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Abstract

We study the minimum spanning tree problem on the complete graph K,, where
an edge e has a weight W, and a cost (¢, each of which is an independent copy of
the random variable UY where v < 1 and U is the uniform [0, 1] random variable.
There is also a constraint that the spanning tree 7" must satisfy C(T') < ¢g. We
establish, for a range of values for cg, v, the asymptotic value of the optimum weight
via the consideration of a dual problem.

Mathematics Subject Classifications:

1 Introduction

Let U denote the uniform [0, 1] random variable and let 0 < v < 1. We consider the
minimum spanning tree problem in the context of the complete digraph K, where each
edge has an independent copy of U7 for weight W, and an independent copy of U” for
cost C,. Let T denote the set of spanning trees of K,,. The weight of a spanning tree A is
given by W(T') = 3" .y We and its cost C(T) is given by C(T') = > .. Ce. The problem
we study is

Minimise W(T') subject to T' € T, C(T') < ¢y, (1)

where ¢g may depend on n. We let W* = W*(¢y) = W(T™) denote the optimum value
to (1).
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The unconstrained case of this question (7 = 1, ¢y = 0o0) has been well studied: Frieze
6], Steele [17], Janson [13], Penrose [16], Frieze and McDiarmid [8], Frieze, Ruszinké and
Thoma [9], Beveridge, Frieze and McDiarmid [2], Li and Zhang [15] and Cooper, Frieze,
Ince, Janson and Spencer [5] and is well understood. For example, [5] proves that if L,
denotes the expected minimum weight of a spanning tree then

¢ cato(l)
Tt TR

for explicitly defined ¢y, co. Here and throughout, ((s) = > 7, k~° is the zeta function.
Equation (1) defines a natural problem that has been considered in the literature, in

the worst-case rather than the average case. See for example Aggarwal, Aneja and Nair

[1] and Guignard and Rosenwein [12] (for a directed version) and Goemans and Ravi [11].
We first consider the simpler case where v = 1. We need to make the following

definitions: )

oo 1 k’ 1

Z —/ o = 1.42476.. (2)
k:

%I

CI L) 3)

k=1

where
o0

B
T e N EY ()
and T'(s) = [ 2* ‘e “dx is the gamma function.

Theorem 1. The following hold w.h.p.:

(1) 1If
1 1/2 an
o € {01(500 ogn) (8000 Tog n) 72 (5)
th
en s

(2) Suppose now that ¢y = an where o = O(1) is a positive constant.
(i) If a > 1/2 then
L
k=1

(i) If 0 < o < 1/2 and if p* = p*(«) is the solution to
f(8) = 2a, (7)

then
W* &~ f(8*) — 2a3". (8)
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(3) Suppose now that ¢y = a where o = O(1) is a positive constant.

(i) If a < ((3) then there is no feasible solution to (1).
(11) If o > ((3) and if B* = p*(«) is the solution to

f(B) = Bf'(B) = a, (9)
then (5" -
W* ~ Q—ﬂ*n (10)

For the case v < 1 we will prove the following.

Theorem 2. Suppose that

1=y 1667/ n
n - Tlog" " n K ¢y K oz n (11)
Then the following holds w.h.p.
anzﬂ
W* ~ 12
- (12)

1 L@/ +1D)7/2 oo T(kty/2-1)
2 T(1/y+1)Y k=1 kv/2+1k!

where C., =

Note that C; = ¢; and this implies that the expression in (12) is consistent with the
expression in (6).

We will first concentrate on the case v = 1. After this, we will continue with the
proof of Theorem 2. We note that a preliminary version containing the results for the
case v = 1 appeared in [10]. The weights and costs will therefore be uniform [0, 1] until
we reach the more general case in Section 5. We will then prove Theorem 2 as stated and
then show how to extend this result to a wider class of distribution via a simple coupling

argument from Janson [14].

2  Outline Proof for v =1
We tackle (1) by considering the dual problem:

Maximise ¢(A) over A > 0, where ¢p(A) = min {W(T) + A\(C(T) —co): T €T }. (13)
We note that

if A > 0 and 7 is feasible for (1) then ¢(\) < W(T). (14)
We will show that w.h.p.
that if \* solves (13) and T™ solves (1) then ¢(A*) ~ W (T™). (15)

Here A ~ B is an abbreviation for A = (1 4+ 0o(1))B as n — oo, assuming that A =
A(n), B = B(n).

We use a standard integral formula to compute ¢(\) in Section 3.1. This is straight-
forward, but lengthy. We then prove concentration around the mean in Section 3.2. We
then use a result of [12] to show in Section 4 that in the cases discussed, the duality gap
is negligible w.h.p.
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2.1 Consistency in Theorem 1

Before continuing, we will check that the claims in Cases (2) and (3) are intuitively
reasonable. First consider Case (2). If @ > 1/2 and if T* is the tree minimising W (T')
then w.h.p. W(T™*) ~ ((3) and C(T*) < (14 o(1))n/2.

We observe next that f/(5) > 0. This follows directly from

/ 1 o kP2 ~1/2 ’ k—3/2 —kz
k=1 ’

It is shown in an appendix that

f'(B) is a strictly monotone decreasing function. (17)

As such f has a continuous inverse. By inspection we see that f’(cc) = 0.
Note also that f'(0) = 1 (use L’Hopital’s rule) and

g e R (k1)
=27 .7 =2 =
= = =1

and so (7) and (8) are consistent with (i) when oo = 1/2.

If & < 1/2 then from the above properties of f’ we see that (7) has a unique positive
solution. We derive expression (8) below.

Now consider Case (3). If aw < ((3) then w.h.p. there is no tree 7" with C(T") < a. If

9(B) = f(B) = Bf'(8), then g(0) = ¢(3), ¢'(B) = =4 f"(B) > 0 and

51/2 k=2
>

k=1

B
/ 2" 3127 Fqr — 00 as B — oo.
=0
This implies that (9) has a unique positive solution. We derive expression (10) below.

3 Evaluation of the dual problem

3.1 Expectation

Lemma 3. Let A > 0 and let L, = L,(\) be the total weight of a minimum spanning tree
in the complete graph on n vertices with each edge e having weight Z, = W, + AC,, where
W, and C, are i.i.d. random variables uniform on [0,1]. We have

a. 1f%<)\< then

_n
20001logn’

EL, ~ ciVn. (18)
b. If A < 200018% ypep

X B2 [ e e
ELn%Z i [ 7/0 " S/Qekda:—i—/m " 1ekdx]. (19)

k=1
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c. If A > then

2000 log n’

k?k 2
EL, ~ N/ / R _k’”dx+/ k_le_k””dx]. (20)
:1 22

2

The implied o(1) terms in the above expressions can be taken to be independent of . Also,
we do not claim that the constant 2000 is optimal.

Proof. Let T be a minimum spanning tree. The starting point is Janson’s formula [13],

EL, =R Z _EZ/ 17> p}dpz/ E{eeT, Z. > p}|dp
0

ecT ecT (2 1)

- /OOOIE(K(G) ~1)dp,

where k(@) is the number of components in the random graph G on n vertices with the
edge set {e : Z. < p}. Since the Z. are i.i.d., this is the random graph G, ;, with
p=P(Z.<p). Since Z, <1+ \,p=1forp>1+ /\ so the last integral can be taken

from 0 to 1 + A and after a change of variables p < ; +/\, we get
1
EL, = (1+ )\)/ E(k(Gnpp)) — 1)dp, (22)
0
where
5(p) = P(Z, < (1+ \)p) =P [ —— W, 4 — . <
P\p) =L D= a1 b
o epp —ur—L <
AR T T TP
where in the last expression | - | denotes Lebesgue measure. An elementary computation
(given in an appendix) yields
1
w]ﬂ, 0<p< m
p(p) = § —3min{ A\, A7} + p(1 +min{x, A71}), HTM <p< m (23)
A)(14A2
1- & )(;Jr Y(1-p)?, 1+min~%)\,)\*1} ps

For convenience, we also include an expression for the inverse function (we need this later
when we change variables in integration).

9 =
e VP

~ p++ min AL
p(p) = plfo\,)ﬁl}}, (24)
2 =
L=/ @i VLI —p
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for, respectively,

1+ min{\, A7'}
2(1 + max{\,\"1)}’

~

0<p<

1+ min{\, A7} 1 1
g T a )\7 A 17
1+ max{\, A\"1} <P 2 min{ .

1
—5 min{\, A\7'} +
I -1 R
) min{\, A7} +1 <p < 1.

Now we can proceed with evaluating EL,, given by (22). First observe that if ¢ €
[%, 1} then we have
En(Gg) = 1+ o(n~2). (25)

Because G, , can have at most n components,

1 < Exk(Ghy) <1+ nP(G), is not connected)
n/2

<14n) (Z) 2R (1 — g)Fnh)
k=1

n/2
n en\k
<1+-) (—) ik emakn=h)
h i k

9 n/2

n 1000 logn n k
g 1 - ( *f§>
100010 n D (ene

k=1
n? e
1000 log n n*9?

=1+ o(n2). (26)

<1+

Therefore we can distinguish the following cases depending on the value of .

20001ogn n
Case a. Tg <AL 3000 oz Note that then
R 1 11+ min{\ "1} 1 | 1 10001ogn
= - = — A >
b (1 + max{\, )\—1}) 21 +max{\, A"} 2 min{A AT n

so by (25), the integration over the second and third range from (23) gives the contribution
(1+ N)o(n™1%) in (22). Consequently,

1
14+max{\,A~1} .
EL, = (1 + A)/ " E(I{(Gn (1+)\)(1+)\71)p2) - 1)(1]? + (1 + /\)o(n 200).
0 ’ 2

By the same reason, we also have

2
V a0+ _
(1+ ) ) E(H(Gn (Hk)(lﬂfl)pZ) —1)dp = V2Xo(n ).
) 2
14+max{\,A~1}
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Thus

EL, = (1+ ) /” ERE
(14 ) /v<1+x><1+x T

E(x (Gn,%pz) —1)dp+ (1 4+ V2X + A)o(n ™)

(H(Gn,<1+>\)(é+)\71)p2) — 1)dp _|_ 0(7’1,_100).

Changing the variables yields

EL, = \/é/o E(k(Gpg) — 1)% + o(n1), (27)

It remains to deal with the integral fol E(k(Gnyg) — 1) d4 A5 before, thanks to (25), we

Va
have 10001
! dg e dg
E(k(Ghg) —1 / E(k(Gn,) — 1)— + o(n199), 28
[ EwGaw -0 = [T BwG) - )T o2y
Decompose

ko ko
)= Ax+> Bi+R, (29)
k=1 k=3

where Aj, is the number of components which are k vertex trees, By is the number of
non-tree components on k vertices and R is the number of components on more than kg
vertices. Here we set ky = logn.

For the tree components, we have

EAk — (Z) kk—qu—l(l o q)k(nka“(g)karl. (30)

1000(log n)3

For ¢ < 10007:%" and k’ log n, we have (1 — q)*k2+(§)*k“ <et <em o =140(1)
and (}) = (1+o(1))% k, , hence

EA; = (1 +o(1))”—k

I kk—qu—l(l _ Q)lm.

Thus

1000 logn ]og n log n 1000 log n

n moonf o e n dg
/0 ZAk—l\/_ (1+O(1))Z/ LA (1—61)’“%

+o( 10g”>.
n

(31)
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Setting ¢ = = gives

10001
TR Ok kk 2 2000logn

n x\kn dx
D pk=20k=10q k=112 -
; =g \/’ =V ) v ( n> Jz

Using 1 —t = e tHO(*) a5t — 0, for z < 1000logn and k < logn, we have (1 — %)kn =
ogn 3
e~ hr+tO(ME5) — (1 4 o(1))e~#. Therefore

1000 logn 10gn logn

! ZAk—l 7 = (14 o(1))vn

k—2 100010gn
k b1, e d
NG

—i—O( logn)I
n

If the integral was from 0 to oo, we could express it using the gamma function. Since,
\/LE < 1 on the domain of integration,

log n logn

k,lc 2 B dzr kk 2 3
k: 1 kx < \/_ E k: 1 k:cdl,
1000 log n \/_ 1000 log n

and for k = 1 on the right hand side we get \/56_100010*‘5” = o(n™%), whereas for k > 2
we get

logn

\/ﬁz kR 2/ k1= o= (k=1)-1000logn J .
k=2 1000 logn
logn kk_z
< O(n1001> Z o (k . 1)!n_1000k
k=2 )
logn k k
< O(n'") Z (n1000> =0(n™").
k=2

We can conclude that

1000 log n. logn logn

. k-2 1
/ ZAk— 1) dq (1+o(W)Vn) = i / k=8/2¢ kxdx+0< Oi") .
0 k=1

It remains to compute the sum over k. We have

logn ; 1o 00 logn ;.o logn 1

k k—3/2 —kx k \/_ 1 )
> oSt de =) = w1 Z k:3/2 ! - (32)
k=1 k=1

Since for k > 3, I'(k — 1/2) < I'(k) = (k — 1)!, the series converges and we have

100logn log n

E(ZAk —1)— dq = (1+ o(1))agv/n, (33)
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where

=1 (k=13
k=1
To bound the contribution form non-tree components, note that
N\ Kk k k(n—k) —gnlk _qk?
EB), < f E"q"(1 —q) < [enge™ ] e (35)
Thus
1000 logn logn d logn 1000 log n d
n q 100010gn 10 TL —an k q
E() By)—<e s / [enge™"]"—
. LB p> /i
1000 logn d
< (1+0o(1))(log n)/ [enqe‘q”}g—q
0
1 1000 log n
= O(log n)%/o 22e 3 dy,
SO

% logn logn
/ Z Bk < o8 > ' (36)

0

Finally, for the large components, since

R< —, 37
- (37)

we get R < so we have
10gn’

1000 logn

Hjess d 10001
/ E(R)“L <o/ — 8 " _0(—\/5 ) (38)
0 Va n  logn Viogn

Combining (33), (36), (38) with (29) and plugging into (28), we obtain

1 dq B
/O B(K(Gug) 1) 7 = (4 o))/
In view of (27) this gives (18).

Case b. A < 208" Then plainly min{\, A~} = A and max{\,A'} = A% Since
p(p) > p(15) = 1 — 3, for p > 15, in view of (25), the third range in (23), that is
5 <P < 1, gives the contrlbutlon (14 X)o(n=29) = o(n=2%9) in (22). For the remaining
two ranges, changlng the variables ¢ = p(p) in (22) gives

A A/2 dq 1-X/2
ELn:\/j/ E|xk(G,,) —1 +/ E|x(Gpy) — 1|dg + o(n=1%).
3 ), ERGun) =1 Tt | E[n(Gaa) = 1dg+ ofn)
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By (25), for the second integral we get

1000 logn

1-X/2 E
/ E [/ﬁ(qu) — 1] dg = / E [R(GW) — 1} dg + 0(71_200),
22 A2

SO

)\ )\/2 dq IOOOnlog n
IELn:\/i/ Elk(G,,) —1 +/ E|x(Gpg) — 1|dg + o(n 1),
3 ), ElRGu =12 [ E[R(Gas) = 1]dg-+ ofn)

(39)

We again decompose k(G ,) as in (29). Here we set ko = (logn)?. First we show that

the By and R have small contribution in the integrals above. By (35),

/\/v)\/Z ko dq \/>/)\/2 qu
5 E[ — < enqe q” eqk
\/g 0 P Z \/_
0 o0
)\kQ >\ —an k dq
<e2 \/;/ [enqe 1 ] _q
IOOO(IOgn)kO \/7Z / x
exe —
\/_

Jootermig /1000 logn /fo :v}?’ dr
\ GZEB -
Vi
0 (logn)®/?
n

and similarly

1000logmn 1000 log n
/ [ g Bk dg < g / enqe q”} e dg
22 22
1000(10gn)k0 ko o0 13
<e — [exe ﬂ dx
n Jo

o (lleenr),
n
37),
)\ )\/2 IOODlogn )\/2 d 1000’;0gn
\ﬁ/ ER—+/ ER dg < -~ / % dq
2 0 /2 k A2

< ()\+ 100010gn>
ko

n
( 1 )
logn

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.22

By (

10



Putting the last three estimates together with (39) yields

1000 logn ko

EL, _\/7/A/2 f:Ak—l} /A/Q"E[ZA,C—qujuo(@)
\/7/A/2 kZOAk %+/A:M)WE[ZAk}dq+o(1; ) (40)

Using (30) and repeating verbatim the arguments following it to bound 1 — ¢, to change
the variables ¢ = = and to replace (1 — %)Im with e **_ we obtain

ko 7k—2 an 1000logn
k A g
EL, = (1+o0(1)) E e [\/ _2n /0 b 2e ke gy 4 /M xkile’k‘rdx]
k=1 ’ 2
1
+0 ( ) )
logn

kk 2 k—1,—kx3.,. _ —100 :
As in Case a, Zk 1 f100010gn$ e "dxr = O(n~""), so we can replace the integral
1000 log n .
A BN pk—le=kzdy Wlth f o T le7kedy. Moreover, crude estimates show that
2

/A”/ £h—3/2 —kxdx+/ k—le—kmdx}

%

k2
< Z - VlOOOlogn/ k=3/2¢ "’“dx—i—/ :zck_le_’“”dx}
- ko
o M-y I
_Z —[v/100010g =722 + =]
k—Fko
1
1 1 5/2 3 _ - ).
< /1000 ognZk’ +Zk ( 10gn)5/2)

k=ko k=ko
Thus finally

0 kk—Q \n %” 00
EL, = (1+o0(1)) Z E [\/ 7/0 F 32 7Rr qp 4 /M xkile’kxdx]

k=1 2

1
+0( )
logn
)xn

Note that in the first integral, we have f > 1, hence the main term (the sum over

k) is lower-bounded by > 77, kk : J° a*te " dx = ((3) and consequently, the O <1ogn>

term can be incorporated into the o(1) term, which gives (19).
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Case c. A > 55571~ Then plainly min{A, A1} = A1 and max{\, A\"'} = \. Changing
the variables ¢ = p(p) in (22) yields

EL_\/7/ 1}?/%

+ )\/ E[E(qu) — 1] dq

V3 [ Bl -] AL

Since 1 — 2 > $2018% iy view of (25), the third integral gives

[/ 1} dg a0 [/ — o(n=20)
—1 T N :
Similarly, for the second integral we have
=25 =25
/\/ E[K(Gn,q) — 1] dg = )\o(n_loo)/ dg = Xo(n™2%).
1000 logn 1000 logn

Thus we can write (we incorporate the term o(n=2%) in \o(n=200))

EL, = A <\/7/ - 1] % + / E[ﬁ(Gn,q> - 1} dg + 0(n200)> .

The expression in the bracket is exactly (39) with A being replaced by A~'. Therefore,
from (19), we obtain (20). O

Lemma 4. With the notation of Lemma 3, if A = O(n), we have

O((An)'/?) Case a.
EL, = { O(max {1,(An)"/?}) Case b. (41)
O((Mn)Y/?) Case c.

and with probability 1 — o(n=2%0),

)‘lng")l/2> Case a.
Zmax = $ O (bfln) Case b. (42)
O(logn) Case c.

where Zmax = max{Z, : e € T*} and T* is the minimum spanning tree with weights Z,.
Also in Case ¢ we have ( )1/2
logn
Cmax = O (W) ; (43)
where Chpax = max{C, : e € T*}.
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Proof. The claims concerning EL,, follow directly from (18), (19)7 (20).

To justify (42), fix po and let X = [{e € T*, Z. > (1 + A)po}| be the number of
edges on the minimum spanning tree having weights Z, above (1 + \)py. By Janson’s
formula from [13], X = k(Gnpp,)) — 1 with p given by (23). By the first moment,
P(X > 0) < EX = E[k(Gnppo)) — 1. By (26), choosing py such that p(py) = 200°8n

gives X = 0, equivalently Z, < (1 + \)pg, with probability 1 — o(n™2%). It remains to

bound (14 X)pg. In Case 1, we see from (23) that Mpg = M so (14+A)pp =
V2\ IOOOIOg” = O(4/ Mflﬂ) In Case 2 we see that we have to use the second formula
in (23) and po(l+ A = M + 1) = O(lo%). Similarly in Case 3, po(1 + A7) =
% 5, hence po(1 + )\) O(logn).

For (43), we note that P(W, < ¢, C. < q) = ¢*. Putting ¢ = (1000logn/n)*? we
see that with the required probability, the random graph G,, ;2 is connected. (To resolve
the latter claim, modify the proof of Theorem 4.1 in [7] to account for the fact that ¢ is
approximately 1000 times the connectivity threshold.) This implies that with the same
probability there is a spanning tree T' with Z, < (1+X)q Ve € T It follows that a spanning
tree that minimises Z will have Zy.x < (1 + A)g. (Applying the greedy algorithm will
finish before needing an edge with Z, > (1 4+ A)q.) S0 Zpax < (1 + A)¢ and consequently
Chax < 2¢. O

3.2 Concentration

The goal of this section is to prove the following lemma.

Lemma 5. For a fized A\ = O(n) and ¢ = ——

logn’

P(|p(A) = E(¢(N)] = eE(La(N)) = o(n™"). (44)

Proof. Recall that ¢(\) = min {W(T) + AC(T) : T € T } —Aco = Ln(\) — Ao (as defined
n (13)).

In our analysis we consider separately the contribution of long and short edges. Let
L = n'/"YE(L,)/n and let Y7 denote the total cost of the edges used on the minimum
spanning tree with Z, < L. Let N = ( ) and note that Y7, is a function of NV i.i.d. random
variables X1, ..., Xy.

We will show Y7 is concentrated using a variant of the Symmetric Logarithmic Sobolev
Inequality from [3]. Let Y7, denote the same quantity as Y7, but with the variable X;
replaced by an independent copy X!. Then a simplified form of the Symmetric Logarithmic
Sobolev Inequality [3, Corollary 3] says that if

N
E (Z(YL — Y7 )y sy | X0 ,XN) <e

=1

then for all £ > 0,
P[Y, > EY;, 4 1] < e /%,
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and if N
E (Z(Yll,z - YL)21YL’,Z.>YL | X1, ... 7XN) <c
i=1
then for all £ > 0,
P(Y, <EYy —t) e /%

Changing the value of one edge can change the value of Y7, by at most L, so (Y, —
Y] :)? < L?. Let I denote the indices of the edges which contribute to Yz. If i ¢ I then
Y7, <Y implies X; < L. So

Z(YL Y, 1YL>Y’ Z L+ Z L? 1xi<r. (45)

i=1 iel il

Now P(X] < L) < P(W. < L, \C. < L) < L/A where A = max {\, 1}. Then, since there
are less than n terms in the first sum and less than n? terms in the second sum in the
RHS of (45), we have

N
E <Z(YL — Y Ly sy | X0, ,XN> < LPn+ LPn?/A. (46)

i=1

If i ¢ I then we also have that Y} ; > Y7 implies Xj < L. So we also have

N
E <Z(YL’J — Y1)’ Ly <y, | X0, ,XN> < LPn+ LPn?/A. (47)

=1

Therefore,

QE L 2
PV — EY2| > eE(L,)] < 2exp e E(Ln) }

4(L2n + L3n2/A)
{_:2

4?10 /n 4+ n®1OE(L )/(nA)}

|
{ 2

gzexp{ 8
|

_ n=7/10 max{1,v/An
4(77/ 4/5 A max{l{/\} }>

2,,1/5

- } = o(n~2), (48)

where we have used E(L,) < Amax{1,(\n)'/?}, see Lemma 4 and A, A’ are universal
constants.
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Let Y] denote the total cost of the edges used with edge cost at least L. We have from
Lemma 4 that for some B > 0, with probability 1 — o(n=2%),

B (M‘;ﬂ)l/2 <L=6 <”17/110 \/)\n> Case 1.
T < 2222 < [ = 0 (22) Case 2. (49)
Blogn < L =0 (”17/110 \/)\n> = Q(n'/?) Case 3.

And so Y] = 0 with probability 1 — o(n=2%). O

3.3 Optimising over A\

The first thing to observe is that ¢ is a concave function of A, see for example Boyd and
Vandenberghe [4]. This is because it is the minimum of a collection of linear functions.
Ignoring the (1 + o(1)) factor, our asymptotic estimate of ¢ will be differentiable. It
follows then that we can maximise ¢(\) by setting its (asymptotic) derivative to zero. On
the other hand, by concentration ¢(A) is close to E¢(N). We first maximize E¢ ().

Lemma 6. In cases (1), (2), (3) of Theorem 1, we respectively have

2
cn

mAaxEqﬁ()\) =(1+ 0(1))4_00’ (50)
maxEo(3) = (1+ o(1)(£(8) - 20°). (51)
max Ep(N\) = (n+ o(n))%. (52)

Moreover, the mazimizer A = \* in each case satisfies \* = O(n).

Proof. For \ € 2000nlog " , we have

) 2000Tiogn:|
Ed(A) = (1 + o(1))ervVAn — Aco.

Differentiating (ignoring the (1 + o(1)) term) and setting it to zero we see that E¢()) is

maximised at )
c

o= (1 1))-1
(1 +of ))403 (53)

and that Ep(A\*) = (1 + 0(1))%. Note that \* ¢ |2000oen __n for ¢y as in (1). This

n 7 2000 log n
gives (50).
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Now let ¢y = an where 0 < a < 1/2. We proceed as before. Putting 5 = An/2 and
¢p = an into the expression in (19) we get

o k},ka B 00
E — (1 1 1/2 k—3/2 —ka:d k—1 —kmd —9
o(B) = (1+0(1)) ( = B /0 x e x—i—/ﬁ " e x) af

k=1
= (1+0(1))f(B) = 20p.
Differentiating w.r.t. S we get

¢'(B) = (1 +0(1))f'(B) — 2a (54)

and hence the solution * to ¢'(5) = 0 asymptotically satisfies f'(f) = 2«. Clearly
f* = ©(1) which implies that A* = ©(1/n) and so A* = o(logn/n) as claimed. Then (51)
follows.

Finally, let ¢g = « where a > ((3). In this case we put 8 = n/2\ and proceed as
before. Putting ¢y = « into the expression in (20) we get

00 _ 8 0
EQb(ﬁ) — (7’L + 0(,”)) (% kZ:; %ﬁ—l/?/(; l,k—i*l/2€—kazdaj +B_1/IB l‘k_le_kxd])) _ %
=+ o) L) - 52
Differentiating w.r.t. 5 we get
/ fB)  fi)
05) = -+t (G5 - 520 ) + 5
and hence the solution to ¢'(f) = 0 asymptotically satisfies f(8) — 8f'(8) = a. Clearly
f* = ©(1) which implies that A* = ©(n). Then (52) follows. O

To finish, we divide the interval I = [0,Cn] (with C being an appropriate universal
constant) into n® sub-intervals of equal length, so that each interval has length less than
n~3. Suppose that the ith interval is [\;, A\;+1]. We observe that for any spanning tree T'
we have that for A € [\, Ait1],

[(W(T) + MC(T)) — (W(T) + AC(T))|= [A = AC(T) < ~

n?
and so 1 5
[p(Ai) — (A < ﬁ-i‘co\)\i—ﬂ < 2 (55)
SZ’— gnaximising ¢ over A1, Ag, ..., Aps makes an error in maximising ¢(\) over I of at most

Using the concentration result (44) of Section 3.2, we see that for a fixed A = \;, there
is ¢/ with |¢’| < e such that we have
d(N) =Ep(\) + e'EL, = (1 +&)EL,, — Aco =(1 + o(1))e1VAn — Aeo

. . (56)
with probability 1 — o(n

—200).
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We see therefore that w.h.p. the expression for A\ = ); in (56) holds simultaneously for
alli=1,2,...,n° Therefore, by Lemma 6, we obtain in Case (1), (2), (3) of Theorem 1,
respectively that

2
cn

e 6(3) = (1+o() (57)
max p(A) = (1+0(1))(F(57) - 2a5%), (58)

where * is the unique solution to f'(8) = 2a (see (7), (8)) and
max ¢(\) = (n + o(n))%. (59)

One final point. Our expressions for ¢(\) are only valid within a certain range. But
because, ¢ is concave and we have a vanishing derivative, we know that the values outside
the range cannot be maximal.

4 Proof of Theorem 1

We will use Theorem 3.1 from Goemans and Ravi [11]:

Theorem 7 ([11]). There exists a spanning tree T such that W(T) < p(N*) < W* and
C(T) < co+ Chax(T), where Ciax(T') is the maximum cost of an edge of T.

For Cases a and b from Lemma 3 we let ¢ = ¢y — § where § = %BR@ where B is
a suitable hidden constant for (42) and R,y is the RHS of (42). Suppose now that we
replace ¢q by ¢ and let W denote the minimum weight of a tree with cost at most C.
Applying Theorem 7 we obtain a spanning tree 7' such that W(T) < ¢(A) < W and
oT) <T+ s:BRys < ¢o. It only remains to show that w.h.p. ¢(\) ~ W*. This follows
from our expressions for ¢(A\*) in Section 3.3 and the fact that ¢ ~ ¢y, which we verify
now.

In Case a we have from (53) that,

ﬁgO( logn> :O<\/W) —o(1).

Co Nncd n

In Case b we have § = O (%82), ¢y = Q(n), \* = Q(2) and so §/cy = O (*22) = o(1).
For Case ¢ we let = 1/logn and proceed as above. We find that once again gb(;\) ~
W* because of the expression (59) for ¢(A*) in Section 3.3 and the fact that ¢ ~ ¢y. We

then use Theorem 7 and (43) to show that

~ logn 1/2 1 logn 1/2
C(T)<c+0 =c———+0 < ¢.
n logn n

This completes the proof of Theorem 1.
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5 More general distributions

We now consider the case where we have W,, C,,e € E(K,) distributed as independent
copies of U7,y < 1, U ~ Unif([0, 1]). We follow the same ideas as for v = 1, but there
are technical difficulties. Let us first though explain the need for the lower bound on ¢
in Theorem 2, up to a logarithmic factor.

Lemma 8. Let X1, Xy, ..., X, be independent copies of U7 and let Y = min;<, X;. Then
EY ~T'(y+1)n". (60)

Proof.

1
EminX; = [ P(X; > t'/)"dt

isn t=0

_ /1 (1— iyt
=7 /to(l — S)nsﬂyilds
=vB(n+1,7) Beta distribution
T+ 1I(y+1)
 T(n4+vy+1)

(n/e)"
N (Y
Ty +1)e” n \"
 (n+) (n+7>
L Lo+l

n”

~ (v

Stirling’s approximation

]

It follows from (60) that the expected weight of a minimum spanning tree is Q(n'~7).
To see this, orient the edges of the minimum weight spanning tree away from vertex 1.
Associate each edge with its tail (closest to vertex 1). Then each edge has expected weight
at least that given in Lemma 8.

We can use the argument of Section 3.2 with L = n?/4"'E(L,) to show concentration
around the mean. Because P(U” < L) < L'Y7, the R.H.S.’s of (46), (47) become L?n +
L**Y/72. Consequently (48) becomes

P[Y; — EY;| > E(L,)] < 2exp {_4( ’E(L,)? }

L?n + L?t1Y/7n?) (61)

2
= 2exp {—4(717/21 + n7/2+1/4*1/7E(Ln)1/7) } .

Now if py = (M)7 then P(UY < po) = M So, with probability 1 — o(n=),
the edges of weight at most pg mduce a connected graph and we have that E(L,) =
O(n'™7logn). Plugging this into (61) we see that
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82
Pl|Y, —EY,| = cE(L,)| < —
H L L‘ © ( )] exp{ 4(m/2—1 + n/2-3/4 logl/"’ n)}

2

< exp {— < )} = o(n~2).

4(n*1/2 L/ logl/V n

We have L = Q(n?/4! xn!=7 = n=37/4) > py and so Y] = 0 with probability 1—o(n=9%).
In conclusion, L, = Q(n'~7) w.h.p.
We now turn to estimating the dual value, the equivalent of Lemma 3.

5.1 Expectation

In this section, we estimate the expected weight of the minimum spanning tree with edge
weights U} + U, for independent copies Uy, Uy of U.

Lemma 9. Let v € (0,1), A > 0 and let L, = L,()\) be the total weight of a minimum
spanning tree in the complete graph on n wvertices with each edge e having weight Z, =
WY + \CY, where W, and C. are i.i.d. copies of U. Assuming

1000logn T(2/y +1)\” n T/ +1)%\7
( n r(1/7+1)2> SAS (100010gn F(2/’y—|—1)) ’ (62)

we have )
EL, ~ C,\2n'"2, (63)
where P
FLR2/y+ 1) T (k+7v/2 1)
= — . 4
C’y 2 I“(l/,y ‘l’ 1)7 kZ:; k:'y/2+1ka! (6 )

The implied o(1) terms in the above expressions can be taken to be independent of . Also,
we have not optimised all constants.

Proof. We follow closely the proof of Lemma 3 which concerns v = 1. Janson’s formula
(21) gives

1+
EL, — / E(x(Grpe) — 1)dt. (65)
0

where

p(t) =P(W) +AC) <t)= H(u,v) € [0, 1]2, uw + M7 < t}}

min{Ltl/"f} t —u? 1/~
p(t) = / min 4 1, ( ) du.
0 A

R 11/ b — 1/ t2/»y F(l/’)/ + 1)2
W= (57) w=wras (66)

Case 1, A > 1:

If ¢t <1 then

THE ELECTRONIC JOURNAL OF COMBINATORICS 28(1) (2021), #P1.22 19



Let to € (0,1) be such that p(te) = 2222187 “that is

n bl

we () () o0

(our assumption on A is chosen such that this is possible, i.e. this value of ; is less than
one). Then, thanks to (25),

to 1+
EL, = / E(k(Gppe) — 1)dt + / E(k(Grpe) — 1)dt
0

N /0 O E(#(Grpry) — 1)dt + (14 No(n™*)

Change of variables ¢ = p(t), use (66),

1000 logn

ATy 1) /0 " E(K(Gag) = 1)@ g + (14 No(n ™). (68)

2 T(1/y+1)

It remains to handle the last integral. Repeating verbatim all the computations of Lemma
3 from (29) to (38) (the only difference being that ¢~'/2 is replaced by ¢"/>7! in the
integrand), we get

1000 logn

/ ! ]E(/{(qu) — 1)q7/2_1dq
0

— (14 o(1))ag,n 2+ 0 [ (187 " coflemy Lo (L o
N O\ JoqT n nv/2 logn ’

where the error terms come from appropriate changes in (31) (36), (38). The constant
ap~ comes from (32) and equals

o0

F(k+~v/2-1)
agy = Z ]{;’7/24'1]{;! . (69)
k=1

Plugging this back into (68), we conclude that
EL, ~ CV)\l/an’”/Q

with .
D@y 1) > D(k+7/2-1)
T2 Ty 1)y & RAE

Case 2, A < 1: We set ¢ = At in (65) which yields

1+1/A
EL, = A / E(k(Gnpoey) — 1)dt’
0
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and now p(At') = P(W) + ACY < M) = P(C2 + sW) < t') =P(W2 + :C2 < t') (because
W, and C, are assumed to have the same distribution), so using the previously analysed
case A > 1 for %, we get

1\ /2
EL, ~ \C, (X) n'=2 = C N\t (70)
This completes the proof of the lemma. n

5.2 Concentration

We follow the argument of Section 3.2.
Lemma 10. Let ¢ = 1/logn. Then,
P(|¢(A) — E(6(N))] = eE(Ln (X)) = o(n™'?).

Proof. Let L = n"/*"'E(L,). We argue that P(X; < L) < (L/A)Y7 with A = max {\, 1},
giving (46) and (47) as before. It then follows that

PV, — EYy| > eE(L,)] < 2 B (L) =
H L — L‘ z & ( n)] S 24 €xp _4<L2n_|_L2+1/7n2/A1/'y) -

52
pe {‘ 4(m T o STE(L, )1 JAT) } -

Plugging (70) into the RHS of (71) and noting that A'/2/A = min{\~"/2, A\1/2} < 1, we
obtain

52

AT O(n/4-378)) } = o(n™").

P[|Y, — EYL| > cE(L,)] < exp {—

Now because L ~ C,AY2n=37/8 > t, where t; is as in (67), we see that Y} = 0 with
probability 1 — o(n=2%). O

We divide the interval [0, C'n] into n® sub-intervals as before and optimise the ¢ by
maximising
CV)\l/in_'Y/Q — CoA.

. n1_7/207 2 anQ*”y
)\ = (2—00) and mfquﬁ()\) = 400 .

Solving we get

Observe that our assumptions on ¢y imply that \* satisfies (62).
After this, we can follow the proof of the case v = 1. We only need to check now that
the argument of Section 4 is still valid. We know that with probability 1 — o(n™2%) that
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W2+ ACY <ty for all edges e of the minimum spanning tree. Here ¢, is as defined in (67)
and we note that to/A* = o(W*). This follows from

to log”%n B colog?*n . n%=7
F—O(m —O T andW—Q o .
We may therefore proceed as in Section 4 with ¢ = ¢q —to/\* and this completes the proof
of Theorem 2.

6 Conclusion

We have determined the asymptotic optimum value to Problem (1) w.h.p. The proof
is constructive in that we can w.h.p. get an asymptotically optimal solution (1) by
computing T of Section 4. When weights and costs are uniform [0, 1], our theorem covers
almost all of the possibilities for ¢y, although there are some small gaps between the 3
cases. Our results for more general distributions have a more limited range and further
research is needed to extend this part of the paper.

The present result assumes that cost and weight are independent. It would be more
reasonable to assume some positive correlation. This could be the subject of future
research. One could also consider more than one constraint, but then we might lose
Theorem 7.
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A Proof of (17)

We want to show that h is strictly decreasing on (0, +00), where

W(B) — — kA2 ~1/2 ’ k=3/2 —kz g 79
) =X o [t (72)
k=1 ’

We have

k=1 0

Call the right hand side H(f). We want to show that it is positive for every § > 0. We
have H(0) = 0, so it is enough to show that H'() is positive for every 8 > 0. We have

00 k2 3
_2832H/(8) = Z /fk! [/ K312k g _ 25k—1/26—k,8] ‘

H'(8) =2p7"/? i % [kﬁ’“ — (k- 1)6’“] et
k=1

and want to show that the sum on the right hand side is positive for every g > 0. Note
that for 3 > 1, we have k3% — (k — 1)3%"! > 0 for every k > 1, so the sum is positive in
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this case. Let 0 < 8 < 1. Separating the first two terms, we rewrite the condition that

the sum is positive as
8 2 28 — k2 k—1_—kB
Be P+ = (25 Bl >>" i L ] LA
k=3

Equivalently, multiplying by 57 'e??, we want to show that for every 0 < 8 < 1,

+ﬁ——>zkk 2[ —1—kﬁ](5e—ﬁ)“

Let 0 < 8 < 2. Estimating k — 1 — kB < k — 1, using k! > v2rk*/2¢™* and then
bounding ’lj—% < L/ for k > 3, we get
= k2 f—2 22 < k—2
N -8 = 1-8
B oo 2 Eoes
o 2¢? Bel=P
352251 — Bel B’
Moreover, we have
2¢2 Bel=P 1 2
B
< - = 0< - 73
(shown below) which finishes the proof in this case.
Let 2 < 3 < 1. Estimating k—1—kf < k—1—2k = 2k—1, using k! > V2rkF+1/2e7*

and then bounding (ﬂel_ﬂ)k_2 < Bel=P for k > 3, we get

g k-2 B o0 §k_1 2
Z k [k— 1 —kﬁ] (5e—ﬁ)k 2 (Z 5k;5/2 ) \/6—2_7(661—5

k!
k=3

. . k-1
where it can be checked numerically that > >, 5 < % Moreover, we have

32ﬁ1ﬁ< + 8 ! 2<ﬁ<1 (74)
€ 6 Y = )
5V 2w 2 5
(shown below) which finishes the proof in this case.

It remains to prove (73) and (74).

Showing (73) is equivalent to showing that the function

1 2¢3
— B _ - _ Rel=B8y _ -8
u(B) = (e + 2) (1—p3e™") 35/2\/%ﬁe
24
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is positive on (0, 2). We numerically check that u(2) > 0.1 and it suffices to show that u
is decreasing on (0, 2). We find that

eﬁul(ﬁ) _ e2ﬁ+ (1 —6)6’8+6ﬁ2—|— ( 2¢3 56) 3 e 2¢3

sevae 2)7 T2 T 3evee

Call the right hand side @(3). We have @(0) < —0.3 and for 0 < 3 < 2,

i'(B) = 2% + (1 —e)e’ + 2ef + 2—63 _ e
35/22x 2
2¢3 5e

4
<265 41— g 8 <08

5 35/2\ /o0 2

which shows that % decreases, hence () is negative, hence u/(f) is negative, hence u
decreases.
Showing (74) is equivalent to showing that the function

3e3

5V 2T

W(B) = 4 -5~ e

is positive on (£,1). For 2 < # < 1, we have

3e3

V() =€ +1— 1—pB)e”
® -5
3
>ez/5+1—3L§e*2/5>0.5

5V 21 D

(we used that (1—)e™? decreases on (0,2)). This shows that v increases on (£,1), hence
v(B) >v(3)>0for 2 <f<1.

B Proof of (23)

We need to compute the surface area of the subset {(u, v) € [0,1]?, 1%\“ + #U < p} of
the unit square [0, 1]2. The line lJ%\u%— #v = p intersects the u and v axes respectively
at ug = p(1 + ) and vy = p(1 + A7!). Thus when both uy and v, are less than 1, the
subset is a right triangle whose area is %uovo. This gives the formula in the first case of
(23). When exactly one of uy and wvg is less than 1 and the other one is greater than 1,
the subset is a trapezoid and computing its area gives the formula in the second case of
(23). Finally, if both ug and vy are greater than 1, the subset is the complement of a right
triangle and the formula in the third case of (23) follows from the first one by changing

p to 1 — p and taking the complement.
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