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ABSTRACT 

The dynamics of viscous fluid threads concurrently flowing with miscible solvents is experimentally inves-

tigated in square microchannels. Diffusive fluid threads are found to significantly swell at low flow veloc-

ities due to large specific interfacial area and hydrodynamic lubrication. An approach based on bounded 

function analysis of confined thread diameter is developed to model diffusive behavior of viscosity-differ-

ing fluids at the small scale. This works shows the determination of a critical flow rate associated with each 

fluid pair and the use of dynamic similarity to calculate diffusion coefficients between oils and organic 

solvents. The thread divergence is estimated based on the growth of diffusion layers and related to diffusion-

induced buckling instabilities of viscous threads in parallel flows. 
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Fluid threads comprise a broad class of slender viscous structures that are commonly encountered in 

industrial processes, including fiber synthesis [1] and electrospray [2], and often occur in natural situations, 

such as during the coiling of a liquid rope [3-5], or during the capillary breakup of confined jets [6-8]. While 

gravity and inertia play an important role at the large scale, the behavior of two liquids flowing at the small 

scale is closely related to the magnitude of their viscosity coefficients, h1 and h2, as well as interfacial 

tension g12 for immiscible fluids or diffusion coefficient D12 for miscible fluid pairs. Diffusive fluid dis-

placement in porous-like media have shown the emergence of distinct miscible liquid structures, such vis-

cous fingers and spikes, depending on the Péclet number Pe [9,10]. Microfluidic systems provide precise 

control over flow geometry and flow rates of injection, and the use of hydrodynamic focusing sections are 

practical to investigate mass transfer phenomena between fluids having similar viscosities h1 ~ h2 [11-13]. 

In the case of large viscosity contrasts, h1 » h2, lubricated threads of fluid L1 can readily form in a low-

viscosity phase L2 using a simple channel intersection [14]. Miscible core-annular flows display complex 

dynamics [15,16], including diffusive and inertial instabilities [17], as well as viscous buckling instabilities 

[18-20], which are of particular interest for the generation of crimped and helical microfibers [21-23].  

Lubricated microfluidic threads also have large specific interfacial area compared to two-fluid layered 

flows and this property offers advantages for the development of continuous hydrodynamic methods for 

enhancing micro-mixing of viscosity-differing fluids [24] as well as for examining mass transfer mecha-

nisms with complex fluids [25]. Determination of diffusion coefficients D12 between fully miscible fluids 

in the context of large viscosity contrasts, c = h1/h2, however, requires the use of advanced experimental 

techniques [26-28]. Steady-state measurements and theoretical modeling of D12 at large c are also challeng-

ing due to the spatial evolution of fluid viscosity and concentration gradients in the diffusive region [29]. 

In addition, numerous fluids of industrial interest, such as alcohols and polymers, are only partially miscible 

and form non-ideal, conjugate solutions depending on their solubility [30]. Therefore, generic microfluidic 

methods are needed for the rapid characterization of D12 between fully and partially miscible fluids made 

of chemically different species with various molecular affinities, such as between non-polar viscous oils 

and polar organic solvents. 

Here, the thread-forming ability of high-viscosity fluids is used to examine the relationship between 

convective and diffusive transport between high-molecular weight solutes and low-molecular weight sol-

vents in confined microsystems. A method based on novel phenomenological and mathematical under-

standing of diffusive fluid threads in microchannels is developed to determine diffusion coefficients 

between fully and partially miscible fluids. The growth of diffusion layers around the thread is also shown 

to induce viscous buckling instabilities in straight microchannels. 

Microfluidic platforms are made of glass and silicon where square microchannels of height h = 250 µm 

form an orthogonal focusing section. The thick fluid L1 is injected at volume flow rate Q1 into the central 
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channel and the thin fluid L2 is symmetrically introduced in the side-channels at Q2 using syringe pumps 

[Fig. 1(a)]. The device is placed on top of an inverted microscope and illuminated with a fiber light for 

high-speed imaging. Fluids are made of conventional silicone oils and low-molecular weight alcohols. 

Stable threads correspond to steady core-annular flows with a central stream of width e0. In the absence 

of interfacial tension and neglecting diffusion, solution of Stokes equation [15] in a circular tube of diameter 

h indicates that for large viscosity contrast c » 1, the expression for the core diameter e0 reduces to 

,    (1) 

which yields the scaling e0/h ~ (j/2)1/2 for small flow rate ratio j = Q1/Q2. Equation (1) provides a useful 

basis to examine the behavior of diffusive fluid threads in square microchannels. 

 

FIG. 1.  (a) Schematic of diffusive threads (b) Spatial evolution of thread diameter e/h for j = 0.25, (i) QT = 5, (ii) 10, 

and (iii) 25 µL/min with 100-cS silicone oil and isopropanol. (c) Experimental micrographs corresponding to (b). (d-

f) Evolution of eM/h at various j as a function of Q1, QT, and j (see text for details). (f) Comparison of eM/h and eM*/h 

calculated based on Eq. (2). Solid line: eM/h = eM*/h. 
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At low flow rates, miscible threads are seen to significantly swell and a minimum diameter eM is found 

in excess of e0 as shown on Fig. 1(a). Since the stable diameter e0 depends on j, experiments are conducted 

by fixing the relative flow rate j = Q1/Q2 while varying the absolute flow rate QT = Q1+Q2. Figure 1(b) 

shows the spatial evolution of the normalized central stream width e/h for j = 0.25 when L1 is made 100-

cS silicone oil and L2 consists of isopropanol [Fig. 1(c)]. As e/h grows at the junction, a minimal value eM 

is measured in the outlet channel before widening further downstream. Data show that eM tends to e0 at 

large QT while eM tends to h at small flow rates. The quantity eM is practical as it provides a single meas-

urement to characterize the role of diffusion on thread morphology. Therefore, we examine the influence 

of Q1 and QT on the variation of eM for fixed values of j. On the one hand, plotting eM as a function of Q1 

[Fig. 1(d)] ungroups iso-j curves, which appear distinct and bounded with varying slopes. On the other 

hand, displaying eM as a function of QT [Fig. 1(e)] regroups iso-j data onto a master curve at low QT and 

shows the progressive separation of each curve from the trend as eM tends to e0 at large QT. The asymptotic 

behavior of eM for large QT is evident when represented as a function of j in conjunction with Eq. (1) on 

Fig. 1(f).  

As experimental data show that, for a given fluid pair at fixed j, eM depends on QT and ranges between 

1 and e0, we briefly discuss the use of bounded functions to model the evolution of eM. A simple expression 

of S-shaped function corresponds to f(x) = 1/(a+xb) with a > 0. In the case where a = 1, symmetry properties 

indicate that f(x)=f C(x–1), where the complementary function f C = 1 – f. Therefore, a bounded function can 

also be described using a complementary function of a reciprocal variable. In general, as f = a-1 when xb " 

0, the sign of variable b indicates whether f tends to a-1 when x " 0 for b > 0 or when x " ∞ for b < 0. The 

magnitude of b corresponds to the steepness of the curve between the bounded values of 0 and a–1 for f or 

between 1 and 1 – a–1 for f C. Therefore, given the boundary conditions of eM/h, a complementary bounded 

function of the form 

   (2) 

is proposed to model thread behavior. The steepness value of b = –1.5 is found to best fit the overall shape 

of curves for all fluid pairs and is therefore postulated as constant. By contrast, the value QC corresponds 

to the offset of QT and is specific to each fluid pair. The evolution of eM/h along iso-j curves is calculated 

using Eq. (1) and Eq. (2), and is displayed as a thin line for each j-curve on Fig. 1(e) In practice, determi-

nation of the fitting parameter QC is made along iso-j curves in the (eM/h, Q1) parameter space displayed 

on Fig. 1(d) using QT = Q1(1 + j–1) as individual curves are distinguishable and do not overlap with one 
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another. Finally, observed values of eM/h and predicted values of eM*/h are found to closely match as shown 

in Fig. 1(g). In conclusion, the method of analyzing bounded functions along iso-j curves of diffusive 

threads permits the determination of a single kinematic quantity, QC, associated with each fluid pair.  

To better understand the relationship between QC and the intermolecular coefficient of diffusion D12, 

we apply the iso-j technique to fully miscible silicone oil fluid pairs and we examine a few soluble silicone 

oil and alcohol fluid pairs as shown in Fig 2(a). In each case, a single critical flow rate QC is found to closely 

fit data for each fluid pair. The diffusion coefficient D12 between a solute made of large molecules having 

hydrodynamic radius R1 and a solvent of low molecular weight having viscosity h2 can be inferred using 

Stokes-Einstein equation, D12 = kT/(6ph2R1) where k is the Boltzmann constant and T is the temperature 

[31]. Hydrodynamic modeling of D12 is useful for the case of fully miscible fluids having similar chemical 

affinity, such as silicone oils of various molecular weights, where the hydrodynamic radius is assumed to 

scale as R1 ~ h1
0.34 based on manufacturer’s data sheet (Gelest) [32]. In this situation, the product Dh2h1

0.34 

is expected to remain constant at room temperature and can be estimated from tabulated values [26] to 

determine D12 for a given oil pair.  

 

FIG. 2.  (a) Evolution of eM/h along j-curves as a function of Q1 for various fluid pairs as indicated with L1 and L2. 

(b) Critical flow rate QC versus inner viscosity h1 for oil fluid pairs. Solid line: QC = 5.5h1
–1/3. Inset: QC/h vs. diffusion 

coefficient D. solid line: QC/h = PeC D with PeC = 850. (c) Critical flow rate QC versus outer viscosity h2 oil and 

alcohol fluid pairs Solid line: QC = 1.4Í10 –4h2
–1.7; Dashed-line: QC = 9Í10-3h2

–1.  
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Here, the solvent viscosity of oil pairs is kept constant at h2 = 0.49 mPa s (0.65 cS) and h1 is varied 

according to 4.6 (5 cS), 48 (50 cS), and 487 mPa s (500 cS). The measured values of QC are plotted as a 

function of h1 in Fig. 2(b) and data are well fitted with QC ~ h1
–1/3, which in turn suggests QC ~ D12. Since 

the Péclet number Pe = Q/(hD12) quantifies the relative influence of convection and diffusion, we compare 

QC/h to the values of D12 estimated using the hydrodynamic approach and find 

,     (3) 

where the critical PeC = 850 for fully miscible fluids [Fig. 2(b) – inset]. The same method of determining 

QC is applied to the partially miscible oil and alcohol cases, where h1 = 97 mPa s (100-cS oil) is fixed and 

h2 = 2.25 (isopropanol), 2.83 (1-butanol), 3.57 (2-butanol), and 3.62 mPa s (1-pentanol). Over the limited 

range of solvent viscosity, data suggest QC ~h2
–1.7, which is in significant deviation from Stokes-Einstein 

prediction, as one would expect QC ~h2
–1 [Fig. 2(c)]. Departure from theory is not unexpected as silicone 

oils and low molecular alcohols have different chemical affinity and the configuration of a polymer in 

solution, such as its hydrodynamic radius R1, is known to strongly depend on the interaction with the solvent 

[30,33]. In particular, alcohols can be considered as ‘poor’ solvents for silicone oils since, for instance, we 

observe that a 100-cS silicone oil can be partially dissolved in butanol and pentanol but not in ethanol nor 

hexanol. Dynamic similarity, however, can be used to estimate the effective D12 for partially miscible oil 

and alcohols fluid pairs using Eq. (3), which yields the following estimates: D ≈ 3.5Í10–10 (isopropanol), 

2.5Í10–10 (1-butanol), 1.6Í10–10, (2-butanol), and 1.5Í10–10 (1-Pentanol) m2/s with an evaluated uncer-

tainty in the range of DD ≈ 10–11 m2/s based on the calculation of the critical flow rate with DQC ≈ 0.2 

µL/min. Hence, microfluidic determination of QC provides useful information about the initial flow inter-

action between chemically-different fluids, which is characterized using an effective diffusion coefficient 

by analogy with fully miscible fluids. 

Another aspect of the swelling of diffusive threads resides in the development of a diffusion layer d 

downstream from the location of eM. As can be seen on Fig. 1(b), the spatial evolution of e appears quasi-

linear beside its bounded nature. To quantify thread swelling, we measure the location LF where e ≈ h and 

the datum LM where e ≈ eM as a function of the reduced flow rate QT/QC as indicated in Fig. 3(a). Both 

quantities depend of QT according to LF/h = 5.3(QT/QC) and LM/h = 1.5(QT/QC)1/2 [Fig. 3(b)]. Scaling rela-

tionships for LM and LF are used to estimate the thread divergence Ñ·e, where e = ei and i is the vector unit 

in the x direction, in the straight channel due to diffusion according to Ñ·e = de/dx = (h–eM)/(LF–LM). Since 

de/dx depends on eM, which in turns depends on j, we use the method of iso-j curves with a few selected 

cases in Fig. 3(c). For QT < QC, de/dx remains nearly constant while the divergence becomes inversely 
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proportional to QT for QT > QC. This behavior is expected as the exponent associated to the evolution of LF 

becomes dominant for large QT, which leads to the approximation 

,   (4) 

where a = 1/5.3. As can be seen on Fig. 3(c) – inset, good agreement is found between data and Eq. (4). 

The thread divergence can also be expressed using Eq. (3) as Ñ·e* = b(e0
C/h)Pe–1, where the thread com-

plementary diameter e0
C = h–e0 and b ≈ 160. Thus, our analysis suggests the diffusion layer scales as d ~ 

x/Pe. This result compares with Taylor dispersions where d ~ (x/Pe)1/3 in the upstream region and d ~ 

(x/Pe)1/2 in the downstream region [34,35] taking into consideration the confined nature of d and the use of 

scaling laws with varying exponents. Such ‘ultra-diffusive’ behavior of lubricated threads is interpreted as 

resulting from their large interfacial area and location at the centerline of parabolic stokes flows as opposed 

to stratified flows where diffusion primarily occurs near the solid walls.  

 

FIG. 3.  (a) Examples of measurement of LF and LM from micrographs. Fluid pair: 100-cS oil and isopropanol. Flow 

rates in µL/min (i) (Q1, Q2) = (1, 2), (ii) (1, 4), and (iii) (1, 6). (b) Evolution of LM and LF as a function of QT/QC. Solid 

lines: LM/h = 1.5(QT/QC)1/2 and LF/h = 5.3(QT/QC). (c) Evolution of Ñ·e with QT/QC for various j. Inset: Comparison 

of Ñ·e and Ñ·e* calculated from Eq. (4). Solid line: Ñ·e = Ñ·e*. (d) Micrographs showing internal buckling. Fluid 
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pairs: from (i) to (iii) 100-cS oil and isopropanol and from (iv) to (vi) 0.65-cS and 500-cS oils. (i) (Q1, Q2,) = (0.5, 17), 

(ii) (0.5, 25), (iii) (0.5, 40), (iv) (1,60), (v) (1, 70), and (vi) (1, 90) 

 

Finally, the growth of the diffusion layer has implications on the structural stability of small threads. 

Previous analysis highlights the complex radial composition of miscible fluid threads having a highly vis-

cous core of diameter e0 unsheathed within a swelled layer of diameter eM forming near the fluid contactor. 

In turn, the swelled thread is enclosed within a diffusive layer d that further develops downstream. Thus, 

the highly-viscous core experiences an overall deceleration as a result of swelling behavior of its envelope, 

which hints at the development of a dynamic compressive force along the thread axis to conserve momen-

tum based on rudimentary control volume analysis. Experimental evidence of diffusion-induced buckling 

of viscous threads is displayed on Fig. 3(d) where threads are seen to coil within their diffusive envelope 

for small e/h at large QT/QC. Complementary theoretical and numerical work taking into account the devel-

opment of transient stresses in the diffusive region would help further clarify internal buckling of diffusive 

fluid threads in parallel microflows. 

Overall, the viscous regime of lubricated threads provides a useful reference to characterize mass dif-

fusion phenomena between viscosity-differing fluids. Here, a thread-based method is developed in con-

junction with bounded function analysis of iso-j curves to identify a single kinematic quantity QC 

associated with each fluid pair. In turn, information about QC is employed to calculate an effective diffusion 

coefficients D12 using similitude arguments. This approach of determining QC does not require any partic-

ular assumption about D12 and can be applied to a variety of fully and partially miscible fluid pairs having 

large viscosity contrasts. Techniques based on microfluidic viscous threads are promising for probing the 

role of fluid properties on diffusion as well as for characterizing diffusion-limited reactions with high-

viscosity fluids. Future work could also examine the flow behavior of partially miscible fluids systems in 

relation with spontaneous emulsification phenomena to advance both practical understanding and modeling 

of viscous fluid interactions in confined microsystems. 
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