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ABSTRACT 

We experimentally study the transition from droplet to wave regimes in microfluidic liquid/liquid multiphase 

flows having large differences in viscosity. A unified approach based on periodic pattern analysis is employed to 

study relationships between dispersed and separated flow regimes, including dripping, jetting, capillary waves, 

inertial waves, and core-annular flows over a wide range of flow rates and viscosity contrasts. We examine the 

morphology and dynamics of each flow regime based on wavelength, frequency, and velocity of repeating unit 

cells to elucidate their connections and develop predictive capabilities based on dimensionless control parameters. 

We demonstrate in particular that pattern selection is contingent upon propagation velocity of droplets and waves 

at the transition. We also investigate microfluidic wave breaking phenomena with the formation of ligaments and 

droplets from wave crests in both capillary and inertial wave regimes. This work expands conventional multiphase 

flow regimes observed in microchannels and shows new routes to disperse highly viscous materials using interfa-

cial waves dynamics in confined microsystems. 
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1. Introduction 

Flow regime prediction of multiphase flows in confined geometries is important for many engineering tech-

niques and industrial processes and remains a challenging problem in fundamental fluid mechanics (Brennen 2005; 

Crowe 2006; Cheng, Ribatski & Thome 2008). Flow patterns can indeed adopt various interfacial morphologies 

and dynamics, leading to diverse mechanisms for the transport of mass, momentum, and energy (Bird, Stewart & 

Lightfoot 2002). While the motion of a single-phase flow depends on the interplay between inertial and viscous 

forces, the behavior of two-phase flows involves numerous parameters, including bulk fluid properties, such as 

densities and viscosities, and interfacial properties, such as surface tension. In addition, flow destabilization pro-

cesses also depend on flow parameters and local geometries, including Plateau-Rayleigh instabilities, where liquid 

threads break into droplets due to interfacial tension, Kelvin-Helmholtz instabilities between streams having large 

differences in velocities, Rayleigh-Taylor instabilities for heavier fluids setting on top of lighter ones, and 

Saffman-Taylor instabilities when a less viscous fluid is injected through a thick fluid in confined geometries 

(Drazin & Reid 2004). In general, hydrodynamic stability analysis of open flows includes (a) convective instabil-

ities, where flow perturbations are advected downstream, and (b) absolute instabilities, where perturbations can 

also propagate upstream (Huerre & Rossi 2005; Salin & Talon 2019). Linear stability analysis of base flow pro-

vides a useful framework for determining regions of stability and flow characteristics, however, less is known 

about the evolution of fluid morphologies and pattern dynamics at the transition between flow regimes. 

Due to considerable industrial interests, liquid-gas flows have been significantly studied in channels of various 

sizes and a wide range of flow patterns have been classified, such as bubbly, slug, churn, stratified, wavy, mist, 

and core-annular flows (Triplett, et al. 1999; Cubaud, Ulmanella & Ho 2006; Berna, et al. 2015). Multiphase flow 

patterns can also be grouped into two categories, including (a) dispersed flows, where one phase forms discrete 

elements in the other continuous phase, and (b) separated flows, where both phases form continuous streams 

(Crowe 2006). A difficulty in predicting regime selection of dispersed and separated flows lays in the different 

methods used to analyze each flow pattern and a unifying approach would improve predictive knowledge of mul-

tiphase flows. 

Microfluidic technologies provide advanced experimental platforms with fine control over flow rates and 

microgeometries to investigate the role of fluid properties on multiphase flow instabilities (Hu & Cubaud 2018). 

For liquid-liquid systems, monodisperse droplet dispersions can be steadily generated using microchannels and 

find use to encapsulate reagents in domains such diverse as material synthesis, drug discovery and food industry 

(Barrero & Loscertales 2007; Baroud, Gallaire & Dangla 2010; Anna 2016; Evangelio, Campos-Cortés & Gordillo 

2016; Mowlavi, et al. 2019). Two common regimes of droplet formation have been identified as dripping and 

jetting based on the location of droplet pinch-off from the fluid junction (Eggers 1997; Guillot, et al. 2007; Cubaud 

& Mason 2008; Nunes, et al. 2013; Gordillo, Sevilla & Campo-Cortés 2014). The regime transition between 

dripping droplets, which form in the upstream region near the fluid contactor, and jetting droplets generated from 
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a slender thread further downstream corresponds to a shift from an absolute and a convective instability of dis-

persed flows (Utada, et al. 2008; Augello, Fani & Gallaire 2018). Linear stability analysis shows good agreement 

with data for delineating the absolute/convective instability transition between dripping droplets and jets in coaxial 

flows (Guillot, et al. 2007). 

In the context of separated flows, the hydrodynamic stability of viscous stratifications has been theoretically 

and numerically investigated (Yih 1967; Hinch 1984; Selvam, et al. 2007; Govindarajan & Sahu 2014) and the 

development of interfacial waves in viscous-stratified flows was experimentally reported in various configurations 

(Sangalli, et al. 1995; Al-Wahaibi & Angeli 2011; Hu & Cubaud 2016). When an inner stream is unsheathed with 

another fluid, the destabilization of miscible and immiscible core-annular flows has been studied in small tubes 

with the appearance of interfacial waves (Cao, et al. 2003), including bamboo waves (Joseph & Renardy 1993) 

and pearl-mushroom waves (d’Olce, et al. 2008), which result from the development of absolute instabilities 

(Salin & Talon 2019). In microchannels, a variety of instability patterns were examined based on fluid and flow 

properties during the formation of miscible viscous threads (Cubaud & Notaro 2014). Overall, the development 

of periodic flow patterns allows for relating flow characteristics to control parameters and provides insight into 

hydrodynamic instabilities. A general approach, however, is needed to clarify regime transitions and relationships 

between dispersed and separated flows in connection with convective and absolute instabilities. 

In this article, we examine the microflow behaviour of immiscible fluids having large difference in viscosity 

using square focusing sections. A variety of dispersed and separated flows are systematically characterized using 

a single microflow geometry to compare regimes and determine transitions. In particular, a periodic pattern de-

scription is employed to relate wavelength, frequency, and celerity of repeating unit cells within each flow pattern 

based on control parameters. We proceed with the study of dispersed flows and investigate the relationships be-

tween dripping and jetting regimes. We then examine separated flows and discuss the development of capillary 

and inertial waves along core-annular flows. For a given fluid pair, a rich collection of hydrodynamic phenomena 

is observed from droplet to wave flow regimes. Our analysis shows that the interfacial velocity of base core-

annular flow provides a useful reference to compare patterns across flow regimes. We quantify the transition 

between regimes using dimensionless numbers and demonstrate that both droplet velocity and wave celerity reach 

a maximum value at the dispersed/separated flow transition. This insight allows us to develop predictive capabil-

ities for the flow transition in good agreement with experimental data over a wide range of viscosity contrasts. 

 

2. Experimental methods 

We employ a microfluidic hydrodynamic focusing section that consists of two square microchannels of height 

h = 250 µm that intersect perpendicularly (figure 1). The microchannel is made of an etched-trough silicon wafer 

sandwiched between two borosilicate glass plates to allow visualization. Anodic bonding between glass and sili-

con allows the chip to withstand the large injection pressures associated with the flow of highly viscous liquids in 
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micro-confined environments. The microfluidic platform is mounted on an inversed microscope equipped with a 

high-speed camera to capture fast interfacial dynamics and fluids are injected into the device using high-pressure 

syringe pumps. Droplets and core-annular flows are generated when a fluid L1 of viscosity h1 is introduced in the 

central channel at flow rate Q1 and a more viscous fluid L2 having a viscosity h2 is symmetrically injected through 

side channels at total flow rate Q2. In a typical series of experiments, the flow rate of the high-viscosity fluid Q2 

is fixed and the low-viscosity fluid flow rate Q1 is varied. 

 

 

FIGURE 1. (Colour online) Schematics of typical flow patterns with corresponding experimental micrographs. Flow rates in 

µL/min.  (a) Dripping, [(Q1, Q2), fluid pair] = [(2, 4), E5h]; (b) jetting, [(2, 20), E50] and (c) wavy [(200, 200), E5h].  

 

Pair L1 h1 r1 L2 h2 r2 c –1 g12 Symbol 

  (cP) (g mL–1)  (cP) (g mL–1)  (mN m–1)  

E50 Ethanol 1.07 0.781 Silicone oil   48.5 0.960  45.3 0.65 r 

E5h       485 0.971   453 1.09 ¡ 

E5k     4865 0.977 4547 1.15 ¯ 

TABLE 1. Properties of fluids used in experiments, including dynamic viscosity h, viscosity contrast c –1 = 

h2/h1, density r, and interfacial tension g12. 

 

We systematically examine the microflow of three immiscible fluid pairs having low interfacial tension g12. 

The liquid L1 is made of ethanol and L2 consists of silicone oils of various viscosities (Table I). Interfacial tension 

g12 is measured for each fluid pair using the Du Noüy ring method with a high-precision tensiometer. Data show 

that g12 remains nearly constant for large variations of the viscosity ratio c = h1/h2, which is typically referred to 

as viscosity contrast c–1 for convenience. Over the range of parameters investigated, the silicone oil L2 is found 

to wet the channel walls more than ethanol L1, therefore the inner fluid is always lubricated by the viscous outer 

stream. 

Depending on fluid properties and flow rates of injections, a range of microflow arrangements are observed 

in the outlet channel, including (a) dripping, (b) jetting, and (c) wave regimes (figure 1). In the dripping regime, 
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droplets are formed near the fluid junction whereas, in the jetting regime, droplets are generated at the tip of a jet 

further downstream in the channel. Parameters of interest include the average droplet length d, spacing L, and 

velocity VD. The regularity of droplet flows also enables measurement of wavelength l = d + L of a unit cell. In 

the wave regimes, periodic undulations of length l and celerity c develop along the interface formed between the 

two parallel streams of L1 and L2. In the following, we examine the dynamics of each regime and study pattern 

transition to better understand the relationship between fluid properties and microfluidic multiphase flows in the 

presence of large viscosity contrasts.  

 

3. Flow regimes and flow maps 

 

FIGURE 2. (Colour Online) Flow maps of fluid pairs (a) E5h and (b) E50 in terms of flow rates and capillary numbers. See 

main text for transition curves. (c) Experimental micrographs of flow regimes (Flow rates in µL/min). Dispersed flows: (i) 

Dripping (Q1, Q2) = (1, 2), (ii) unsteady dripping (9, 4), (iii) jetting (1, 20), and (iv) unsteady jetting (4, 20). Separated flows: 

(v) stable core-annular (5, 200), (vi) capillary wave (40, 4), (vii) unsteady wave (40, 20), and (viii) inertial wave (350, 40). 

 

Two-phase flow patterns are generally classified as separated flows when both fluids form continuous streams 

and dispersed flows when a phase forms discrete bubbles or droplets in the other phase. Here, separated flows 
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correspond to wavy core-annular flows with distinct characteristics while dripping and jetting regimes are treated 

as dispersed flows. Jetting patterns display intermediate features with the formation of a core-annular flow, or jet, 

near the junction and the emission of droplets at the tip of the jet in the observation channel. Although separated 

flow pattern features may further evolve downstream due to the entrainment of filamentous structures from wave 

crests, we restrict our analysis to relatively short distance x/h ~ 16 from the junction to directly compare initial 

flow characteristics between all regimes. Analysis of flow behavior near the fluid junction is also relevant for lab-

on-a-chip applications where short microfluidic elements are combined.  

 For a given fluid pair, variations of both central and side stream flow rates, Q1 and Q2, grant access to a 

variety of flow regimes as can be seen in figure 2. These quantities are made non-dimensional using capillary 

numbers such as Cai = hiJi/g12 where Ji = Qi/h
2 is the injection superficial velocity of fluid Li (i = 1, 2). While flow 

maps of fluid pairs E5h and E50 show similar arrangements of flow regions, differences in the relative areas and 

transitions between flow regimes are apparent. Overall, separated flows are observed at large Q1 and dispersed 

flows are found at small Q1. In the droplet regimes, dripping flows with large wavelength l are generated at low 

Q2 and jetting patterns with small l occur at high Q2. A somewhat similar behaviour is found for separated flows, 

where waves of large l are observed at small Q2 and short waves are generated at large Q2. Similar to our previous 

work on the development of interfacial waves in two-layer viscosity-stratified flows made of miscible or immis-

cible fluid pairs (Hu & Cubaud 2018), we classify the long wave regime as capillary waves and the short wave 

configuration as inertial waves. In the capillary wave regime, the wavelength l increases along the flow direction 

before stabilizing, and the inertial regime is characterized with a spatially decreasing l, which reaches a nearly 

constant value further downstream. An apparently stable core-annular flow regime is also found in the experi-

mental field of view for intermediate values of Q1 at large Q2. In addition, unsteady variations of basic droplet 

flow patterns are located near wave regime transitions due, in particular, to a small droplet spacing L leading to 

coalescence in the unsteady dripping and jetting regimes. Likewise, complex spatial variations of  l are observed 

in the unsteady wave regime between the capillary and inertial wave regimes, where the wavelength l first de-

creases and then increases along the flow direction. Finally, a displacement regime, where the high-viscosity fluid 

L2 engulfs the low-viscosity fluid L1 channel resulting in no periodic pattern, is identified for very large Q2 and 

low Q1. This limiting case is found below low flow rate ratios j = Q1/Q2, such as 1.25Í10–2 for fluid pair E5h 

and 5Í10–3 for E50 as shown in figure 2 and presents analogies with the situation where the high-viscosity fluid 

is injected from the central channel of a square hydrodynamic focusing section (Cubaud & Mason 2008). Other 

transitional lines on the flow map are discussed in following sections. In particular, we derive analytical criteria 

to unravel basic flow features and elucidate the transition curve between dispersed and separated flows across all 

regimes. 
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4. Dispersed flows 

Dispersed flow regimes comprise both steady and unsteady dripping and jetting flow patterns. The dripping 

regime is obtained at low capillary numbers for small flow rates Q1 and Q2 and is one of the most widely encoun-

tered regimes in microfluidic applications in the chemical and biological fields, where droplets are used as reaction 

chambers. By contrast, the jetting regime is reached at moderate capillary number and find use to generate small 

droplets with applications in drug delivery. In this context, predicting the size of the droplet d has received con-

siderable attention in microfluidic studies (Anna 2016). Here, we systematically examine the morphology and 

dynamics of droplets flows based on droplet length d, spacing L, and velocity VD for a wide range of flow rates 

and three different fluid pairs with a highly viscous continuous phase. 

 

4.1. Droplet mobility 

 

FIGURE 3. (Color online) Droplet velocity and normalized film thickness. Droplet velocity VD is measured on the traces for 

(a) dripping [(Q1, Q2), fluid pair] = [(1, 4), E5h] (Flow rates in µL/min) and (b) jetting flows [(4, 20), E5h]. (c) Evolution of 

droplet mobility, solid line: kD = 2. (E50(r), E5h(¡) and E5k(¯)). (d) Normalized film thickness d/h vs droplet capillary 

number CaD. Solid line: d/h = 0.13CaD
2/3 (CaD < 1). Dashed line: d/h = 0.13 (CaD > 1). Inset: Micrographs of deformed 

droplets (i) [(0.5, 1), E50], (ii) [(5, 2), E50], and (iii) [(4, 4), E5h]. 

 

We first examine the velocity VD of droplets in the dripping and jetting regimes. To measure VD, spatial-

temporal (x-t) diagrams are generated by tracking the front xF and rear xR positions of droplets using high-speed 

imaging. For steady dripping and jetting flows, the measured front and rear velocities, VF=dxF/dt and VR=dxR/dt, 

of all droplets form specific curves that merge further downstream to reach a constant value VD (figure 3(a) and 

(b)). By contrast, for unsteady dripping and jetting flows, the spatial evolution of velocity slightly differs from 

droplets to droplets. For both steady and unsteady flows, the average droplet velocity VD is compared to the mul-

tifluid flow superficial velocity JT = (Q1+Q2)/h
2, such as VD = kDJT, where kD is the droplet mobility coefficient. 

The coefficient of droplet mobility kD typically decreases with the droplet length d and grows with the capillary 
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number of the continuous phase CaD = VDh2/g12, which controls the thickness of the lubricating layer d between 

droplets and walls. Measurements of kD are reported as a function of d/(hCaD) for all fluid pairs in steady dripping 

and jetting regimes in figure 3(c) and display an average value around kD ≈ 2 in good agreement with the assump-

tion that small droplets travel near the peak velocity of parabolic flows in square ducts, 2.1JT. Droplet mobility 

analysis typically includes droplet deformation, channel confinement and the presence of corner flows and lubri-

cating films at the walls (Lac & Sherwood 2009; Jakiela, et al. 2011; Nath, et al. 2017; Rivero-Rodriguez & 

Scheid 2018). Here, measurements show that the mobility kD is enhanced when d/h is small and CaD is large and 

data suggest the average droplet velocity scales as 

VD = 2JT.      (1) 

For confined droplets with length d > h, the relationship between film thickness d and capillary number Ca 

corresponds to the classic Bretherton problem (Bretherton 1961). In our square microchannels, the normalized 

film thickness follows the classic scaling such as d/h = 0.13CaD
2/3 for moderate CaD < 1 (figure 3(d)). For larger 

CaD,, the film thickness reaches a plateau d/h ≈ 0.13 similar to the case of water droplets in silicone oils with 

significantly larger g12 (Jose & Cubaud 2014). The magnitude of the prefactor in the relationship between d and 

CaD depends on flow configurations and confinement geometry (Wong, Radke & Morris 1995; Balestra, Zhu & 

Gallaire 2018). Overall, the mobility coefficient has influence on flow morphology, in particular for the wave-

length l of segmented flows. 

 

4.2 Dripping 

We now turn our attention to the morphology of dripping flows based on droplet length d and spacing L. In 

particular, we wish to predict the transition to separated flows when L " 0 based on fluid and flow parameters. 

Similar to the case of bubbles, where the internal viscosity is neglected, the droplet length is estimated as d = 

VDT2, where T2 is the pinching time corresponding to the filling of the junction by liquid L2, T2 = h3/Q2. Introducing 

the continuous phase liquid fraction a2 = Q2/(Q1+Q2) yields a scaling such as d/h = kD/a2 for the droplet size at 

low capillary numbers. At large Ca, however, the influence of viscous forces become significant and for a given 

fluid pair, the droplet size also depends on absolute flow velocity. To measure the influence of Ca, we fix a2, and 

measure the droplet size d as a function of Ca2 = h2J2/g12 to find a scaling of the form d/h ~ Ca2
–1/3 (figure 4). 

While the droplet length d scales with (a2Ca2
1/3)–1, systematic shifts in data points are observed based on viscosity 

ratio c, which suggests the existence of a correction factor Nd associated with previous scaling. Hence, we curve-

fit dimensionless droplet length d/h as a function of N(a2Ca2
1/3)–1 for each fluid pair and find a weak dependence 

on viscosity ratio N = 0.17c–1/5 (figure 4). Finally, the normalized droplet length for all fluid pairs is shown to 

scale as 

 d/h = a(a2Ca2
1/3c1/5)–1,      (2) 
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where the constant a = 0.17. As expected, unsteady dripping regime are found for large droplet length d, however, 

a criterion solely based on d is not sufficient to predict regime transition as steady and unsteady regimes are found 

in the same area (figure 4 (a)). 

The spacing L between droplets can be estimated using a similar argument in conjunction with mass conser-

vation of segmented flows over a unit cell of equivalent wavelength l = d+L and period T, where droplet length 

d ~ Q1T/h2 and spacing L ~ Q2T/h2, which leads to the scaling d/L ~ Q1/Q2 = j. While a detailed discussion of the 

aspect ratio d/L is presented later, the relationship d/L ~ j in turn yields L/h ~ (d/h)/j ~ (a1Ca2
1/3c1/5)–1, where a1 

= Q1/(Q1+Q2) is the dispersed phase volume fraction. Similar exponents are found experimentally with L/h ~ Ca2
–

1/3 for fixed a1 and correction factor NL = 0.1c–1/5 for different fluid pairs. Overall, the normalized spacing exper-

imentally follows  

L/h = b(a1Ca2
1/3c1/5)–1,      (3) 

where b = 0.1 (figure 4(b)). Data points depart from previous scaling for spacing L/h < 1 and a1Ca2
1/3c1/5 > 0.1 as 

the flow becomes concentrated and finally leads to unsteady dripping regime for L/h < 0.5.  

 

FIGURE 4. (Colour online) Dripping regime morphology with fluid pairs E50 (r), E5h (¡) and E5k(¯). (a) Main graph: 

Normalized droplet length d/h, solid line: d/h = 0.17(a2Ca2
1/3c1/5)–1. Bottom inset: d/h vs. a2Ca2

1/3, solid line: d/h = 
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0.33(a2Ca2
1/3)–1. Top inset: correction factor, solid line: Nd = 0.17c–1/5. Micrographs (flow rates in µL/min): (i) (Q1, Q2) = 

(10, 1), (ii) (1, 1), and (iii) (0.1, 1). (iv) d/h vs Ca2 for fixed a2 = 0.4, solid line: d/h = 0.85Ca2
–1/3. Micrographs from (1) to 

(3): (Q1, Q2) = (1.5, 1), (3, 2), and (6, 4). (b) Normalized droplet spacing L/h, solid line: L/h = 0.1(a1Ca2
1/3c1/5)–1. Bottom 

inset: L/h vs. a1Ca2
1/3, solid line: L/h = 0.5(a1Ca2

1/3)–1. Top inset: correction factor NL = 0.1c–1/5 (solid line). Micrographs: (i) 

(Q1, Q2) = (0.1, 2), (ii) (1, 2), and (iii) (10, 2). (iv) L/h vs Ca2 for fixed a1 = 0.5, solid line: L/h = 0.4Ca2
–1/3. Micrographs from 

(1) to (3): (Q1, Q2) = (1, 1), (2, 2), and (4, 4). (c) Rescaled dimensionless wavelength (l/h)Ca2
1/3c1/5 evolving with a1, solid 

line: (l/h)Ca2
1/3c1/5 = 0.17(1–a1)–1 + 0.1a1

–1. Micrographs: (i) (Q1, Q2) = (5, 1), (ii) (1, 1), (iii) (0.2, 1) and (iv) (0.1, 1).  

 

The equivalent wavelength l = d+L of dripping flows is therefore estimated according to l/h ≈ a(a2Ca2
1/3c1/5)–

1 + b(a1Ca2
1/3c1/5)–1, which can be rewritten as (l/h)Ca2

1/3c1/5 ≈ aa2
–1+ba1

–1 = 0.17(1–a1)
–1 + 0.1a1

–1. When plot 

the rescaled dimensionless wavelength (l/h)Ca2
1/3c1/5 as a function of a1, data points for three fluid pairs collapse 

together and agree well with the derived formula (figure 4 (c)). The minimum l is found at a1 = 0.5 at the transition 

between diluted and concentrated droplets flows. As droplets are generated at the fluid junction in the dripping 

regime, our work shows that segmented are essentially dominated by the liquid fraction with small correcting 

factors based on capillary number and viscosity ratio. As the side flow rate Q2 increases, the capillary breakup 

instability becomes convected further downstream in the jetting regime. 

 

4.3 Jetting 

The jetting regime corresponds droplet formation through the breakup of an initially stable central stream at a 

distance LS from the junction. Droplets are periodically emitted from the central stream, which we label primary 

flow, due to the development of Rayleigh-Plateau instabilities (figure 5(a)). In this section, we combine the peri-

odicity and instability analysis to understand the dynamics and morphology of jetting flows 

 

4.3.1 Primary flow 

The primary flow is modeled as a time-invariant core-annular flow without significant development of insta-

bility patterns near the fluid junction. Flow characteristics include the inner stream diameter e, average velocities 

of both inner and outer streams, V1 and V2, and interfacial velocity Vi, which depends on control parameters, 

including flow rates and fluid viscosities, Q1, Q2, h1 and h2. We consider a simplified one-dimensional model of 

core-annular-flow in a circular channel, which provides a useful approximation to a compact square channel, 

especially when e is small. Following the analysis of (Cao, et al. 2003) in the Stokes regime, the stream diameter 

e is determined by the flow rate ratio j and the viscosity ratio c according to 

.     (4) 
ε

h
=

1+ϕ − 1+ϕχ −1

2 +ϕ − χ −1
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The diameter e allows for estimating average velocities according to V1 = 4Q1/(pe
2) for the inner stream and 

V2 = 4Q2/(4h2–pe2) for the outer stream. As the inner stream diameter e is seen to slightly increase along the flow 

direction due to entrance effects and instability development (figure 5(a)), the mean e is measured in the middle 

of the stable stream at x = LS/2 and data show excellent agreement with Eq. (4), in particular, for low values of e 

at different c (figure 5(b)). An asymptotic behaviour is found for low viscosity ratios c « 1 by simplifying Eq. (4) 

according to 

e/h = (1+(jc)–1/2)–1/2,      (5) 

which is a function of jc only and agrees well with experimental data. Over our range of parameters, locally 

stable jets are observed for jc « 1 when Eq. (4) further reduces into a scaling of the form e/h ≈ (jc)1/4 (figure 5 

(b)). This simple relationship provides insights into the dependence of V1 on Q1 and Q2 as V1 ~ 4(Q1Q2)
1/2/(ph2c1/2), 

which is proportional to the geometrical mean of injection flow rates. 

An important characteristic of separated flows is the interfacial velocity Vi. For a core-annular flows in a 

circular pipe, analytically solving Stokes equations yields Vi = 2V2, where V2 = 4Q2/(4h2–pe2) is the average ve-

locity of the outer stream. For square channels, we approximate Vi using Eq. (5) and obtain  

 Vi = 2[1 + (4/p – 1 + 4/p(jc)–1/2)–1]J2,     (6) 

where J2 = Q2/h
2. This expression is found to overlap with the exact solution of Eq. (4) and clearly shows that the 

approximation Vi/J2 ≈ 2 is valid for jc < 0.1 (figure 5(b) bottom inset). 

 

4.3.2. Droplet formation in jetting 
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FIGURE 5. (Colour online) Jetting regime with fluid pairs E50 (r), E5h (¡) and E5k(¯). (a) Micrographs of jetting streams 

(flow rates in µL/min): (i) (Q1, Q2) = (0.1, 10), (ii) (0.5, 20), (iii) (1, 40), and (iv) (2, 40) (fluids E5h). (b) Inner stream size 

e/h as a function of jc. Solid line: e/h = (1+(jc)–1/2)–1/2, dot dashed line: e/h = (jc)1/4, dashed lines: Eq. (4). Top inset: 

schematics of velocity profile in a core-annular flow. Bottom inset: Vi/J2 as a function of jc. Solid line: Eq. (6). (c) Influence 

of j. (i) Droplet emission frequency f, solid line: fh/Vi = 1.5. (ii) Normalized droplet length d/h, solid line: d/h = j1/3, dashed 

line: d/h = j1/3+j/2. (d) Comparison with linear instability analysis. (i) d/e as a function of j for various c. (ii) average d/e 

vs. c. Solid line: Tomotika’s theory. (iii) Mode of maximum instability pe/(d+L) versus j. Average mode as a function of c. 

Solid line: Tomotika’s theory. (e) L/h vs V1, solid line: L/h = 1.3V1
–1/3. Micrographs for fixed j = 0.1, (i) [(2, 20), E50], (ii) 

[(1, 10), E5h], and (iii) [(0.2, 2), E5k]. 

 

Similar to a wave phenomenon, the periodic droplet emission pattern in the jetting regime is characterized by 

a frequency f, droplet velocity VD, and wavelength l = VD/f. As droplets are generated through the break-up of the 

inner stream due to growing disturbances propagating along the flow direction, the droplet emission frequency f 

is expected to scale as the interfacial wave frequency before break-up. Previous work on the development of 

capillary and inertial waves of viscosity-stratified flows (Hu & Cubaud 2018) showed direct proportionality be-

tween wave frequency f and characteristic shear rate, such as f ~ Vi/h. Here, we normalize f with Vi/h and probe 

the influence of the flow rate ratio j on the droplet emission (figure 5 (c)(i)). For all fluid pairs, the normalized 

droplet emission frequency in the jetting regime remains more or less constant according to 

fh/Vi ≈ 1.5.      (7) 

Information about droplet frequency f and jet diameter e in turn allows for estimating the final droplet length d 

using mass conservation before and after the inner stream breakup. Balancing the equivalent droplet volume of 

the inner stream W1= Q1/f with a spherical droplet approximation WD = pd3/6 yields normalized droplet length d/h 

≈ [4J1/(pVi)]
1/3={3/4j[1+(jc)–1/2]–1}1/3, which is a function of flow rate ratio j and viscosity ratio c and can be 

simplified as  

d/h ≈ j1/3      (8) 

when jc « 1. Figure 5(c)(ii) shows good agreement with experimental data for small droplets, d/h < 1. A departure 

from the scaling relationship is observed for larger droplets d/h >1, which are typically found in the unsteady 

jetting regime (figure 5 (a) (iv)). Droplets in this case become significantly deformed due to wall confinement and 

large capillary numbers. Overall, all data points are well fit with an expression of the form d/h = j1/3+j/2.  

Therefore, for very small viscosity ratio c « 1, the droplet length d in the jetting regime does not depend on 

inner nor outer fluid viscosities. To better understand this result, we investigate the relationship between droplet 

size d and jet diameter e in the light of Tomotika’s theory of Rayleigh-Plateau instability for an initially circular 

thread in a quiescent fluid (Tomotika 1935). In particular, in the steady jetting regime, the quantity d/e is found to 

remain fixed around a mean value that depends on the viscosity ratio c (figure 5(d)(i)). To compare our result 
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with linear stability analysis, we use the reported modes of maximum instability xT = keT/2 as a function of c, 

where k = 2p/lT and lT is the most unstable wavelength. Considering mass conservation between jet varicose of 

wavelength lT and resulting droplet of diameter dT, lTpe
2/4 = pdT

3/6, together with lT = peT/xT allows us to derive 

the expected dT/eT= [3p/(2xT)]1/3, which is a constant for each fluid pair and is compared with experimental data 

in figure 5(d)(ii). Deviation is observed for the fluid pair E5k as droplets are significantly elongated along the 

flow direction due to the large Ca of the outer fluid. To circumvent the limitations associated with droplet defor-

mation, we measure the dispersed flow wavelength l = d+L in figure 5(d)(iii) to directly compare experimental x 

= pe/l and theoretical xT for each fluid pair (figure. 5(d)(iv)) and find the agreement fairly satisfactory. It is a 

remarkable property of jetting regime that the dimensionless droplet length d/h ~ j1/3 at very small viscosity ratio 

c « 1 does not depend on c due to the balance of the jet diameter e and the mode of maximum instability of 

confined microjets. A somewhat equivalent property d/h ~ j1/2 was also observed for the counterpart situation 

where viscosity ratio c » 1, albeit this behaviour was interpreted as a saturation of the mode of maximum instability 

due to a thread diameter e being independent of c (Cubaud & Mason 2008). Here, the experimental pe/l is also 

found to remain stable in both steady and unsteady jetting regimes as droplet length d and spacing L compensate 

one another to match the theoretical wavelength lT. This observation highlights the importance of the viscosity 

ratio in the thread breakup process compared to external flow configurations. Here, we find that droplets in the 

jetting regime are always densely arranged with fine variations of L/h < 1. Experimental data show a relationship 

between droplet spacing L and the inner stream average velocity V1 according to L/h ~ V1
-1/3 (figure 5(e)) suggest-

ing that a faster inner stream leads to a shorter distance between droplets, which eventually leads to the formation 

of a continuous stream in the separated flow region.  

 

4.4. Aspect ratio of dispersed flows
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FIGURE 6. (Colour online) Aspect ratio of dripping and jetting regimes for fluid pairs E50 (r), E5h (¡) and E5k(¯). (a) 

Micrographs of dispersed flows with various d/L for (i) dripping with Ca2 = 0.24, (ii) jetting for Ca2 = 1.2, (iii) dripping with 

j = 0.5 and (iv) jetting with j = 0.2. (b) Influence of j and Ca2 on aspect ratio d/L for cases shown in (a). (c) Evolution of 

d/L as functions of jCa2
1/3 for all cases. Solid line: d/L = 4.5jCa2

1/3. Dashed line: d/L = 0.5 + 4.5jCa2
1/3. 

 

While dripping and jetting flows display specific behaviours, both regimes transition to separated flows when 

L " 0 and the linear aspect ratio d/L provides a useful method to characterize a wide range of segmented flows 

(figure 6(a)). Using continuity applied to a one-dimensional model of a repetitive unit of dispersed flows of length 

l over a period T, such as dh2 ~ Q1T and Lh2 ~ Q2T, yields the simple relationship d/L ~ j, which accurately 

represents the behaviour of dripping flows as well as jetting flows when d > h (figure 6(b)(i)). However, similar 

to our previous discussion of d/h and L/h, while flow rate ratio j captures the major role of the relative flow rates 

(figures 6(a)(i, ii)), absolute flow rates also play a minor role in the morphology of dispersed flows as shown in 

figure 6(a)(iii, iv) with a visualization of flow patterns having similar j but various Ca2. To capture the influence 

of Ca2, we plot the aspect ratio d/L as a function of Ca2 for experiments having same flow rate ratio j and find a 

relationship of the form d/L ~ Ca2
1/3 (figure 6(b)(ii)). Finally, the parameter jCa2

1/3 permits rescaling of dripping 

flows according to 

(d/L)dripping = 4.5jCa2
1/3.      (9) 

In contrast to the dripping regime where d/L can be as small as 10–1, the ratio d/L in jetting regime saturates at a 

constant value of around 0.5 for jCa2
1/3 « 1. This behaviour is expected since d/L = d/(l–d) and both d/e and l/e 

are fixed for each fluid pair. Overall, d/L in jetting regime can be represented with the following formula 

(d/L)jetting = 0.5 + 4.5jCa2
1/3.     (10) 

For relatively large flow rate ratio j, jetting data points align with the dripping curve, suggesting similar flow 

morphology despite widely different droplet generation mechanisms (figure 6(c)). 

The parameter jCa2
1/3 can also serves as an estimation of the transition from steady to unsteady dripping and 

jetting regimes as well as to wave regimes as indicated with dashed lines on figure 2. The critical value of jCa2
1/3 

for flow transition slightly vary for each fluid pair whilst it remains on the same order of magnitude. A universal 

criterion for the transition between dispersed and separated flows, however, is still missing as the condition (d/L) 

→ ∞ is not sufficient to predict flow regimes. In the following section, we examine the peculiar behaviour of 

separated flows and wave regimes and we develop an original method to delineate multiphase flow patterns in 

microchannels. 

 

5. Separated flows 

5.1. Capillary and inertial waves 
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Separated flow regimes consist of stable and wavy core-annular flows with a rich collection of flow morphol-

ogies. Two main types of waves are identified, including (i) inertial waves, whose wavelengths l reach a maxi-

mum value near the fluid junction and then decrease along the flow direction and (ii) capillary waves, where l 

monotonically increases along flow direction and saturates at a relatively large value further downstream (figure 

7(a)). The characteristic wavelength l/h of each experiment is measured at the plateau region downstream at 

around x/h ~ 10 for both types of waves. Increasing the inner stream Reynolds number Re1 = r1V1h/h1 allows us 

to examine the crossover between wave regimes with l/h ranging from 1 to 10 (figure 7(b)). 

Another important parameter is the wave emission frequency f, which is measured from spatiotemporal dia-

grams with f = 1/T, where T is the wave time period that is averaged over multiple cycles T = t/n (figure 7 (c)). 

Similar to our previous work on two-layer viscous stratifications (Hu & Cubaud 2018), the wave frequency f is 

related to the interfacial velocity Vi of the primary flow, i.e., stable core-annular flow, and direct proportionality 

between f and Vi is recovered for both capillary and inertial waves such as  

f = 1.5Vi/h.       (11) 

This relationship is identical to that of the jetting regime for the droplet emission frequency and provides 

insights into the connection between wave and droplet flows. 

 

 

FIGURE 7. (Colour online) Characteristics of wave regimes. (a) Wavelength of capillary wave and inertial wave is measured 

at relatively downstream. (b) Evolution from capillary wave to inertial wave as Re1 increases. (c) Wave emission frequency 
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f = 1.5Vi/h. Insets: spatiotemporal diagrams. (d) Evolution of wave aspect ratio l/e2 as a function of Wf. solid line: l/e2 = 2.5. 

Top inset: capillary wave dispersion relationship k = [(r1+r2)/g12]1/3w2/3 (dashed line), k = 20 mm–1 (solid line). Bottom inset: 

viscosity ratio coefficient W = 0.085c–1/2 (solid line) (e) Wave celerity calculated according to equation (14) agrees well with 

experimental results. Bottom inset: inertial waves show c/Vi = 1.5 over a wide range of Re1.  

  

A common approach to study the time-space correlation of propagating waves is to examine the dispersion 

relationship such as D(k, w) = 0, where k = 2p/l is the wavenumber that measures the wave spatial extension and 

w = 2pf is the angular frequency that characterizes temporal periodicity. Therefore, we investigate the dispersion 

relationship of confined capillary waves in viscous liquid/liquid systems by plotting wavenumber k as a function 

of angular frequency w for all three fluid pairs. In general, data points follow the typical dispersion relationship 

derived for capillary waves propagating at a flat interface such as k = [(r1+r2)/g12]
1/3w2/3 (figure 7(d) top inset), 

with good agreement for the coefficient [(r1+r2)/g12]
1/3 ≈ 0.12 mm–1s2/3 and the exponent 2/3 associated with w. 

As we suspect data scattering due to various viscosity ratios c and interfacial curvatures 2/e, we rewrite the dis-

persion relationship as l = [2pg12/(r1+r2)]
1/3f –2/3 using wavelength l and frequency f directly and introduce the 

dimensionless viscous layer of thickness e2/h= (1–e)/(2h) to consider the evolution of the dimensionless wave-

length as l/e2, by analogy with shallow water waves. We then plot l/e2 as a function of f and fit data according to 

l/e2 = 2[2pg12/(r1+r2)]
1/3(Wf)–2/3/h, where the coefficient W = 0.085c–1/2 depends on the viscosity ratio c (figure 

7(d) bottom inset). Overall, experimental results collapse onto a single curve defined with a modified dispersion 

relationship that reads 

l/e2 = 2[2pg12/(r1+r2)]
1/3(0.085c–1/2f)–2/3/h,                 (12) 

and can be approximated with l/e2 ≈ 10.4h–1[2pcg12/(r1 + r2)]
1/3f –2/3. This relationship indicates the decrease of 

wavelength l as the frequency f grows in the capillary regime. Eventually for large frequencies, the normalized 

wavelength l/e2 reaches the plateau associated with inertial waves according to 

 l/e2 = 2.5.       (13) 

The modified dispersion relationship is used to derive the wave propagation celerity cmodel as a function of 

control parameters according to the basic wave equation c = lf such as 

,    (14) 

where e* = e/h is the dimensionless inner stream diameter. To measure the experimental wave celerity, we digitally 

track the motion of wave crests using image processing. The spatial evolution of c(x) is relatively similar to l(x) 

and reaches a constant value in the observation channel. Overall, a good agreement is found between measured 

celerity c and cmodel derived by equation (14) (figure 7 (e)). In addition, a simplified celerity model can also be 
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written for W = 1 as cCAP = 2{3pg12/[(r1+r2)h]}1/3(1–e*)(4–pe*2)–1/3J2
1/3. For inertial waves, we find that the celerity 

is comparable with interfacial velocity as c/Vi ≈ 1.5 over a wide range of Re1 (figure 7(e) inset). 

 

5.2. Wave breaking 

Interfacial viscous waves evolve and typically break with the entrainment of viscous filamentous structures 

from wave crests. While ligament formation and subsequent droplet generation is widely encountered in industrial 

and natural fragmentation processes, including spray formation (Marmottant & Villermaux 2004) and droplet 

splash (Wang & Bourouiba 2018), less is known about the extrusion of viscous filaments in confined microsys-

tems. Here, we discuss two types of ligament formation, including rolling in the capillary regime and shearing in 

the inertial regime (figure 8). Both of these processes result from the large shear force exerted by the fast-inner 

stream on wave crests and the local wave structure that depends on wavelength l. 

The rolling ligament process (figure 8(a)(i)) is mainly observed for long waves with wavelength l » h in the 

capillary regime and corresponds to the emission of a rolling tip which grows into a rotating droplet connected to 

the wave crest with a viscous thread. The rolling behaviour is induced by the viscous torque resulting from the 

parabolic velocity profile of the inner stream in the flow cells. As droplet migrate towards the wave trough, their 

velocity remains in slight excess of the wave celerity while the connected thread wraps around the droplet. Drop-

lets eventually break from their “umbilical cords” supplying viscous material for growth through a complex thread 

thinning process. When the neck is narrow and a pair of ligaments are phase-locked, filaments can merge into a 

single ligament that travels near the centerline of the core-annular flow [figure 8 (a)(ii)]. Intriguing viscous bag 

formation mechanisms are also observed, where a rim of viscous material grows into a thin tubular shell. The 

viscous bag quickly destabilizes and interacts with ligaments and droplets further downstream [figure 8(a)(iii-iv)]. 
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FIGURE 8. (Colour Online) Viscous ligaments due to wave breaking. (a) Formation process of ligaments with rolling tips. 

(i) A pair of ligaments [(Q1, Q2), fluid pair, ∆t] = [(100, 10), E5h, 10 ms]. (ii) Merging ligaments [(70, 4), E5h, 14 ms], (iii) 

Viscous bag [(150, 20), E5h, 10 ms]. (iv) Transportation of detached viscous tip through a neck. [(250, 10), E5h, 1 ms] (b) 

Ligament threads. Flow rates of (i - iv) are Q1 = 70, 150, 300, 600, and Q2 = 200, E50. (c) Schematic of ligament arrangement 

in cross-section view. (i - iii) Normalized gray-scale of cross flow direction, where local peaks represent ligaments. 

     In the inertial regime, the breaking of short waves with wavelength l ~ h is characterized with the regular 

detachment of continuous streams of viscous material from the wave crest. In contrast with the capillary regime, 

filaments remain aligned with the wave crest due to the inertia associated with the fast- inner stream and the tip 

velocity is much larger than the wave celerity. In practice, multiple ligament formation is enhanced by increasing 

the inner stream flow rate as shown in figure 8 (b). An important quantity of high-viscosity fluid is convected 

through filament detachment resulting in the spatial depletion of the outer viscous layer with a progressive migra-

tion of wave crest toward the walls. This process produces the self-alignment of ligaments, where newborn liga-

ments are always located closer to the centerline. Three cross-section gray-scale profiles are included in figure 8 
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(c) at different locations to document the regular increase of the number of ligaments along flow direction. Such 

highly complex flow structure can also experience secondary destabilization processes with the coalescence of 

waves further downstream.  

 

6. Comparison and transition 

6.1. Initial stable length 

The evolution of the stable length LS of core-annular flows with flow rates provides useful information about 

flow regimes and transitions between dripping, jetting, wavy flow patterns. To measure the average length LS for 

a given set of control parameters, we superpose about 200 frames of a high-speed video to produce a composite 

image and visualize the average envelope of flow to measure the length of the invariant inner stream (figure 

9(a)(i)). While the length LS ~ 0 remains constant in the dripping regime, LS increases with flow velocity in the 

jetting regime and decreases with flow rates in the wave regimes.  

To illustrate this behaviour, we plot normalized initial stable length LS/h as a function of inner stream flow 

rate Q1 for fixed outer stream flow rate Q2 on figure 9(a)(i), which corresponds to the flow patterns shown on 

figure 9(b). The length LS monotonically increases with Q1 in the jetting regime until no disturbance can be ob-

served in the field of view, i.e., for LS/h > 16, which corresponds to the stable core-annular flow in this study. 

Further increase of Q1 leads to the wave regime, where LS decreases with flow rates of injection. Such non-mon-

otonic variation of Ls is also observed in open jets as flows evolve from dispersed to continuous regimes (Brennen 

2005). To clarify the role of the inner stream diameter e on the stable length LS, a similar analysis is conducted on 

figure 9(a)(iii) for flows having a fixed j but various absolute flow rates as shown in figure 9(c). In the dripping 

regime, the initial length LS ~ 0 at small flow rates, while for moderate flow rates, LS sharply increases in the 

jetting regime, in particular above a critical value of outer stream capillary number Ca2 ~ 0.5, which is in good 

agreement with previous studies in capillary tubes (Utada, et al. 2008).  

The presence of a critical value Ca2 for the large growth of LS suggests a distinction between slow flows, 

where LS is independent of e and follows a scaling of the total capillary number CaT as LS/h ≈ 3CaT
2 (figure 9(d) 

bottom inset), and fast flows, where the stable length normalized with the jet circumference LS/(pe) depends on 

Ca2 according to LS/(pe) = 27Ca2
1/2 (figure 9(d) top inset), in the jetting regime and collapse on a master curve 

defined as LS/(pe) = 7/j in the wave regimes (figure 9(d)). A similar behaviour was observed for the development 

on inertial waves in miscible viscous-stratified microflows (Hu & Cubaud 2016). In practice, we find that the 

initial stable length LS growths with flow rates for convective instabilities and decreases with flow velocities for 

absolute instabilities. Further theoretical and numerical work would provide more insights on the dependency of 

LS with control parameters. Better understanding the role of the stable length is important for hydrodynamic con-

trol of flow instabilities in microfluidic systems.  
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FIGURE 9. (Colour online) Initial length Ls for fluid pair E50. (a) (i) Ls is measured from image processing. (ii) Non-mono-

tonic evolution of Ls/h is observed for fixed Q2 = 100 µL/min and various Q1. (b) Micrographs corresponding to (a). (c) 

Normalized Ls/h shows a sudden increase when Ca2 > 0.5 for fixed j = 0.3. (d) Dimensionless initial length Ls/(pe) for wave 

regime follows Ls/(pe) = 7/j (solid line), while jetting regime with Ca2 > 0.5 follows Ls/(pe) = 27Ca2
1/2 as shown in top inset. 

Bottom inset: jetting regime for Ca2  < 0.5, Ls/h = 3CaT
2 (solid line). 

 

6.2. Periodicity of all regimes 

In this section, we combine the periodic pattern description of dripping and jetting flows with capillary and 

inertial waves regimes. We discuss, in particular, the evolution of quantities such as pattern frequency f, wave-

length l, and velocity V across all flow regimes. 

6.2.1. Temporal and spatial periodicity – frequency and wavelength 

We first examine the pattern formation frequency f of dispersed and wave flows regimes. For given fluid pair, we 

present the evolution of the time period T = 1/f where each curve represents experiments conducted at fixed outer 

stream flow rate Q2 and varying inner steam flow rate Q1 (figure 10(a)(inset)). It is evident from this graph that 

(a) the inner stream flow rate Q1 does not significantly influence the period T of jetting and wave regimes but 

reduces the period T of dripping flows, and (b) the outer stream flow rate Q2 decreases the period for all regimes, 

suggesting that Q2 sets the level of T in general. These observations are consistent with our previous analysis of 

jetting and wave emission frequencies, where f ≈ 1.5Vi/h with Vi/h being largely determined by Q2. Therefore, we 

use this reference and display the normalized frequency fh/Vi as a function of the injection capillary number Cain 

= J1h2/g12, where J1 = Q1/h
2, for all fluid pairs across all regimes in figure 10 (a). As expected data for jetting and 
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wave regimes collapse on the curve fh/Vi = 1.5. In contrast, dripping regime features a smaller dimensionless 

frequency f that is curve-fitted with  

fh/Vi = 1.5[1 + 0.25Cain
–3/4]–1,     (15) 

which reaches a plateau about 1.5 when Cain > 1. The upper limit of the dripping frequency is therefore given by 

f ≈ 1.5Vi/h, which is independent of interfacial tension but influenced by flow rates and fluid viscosities. Remark-

ably, the unsteady dripping and jetting regimes are observed in the same region when the two branches of steady 

dripping and jetting merges at the transition into wave regimes. 

 

FIGURE 10. (Colour online) Frequency of dripping, jetting and wave regimes for fluid pairs E50 (r), E5h (¡) and E5k(¯). 

(a) Normalized frequency fh/Vi as a function of Cain. Solid line: fh/Vi = 1.5. Dashed line: fh/Vi = 1.5(1+0.25Cain
–3/4)–1. Inset: 

evolution of T with Q1 as Q2 is varied, fluid pair E50 (b) Normalized wavelength l/h as a function of j. Solid line: l/h = 

1.5(j1/4+j/3), dashed-line: l/h = 1.5. 

 

The connection between dispersed and separated flows is also apparent when the periodic pattern wavelength 

l is displayed as a function of the flow rate ratio j (figure 10(b)). Regions of steady dripping and wave pattern 

data are clearly separated by a curve defined with the collapse of jetting and unsteady dripping data points. Hence, 

the jetting flow regime, which displays intermediate properties between separated and dispersed flows serves as 

the ‘interface’ between widely different flow regimes. The transitional curve can be inferred from the steady 

jetting regime for low j. In this case, the wavenumber pe/l remains constant for a given fluid pair, which yields 

the following scaling for dimensionless wavelength l/h ~ e/h ~ j1/4. As the upper branch of the curve corresponds 

to unsteady dripping at large j, the wavelength is then estimated as l = VDT, leading to l/h = 2(J1+J2)/(1.5Vi) ~ 1 

+ j ~ j. Combining both regimes, l/h in jetting and unsteady dripping is fitted with l/h = 1.5(j1/4 + j/3). Overall, 

it is conceptually significant that the transition does not depend on fluid properties, such as interfacial tension and 

fluid viscosities when viscosity ratio c « 1, but only on flow rates Q1 and Q2. A general criterion for the transition, 

however, is still missing as the intrinsic wavelength l displays complex behaviour as a function of both fluid and 

flow properties. 
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6.2.2. Droplet/wave flow transition  

To provide an overview of the evolution of the flow pattern features and probe the wave relationship l = VT 

at the droplet/wave flow transition, we consider two type of crossovers, including (a) the dripping/capillary wave 

transition and (b) the jetting/inertial wave evolution as shown in figure 11. Since in general, the outer flow rate 

Q2 characterizes the magnitude of emission frequency f, we document flow evolution when the inner flow rate Q1 

is varied and the outer flow rate Q2 is fixed, according to Q2 = 2 µL/min to explore the dripping/capillary branch 

and Q2 = 10 µL/min to examine the jetting/inertial wave transition. The change in period T and wavelength l is 

shown as a function of Q1 for both cases in the panels (ii) to (iii) of figure 11 along with results of previous 

analysis, which are plotted in dashed lines for disperse flows and solid lines for separated flows for clarity. 

For the dripping-capillary wave evolution, the non-monotonic variation of wavelength l results from the ini-

tial decrease of period T with Q1 in the steady dripping regime until a minimal value is reached when the volume 

fraction of L1 a1 = 0.5 with Q1 = 2 µL/min. Larger values of Q1 corresponds to the concentrated droplet regime 

and l grows with Q1 until attaining the length of a capillary wave in the unsteady dripping (figure 11 (a)). Finally, 

the length of capillary waves decreases with Q1 as previously discussed. For the jetting-inertial wave evolution, 

the wavelength l = VDT monotonically increases with Q1 since VD ~ J1+J2 and T saturates near a constant value 

for the jetting regime (figure 11(b)). When the wavelength of unsteady jetting grows to that of a capillary wave, 

streams separate and the flow progressively transitions from the capillary to inertial wave regime with a decrease 

of spatial period l. 

In contrast to the evolution of the spatial and temporal periods, l and T, the behaviour of the periodic pattern 

velocity V is similar for both transitions and is characterized with a maximum velocity VD = c at the crossover 

between dispersed and separated flows as seen on panels (iv) of figure 11. Indeed, the velocity of dispersed flows 

VD scales with JT that increases with Q1 and the celerity of waves c decreases with Q1. Therefore, flow patterns 

adopt the branch having the smaller velocity between wave and droplet regimes, which minimizes dissipation. 

For example, the fast capillary waves propagating in the dripping and jetting regime are damped by the formation 

of relatively slow droplets further downstream (figure 3(b)). Once the equivalent droplet velocity VD surpasses the 

wave celerity c, a wavy-core annular flow can form. The monotonic evolution of velocities in dispersed and sep-

arated flow regimes together with the simple identity VD = c at the transition provides a useful criterion to predict 

flow regime selection. 
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FIGURE 11. (Colour online) Evolution of pattern characteristics for dispersed to separated regimes, E5h (flow rates in 

µL/min). (a) Evolution from dripping to wave regime with fixed Q2 = 2. (i) Micrographs and corresponding spatiotemporal 

diagrams at fixed Q2 for varying Q1. Influence of Q1 on (ii) period T, (iii) wavelength l/h, and propagation velocity V. Critical 

Q1 = 30 for dripping/wave transition. (b) Evolution from jetting to wave regime with fixed Q2 = 10. Micrographs and corre-

sponding spatiotemporal diagrams at fixed Q2 for varying Q1. Influence of Q1 on (ii) period T, (iii) wavelength l/h, and 

propagation velocity V. Critical Q1 = 55 for jetting/wave transition.  

 

6.3. Criterion for the transition from dispersed to separated flows 

We now generalize the presence of a maximal velocity VD = c at the transition between dispersed and separated 

flow regimes to develop a functional relationship to predict the critical flow rates for the transition. For any given 

flow rates and fluid viscosities (Q1, Q2, h1, h2), velocities VD and c can be expressed based on control parameters 

to develop an expression for the function 

b = VD/c.       (16) 

Assuming the wave adopts the typical capillary wave celerity c = cCAP at the transition and the droplet velocity 

scales with the average flow velocity according to VD = 2JT, the critical flow rates at the transition when b =1 are 

expressed as a function of the flow rate ratio j according to 

Q2
* = M(r, g12, h)F(j,c)h2,      (17) 
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and Q1
* = jQ2

*. The function M is defined as 

     (18) 

and corresponds to a characteristic capillary velocity based on fluid properties and confinement geometry, whose 

values for fluid pairs E50, E5h and E5k are 0.12 m/s, 0.15m/s and 0.16m/s. Therefore, the quantity Mh2 in Eq. 

(17) represents a characteristic flow rate modulated with the dimensionless function F, which is written as 

    (19) 

and depends only on flow rate ratio j and viscosity ratio c. This approach allows us to decorrelate the influence 

of viscous effects on the primary flow with F and the role of interfacial tension with M to examine the crossover 

between dispersed and separated flows. The method is employed to generate transition curves based on external 

control parameters and good agreement is found with experimental data as shown on figure 2.  

We also use this technique to examine the expected influence of interfacial tension g12 and viscosity ratio c 

on flow map transitional lines (figure 12). For a given set of densities and viscosities, the variation of g12 modifies 

M as M ~ g12
1/2 and an increase of the region associated with dispersed flow regimes is observed with increasing 

g12 (figure. 12 (a)). In comparison, when all parameters remain fixed while the viscosity ratio c is manipulated, 

the transitional lines corresponding to the more viscous inner flow, i.e., h2/h1 « 1 reach an asymptotic curve for 

h2/h1 < 10–1 as the size of the highly viscous core becomes invariant to c in this situation. The calculated transi-

tional curves are also in good agreement with previous experiments of a more viscous core (Cubaud & Mason 

2008) and closely resembles the transition from dripping droplet flows to jets obtained through linear stability 

analysis of coaxial flows (Guillot, et al. 2007; Moiré, et al. 2017). In particular, the analogy in the results previ-

ously obtained through linear stability analysis for the dripping/wave transition, which takes place at low outer 

stream flow rate, and our criterion based on periodic pattern velocity is remarkable given the two distinct ap-

proaches employed and is promising for the development of a unifying framework to advance understanding of 

multiphase flows in confined microsystems. Over the large range of parameters investigated here, the plunging of 

the transition curve at large outer stream flow rate Q2 is also observed experimentally with the presence of the 

stable core-annular flows located in the separated flow region (figure. 12 (b)). Indeed, Q2
* ~ Fh2 remains relatively 

constant at small j, i.e., at large Q2 and small Q1 (figure. 12 (c)). While experiments were conducted for various 

viscosity contrasts c at relatively fixed interfacial tension g12, our analysis suggests the need for additional work 

on the influence of g12 to refine predictive capabilities and further probe the effects of fluid properties and channel 

geometries on transitional curves. 
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FIGURE 12. (Colour online) Parameter study of transition curves. (a) Influence of g12 for r1 = r2 = 1 g/mL, h1 = 1 cP, h2 = 

500 cP, and h = 250 µm (b) Role of c. (c) Evolution of F(j, c) versus j for various c. Solid lines: Eq. (19), dashed line: F(j, 

c) = 0.5(1+j)–3/2. 

 

7. Conclusion

 In this work, we present a comprehensive study of various dispersed and separated flow regimes using a single 

reference microgeometry. Immiscible viscosity-stratified flows with a thin core are produced over a large range 

of flow rates for various viscosity contrasts using a hydrodynamic focusing section. The use of fluids having low 

interfacial tension g12 and different viscosities c « 1 enables access to a wide range of flow phenomena to experi-

mentally characterize hydrodynamic instabilities over vast flow maps. Over the range of parameters investigated, 

dispersed flows are observed for low inner stream flow rates Q1 with a dripping/jetting transition based on outer 

stream flow rate Q2 and separated flows are found at large Q1 with a capillary/inertial wave regime transition 

depending on Q2. We systematically investigate the periodic pattern dynamics of droplet trains and interfacial 

waves with analysis of frequency f, celerity c and wavelength l.  

In the dripping regime, we show that droplet length d and spacing L primarily depend on volume fraction a1 

with minor corrections based on viscosity ratio c and capillary number Ca2 of side-flow. While the dripping wave-

length l = d+L reaches a minimum at half a1, separated flow transition occurs for large d and small L. In the 

jetting regime, the inner stream diameter e of locally stable jets is well predicted analytically and the frequency of 

droplet emission f is directly proportional to the interfacial velocity or characteristic shear Vi/h of a stable core. 

We demonstrate that droplet length d depends on flow rate ratio according to j1/3 and the jetting wavelength l is 

in good agreement with classic theory of capillary breakup at various viscosity ratios c. Another important aspect 

is the evolution of the aspect ratio d/L, which quantifies the linear aspect ratio of droplet patterns and collapses all 

droplet data onto a single curve near the separated flow transition at large flow rate ratio j. 

For waves in the separated flow regime, we analyze the spatial evolution of wavelength l and identify two 

regimes corresponding to long capillary waves and to small inertial wave patterns. In all cases, data indicate that 



 26 

wave emission frequency is proportional to the interfacial velocity of the primary flow f ~ Vi/h, similar to the 

jetting regime and previous work on miscible viscous stratifications in microchannels. We then examine the dis-

persion relationship D(l, f) of capillary waves in qualitative agreement with basic theory and show that the wave 

aspect ratio l/e2, where e2 is the thickness of the viscous layer, provides a useful parameter to account for the role 

of interfacial curvature and viscosity ratio on the development of capillary waves during separated flows in square 

microchannels. Following, the wave equation c = lf is used to derive a functional relationship for the wave celerity 

as a function of control parameters. We finally discuss wave breaking phenomena, which lead to the formation of 

ligaments and viscous droplets and offer a novel route to continuously emulsify highly viscous materials in small 

geometries. 

The unified description of dispersed and separated flows provides the means to better understand flow transi-

tions. We discuss in particular the evolution of the stable length LS of base flow configurations with velocity in 

relation with the development of absolute and convective instabilities. Combining measurements of frequency f 

and wavelength l across all regimes highlights the role of the capillary number and the flow rate ratio on pattern 

selection. In turn, this work shows that droplet velocity VD and wave celerity c meet at their highest value at the 

flow transition. A criterion based on periodic pattern velocity is then developed to predict the critical flow rates 

for transition in good accord with experimental data, which provides a complementary approach to linear stability 

analysis. 

Overall, this study clarifies the role of fluid properties on the development of a wide range of microfluidic 

instabilities. Amongst various regimes of interest, the jetting regime display dual properties between dripping and 

waves regimes and the periodic flow velocity is shown to play a major role on pattern selection. Further theoretical 

and computational work would help better understand hydrodynamic flow transitions to improve design of mi-

crofluidic flow devices in a variety of situations. Here, the wave regime and wave breaking behaviour expand the 

scope of previously known microflow regimes and provide new opportunities for microfluidic applications.  
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