Swelling of Diffusive Fluid Threads in Microchannels
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ABSTRACT
The dynamics of viscous fluid threads concurrently flowing with miscible solvents is experimentally inves-
tigated in square microchannels. Diffusive fluid threads are found to significantly swell at low flow veloc-
ities due to large specific interfacial area and hydrodynamic lubrication. An approach based on bounded
function analysis of confined thread diameter is developed to model diffusive behavior of viscosity-differ-
ing fluids at the small scale. This works shows the determination of a critical flow rate associated with each
fluid pair and the use of dynamic similarity to calculate diffusion coefficients between oils and organic
solvents. The thread divergence is estimated based on the growth of diffusion layers and related to diffusion-

induced buckling instabilities of viscous threads in parallel flows.
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Fluid threads comprise a broad class of slender viscous structures that are commonly encountered in
industrial processes, including fiber synthesis [1] and electrospray [2], and often occur in natural situations,
such as during the coiling of a liquid rope [3-5], or during the capillary breakup of confined jets [6-8]. While
gravity and inertia play an important role at the large scale, the behavior of two liquids flowing at the small
scale is closely related to the magnitude of their viscosity coefficients, 7 and 75, as well as interfacial
tension yi2 for immiscible fluids or diffusion coefficient D> for miscible fluid pairs. Diffusive fluid dis-
placement in porous-like media have shown the emergence of distinct miscible liquid structures, such vis-
cous fingers and spikes, depending on the Péclet number Pe [9,10]. Microfluidic systems provide precise
control over flow geometry and flow rates of injection, and the use of hydrodynamic focusing sections are
practical to investigate mass transfer phenomena between fluids having similar viscosities 7; ~ 72 [11-13].
In the case of large viscosity contrasts, 771 » 77, lubricated threads of fluid L1 can readily form in a low-
viscosity phase L2 using a simple channel intersection [14]. Miscible core-annular flows display complex
dynamics [15,16], including diffusive and inertial instabilities [17], as well as viscous buckling instabilities
[18-20], which are of particular interest for the generation of crimped and helical microfibers [21-23].

Lubricated microfluidic threads also have large specific interfacial area compared to two-fluid layered
flows and this property offers advantages for the development of continuous hydrodynamic methods for
enhancing micro-mixing of viscosity-differing fluids [24] as well as for examining mass transfer mecha-
nisms with complex fluids [25]. Determination of diffusion coefficients Di> between fully miscible fluids
in the context of large viscosity contrasts, y = 7i/7,, however, requires the use of advanced experimental
techniques [26-28]. Steady-state measurements and theoretical modeling of D, at large y are also challeng-
ing due to the spatial evolution of fluid viscosity and concentration gradients in the diffusive region [29].
In addition, numerous fluids of industrial interest, such as alcohols and polymers, are only partially miscible
and form non-ideal, conjugate solutions depending on their solubility [30]. Therefore, generic microfluidic
methods are needed for the rapid characterization of D), between fully and partially miscible fluids made
of chemically different species with various molecular affinities, such as between non-polar viscous oils
and polar organic solvents.

Here, the thread-forming ability of high-viscosity fluids is used to examine the relationship between
convective and diffusive transport between high-molecular weight solutes and low-molecular weight sol-
vents in confined microsystems. A method based on novel phenomenological and mathematical under-
standing of diffusive fluid threads in microchannels is developed to determine diffusion coefficients
between fully and partially miscible fluids. The growth of diffusion layers around the thread is also shown
to induce viscous buckling instabilities in straight microchannels.

Microfluidic platforms are made of glass and silicon where square microchannels of height # =250 gm

form an orthogonal focusing section. The thick fluid L1 is injected at volume flow rate Q; into the central



channel and the thin fluid L2 is symmetrically introduced in the side-channels at (> using syringe pumps
[Fig. 1(a)]. The device is placed on top of an inverted microscope and illuminated with a fiber light for
high-speed imaging. Fluids are made of conventional silicone oils and low-molecular weight alcohols.
Stable threads correspond to steady core-annular flows with a central stream of width &. In the absence
of interfacial tension and neglecting diffusion, solution of Stokes equation [15] in a circular tube of diameter

h indicates that for large viscosity contrast y » 1, the expression for the core diameter & reduces to

1/2
S _[_@
h \2+¢

172

b (1

for small flow rate ratio ¢ = Q1/Q>. Equation (1) provides a useful
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which yields the scaling &/ ~ (¢/2)

basis to examine the behavior of diffusive fluid threads in square microchannels.
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FIG. 1. (a) Schematic of diffusive threads (b) Spatial evolution of thread diameter &4 for ¢ =0.25, (i) Or =5, (ii) 10,
and (iii) 25 gL/min with 100-cS silicone oil and isopropanol. (¢) Experimental micrographs corresponding to (b). (d-
f) Evolution of aw/h at various ¢ as a function of Q1, Or, and ¢ (see text for details). (f) Comparison of emw/h and em*/h

calculated based on Eq. (2). Solid line: am/h = em*/h.



At low flow rates, miscible threads are seen to significantly swell and a minimum diameter &v is found
in excess of & as shown on Fig. 1(a). Since the stable diameter & depends on ¢, experiments are conducted
by fixing the relative flow rate ¢ = 01/Q> while varying the absolute flow rate Or = Q1+Q.. Figure 1(b)
shows the spatial evolution of the normalized central stream width &4 for ¢ = 0.25 when L1 is made 100-
cS silicone oil and L2 consists of isopropanol [Fig. 1(c)]. As &h grows at the junction, a minimal value eu
is measured in the outlet channel before widening further downstream. Data show that &v tends to & at
large Or while ev tends to /4 at small flow rates. The quantity &v is practical as it provides a single meas-
urement to characterize the role of diffusion on thread morphology. Therefore, we examine the influence
of Q1 and Qr on the variation of &v for fixed values of ¢. On the one hand, plotting &v as a function of O
[Fig. 1(d)] ungroups iso-¢ curves, which appear distinct and bounded with varying slopes. On the other
hand, displaying ev as a function of Or [Fig. 1(e)] regroups iso-¢ data onto a master curve at low Qr and
shows the progressive separation of each curve from the trend as v tends to & at large Or. The asymptotic
behavior of &u for large QOr is evident when represented as a function of ¢ in conjunction with Eq. (1) on
Fig. 1(%).

As experimental data show that, for a given fluid pair at fixed ¢, ev depends on Or and ranges between
1 and &, we briefly discuss the use of bounded functions to model the evolution of eu. A simple expression
of S-shaped function corresponds to f{x) = 1/(a+x") with @ > 0. In the case where a = 1, symmetry properties
indicate that f{x)=f“(x™"), where the complementary function f© = 1 — f. Therefore, a bounded function can
also be described using a complementary function of a reciprocal variable. In general, as f=a™' when x* =
0, the sign of variable b indicates whether ftends to a™' when x = 0 for 5> 0 or when x — oo for b < 0. The
magnitude of b corresponds to the steepness of the curve between the bounded values of 0 and a' for for
between 1 and 1 —a ' for /€. Therefore, given the boundary conditions of aw/%, a complementary bounded
function of the form
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is proposed to model thread behavior. The steepness value of » =—1.5 is found to best fit the overall shape

of curves for all fluid pairs and is therefore postulated as constant. By contrast, the value Q¢ corresponds
to the offset of Or and is specific to each fluid pair. The evolution of &w/h along iso-¢ curves is calculated
using Eq. (1) and Eq. (2), and is displayed as a thin line for each ¢-curve on Fig. 1(e) In practice, determi-
nation of the fitting parameter Oc is made along iso-¢ curves in the (aw/h, Q1) parameter space displayed

on Fig. 1(d) using Or = Oi(1 + ¢) as individual curves are distinguishable and do not overlap with one



another. Finally, observed values of ew/h and predicted values of ew™*/h are found to closely match as shown
in Fig. 1(g). In conclusion, the method of analyzing bounded functions along iso-@ curves of diffusive
threads permits the determination of a single kinematic quantity, Qc, associated with each fluid pair.

To better understand the relationship between Qc and the intermolecular coefficient of diffusion D,
we apply the iso-¢ technique to fully miscible silicone oil fluid pairs and we examine a few soluble silicone
oil and alcohol fluid pairs as shown in Fig 2(a). In each case, a single critical flow rate Qc is found to closely
fit data for each fluid pair. The diffusion coefficient Di» between a solute made of large molecules having
hydrodynamic radius R; and a solvent of low molecular weight having viscosity 7 can be inferred using
Stokes-Einstein equation, Di» = k7/(6 71R1) where k is the Boltzmann constant and 7 is the temperature
[31]. Hydrodynamic modeling of D;» is useful for the case of fully miscible fluids having similar chemical
affinity, such as silicone oils of various molecular weights, where the hydrodynamic radius is assumed to
scale as R; ~ 771°** based on manufacturer’s data sheet (Gelest) [32]. In this situation, the product D7,7,°**
is expected to remain constant at room temperature and can be estimated from tabulated values [26] to

determine D), for a given oil pair.
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FIG. 2. (a) Evolution of aew/h along ¢-curves as a function of Q1 for various fluid pairs as indicated with L1 and L2.
(b) Critical flow rate Qc versus inner viscosity i for oil fluid pairs. Solid line: Oc = 5.5~ 3. Inset: Oc/h vs. diffusion
coefficient D. solid line: Qc/h = Pec D with Pec = 850. (c) Critical flow rate QOc versus outer viscosity 7. oil and

alcohol fluid pairs Solid line: Oc = 1.4 X 10 “*7,7!"7; Dashed-line: Oc = 9X 103771,



Here, the solvent viscosity of oil pairs is kept constant at 7, = 0.49 mPa s (0.65 ¢S) and 7 is varied
according to 4.6 (5 cS), 48 (50 cS), and 487 mPa s (500 cS). The measured values of Qc are plotted as a
function of 7, in Fig. 2(b) and data are well fitted with Oc ~ 7", which in turn suggests Qc ~ D1,. Since
the Péclet number Pe = Q/(hD)2) quantifies the relative influence of convection and diffusion, we compare

QOc/h to the values of D, estimated using the hydrodynamic approach and find

% =Pe.D,,

; 3)
where the critical Pec = 850 for fully miscible fluids [Fig. 2(b) — inset]. The same method of determining
Qc is applied to the partially miscible oil and alcohol cases, where 771 = 97 mPa s (100-cS oil) is fixed and
12 = 2.25 (isopropanol), 2.83 (1-butanol), 3.57 (2-butanol), and 3.62 mPa s (1-pentanol). Over the limited
range of solvent viscosity, data suggest Oc ~7»""”7, which is in significant deviation from Stokes-Einstein
prediction, as one would expect Oc ~7> " [Fig. 2(c)]. Departure from theory is not unexpected as silicone
oils and low molecular alcohols have different chemical affinity and the configuration of a polymer in
solution, such as its hydrodynamic radius R, is known to strongly depend on the interaction with the solvent
[30,33]. In particular, alcohols can be considered as ‘poor’ solvents for silicone oils since, for instance, we
observe that a 100-cS silicone oil can be partially dissolved in butanol and pentanol but not in ethanol nor
hexanol. Dynamic similarity, however, can be used to estimate the effective D, for partially miscible oil
and alcohols fluid pairs using Eq. (3), which yields the following estimates: D = 3.5X10'? (isopropanol),
2.5%107'° (1-butanol), 1.6 X 107'°, (2-butanol), and 1.5X107'* (1-Pentanol) m%/s with an evaluated uncer-
tainty in the range of AD = 10" m%/s based on the calculation of the critical flow rate with AQc = 0.2
4L/min. Hence, microfluidic determination of Qc provides useful information about the initial flow inter-
action between chemically-different fluids, which is characterized using an effective diffusion coefficient
by analogy with fully miscible fluids.

Another aspect of the swelling of diffusive threads resides in the development of a diffusion layer &
downstream from the location of &u. As can be seen on Fig. 1(b), the spatial evolution of ¢ appears quasi-
linear beside its bounded nature. To quantify thread swelling, we measure the location Ly where £~ / and
the datum Lv where ¢ = guv as a function of the reduced flow rate Or/Qc as indicated in Fig. 3(a). Both
quantities depend of Or according to L/ = 5.3(Q1/QOc) and Lw/h = 1.5(Q1/Qc)"? [Fig. 3(b)]. Scaling rela-
tionships for Lm and Lr are used to estimate the thread divergence V- g where £= & and i is the vector unit
in the x direction, in the straight channel due to diffusion according to V& = dg/dx = (h—am)/(Lr—Lwm). Since
déldx depends on &av, which in turns depends on ¢, we use the method of iso—¢ curves with a few selected

cases in Fig. 3(c). For Or < Qc, dg/dx remains nearly constant while the divergence becomes inversely



proportional to Or for Or > Qc. This behavior is expected as the exponent associated to the evolution of Lr

becomes dominant for large Or, which leads to the approximation
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where a = 1/5.3. As can be seen on Fig. 3(c) — inset, good agreement is found between data and Eq. (4).
The thread divergence can also be expressed using Eq. (3) as V-&* = b(& /h)Pe”', where the thread com-
plementary diameter &° = h—& and b =~ 160. Thus, our analysis suggests the diffusion layer scales as & ~

x/Pe. This result compares with Taylor dispersions where & ~ (x/Pe)"?

in the upstream region and & ~
(x/Pe)"? in the downstream region [34,35] taking into consideration the confined nature of &and the use of
scaling laws with varying exponents. Such ‘ultra-diffusive’ behavior of lubricated threads is interpreted as
resulting from their large interfacial area and location at the centerline of parabolic stokes flows as opposed

to stratified flows where diffusion primarily occurs near the solid walls.
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FIG. 3. (a) Examples of measurement of Lr and Lm from micrographs. Fluid pair: 100-cS oil and isopropanol. Flow
rates in xL/min (i) (Q1, O2) = (1, 2), (ii) (1, 4), and (iii) (1, 6). (b) Evolution of Lm and Lr as a function of O1/Qc. Solid
lines: Lm/k = 1.5(Q1/Qc)'"? and L/h = 5.3(01/Qc). (c) Evolution of V-& with Or/Qc for various ¢. Inset: Comparison
of V-gand V-¢&* calculated from Eq. (4). Solid line: V-¢= V-&*. (d) Micrographs showing internal buckling. Fluid



pairs: from (i) to (iii) 100-cS oil and isopropanol and from (iv) to (vi) 0.65-cS and 500-cS oils. (i) (Q1, O2,) = (0.5, 17),
(ii) (0.5, 25), (iii) (0.5, 40), (iv) (1,60), (v) (1, 70), and (vi) (1, 90)

Finally, the growth of the diffusion layer has implications on the structural stability of small threads.
Previous analysis highlights the complex radial composition of miscible fluid threads having a highly vis-
cous core of diameter & unsheathed within a swelled layer of diameter ev forming near the fluid contactor.
In turn, the swelled thread is enclosed within a diffusive layer ¢ that further develops downstream. Thus,
the highly-viscous core experiences an overall deceleration as a result of swelling behavior of its envelope,
which hints at the development of a dynamic compressive force along the thread axis to conserve momen-
tum based on rudimentary control volume analysis. Experimental evidence of diffusion-induced buckling
of viscous threads is displayed on Fig. 3(d) where threads are seen to coil within their diffusive envelope
for small ¢/h at large O1/Qc. Complementary theoretical and numerical work taking into account the devel-
opment of transient stresses in the diffusive region would help further clarify internal buckling of diffusive
fluid threads in parallel microflows.

Overall, the viscous regime of lubricated threads provides a useful reference to characterize mass dif-
fusion phenomena between viscosity-differing fluids. Here, a thread-based method is developed in con-
junction with bounded function analysis of iso-¢ curves to identify a single kinematic quantity QOc
associated with each fluid pair. In turn, information about Qc is employed to calculate an effective diffusion
coefficients Di» using similitude arguments. This approach of determining Oc does not require any partic-
ular assumption about D), and can be applied to a variety of fully and partially miscible fluid pairs having
large viscosity contrasts. Techniques based on microfluidic viscous threads are promising for probing the
role of fluid properties on diffusion as well as for characterizing diffusion-limited reactions with high-
viscosity fluids. Future work could also examine the flow behavior of partially miscible fluids systems in
relation with spontaneous emulsification phenomena to advance both practical understanding and modeling

of viscous fluid interactions in confined microsystems.
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