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Abstract

We study the minimum spanning tree problem on the complete graph Kn where
an edge e has a weight We and a cost Ce, each of which is an independent copy of
the random variable U� where � 6 1 and U is the uniform [0, 1] random variable.
There is also a constraint that the spanning tree T must satisfy C(T ) 6 c0. We
establish, for a range of values for c0, �, the asymptotic value of the optimum weight
via the consideration of a dual problem.

Mathematics Subject Classifications:

1 Introduction

Let U denote the uniform [0, 1] random variable and let 0 < � 6 1. We consider the
minimum spanning tree problem in the context of the complete digraph Kn where each
edge has an independent copy of U� for weight We and an independent copy of U� for
cost Ce. Let T denote the set of spanning trees of Kn. The weight of a spanning tree A is
given by W (T ) =

P
e2T We and its cost C(T ) is given by C(T ) =

P
e2T Ce. The problem

we study is
Minimise W (T ) subject to T 2 T , C(T ) 6 c0, (1)

where c0 may depend on n. We let W ⇤ = W ⇤(c0) = W (T ⇤) denote the optimum value
to (1).
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The unconstrained case of this question (� = 1, c0 =1) has been well studied: Frieze
[6], Steele [17], Janson [13], Penrose [16], Frieze and McDiarmid [8], Frieze, Ruszinkó and
Thoma [9], Beveridge, Frieze and McDiarmid [2], Li and Zhang [15] and Cooper, Frieze,
Ince, Janson and Spencer [5] and is well understood. For example, [5] proves that if Ln

denotes the expected minimum weight of a spanning tree then

Ln = ⇣(3) +
c1
n

+
c2 + o(1)

n4/3

for explicitly defined c1, c2. Here and throughout, ⇣(s) =
P1

k=1 k
�s is the zeta function.

Equation (1) defines a natural problem that has been considered in the literature, in
the worst-case rather than the average case. See for example Aggarwal, Aneja and Nair
[1] and Guignard and Rosenwein [12] (for a directed version) and Goemans and Ravi [11].

We first consider the simpler case where � = 1. We need to make the following
definitions:

c1 =
1p
2

1X

k=1

1

k3/2

�
�
k � 1

2

�

k!
= 1.42476.... (2)

f(�) =
1X

k=1

kk�2

k!
fk(�) (3)

where

fk(�) = �1/2

Z
�

x=0

xk�3/2e�kxdx+

Z 1

x=�

xk�1e�kxdx, � > 0 (4)

and �(s) =
R1
0 xs�1e�xdx is the gamma function.

Theorem 1. The following hold w.h.p.:

(1) If

c0 2

c1(500 log n)

1/2,
c1n

(8000 log n)1/2

�
(5)

then

W ⇤ ⇡ c21n

4c0
. (6)

(2) Suppose now that c0 = ↵n where ↵ = O(1) is a positive constant.

(i) If ↵ > 1/2 then

W ⇤ ⇡ ⇣(3) =
1X

k=1

1

k3
.

(ii) If 0 < ↵ 6 1/2 and if �⇤ = �⇤(↵) is the solution to

f 0(�) = 2↵, (7)

then

W ⇤ ⇡ f(�⇤)� 2↵�⇤. (8)
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(3) Suppose now that c0 = ↵ where ↵ = O(1) is a positive constant.

(i) If ↵ < ⇣(3) then there is no feasible solution to (1).

(ii) If ↵ > ⇣(3) and if �⇤ = �⇤(↵) is the solution to

f(�)� �f 0(�) = ↵, (9)

then

W ⇤ ⇡ f(�⇤)� ↵

2�⇤ n. (10)

For the case � < 1 we will prove the following.

Theorem 2. Suppose that

n1�� log�/2 n⌧ c0 ⌧
n

log�/2 n
. (11)

Then the following holds w.h.p.

W ⇤ ⇡
C2

�
n2��

4c0
, (12)

where C� = �

2
�(2/�+1)�/2

�(1/�+1)�

P1
k=1

�(k+�/2�1)
k�/2+1k!

.

Note that C1 = c1 and this implies that the expression in (12) is consistent with the
expression in (6).

We will first concentrate on the case � = 1. After this, we will continue with the
proof of Theorem 2. We note that a preliminary version containing the results for the
case � = 1 appeared in [10]. The weights and costs will therefore be uniform [0, 1] until
we reach the more general case in Section 5. We will then prove Theorem 2 as stated and
then show how to extend this result to a wider class of distribution via a simple coupling
argument from Janson [14].

2 Outline Proof for � = 1

We tackle (1) by considering the dual problem:

Maximise �(�) over � > 0, where �(�) = min {W (T ) + �(C(T )� c0) : T 2 T } . (13)

We note that
if � > 0 and T is feasible for (1) then �(�) 6 W (T ). (14)

We will show that w.h.p.

that if �⇤ solves (13) and T ⇤ solves (1) then �(�⇤) ⇡ W (T ⇤). (15)

Here A ⇡ B is an abbreviation for A = (1 + o(1))B as n ! 1, assuming that A =
A(n), B = B(n).

We use a standard integral formula to compute �(�) in Section 3.1. This is straight-
forward, but lengthy. We then prove concentration around the mean in Section 3.2. We
then use a result of [12] to show in Section 4 that in the cases discussed, the duality gap
is negligible w.h.p.
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2.1 Consistency in Theorem 1

Before continuing, we will check that the claims in Cases (2) and (3) are intuitively
reasonable. First consider Case (2). If ↵ > 1/2 and if T ⇤ is the tree minimising W (T )
then w.h.p. W (T ⇤) ⇡ ⇣(3) and C(T ⇤) 6 (1 + o(1))n/2.

We observe next that f 0(�) > 0. This follows directly from

f 0(�) =
1

2

1X

k=1

kk�2

k!
��1/2

Z
�

0

xk�3/2e�kxdx. (16)

It is shown in an appendix that

f 0(�) is a strictly monotone decreasing function. (17)

As such f has a continuous inverse. By inspection we see that f 0(1) = 0.
Note also that f 0(0) = 1 (use L’Hôpital’s rule) and

f(0) =
1X

k=1

kk�2

k!

Z 1

x=0

xk�1e�kxdx =
1X

k=1

kk�2

k!
· (k � 1)!

kk
= ⇣(3)

and so (7) and (8) are consistent with (i) when ↵ = 1/2.
If ↵ < 1/2 then from the above properties of f 0 we see that (7) has a unique positive

solution. We derive expression (8) below.
Now consider Case (3). If ↵ < ⇣(3) then w.h.p. there is no tree T with C(T ) < ↵. If

g(�) = f(�)� �f 0(�), then g(0) = ⇣(3), g0(�) = ��f 00(�) > 0 and

g(�) > �1/2

2

1X

k=1

kk�2

k!

Z
�

x=0

xk�3/2e�kxdx!1 as � !1.

This implies that (9) has a unique positive solution. We derive expression (10) below.

3 Evaluation of the dual problem

3.1 Expectation

Lemma 3. Let � > 0 and let Ln = Ln(�) be the total weight of a minimum spanning tree

in the complete graph on n vertices with each edge e having weight Ze = We + �Ce, where

We and Ce are i.i.d. random variables uniform on [0, 1]. We have

a. If
2000 logn

n
6 � 6 n

2000 logn , then

ELn ⇡ c1
p
�n. (18)

b. If � < 2000 logn
n

, then

ELn ⇡
1X

k=1

kk�2

k!

hr�n

2

Z �n
2

0

xk�3/2e�kxdx+

Z 1

�n
2

xk�1e�kxdx
i
. (19)
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c. If � > n

2000 logn , then

ELn ⇡
1X

k=1

kk�2

k!
�
hr n

2�

Z n
2�

0

xk�3/2e�kxdx+

Z 1

n
2�

xk�1e�kxdx
i
. (20)

The implied o(1) terms in the above expressions can be taken to be independent of �. Also,
we do not claim that the constant 2000 is optimal.

Proof. Let T be a minimum spanning tree. The starting point is Janson’s formula [13],

ELn = E
X

e2T

Ze = E
X

e2T

Z 1

0

1{Ze>p}dp =

Z 1

0

E|{e 2 T, Ze > p}|dp

=

Z 1

0

E
�
(G)� 1

�
dp,

(21)

where (G) is the number of components in the random graph G on n vertices with the
edge set {e : Ze < p}. Since the Ze are i.i.d., this is the random graph Gn,p̂, with
p̂ = P (Ze < p). Since Ze 6 1 + �, p̂ = 1 for p > 1 + �, so the last integral can be taken
from 0 to 1 + � and after a change of variables p p

1+�
, we get

ELn = (1 + �)

Z 1

0

E
�
(Gn,p̂(p))� 1

�
dp, (22)

where

p̂(p) = P(Ze < (1 + �)p) = P
✓

1

1 + �
We +

1

1 + ��1
Ce < p

◆

=

����

⇢
(u, v) 2 [0, 1]2,

1

1 + �
u+

1

1 + ��1
v 6 p

�����

where in the last expression | · | denotes Lebesgue measure. An elementary computation
(given in an appendix) yields

p̂(p) =

8
>><

>>:

(1+�)(1+�
�1)

2 p2, 0 6 p 6 1
1+max{�,��1}

�1
2 min{�,��1}+ p(1 + min{�,��1}), 1

1+max{�,��1} < p 6 1
1+min{�,��1}

1� (1+�)(1+�
�1)

2 (1� p)2, 1
1+min{�,��1} < p 6 1

(23)

For convenience, we also include an expression for the inverse function (we need this later
when we change variables in integration).

p(p̂) =

8
>>><

>>>:

q
2

(1+�)(1+��1)

p
p̂,

p̂+ 1
2 min{�,��1}

1+min{�,��1} ,

1�
q

2
(1+�)(1+��1)

p
1� p̂,

(24)

the electronic journal of combinatorics 28(1) (2021), #P1.22 5



for, respectively,

0 6p̂ 6 1 + min{�,��1}
2(1 + max{�,��1)} ,

�1

2
min{�,��1}+ 1 +min{�,��1}

1 + max{�,��1} <p̂ 6 �1

2
min{�,��1}+ 1,

�1

2
min{�,��1}+ 1 <p̂ 6 1.

Now we can proceed with evaluating ELn given by (22). First observe that if q 2⇥
1000 logn

n
, 1
⇤
then we have

E(Gn,q) = 1 + o(n�200). (25)

Because Gn,q can have at most n components,

1 6 E(Gn,q) 6 1 + nP(Gn,q is not connected)

6 1 + n

n/2X

k=1

✓
n

k

◆
kk�2qk�1(1� q)k(n�k)

6 1 +
n

q

n/2X

k=1

⇣en
k

⌘k

kke�qk(n�k)

6 1 +
n2

1000 log n

n/2X

k=1

⇣
ene�

1000 logn
n

n
2

⌘k

6 1 +
n3

1000 log n

e

n499

= 1 + o(n�200). (26)

Therefore we can distinguish the following cases depending on the value of �.

Case a.
2000 logn

n
6 � 6 n

2000 logn . Note that then

p̂

✓
1

1 + max{�,��1}

◆
=

1

2

1 + min{�,��1}
1 + max{�,��1} =

1

2
min{�,��1} > 1000 log n

n
,

so by (25), the integration over the second and third range from (23) gives the contribution
(1 + �)o(n�100) in (22). Consequently,

ELn = (1 + �)

Z 1
1+max{�,��1}

0

E
�
(G

n,
(1+�)(1+��1)

2 p2
)� 1

�
dp+ (1 + �)o(n�200).

By the same reason, we also have

(1 + �)

Z q
2

(1+�)(1+��1)

1
1+max{�,��1}

E
�
(G

n,
(1+�)(1+��1)

2 p2
)� 1

�
dp =

p
2�o(n�200).
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Thus

ELn = (1 + �)

Z q
2

(1+�)(1+��1)

0

E
�
(G

n,
(1+�)(1+��1)

2 p2
)� 1

�
dp+ (1 +

p
2�+ �)o(n�200)

= (1 + �)

Z q
2

(1+�)(1+��1)

0

E
�
(G

n,
(1+�)(1+��1)

2 p2
)� 1

�
dp+ o(n�100).

Changing the variables yields

ELn =

r
�

2

Z 1

0

E
�
(Gn,q)� 1

� dq
p
q
+ o(n�100). (27)

It remains to deal with the integral
R 1

0 E
�
(Gn,q) � 1

�
dqp
q
. As before, thanks to (25), we

have Z 1

0

E
�
(Gn,q)� 1

� dq
p
q
=

Z 1000 logn
n

0

E
�
(Gn,q)� 1

� dq
p
q
+ o(n�100). (28)

Decompose

(Gn,q) =
k0X

k=1

Ak +
k0X

k=3

Bk +R, (29)

where Ak is the number of components which are k vertex trees, Bk is the number of
non-tree components on k vertices and R is the number of components on more than k0
vertices. Here we set k0 = log n.

For the tree components, we have

EAk =

✓
n

k

◆
kk�2qk�1(1� q)k(n�k)+(k2)�k+1. (30)

For q 6 1000 logn
n

and k 6 log n, we have (1� q)�k
2+(k2)�k+1 6 eqk

2 6 e
1000(logn)3

n = 1 + o(1)

and
�
n

k

�
= (1 + o(1))n

k

k! , hence

EAk = (1 + o(1))
nk

k!
kk�2qk�1(1� q)kn.

Thus

Z 1000 logn
n

0

E
� lognX

k=1

Ak � 1
� dq
p
q
= (1 + o(1))

lognX

k=1

Z 1000 logn
n

0

nk

k!
kk�2qk�1(1� q)kn

dq
p
q

+O

 r
log n

n

!
.

(31)
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Setting q = x

n
gives

Z 1000 logn
n

0

nk

k!
kk�2qk�1(1� q)kn

dq
p
q
=
p
n
kk�2

k!

Z 2000 logn

0

xk�1
⇣
1� x

n

⌘kn dxp
x
.

Using 1 � t = e�t+O(t2) as t ! 0, for x 6 1000 log n and k 6 log n, we have
�
1� x

n

�kn
=

e�kx+O( (logn)3

n ) = (1 + o(1))e�kx. Therefore

Z 1000 logn
n

0

E
� lognX

k=1

Ak � 1
� dq
p
q
= (1 + o(1))

p
n

lognX

k=1

kk�2

k!

Z 1000 logn

0

xk�1e�kx
dxp
x

+O

 r
log n

n

!
.

If the integral was from 0 to 1, we could express it using the gamma function. Since,
1p
x
6 1 on the domain of integration,

p
n

lognX

k=1

kk�2

k!

Z 1

1000 logn

xk�1e�kx
dxp
x
6
p
n

lognX

k=1

kk�2

k!

Z 1

1000 logn

xk�1e�kxdx

and for k = 1 on the right hand side we get
p
ne�1000 logn = o(n�900), whereas for k > 2

we get

p
n

lognX

k=2

kk�2

k!

Z 1

1000 logn

xk�1e�xe�(k�1)·1000 logndx

6 O(n1001)
lognX

k=2

kk�2

k!
(k � 1)!n�1000k

6 O(n1001)
lognX

k=2

✓
k

n1000

◆k

= O(n�500).

We can conclude that
Z 1000 logn

n

0

E
� lognX

k=1

Ak � 1
� dq
p
q
= (1 + o(1))

p
n

lognX

k=1

kk�2

k!

Z 1

0

xk�3/2e�kxdx+O

 r
log n

n

!
.

It remains to compute the sum over k. We have

lognX

k=1

kk�2

k!

Z 1

0

xk�3/2e�kxdx =
lognX

k=1

kk�2

k!

p
k

kk
�

✓
k � 1

2

◆
=

lognX

k=1

1

k3/2

�
�
k � 1

2

�

k!
. (32)

Since for k > 3, �(k � 1/2) 6 �(k) = (k � 1)!, the series converges and we have

Z 100 logn
n

0

E
� lognX

k=1

Ak � 1
� dq
p
q
= (1 + o(1))a0

p
n, (33)
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where

a0 =
1X

k=1

1

k3/2

�
�
k � 1

2

�

k!
. (34)

To bound the contribution form non-tree components, note that

EBk 6
✓
n

k

◆
kkqk(1� q)k(n�k) 6

⇥
enqe�qn

⇤k
eqk

2
. (35)

Thus

Z 1000 logn
n

0

E
� lognX

k=3

Bk

� dq
p
q
6 e

1000 logn
n (logn)2

lognX

k=3

Z 1000 logn
n

0

⇥
enqe�qn

⇤k dqp
q

6 (1 + o(1))(log n)

Z 1000 logn
n

0

⇥
enqe�qn

⇤3 dqp
q

= O(log n)
1p
n

Z 1000 logn

0

x5/2e�3xdx,

so Z 1000 logn
n

0

E
� lognX

k=3

Bk

� dq
p
q
= O

✓
log np

n

◆
. (36)

Finally, for the large components, since

R 6 n

k0
, (37)

we get R 6 n

logn , so we have

Z 1000 logn
n

0

E
�
R
� dq
p
q
6 2

r
1000 log n

n

n

log n
= O

✓ p
np

log n

◆
. (38)

Combining (33), (36), (38) with (29) and plugging into (28), we obtain

Z 1

0

E
�
(Gn,q)� 1

� dq
p
q
= (1 + o(1))a0

p
n.

In view of (27) this gives (18).

Case b. � < 2000 logn
n

. Then plainly min{�,��1} = � and max{�,��1} = ��1. Since
p̂(p) > p̂( 1

1+�
) = 1 � �

2 , for p > 1
1+�

, in view of (25), the third range in (23), that is
1

1+�
< p 6 1, gives the contribution (1+�)o(n�200) = o(n�200) in (22). For the remaining

two ranges, changing the variables q = p̂(p) in (22) gives

ELn =

r
�

2

Z
�/2

0

E
h
(Gn,q)� 1

i dq
p
q
+

Z 1��/2

�/2

E
h
(Gn,q)� 1

i
dq + o(n�100).
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By (25), for the second integral we get

Z 1��/2

�/2

E
h
(Gn,q)� 1

i
dq =

Z 1000 logn
n

�/2

E
h
(Gn,q)� 1

i
dq + o(n�200),

so

ELn =

r
�

2

Z
�/2

0

E
h
(Gn,q)� 1

i dq
p
q
+

Z 1000 logn
n

�/2

E
h
(Gn,q)� 1

i
dq + o(n�100). (39)

We again decompose (Gn,q) as in (29). Here we set k0 = (log n)2. First we show that
the Bk and R have small contribution in the integrals above. By (35),

r
�

2

Z
�/2

0

E
h k0X

k=3

Bk

i dq
p
q
6

k0X

k=3

r
�

2

Z
�/2

0

⇥
enqe�qn

⇤k
eqk

2 dq
p
q

6 e
�
2 k

2
0

k0X

k=3

r
�

2

Z 1

0

⇥
enqe�qn

⇤k dqp
q

6 e
1000(logn)k20

n

r
�

2

k0X

k=3

1p
n

Z 1

0

⇥
exe�x

⇤k dxp
x

6 e
1000(logn)k20

n

r
1000 log n

n

k0p
n

Z 1

0

⇥
exe�x

⇤3 dxp
x

= O

✓
(log n)5/2

n

◆

and similarly

Z 1000 logn
n

�/2

E
h k0X

k=3

Bk

i
dq 6

k0X

k=3

Z 1000 logn
n

�/2

⇥
enqe�qn

⇤k
eqk

2
dq

6 e
1000(logn)k20

n
k0
n

Z 1

0

⇥
exe�x

⇤3
dx

= O

✓
(log n)2

n

◆
.

By (37),

r
�

2

Z
�/2

0

ER dq
p
q
+

Z 1000 logn
n

�/2

ER dq 6 n

k0

 r
�

2

Z
�/2

0

dq
p
q
+

Z 1000 logn
n

�/2

dq

!

6 n

k0

✓
�+

1000 log n

n

◆

= O

✓
1

log n

◆
.
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Putting the last three estimates together with (39) yields

ELn =

r
�

2

Z
�/2

0

E
h k0X

k=1

Ak � 1
i dq
p
q
+

Z 1000 logn
n

�/2

E
h k0X

k=1

Ak � 1
i
dq +O

✓
1

log n

◆

=

r
�

2

Z
�/2

0

E
h k0X

k=1

Ak

i dq
p
q
+

Z 1000 logn
n

�/2

E
h k0X

k=1

Ak

i
dq +O

✓
1

log n

◆
. (40)

Using (30) and repeating verbatim the arguments following it to bound 1� q, to change

the variables q = x

n
and to replace

�
1� x

n

�kn
with e�kx, we obtain

ELn = (1 + o(1))
k0X

k=1

kk�2

k!

hr�n

2

Z �n
2

0

xk�3/2e�kxdx+

Z 1000 logn

�n
2

xk�1e�kxdx
i

+O

✓
1

log n

◆
.

As in Case a,
P

k0

k=1
k
k�2

k!

R1
1000 logn x

k�1e�kxdx = O(n�100), so we can replace the integral
R 1000 logn

�n
2

xk�1e�kxdx with
R1

�n
2
xk�1e�kxdx. Moreover, crude estimates show that

1X

k=k0

kk�2

k!

hr�n

2

Z �n
2

0

xk�3/2e�kxdx+

Z 1

�n
2

xk�1e�kxdx
i

6
1X

k=k0

kk�2

k!

hp
1000 log n

Z 1

0

xk�3/2e�kxdx+

Z 1

0

xk�1e�kxdx
i

=
1X

k=k0

kk�2

k!

hp
1000 log n

�(k � 1
2)

kk�1/2
+

�(k)

kk

i

6
p

1000 log n
1X

k=k0

k�5/2 +
1X

k=k0

k�3 = O

✓
1

(log n)5/2

◆
.

Thus finally

ELn = (1 + o(1))
1X

k=1

kk�2

k!

hr�n

2

Z �n
2

0

xk�3/2e�kxdx+

Z 1

�n
2

xk�1e�kxdx
i

+O

✓
1

log n

◆
.

Note that in the first integral, we have
q

�n

2
1p
x
> 1, hence the main term (the sum over

k) is lower-bounded by
P1

k=1
k
k�2

k!

R1
0 xk�1e�kxdx = ⇣(3) and consequently, the O

⇣
1

logn

⌘

term can be incorporated into the o(1) term, which gives (19).
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Case c. � > n

2000 logn . Then plainly min{�,��1} = ��1 and max{�,��1} = �. Changing
the variables q = p̂(p) in (22) yields

ELn =

r
�

2

Z 1
2�

0

E
h
(Gn,q)� 1

i dq
p
q

+ �

Z 1� 1
2�

1
2�

E
h
(Gn,q)� 1

i
dq

+

r
�

2

Z 1

1� 1
2�

E
h
(Gn,q)� 1

i dqp
1� q

.

Since 1� 1
2� > 1000 logn

n
, in view of (25), the third integral gives

r
�

2

Z 1

1� 1
2�

E
h
(Gn,q)� 1

i dqp
1� q

= o(n�200)

r
�

2

Z 1

1� 1
2�

dqp
1� q

= o(n�200).

Similarly, for the second integral we have

�

Z 1� 1
2�

1000 logn
n

E
h
(Gn,q)� 1

i
dq = �o(n�100)

Z 1� 1
2�

1000 logn
n

dq = �o(n�200).

Thus we can write (we incorporate the term o(n�200) in �o(n�200))

ELn = �

 r
1

2�

Z 1
2�

0

E
h
(Gn,q)� 1

i dq
p
q
+

Z 1000 logn
n

1
2�

E
h
(Gn,q)� 1

i
dq + o(n�200)

!
.

The expression in the bracket is exactly (39) with � being replaced by ��1. Therefore,
from (19), we obtain (20).

Lemma 4. With the notation of Lemma 3, if � = O(n), we have

ELn =

8
><

>:

⇥((�n)1/2) Case a.

⇥(max
�
1, (�n)1/2

 
) Case b.

⇥((�n)1/2) Case c.

(41)

and with probability 1� o(n�200),

Zmax =

8
>><

>>:

O
⇣�

� logn
n

�1/2⌘
Case a.

O
�
logn
n

�
Case b.

O(log n) Case c.

(42)

where Zmax = max {Ze : e 2 T ⇤} and T ⇤
is the minimum spanning tree with weights Ze.

Also in Case c we have

Cmax = O

✓
(log n)1/2

n1/2

◆
, (43)

where Cmax = max {Ce : e 2 T ⇤}.
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Proof. The claims concerning ELn follow directly from (18), (19), (20).
To justify (42), fix p0 and let X = |{e 2 T ⇤, Ze > (1 + �)p0}| be the number of

edges on the minimum spanning tree having weights Ze above (1 + �)p0. By Janson’s
formula from [13], X = (Gn,p̂(p0)) � 1 with p̂ given by (23). By the first moment,
P(X > 0) 6 EX = E[(Gn,p̂(p0)) � 1]. By (26), choosing p0 such that p̂(p0) = 1000 logn

n

gives X = 0, equivalently Ze 6 (1 + �)p0, with probability 1 � o(n�200). It remains to

bound (1+�)p0. In Case 1, we see from (23) that (1+�)(1+�
�1)

2 p20 =
1000 logn

n
, so (1+�)p0 =

p
2�
q

1000 logn
n

= O(
q

� logn
n

). In Case 2 we see that we have to use the second formula

in (23) and p0(1 + �) = 1000 logn
n

+ 1
2� = O( logn

n
). Similarly in Case 3, p0(1 + ��1) =

1000 logn
n

+ 1
2� , hence p0(1 + �) = O(log n).

For (43), we note that P(We 6 q, Ce 6 q) = q2. Putting q = (1000 log n/n)1/2 we
see that with the required probability, the random graph Gn,q2 is connected. (To resolve
the latter claim, modify the proof of Theorem 4.1 in [7] to account for the fact that q is
approximately 1000 times the connectivity threshold.) This implies that with the same
probability there is a spanning tree T with Ze 6 (1+�)q 8e 2 T . It follows that a spanning
tree that minimises Z will have Zmax 6 (1 + �)q. (Applying the greedy algorithm will
finish before needing an edge with Ze > (1 + �)q.) So Zmax 6 (1 + �)q and consequently
Cmax 6 2q.

3.2 Concentration

The goal of this section is to prove the following lemma.

Lemma 5. For a fixed � = O(n) and " = 1
logn ,

P(|�(�)� E(�(�))| > "E(Ln(�))) = o(n�100). (44)

Proof. Recall that �(�) = min {W (T ) + �C(T ) : T 2 T }��c0 = Ln(�)��c0 (as defined
in (13)).

In our analysis we consider separately the contribution of long and short edges. Let
L = n1/10E(Ln)/n and let YL denote the total cost of the edges used on the minimum
spanning tree with Ze 6 L. Let N =

�
n

2

�
and note that YL is a function of N i.i.d. random

variables X1, . . . , XN .
We will show YL is concentrated using a variant of the Symmetric Logarithmic Sobolev

Inequality from [3]. Let Y 0
L,i

denote the same quantity as YL, but with the variable Xi

replaced by an independent copyX 0
i
. Then a simplified form of the Symmetric Logarithmic

Sobolev Inequality [3, Corollary 3] says that if

E
 

NX

i=1

(YL � Y 0
L,i
)21YL>Y 0

L,i

��X1, . . . , XN

!
6 c

then for all t > 0,
P[YL > EYL + t] 6 e�t

2
/4c,
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and if

E
 

NX

i=1

(Y 0
L,i
� YL)

2
1Y 0

L,i>YL

��X1, . . . , XN

!
6 c

then for all t > 0,
P(YL < EYL � t) 6 e�t

2
/4c.

Changing the value of one edge can change the value of YL by at most L, so (YL �
Y 0
L,i
)2 < L2. Let I denote the indices of the edges which contribute to YL. If i /2 I then

Y 0
L,i

< YL implies X 0
i
6 L. So

NX

i=1

(YL � Y 0
L,i
)21YL>Y 0

L,i
6
X

i2I

L2 +
X

i/2I

L2
1X0

i6L. (45)

Now P(X 0
i
< L) 6 P(We 6 L, �Ce 6 L) 6 L/⇤ where ⇤ = max {�, 1}. Then, since there

are less than n terms in the first sum and less than n2 terms in the second sum in the
RHS of (45), we have

E
 

NX

i=1

(YL � Y 0
L,i
)21YL>Y 0

L,i

��X1, . . . , XN

!
6 L2n+ L3n2/⇤. (46)

If i /2 I then we also have that Y 0
L,i

> YL implies X 0
i
6 L. So we also have

E
 

NX

i=1

(Y 0
L,i
� YL)

2
1Y 0

L,i<YL

��X1, . . . , XN

!
6 L2n+ L3n2/⇤. (47)

Therefore,

P [|YL � EYL| > "E(Ln)] 6 2 exp

⇢
� "2E(Ln)2

4(L2n+ L3n2/⇤)

�

= 2 exp

⇢
� "2

4(n2/10/n+ n3/10E(Ln)/(n⇤)

�

6 2 exp

8
<

:�
"2

4(n�4/5 + An�7/10 max{1,
p
�n}

max{1,�} )

9
=

;

6 2 exp

⇢
�"2n1/5

A0

�
= o(n�200), (48)

where we have used E(Ln) 6 Amax{1, (�n)1/2}, see Lemma 4 and A,A0 are universal
constants.
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Let Y 0
L
denote the total cost of the edges used with edge cost at least L. We have from

Lemma 4 that for some B > 0, with probability 1� o(n�200),

Zmax 6

8
>>>>>>>><

>>>>>>>>:

B
�
� logn

n

�1/2 6 L = ⇥
⇣

n
1/10

n

p
�n
⌘

Case 1.

B logn
n

6 L = ⌦
⇣

n
1/10

n

⌘
Case 2.

B log n 6 L = ⇥
⇣

n
1/10

n

p
�n
⌘
= ⌦(n1/20) Case 3.

(49)

And so Y 0
L
= 0 with probability 1� o(n�200).

3.3 Optimising over �

The first thing to observe is that � is a concave function of �, see for example Boyd and
Vandenberghe [4]. This is because it is the minimum of a collection of linear functions.
Ignoring the (1 + o(1)) factor, our asymptotic estimate of � will be di↵erentiable. It
follows then that we can maximise �(�) by setting its (asymptotic) derivative to zero. On
the other hand, by concentration �(�) is close to E�(�). We first maximize E�(�).

Lemma 6. In cases (1), (2), (3) of Theorem 1, we respectively have

max
�

E�(�) = (1 + o(1))
c21n

4c0
, (50)

max
�

E�(�) = (1 + o(1))(f(�⇤)� 2↵�⇤), (51)

max
�

E�(�) = (n+ o(n))
f(�⇤)� ↵

2�⇤ . (52)

Moreover, the maximizer � = �⇤
in each case satisfies �⇤ = O(n).

Proof. For � 2
h
2000 logn

n
, n

2000 logn

i
, we have

E�(�) = (1 + o(1))c1
p
�n� �c0.

Di↵erentiating (ignoring the (1 + o(1)) term) and setting it to zero we see that E�(�) is
maximised at

�⇤ = (1 + o(1))
c21n

4c20
(53)

and that E�(�⇤) = (1 + o(1)) c
2
1n

4c0
. Note that �⇤ 2

h
2000 logn

n
, n

2000 logn

i
for c0 as in (1). This

gives (50).
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Now let c0 = ↵n where 0 < ↵ < 1/2. We proceed as before. Putting � = �n/2 and
c0 = ↵n into the expression in (19) we get

E�(�) = (1 + o(1))

 1X

k=1

kk�2

k!
�1/2

Z
�

0

xk�3/2e�kxdx+

Z 1

�

xk�1e�kxdx

!
� 2↵�

= (1 + o(1))f(�)� 2↵�.

Di↵erentiating w.r.t. � we get

�0(�) = (1 + o(1))f 0(�)� 2↵ (54)

and hence the solution �⇤ to �0(�) = 0 asymptotically satisfies f 0(�) = 2↵. Clearly
�⇤ = ⇥(1) which implies that �⇤ = ⇥(1/n) and so �⇤ = o(log n/n) as claimed. Then (51)
follows.

Finally, let c0 = ↵ where ↵ > ⇣(3). In this case we put � = n/2� and proceed as
before. Putting c0 = ↵ into the expression in (20) we get

E�(�) = (n+ o(n))

 
1

2

1X

k=1

kk�2

k!
��1/2

Z
�

0

xk�3/2e�kxdx+ ��1

Z 1

�

xk�1e�kxdx

!
� ↵n

2�

= (n+ o(n))
f(�)

2�
� ↵n

2�
.

Di↵erentiating w.r.t. � we get

�0(�) = (n+ o(n))

✓
f 0(�)

2�
� f(�)

2�2

◆
+

↵n

2�2

and hence the solution to �0(�) = 0 asymptotically satisfies f(�) � �f 0(�) = ↵. Clearly
�⇤ = ⇥(1) which implies that �⇤ = ⇥(n). Then (52) follows.

To finish, we divide the interval I = [0, Cn] (with C being an appropriate universal
constant) into n5 sub-intervals of equal length, so that each interval has length less than
n�3. Suppose that the ith interval is [�i,�i+1]. We observe that for any spanning tree T
we have that for � 2 [�i,�i+1],

|(W (T ) + �iC(T ))� (W (T ) + �C(T ))|= |�i � �|C(T ) 6 1

n2

and so

|�(�i)� �(�)| 6 1

n2
+ c0|�i � �| 6 2

n2
. (55)

So, maximising � over �1,�2, . . . ,�n5 makes an error in maximising �(�) over I of at most
2n�2.

Using the concentration result (44) of Section 3.2, we see that for a fixed � = �i, there
is "0 with |"0| 6 " such that we have

�(�) = E�(�) + "0ELn = (1 + "0)ELn � �c0 =(1 + o(1))c1
p
�n� �c0

with probability 1� o(n�200).
(56)
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We see therefore that w.h.p. the expression for � = �i in (56) holds simultaneously for
all i = 1, 2, . . . , n5. Therefore, by Lemma 6, we obtain in Case (1), (2), (3) of Theorem 1,
respectively that

max
�

�(�) = (1 + o(1))
c21n

4c0
, (57)

max
�

�(�) = (1 + o(1))(f(�⇤)� 2↵�⇤), (58)

where �⇤ is the unique solution to f 0(�) = 2↵ (see (7), (8)) and

max
�

�(�) = (n+ o(n))
f(�⇤)� ↵

2�⇤ . (59)

One final point. Our expressions for �(�) are only valid within a certain range. But
because, � is concave and we have a vanishing derivative, we know that the values outside
the range cannot be maximal.

4 Proof of Theorem 1

We will use Theorem 3.1 from Goemans and Ravi [11]:

Theorem 7 ([11]). There exists a spanning tree T̃ such that W (T̃ ) 6 �(�⇤) 6 W ⇤
and

C(T̃ ) 6 c0 + Cmax(T̃ ), where Cmax(T̃ ) is the maximum cost of an edge of T̃ .

For Cases a and b from Lemma 3 we let bc = c0 � � where � = 2
�⇤BR42 where B is

a suitable hidden constant for (42) and R42 is the RHS of (42). Suppose now that we

replace c0 by bc and let cW denote the minimum weight of a tree with cost at most bc.
Applying Theorem 7 we obtain a spanning tree bT such that W (bT ) 6 �(�̂) 6 cW and
c(bT ) 6 bc + 1

�⇤BR42 6 c0. It only remains to show that w.h.p. �(�̂) ⇡ W ⇤. This follows
from our expressions for �(�⇤) in Section 3.3 and the fact that bc ⇡ c0, which we verify
now.

In Case a we have from (53) that,

�

c0
6 O

 s
log n

�⇤nc20

!
= O

✓p
log n

n

◆
= o(1).

In Case b we have � = O
�
logn
�⇤n

�
, c0 = ⌦(n), �⇤ = ⌦( 1

n
) and so �/c0 = O

�
logn
n

�
= o(1).

For Case c we let � = 1/ log n and proceed as above. We find that once again �(�̂) ⇡
W ⇤ because of the expression (59) for �(�⇤) in Section 3.3 and the fact that bc ⇡ c0. We
then use Theorem 7 and (43) to show that

C(bT ) 6 bc+O

 ✓
log n

n

◆1/2
!

= c0 �
1

log n
+O

 ✓
log n

n

◆1/2
!

6 c0.

This completes the proof of Theorem 1.
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5 More general distributions

We now consider the case where we have We, Ce, e 2 E(Kn) distributed as independent
copies of U�, � < 1, U ⇠ Unif([0, 1]). We follow the same ideas as for � = 1, but there
are technical di�culties. Let us first though explain the need for the lower bound on c0
in Theorem 2, up to a logarithmic factor.

Lemma 8. Let X1, X2, . . . , Xn be independent copies of U�
and let Y = mini6nXi. Then

EY ⇡ �(� + 1)n��. (60)

Proof.

Emin
i6n

Xi =

Z 1

t=0

P(X1 > t1/�)ndt

=

Z 1

t=0

(1� t1/�)ndt

= �

Z 1

t=0

(1� s)ns��1ds

= �B(n+ 1, �) Beta distribution

=
�(n+ 1)�(� + 1)

�(n+ � + 1)

⇡ �(� + 1)
(n/e)n

((n+ �)/e)n+�
Stirling’s approximation

=
�(� + 1)e�

(n+ �)�

✓
n

n+ �

◆n

⇡ �(� + 1)

n�
.

It follows from (60) that the expected weight of a minimum spanning tree is ⌦(n1��).
To see this, orient the edges of the minimum weight spanning tree away from vertex 1.
Associate each edge with its tail (closest to vertex 1). Then each edge has expected weight
at least that given in Lemma 8.

We can use the argument of Section 3.2 with L = n�/4�1E(Ln) to show concentration
around the mean. Because P(U� 6 L) 6 L1/�, the R.H.S.’s of (46), (47) become L2n +
L2+1/�n2. Consequently (48) becomes

P [|YL � EYL| > "E(Ln)] 6 2 exp

⇢
� "2E(Ln)2

4(L2n+ L2+1/�n2)

�

= 2 exp

⇢
� "2

4(n�/2�1 + n�/2+1/4�1/�E(Ln)1/�)

�
.

(61)

Now if p0 =
�
1000 logn

n

��
then P(U� 6 p0) =

1000 logn
n

. So, with probability 1 � o(n�900),
the edges of weight at most p0 induce a connected graph and we have that E(Ln) =
O(n1�� log n). Plugging this into (61) we see that
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P [|YL � EYL| > "E(Ln)] 6 exp

⇢
� "2

4(n�/2�1 + n�/2�3/4 log1/� n)

�

6 exp

⇢
� "2

4(n�1/2 + n�1/4 log1/� n)

�
= o(n�200).

We have L = ⌦(n�/4�1⇥n1�� = n�3�/4)� p0 and so Y 0
L
= 0 with probability 1�o(n�900).

In conclusion, Ln = ⌦(n1��) w.h.p.
We now turn to estimating the dual value, the equivalent of Lemma 3.

5.1 Expectation

In this section, we estimate the expected weight of the minimum spanning tree with edge
weights U�

1 + U�

2 for independent copies U1, U2 of U .

Lemma 9. Let � 2 (0, 1), � > 0 and let Ln = Ln(�) be the total weight of a minimum

spanning tree in the complete graph on n vertices with each edge e having weight Ze =
W �

e
+ �C�

e
, where We and Ce are i.i.d. copies of U . Assuming

✓
1000 log n

n

�(2/� + 1)

�(1/� + 1)2

◆�

6 � 6
✓

n

1000 log n

�(1/� + 1)2

�(2/� + 1)

◆�

, (62)

we have

ELn ⇡ C��
1
2n1� �

2 , (63)

where

C� =
�

2

�(2/� + 1)�/2

�(1/� + 1)�

1X

k=1

�(k + �/2� 1)

k�/2+1k!
. (64)

The implied o(1) terms in the above expressions can be taken to be independent of �. Also,
we have not optimised all constants.

Proof. We follow closely the proof of Lemma 3 which concerns � = 1. Janson’s formula
(21) gives

ELn =

Z 1+�

0

E
�
(Gn,p̂(t))� 1

�
dt, (65)

where

p̂(t) = P(W �

e
+ �C�

e
< t) =

���(u, v) 2 [0, 1]2, u� + �v� < t
 �� .

Case 1, � > 1:

p̂(t) =

Z min{1,t1/�}

0

min

(
1,

✓
t� u�

�

◆1/�
)
du.

If t 6 1 then

p̂(t) =

Z
t
1/�

0

✓
t� u�

�

◆1/�

du =
t2/�

�1/�

�(1/� + 1)2

�(2/� + 1)
. (66)
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Let t0 2 (0, 1) be such that p̂(t0) =
1000 logn

n
, that is

t0 = �1/2

✓
1000 log n

n

◆�/2✓ �(2/� + 1)

�(1/� + 1)2

◆�/2

(67)

(our assumption on � is chosen such that this is possible, i.e. this value of t0 is less than
one). Then, thanks to (25),

ELn =

Z
t0

0

E
�
(Gn,p̂(t))� 1

�
dt+

Z 1+�

t0

E
�
(Gn,p̂(t))� 1

�
dt

=

Z
t0

0

E
�
(Gn,p̂(t))� 1

�
dt+ (1 + �)o(n�200)

Change of variables q = p̂(t), use (66),

=
�1/2�

2

�(2/� + 1)�/2

�(1/� + 1)�

Z 1000 logn
n

0

E
�
(Gn,q)� 1

�
q�/2�1dq + (1 + �)o(n�200). (68)

It remains to handle the last integral. Repeating verbatim all the computations of Lemma
3 from (29) to (38) (the only di↵erence being that q�1/2 is replaced by q�/2�1 in the
integrand), we get

Z 1000 logn
n

0

E
�
(Gn,q)� 1

�
q�/2�1dq

= (1 + o(1))a0,�n
1��/2 +O

 ✓
log n

n

◆�/2
!

+O

✓
log n

n�/2

◆
+O

 ✓
n

log n

◆1��/2
!
,

where the error terms come from appropriate changes in (31) (36), (38). The constant
a0,� comes from (32) and equals

a0,� =
1X

k=1

�(k + �/2� 1)

k�/2+1k!
. (69)

Plugging this back into (68), we conclude that

ELn ⇡ C��
1/2n1��/2

with

C� =
�

2

�(2/� + 1)�/2

�(1/� + 1)�

1X

k=1

�(k + �/2� 1)

k�/2+1k!
.

Case 2, � < 1: We set t = �t0 in (65) which yields

ELn = �

Z 1+1/�

0

E
�
(Gn,p̂(�t0))� 1

�
dt0
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and now p̂(�t0) = P(W �

e
+ �C�

e
< �t0) = P(C�

"
+ 1

�
W �

e
< t0) = P(W �

"
+ 1

�
C�

e
< t0) (because

We and Ce are assumed to have the same distribution), so using the previously analysed
case � > 1 for 1

�
, we get

ELn ⇡ �C�

✓
1

�

◆1/2

n1��/2 = C��
1/2n1��/2. (70)

This completes the proof of the lemma.

5.2 Concentration

We follow the argument of Section 3.2.

Lemma 10. Let " = 1/ log n. Then,

P(|�(�)� E(�(�))| > "E(Ln(�))) = o(n�100).

Proof. Let L = n�/8�1E(Ln). We argue that P(Xi < L) 6 (L/⇤)1/� with ⇤ = max {�, 1},
giving (46) and (47) as before. It then follows that

P [|YL � EYL| > "E(Ln)] 6 2 exp

⇢
� "2E(Ln)2

4(L2n+ L2+1/�n2/⇤1/�)

�
=

2 exp

⇢
� "2

4(n�/4�1 + n�/4+1/8�1/�E(Ln)1/�/⇤1/�)

�
. (71)

Plugging (70) into the RHS of (71) and noting that �1/2/⇤ = min{��1/2,�1/2} 6 1, we
obtain

P [|YL � EYL| > "E(Ln)] 6 exp

⇢
� "2

4(n�/4�1 +O(n�/4�3/8))

�
= o(n�200).

Now because L ⇡ C��1/2n�3�/8 � t0, where t0 is as in (67), we see that Y 0
L
= 0 with

probability 1� o(n�900).

We divide the interval [0, Cn] into n5 sub-intervals as before and optimise the � by
maximising

C��
1/2n1��/2 � c0�.

Solving we get

�⇤ =

✓
n1��/2C�

2c0

◆2

and max
�

�(�) =
C2

�
n2��

4c0
.

Observe that our assumptions on c0 imply that �⇤ satisfies (62).
After this, we can follow the proof of the case � = 1. We only need to check now that

the argument of Section 4 is still valid. We know that with probability 1� o(n�200) that
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W �

e
+�C�

e
6 t0 for all edges e of the minimum spanning tree. Here t0 is as defined in (67)

and we note that t0/�⇤ = o(W ⇤). This follows from

t0
�⇤ = O

 
log�/2 n

(�⇤)1/2n�/2

!
= O

 
c0 log

�/2 n

n

!
and W ⇤ = ⌦

✓
n2��

c0

◆
.

We may therefore proceed as in Section 4 with bc = c0� t0/�⇤ and this completes the proof
of Theorem 2.

6 Conclusion

We have determined the asymptotic optimum value to Problem (1) w.h.p. The proof
is constructive in that we can w.h.p. get an asymptotically optimal solution (1) by
computing bT of Section 4. When weights and costs are uniform [0, 1], our theorem covers
almost all of the possibilities for c0, although there are some small gaps between the 3
cases. Our results for more general distributions have a more limited range and further
research is needed to extend this part of the paper.

The present result assumes that cost and weight are independent. It would be more
reasonable to assume some positive correlation. This could be the subject of future
research. One could also consider more than one constraint, but then we might lose
Theorem 7.

References

[1] V. Aggarwal, Y. Aneja and K. Nair, Minimal spanning tree subject to a side con-

straint, Computer and Operations Research 9 (1982) 287-296.

[2] A. Beveridge, A. M. Frieze and C. J. H. McDiarmid, Minimum length spanning trees

in regular graphs, Combinatorica 18 (1998) 311–333.

[3] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities using the en-
tropy method, Annals of Probability, 31 (2003) 1583-1614.

[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,
2004.

[5] C. Cooper, A.M. Frieze, N. Ince, S. Janson and J. Spencer, On the length of a random

minimum spanning tree, Combinatorics, Probability and Computing 25 (2016) 89-
107.

[6] A. M. Frieze, On the value of a random minimum spanning tree problem, Discrete
Applied Mathematics 10 (1985) 47–56.
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A Proof of (17)

We want to show that h is strictly decreasing on (0,+1), where

h(�) =
1X

k=1

kk�2

k!
��1/2

Z
�

0

xk�3/2e�kxdx. (72)

We have

�2�3/2h0(�) =
1X

k=1

kk�2

k!

"Z
�

0

xk�3/2e�kxdx� 2�k�1/2e�k�

#
.

Call the right hand side H(�). We want to show that it is positive for every � > 0. We
have H(0) = 0, so it is enough to show that H 0(�) is positive for every � > 0. We have

H 0(�) = 2��1/2
1X

k=1

kk�2

k!

"
k�k � (k � 1)�k�1

#
e�k�

and want to show that the sum on the right hand side is positive for every � > 0. Note
that for � > 1, we have k�k � (k � 1)�k�1 > 0 for every k > 1, so the sum is positive in
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this case. Let 0 < � < 1. Separating the first two terms, we rewrite the condition that
the sum is positive as

�e�� +
1

2
(2�2 � �)e�2� >

1X

k=3

kk�2

k!

"
k � 1� k�

#
�k�1e�k�.

Equivalently, multiplying by ��1e2�, we want to show that for every 0 < � < 1,

e� + � � 1

2
>

1X

k=3

kk�2

k!

"
k � 1� k�

#
�
�e��

�k�2
.

Let 0 < � 6 2
5 . Estimating k � 1 � k� < k � 1, using k! >

p
2⇡kk+1/2e�k and then

bounding k�1
k5/2

6 2
35/2

for k > 3, we get

1X

k=3

kk�2

k!

"
k � 1� k�

#
�
�e��

�k�2
<

2e2

35/2
p
2⇡

1X

k=3

�
�e1��

�k�2

=
2e2

35/2
p
2⇡

�e1��

1� �e1��
.

Moreover, we have

2e2

35/2
p
2⇡

�e1��

1� �e1��
< e� + � � 1

2
, 0 < � 6 2

5
, (73)

(shown below) which finishes the proof in this case.
Let 2

5 < � < 1. Estimating k�1�k� < k�1� 2
5k = 3

5k�1, using k! >
p
2⇡kk+1/2e�k

and then bounding
�
�e1��

�k�2
< �e1�� for k > 3, we get

1X

k=3

kk�2

k!

"
k � 1� k�

#
�
�e��

�k�2
<

 1X

k=3

3
5k � 1

k5/2

!
e2p
2⇡

�e1��

<
3

5

e2p
2⇡

�e1��,

where it can be checked numerically that
P1

k=3

3
5k�1

k5/2
< 3

5 . Moreover, we have

3e2

5
p
2⇡

�e1�� < e� + � � 1

2
,

2

5
< � < 1, (74)

(shown below) which finishes the proof in this case.
It remains to prove (73) and (74).
Showing (73) is equivalent to showing that the function

u(�) =

✓
e� + � � 1

2

◆
(1� �e1��)� 2e3

35/2
p
2⇡

�e��
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is positive on (0, 25). We numerically check that u(25) > 0.1 and it su�ces to show that u
is decreasing on (0, 25). We find that

e�u0(�) = e2� + (1� e)e� + e�2 +

✓
2e3

35/2
p
2⇡
� 5e

2

◆
� +

e

2
� 2e3

35/2
p
2⇡

.

Call the right hand side ũ(�). We have ũ(0) < �0.3 and for 0 < � < 2
5 ,

ũ0(�) = 2e2� + (1� e)e� + 2e� +
2e3

35/2
p
2⇡
� 5e

2

< 2e4/5 + 1� e+
4e

5
+

2e3

35/2
p
2⇡
� 5e

2
< �0.8

which shows that ũ decreases, hence ũ(�) is negative, hence u0(�) is negative, hence u
decreases.

Showing (74) is equivalent to showing that the function

v(�) = e� + � � 1

2
� 3e3

5
p
2⇡

�e��

is positive on (25 , 1). For
2
5 < � < 1, we have

v0(�) = e� + 1� 3e3

5
p
2⇡

(1� �)e��

> e2/5 + 1� 3e3

5
p
2⇡

3

5
e�2/5 > 0.5

(we used that (1��)e�� decreases on (0, 2)). This shows that v increases on (25 , 1), hence
v(�) > v(25) > 0 for 2

5 < � < 1.

B Proof of (23)

We need to compute the surface area of the subset
�
(u, v) 2 [0, 1]2, 1

1+�
u+ 1

1+��1v 6 p
 
of

the unit square [0, 1]2. The line 1
1+�

u+ 1
1+��1v = p intersects the u and v axes respectively

at u0 = p(1 + �) and v0 = p(1 + ��1). Thus when both u0 and v0 are less than 1, the
subset is a right triangle whose area is 1

2u0v0. This gives the formula in the first case of
(23). When exactly one of u0 and v0 is less than 1 and the other one is greater than 1,
the subset is a trapezoid and computing its area gives the formula in the second case of
(23). Finally, if both u0 and v0 are greater than 1, the subset is the complement of a right
triangle and the formula in the third case of (23) follows from the first one by changing
p to 1� p and taking the complement.
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