the minimum
set required to describe all nonbonded interaction terms
thoroughly.
Fingerprints. The properties of an atomic site, beginning

with forces95 and including atom-in-material parameters, are
functions of its local environment. In this study, the following
diverse set of chemical and structural features was used as
input data for the approximation algorithm (ML model):
• The set of descriptors inspired by the electronegativity

equalization principle was originally implemented by Kan-
charlapalli et al.92 We used its extended version (referred to as
ENFingerprint) that included the electronegativity and first
ionization energy of the considered atomic site, averaged
electronegativity and averaged first ionization energy of the
sites in the first and second coordination spheres, distances
between the target atomic site and sites in its first and second
coordination spheres, and the corresponding numbers of sites.
The first and second coordination shells included sites that
formed a bond with the considered site directly and through
one of its nearest neighbors, respectively. Two sites were
considered to be bonded if the interatomic distance did not

exceed the sum of the corresponding Cordero covalent radii,96

within a penalty distance of 0.5 Å. The thermochemical scale97

of the dimensionless electronegativities was used.
• The adaptive generalizable neighborhood informed

(AGNI)98,99 fingerprints are integrals of the product of the
radial distribution function and the damping function fd:

V f r( ) e ( )i
j i
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where rij is the distance between sites i and j, Rc is the cutoff
distance, and η is the Gaussian function width.
• Voronoi-tessellation-based100−102 fingerprints summarize

the features of the Voronoi cells, including the Voronoi indices,
the (weighted) i-fold symmetry indices, and the Voronoi
volume, area, and nearest-neighbor distance statistics (mean,
standard deviation, and minimum and maximum values).
• CrystalNNFingerprint103,104 and OPSiteFingerprint103,104

were described as a site environment via the coordination
likelihoods and specific local structure order parameters.
CrystalNN104 and the minimum distance103 neighbor-finding
algorithms were used, respectively.
All the aforementioned fingerprints were concatenated into a

109-dimensional vector (the full list of fingerprints is provided
in the Supporting Information). The crystal structure
processing routines were carried out with the Python Materials
Genomics105 and Atomic Simulation Environment106 modules.

Figure 1. Parity plots of the calculated results of Chen and Manz79 and ML-predicted FF precursors: (a) partial charge, (b) fluctuating
polarizability, (c) FF polarizability, (d) dispersion coefficient C6, (e) QDO mass, (f) QDO charge, (g) QDO frequency, (h) electron cloud
parameter a, and (i) electron cloud parameter b.
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AGNI, Voronoi, CrystalNN, and OPSite fingerprints were
calculated by the matminer107 library.
Some structures failed to assign one of two (or both) subsets

of features during the featurization: Voronoi and ENFinger-
print. The issue related to the Voronoi tessellation could be
resolved by increasing the cutoff radius when determining the
Voronoi neighbors (a default value of 6.5 Å was applied).
However, ENFingerprint could not be used for structures
containing small (with the longest path in molecular graph no
more than three) ions, such as H3O

+, NH4
+, and NO3

−. This is
because there was no second coordination sphere for
noncentral atoms in such ions. Thus, charged MOFs were
naturally excluded from further analysis as well. Finally, unique
sites from 2946 structures were used to train/validate ML
models.
Machine Learning (ML) Algorithm. Within a local

approximation, FF precursors are defined by the site’s
fingerprints. These generally unknown functions are approxi-
mated by the refined implementation of the gradient boosting
algorithm, eXtreme Gradient Boosting (XGBoost).108 The
classification and regression tree model, which is a tree
ensemble model ϕ as a superposition of K additive functions f,
represents the true value of a target property y for the ith site in
the following form:

y x f x( ) ( )i i
k

K

k i
1

∑ϕ̂ = =
= (3)

where x is the site’s representation. The parameters of the
classification and regression tree model (tree structure and leaf
weights) are fitted during the iterative minimization of
regularized objective :

l y y f( ) ( , ) ( )
i

i i
k

k∑ ∑ϕ = ̂ + Ω
(4)

where l is the differentiable loss function and Ω is the penalty
term designed to avoid overfitting via regularization of the
model’s weights.
The XGBoost models were trained to predict each FF

precursor independently. Preliminarily, the calculated finger-
prints were scaled by using MinMaxScaler and were rounded
jointly with target values to the fourth decimal; duplicated data
were excluded from consideration. We tested models on an
external test set (10% of points from the initial set) with 5-fold
cross-validation. The optimal values of the hyperparameters
(including the number of gradient boosted trees, maximum
tree depth, and boosting learning rate) were determined by
using the tree-structured Parzen Estimator109 algorithm
implemented in the Hyperopt110,111 library.

■ RESULTS AND DISCUSSION
Performance of ML Models. The parity plots of the

calculated results of Chen and Manz79 and the ML-predicted
FF precursors are reported in Figure 1. The corresponding
histograms of the deviations of the predicted values from the
reference values are presented in Figure S1. Table 1
summarizes the performances of the trained ML models
intended for FF precursor prediction. The most commonly
used regression metricsmean absolute error (MAE), root-
mean-square error (RMSE), and coefficient of determination
(R2)are shown here. The Pearson and Spearman coef-
ficients, which measure the linear and rank correlations,
respectively, are also provided. In general, a high density of

points near the diagonal of the parity plots and high values
(>0.96) of the three coefficients (R2, Pearson, and Spearman)
indicate the superior predictive capabilities of the presented
models. However, these metrics do not provide insights into
efficiency for specific modeling tasks per se. In other words, it
is unclear whether the presented models simulate the
adsorption properties of MOFs with sufficient accuracy.
This difficulty can be partially resolved by comparing our

models with those available in the literature. The following ML
approaches were used to predict the partial charges in MOFs:
the multilayer connectivity-based atom contribution (m-
CBAC) method developed by Zou et al.,90 the message
passing neural networks (MPNNs) implemented by Raza et
al.,91 random forest models in conjunction with features
inspired by the electronegativity equalization principle
(PACMOF92 package), and our implementation89 that
included local structural features as inputs to the XGBoost
models. The direct comparison of the listed approaches is
hindered by the differences in the used partitioning scheme
(DDEC3112 versus DDEC680−83) and the sets of MOFs. In
addition, although in all these studies the number of structures
under consideration was about 3000, the data sizes differed
significantly. It is well-known that the availability of materials
data has a significant impact on the predictive precision of ML
models.113 Therefore, the following estimates are general and
are not true performance benchmarks. In terms of the MAE,
the presented partial charge predictor, with an MAE of 0.0113
e−, slightly outperformed the PACMOF92 and MPNN,91 with
MAEs of 0.0192 and 0.025 e−, respectively. The less
representative Pearson and Spearman coefficients are given
for the m-CBAC90 approach. Their values (0.997 and 0.984,
respectively) were lower than those obtained in this study
(0.9985 and 0.9960). The only close competitor was our
previous implementation,89 which showed an even smaller
MAE of 0.0096 e−. The insignificant difference may have been
due to the distinction in the featurization schemas and, more
importantly, the removal of duplicate data in this study.
The aforementioned approaches89−92 have been validated by

comparing values of the adsorption properties calculated using
ML-derived and DDEC charges. These studies used ML-
derived and DDEC charges in classical FFs employed in Monte
Carlo simulations to compute various gas adsorption proper-
ties in MOFs; the ML-derived atomic charges were validated
by comparing the resulting gas adsorption properties with

Table 1. Summary of Performances of Presented Machine
Learning (ML) Models

FF precursor MAE RMSE R2 Pearson Spearman

partial charge q 0.0113 0.0216 0.9970 0.9985 0.9960
fluctuating
polarizability
log(αfluc)

0.0095 0.0159 0.9977 0.9989 0.9905

FF polarizability
log(αFF)

0.0070 0.0126 0.9982 0.9991 0.9917

dispersion
coefficient log(C6)

0.0134 0.0217 0.9990 0.9995 0.9923

QDO mass mQDO 0.0090 0.0196 0.9976 0.9988 0.9918
QDO charge qQDO 0.0042 0.0067 0.9985 0.9993 0.9928
QDO frequency
ωQDO

0.0081 0.0129 0.9794 0.9897 0.9863

electron cloud
parameter a

0.0554 0.0871 0.9816 0.9908 0.9828

electron cloud
parameter b

0.0225 0.0358 0.9627 0.9814 0.9785
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those obtained when the DDEC charges were used instead.
These atomic charges provided an electrostatic interaction
model between gas molecules and the MOF. The Spearman
rank coefficient between the CO2 Henry coefficients computed
with DDEC and ML-derived charges (obtained by the m-
CBAC90 approach and MPNNs91) equaled 0.939 and 0.96,
respectively. The Spearman rank coefficient for the CO2
volumetric uptakes computed with the DDEC and ML-derived
charges presented in our previous study89 was 0.991.
PACMOF92 could reproduce the CO2 loading, N2 loading,
and CO2/N2 selectivity with mean absolute percentage errors
of 18.9, 28.3, and 33.9, respectively. Thus, the ML models that
yielded MAEs of 0.01−0.02 e− were sufficiently accurate to
reproduce the values of the adsorption properties obtained by
using the DDEC charges. In this context, the Spearman rank
correlation coefficient is much more representative than in the
case of partial charge prediction, since ranking promising
candidates for a specific application can be seen as a primary
goal of high-throughput screening studies. Similar estimates for
other FF precursors are not available.
Another aspect of the ML model’s efficiency concerns how

its accuracy relates to the reference method. In computational
chemistry, the so-called chemical accuracy (∼1 kcal/mol)
usually serves as a desirable level of precision for reproducing
potential energy surfaces by ab initio methods. Recently, the
same can be said about ML models trained on calculated
data.114,115 From a more general perspective, the following
guiding principle can be formulated: the accuracy of an
approximation model that relies on quantum-chemical inputs
should be at least comparable to the accuracy of the underlying
computational method relative to the experimentally measured
quantities. As for FF precursors, extracting experimental values
is quite complex and not straightforward, so such an analysis
can be carried out for a very limited set of available data. Thus,
the MAE deviations of the DDEC6 charges from those of
charges derived via kappa refinement116−118 for natrolite and
formamide were 0.1174 and 0.0570 e−, respectively.81 The
MCLF method yielded the static polarizability tensor
eigenvalues for six small organic molecules and dispersion
coefficients C6 for pairs formed from 49 atoms/molecules

within mean absolute relative errors of 8.10 and 4.45%,
respectively.94 The static polarizabilities and dispersion
coefficients C6 for 12 polyacenes defined by this method had
mean absolute relative errors within 8.75 and 7.77%,
respectively. The values for six fullerenes were 5.92 and
6.84%, respectively.94 Our XGBoost models reproduced the
fluctuating polarizabilities extracted by using the MCLF
method and the reference dispersion coefficients C6 with the
following mean absolute relative errors: 2.18 and 3.07%,
respectively. We speculate that the accuracies of the presented
approximation algorithms are comparable to the precision of
the reference methods, DDEC6 and MCLF.

ML Model Interpretability. The selection of a reliable
material representation is an essential step in constructing a
precise predictive model.119−121 The initial choice of
descriptors is usually based on domain expertise. For instance,
previous studies that aimed at partial charge assignment using
ML techniques used a small set of physically meaningful
parameters92 or a collection of atomic-connectivity-based
patterns.90 In this study, we used a different approach, applying
a diverse suite of heterogeneous fingerprints. The validity of
this approach, i.e., nonredundancy of chosen features, can be
confirmed by conducting feature importance analysis. As a
result, the revealed input parameters that do not contribute to
the model’s output can be reasonably excluded from
consideration. First, we calculated the analogue of one of the
most popular feature importance measures for ensemble
learners, also known as Gini importance (“gain” in XGBoost
implementation).122 This quantity is defined as the mean
decrease in impurity, which is the sum of all decreases in the
Gini impurity over all trees in the ensemble. The normalized
values of the gain-based importance for five feature subsets are
shown in Figure 2a,c,e. ENFingerprint made a decisive
contribution: its importance varied from 83.5 to 95.9% for
the electron cloud parameters a and b, respectively. On the
basis of these data, it can be concluded that all other subsets
had a negligible impact on the performances of the ML
models. To confirm this, we retrained models to predict the
partial charges using only the ENFingerprint as an input
(importance of 95.2%). Surprisingly, the MAE increased from

Figure 2. Cumulative feature importances corresponding to fingerprint subsets. The reported values are obtained by (a, c, e) gain-based method
and (b, d, f) SHAP analysis.
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0.0113 e− (see Table 1) to 0.0185 e−; i.e., it grew by 63%. Such
a dramatic decrease in the model accuracy was inconsistent
with the minor importance of the four other fingerprint subsets
determined by a gain-based method and was likely due to its
intrinsic shortcomings, including sampling bias.123

We then calculated the SHAP (SHapley Additive exPlan-
ations) values using the TreeExplainer124 algorithm to obtain a
more reliable estimate of the feature importance. These
quantities represent an extended version of the classical
Shapley values,125 which originate from game theory.
Explanations of the predictions expressed using the SHAP
values are guaranteed to satisfy the following properties: local
accuracy, monotonicity, and missingness. Global feature
attribution was carried out by averaging the magnitudes of
the SHAP values over all testing set points, since TreeExplainer
provides local objectwise explanations. Mean SHAP values
normalized to unity over all features are provided in Figure
2b,d,f. The impact of ENFingerprint was significantly
decreased compared to gain-based feature importance values
and varied from 48.0% (electron cloud parameter b) to 78.6%
(partial charge). The cumulative importance for each of the
other fingerprint subsets reached 10% for at least one FF
precursor. Thus, the used suite of features should be
considered nonredundant and reasonable.
Future Opportunities. In addition to feature representa-

tion and approximation algorithm, training data availability
also determines the accuracy of ML predictors.113 We trained a
series of models on data sets that differed in size (from 1000 to
300 000 atomic sites) to extract this dependency for three low-
correlated targets: partial charge, fluctuating polarizability, and
QDO frequency. The corresponding data set sizes versus
scaled error dependencies are presented in Figure 3. The

power law SE = mDS−n almost perfectly describes all three sets
of points, where SE is the scaled error (MAE normalized by
the range of the corresponding FF precursor), DS is the
training data size, and m and n are empirical parameters. It
should be noted that coefficient n (the slope of a line in
logarithmic coordinates) differed in each case: 0.27 ± 0.03,
0.20 ± 0.03, and 0.17 ± 0.04 for the partial charge, fluctuating
polarizability, and QDO frequency, respectively. The given
values are significantly lower than those obtained for a diverse
set of properties113 (0.372) and the formation energy of
perovskites126 (0.297). Therefore, the universal dependency
derived by Zhang and Ling113 was not observed, at least for the

atom-in-material quantities considered in this study. Never-
theless, the revealed power law suggests that the FF precursors’
accuracy can be improved extensively by increasing the training
data size.
As indicated under Materials and Methods, ML models for

each FF precursor were trained independently. However, due
to the use of a common representation of the atomic site, a
multitask learning127 framework can be efficiently applied here.
The performance of the primary method for multitask learning,
deep neural networks, improves in the presence of highly
correlated targets.128 To assess the potential of multitask
learning for FF precursor predictions, we calculated Pearson
coefficients for all pairs of the considered atom-in-material
quantities. The correlation matrix in the form of a heatmap is
shown in Figure 4. Two groups of highly correlated FF
precursors can be distinguished. The first group includes the
fluctuating polarizability, FF polarizability, dispersion coef-
ficient C6, and electron cloud parameter a. The second group
contains the QDO mass, QDO charge, and electron cloud
parameter b. Therefore, multitask learning predictors for the
listed end points can potentially outperform the corresponding
single-task models.
The presented models can also be helpful to facilitate the

ML prediction of adsorption properties. Data-driven approx-
imations are at best able to reproduce the quantitative
structure−property relationships hidden in the input data but
still inheriting errors specific to the underlying computational
approach. Thus, most ML models (as opposed to atomwise
predictors) that were aimed at predicting macroscopic
adsorption properties25,27 were trained on results of grand
canonical Monte Carlo simulations, for which the universal
force field is almost no alternative choice for describing
noncovalent interactions. Therefore, the outputs of those ML
models suffered from the issues mentioned in the Introduction,
such as lacking a description of the polarization effects. The
following hybrid workflow can improve the reliability of the
predicted targets without losing scalability: advanced para-
metrization using a full suite of FF precursors (main scope of
this study) → high-throughput screening adsorption modeling
in rigid framework approximation → construction of ML
predictors of macroscopic properties.

■ CONCLUSIONS
In summary, we present the ML workflow to reproduce atom-
in-material quantities useful for the parametrization of FFs.
Extreme gradient boosting models trained on a diverse set of
descriptors have reached state-of-the-art performance in partial
charge prediction (mean absolute error about 0.01 e−), as
follows from comparative analysis with prior studies. Our
choice of fingerprints has been confirmed by feature
importances extracted using the game-theoretic approach.
Each of five subsets that describe local atomic environments
from different perspectives has a nonnegligible cumulative
contribution to model outputs, at least for one of the
considered FF precursors. We also show that several types of
FF precursors (partial charges, fluctuating polarizabilities, and
dispersion coefficients) are reproduced by presented models
within the accuracy comparable to the accuracy of the applied
computational method relative to available experimental
measurements. The impressive performance of trained models
(coefficient of determination, Pearson and Spearman coef-
ficients take values more than 0.96 for all FF precursors) can
be improved extensively by increasing the training data size,

Figure 3. Scaled error as a function of training data size.
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i.e., by considering new types of local environments. Another
avenue for improving the performance of ML predictors is
multitask learning due to the presence of two highly correlated
subsets of targets.
The modular structure of presented workflow, typical for

data-driven approaches, rests on three pillars: input data,
feature representation, and approximation algorithm. Each of
the parts can be modified depending on the specific task. In
principle, our approach is also applicable for other subclasses of
nanoporous materials, including covalent organic frameworks
and hydrogen-bonded organic frameworks. Since the trans-
ferability of the presented models to structures beyond MOFs
is in question, reliable results can be obtained using reference
DDEC and MCLF data derived for a specific subclass of
materials under consideration. The set of local features, i.e., the
input for the ML algorithm, is modifiable as well. However, it is
highly desirable to confirm the validity of the new set based on
feature importance, as was demonstrated in this study. Finally,
a reasonable choice of the approximation algorithm requires
full-fledged benchmarking that takes into account accuracy and
time efficiency.

■ DATA AND SOFTWARE AVAILABILITY

All MOF crystal structures and corresponding FF precursors
used to train XGBoost models are available as Supporting
Information at https://doi.org/10.1039/C9RA07327B. The
full pipeline, including featurization and FF precursor
prediction, is shared through GitHub as an open-source
python library, FFP4MOF (https://github.com/korolewadim/
ffp4mof). The trained XGBoost models are available on
Zenodo at https://doi.org/10.5281/zenodo.5500641.
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