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William Arcand1, Jonathan Bernays1, David Bestor1, William Bergeron1, Vijay Gadepally1,

Micheal Houle1, Matthew Hubbell1, Anna Klein1, Chad Meiners1, Lauren Milechin1, Julie Mullen1,
Sandeep Pisharody1, Andrew Prout1, Albert Reuther1, Antonio Rosa1, Siddharth Samsi1,

Doug Stetson1, Adam Tse1, Charles Yee1, Peter Michaleas1
1MIT, 2CAIDA, 3LBNL, 4Texas A&M

Abstract—The Internet has never been more important to

our society, and understanding the behavior of the Internet

is essential. The Center for Applied Internet Data Analysis

(CAIDA) Telescope observes a continuous stream of packets

from an unsolicited darkspace representing 1/256 of the Internet.

During 2019 and 2020 over 40,000,000,000,000 unique packets

were collected representing the largest ever assembled public

corpus of Internet traffic. Using the combined resources of the

Supercomputing Centers at UC San Diego, Lawrence Berkeley

National Laboratory, and MIT, the spatial temporal structure of

anonymized source-destination pairs from the CAIDA Telescope

data has been analyzed with GraphBLAS hierarchical hyper-

sparse matrices. These analyses provide unique insight on this

unsolicited Internet darkspace traffic with the discovery of many

previously unseen scaling relations. The data show a significant

sustained increase in unsolicited traffic corresponding to the

start of the COVID19 pandemic, but relatively little change in

the underlying scaling relations associated with unique sources,

source fan-outs, unique links, destination fan-ins, and unique

destinations. This work provides a demonstration of the practical

feasibility and benefit of the safe collection and analysis of

significant quantities of anonymized Internet traffic.

Index Terms—Internet modeling, packet capture, streaming

graphs, power-law networks, hypersparse matrices

I. INTRODUCTION

For over five billion people the Internet has become as
essential as land, sea, air, and space for enabling activities as
diverse as commerce, education, health, and entertainment [1].
Understanding the Internet is likewise as important as studying
these other domains [2]. Developing scientific insights on
how the Internet behaves requires observation and data [3]–
[6]. The largest public Internet observatory is the Center
for Applied Internet Data Analysis (CAIDA) Telescope that
operates a variety of sensors including a continuous stream
of packets from an unsolicited darkspace representing 1/256
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Fig. 1. Packets per month. Number of packets collected per month by the
CAIDA telescope. The number of packets increased significantly during the
COVID19 pandemic.

of the Internet. This network telescope monitors an Internet
darkspace (also referred to as a black hole, Internet sink,
or darknet) that is a globally routed /8 network that carries
almost no legitimate traffic because there are few allocated
addresses in this Internet prefix. After discarding the small
amount of legitimate traffic from the incoming packets, the
remaining data represent a continuous view of anomalous
unsolicited traffic, or Internet background radiation. Almost
every computer on the Internet will receive some form of
this background traffic. This unsolicited traffic results from
a wide range of events, such as backscatter from randomly
spoofed source denial-of-service attacks, the automated spread
of Internet worms and viruses, scanning of address space
by attackers or malware looking for vulnerable targets, and
various misconfigurations (e.g. mistyping an IP address).
In recent years, traffic destined to darkspace has evolved
to include longer-duration, low-intensity events intended to
establish and maintain botnets. CAIDA personnel maintain
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and expand the telescope instrumentation, collects, curates,
archives, and analyzes the data, and enables data access for
vetted researchers.

During 2019 and 2020 over 40,000,000,000,000 unique
packets were collected by the CAIDA Telescope. This data
set represents the largest ever assembled public corpus of
Internet traffic, and is perhaps the largest public collection
of streaming network events of any type. Figure 1 shows the
number of packet in each month and indicates a significant
increase aligning with the COVID19 pandemic. Analysis of
such a large network data set is computationally challenging
[7]–[9]. Using the combined resources of the Supercomputing
Centers at UC San Diego, Lawrence Berkeley National Labo-
ratory, and MIT, the spatial temporal structure of anonymized
source-destination pairs from the CAIDA Telescope data has
been analyzed leveraging prior work on massively parallel
GraphBLAS hierarchical hypersparse matrices [10]–[16]. Ap-
plying this type of analysis to other collections of billions
of network packets has revealed power-law distributions [17],
novel scaling relations [18], and inspired new models of
network traffic [19]. The goal of this paper is to understand
the scaling relations revealed by the CAIDA telescope data
set. These scaling relations can provide fundamental insights
into Internet background traffic. This work can also provide a
demonstration of the practical feasibility and benefit of the safe
collection and analysis of significant of quantities anonymized
Internet traffic.

The outline of the rest of the paper is as follows. First,
the network quantities and their distributions are defined in
terms of traffic matrices. Second, multi-temporal analysis of
hypersparse hierarchical traffic matrices is described. Third,
the method for determining scaling relations as a function of
the packet window NV is presented along with the resulting
scaling relations observed in the gateway traffic data. Finally,
our conclusions and directions for further work are presented.

II. NETWORK QUANTITIES AND DISTRIBUTIONS FROM
TRAFFIC MATRICES

The CAIDA Telescope monitors the traffic into and out of a
set of network addresses providing a natural observation point
of network traffic. These data can be viewed as a traffic matrix
where each row is a source and each column is a destination.
The CAIDA Telescope traffic matrix can be partitioned into
four quadrants (see Figure 2). These quadrants represent
different flows between nodes internal and external to the set of
monitored addresses. Because the CAIDA Telescope network
addresses are a darkspace, only the upper left (external !
internal) quadrant will have data. Internet data must be handled
with care, and CAIDA has pioneered standard trusted data
sharing best practices that include [2]

• Data is made available in curated repositories
• Using standard anonymization methods where needed:

hashing, sampling, and/or simulation
• Registration with a repository and demonstration of le-

gitimate research need

so
ur
ce
s

destinations

so
ur
ce
s

destinations

sparse traffic matrix A

internal
à

external

internal
à

internal

external
à

external

external
à

internal

internal                       external

in
te

rn
al

   
   

   
   

   
   

   
  e

xt
er

na
l

Fig. 2. Network traffic matrix. The traffic matrix can be divided into
quadrants separating internal and external traffic. The CAIDA Telescope
monitors a darkspace, so only the upper left (external ! internal) quadrant
will have data.
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Fig. 3. Streaming network traffic quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets.

• Recipients legally agree to neither repost a corpus nor
deanonymize data

• Recipients can publish analysis and data examples nec-
essary to review research

• Recipients agree to cite the repository and provide pub-
lications back to the repository

• Repositories can curate enriched products developed by
researchers

Streams of interactions between entities are found in many
domains. For Internet traffic these interactions are referred to
as packets [20]. Figure 3 illustrates essential quantities found
in all streaming dynamic networks. These quantities are all
computable from anonymized traffic matrices created from
the source and destinations found in packet headers. These
sources and destinations are referred as Internet Protocol (IP)
addresses.

Processing such a large volume of data requires additional
computational innovations. The advent of GraphBLAS hyper-
sparse hierarchical traffic matrices has enabled the processing
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of hundreds of billions of packets in minutes [16], [21]–
[23]. The CAIDA Telescope archives its trillions of collected
packets at the supercomputing center at Lawrence Berkeley
National Laboratory (LBNL) where the packets are aggregated
into CryptoPAN [24] anonymized GraphBLAS traffic matrices
of NV = 217 contiguous packets. This process compresses
the data down to approximately 3 bytes/packet. The resulting
matrices are stored and sent to the MIT SuperCloud where
the network quantities shown in Figure 3 are computed. Using
384 64-core compute nodes (24,576 cores total) on the MIT
SuperCloud all 40,000,000,000,000 packets were processed in
four days.

The code was implemented using Matlab/Octave with the
pMatlab parallel library [10]. A typical run could be launched
in a few seconds using the MIT SuperCloud triples-mode
hierarchical launching system [13]. Typical launch param-
eters were [384 16 4], corresponding to 384 nodes, 16
Matlab/Octave processes per node, and 4 OpenMP threads
per process. On each node, the 16 processes were pinned
to 4 adjacent cores to minimize interprocess contention and
maximize cache locality for the GraphBLAS OpenMP threads
[25]. Three levels of parallelism were used within the pro-
gram. At the top level each month in a year was processed
independently using 384/12 = 32 compute nodes. Within each
month, the packet windows were were split among the 32⇥16
= 512 Matlab/Octave processes with some overlap to allow
for contiguous processing of the streaming data. Within each
Matlab/Octave process, the underlying GraphBLAS OpenMP
parallelism was used on 4 cores. At the end of the processing
the results were aggregated using asynchronous file-based
messaging [26].

The contiguous nature of these data allows the exploration
of a wide range of packet windows from NV = 217 (sub-
second) to NV = 227 (minutes), providing a unique view into
how network quantities depend upon time. These observations
provide new insights into normal network background traffic
that could be used for anomaly detection, AI feature engineer-
ing, polystore index learning, and testing theoretical models of
streaming networks [27]–[29].

The network quantities depicted in Figure 3 are computable
from anonymized origin-destination matrices that are widely
used to represent network traffic [30]–[33]. It is common
to filter the packets down to a valid set for any particular
analysis. Such filters may limit particular sources, destinations,
protocols, and time windows. To reduce statistical fluctuations,
the streaming data should be partitioned so that for any chosen
time window all data sets have the same number of valid
packets [15]. At a given time t, NV consecutive valid packets
are aggregated from the traffic into a sparse matrix At, where
At(i, j) is the number of valid packets between the source i
and destination j. The sum of all the entries in At is equal to
NV X

i,j

At(i, j) = NV

All the network quantities depicted in Figure 3 can be readily

TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from traffic matrix At at time t in
both summation and matrix notation. 1 is a column vector of all 1’s, T is the
transpose operation, and | |0 is the zero-norm that sets each nonzero value of
its argument to 1 [34]. These formulas are unaffected by matrix permutations
and will work on anonymized data.

Aggregate Summation Matrix

Property Notation Notation

Valid packets NV
P

i

P
j At(i, j) 1TAt1

Unique links
P

i

P
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets (dmax) maxij At(i, j) max(At)
Unique sources

P
i |

P
j At(i, j)|0 1T|At1|0

Packets from source i
P

j At(i, j) At1
Max source packets (dmax) maxi

P
j At(i, j) max(At1)

Source fan-out from i
P

j |At(i, j)|0 |At|01
Max source fan-out (dmax) maxi

P
j |At(i, j)|0 max(|At|01)

Unique destinations
P

j |
P

i At(i, j)|0 |1TAt|01
Destination packets to j

P
i At(i, j) 1T|At|0

Max destination packets (dmax) maxj
P

i At(i, j) max(1T|At|0)
Destination fan-in to j

P
i |At(i, j)|0 1T At

Max destination fan-in (dmax) maxj
P

i |At(i, j)|0 max(1T At)
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Fig. 4. Source packet degree distribution (left 2019-06, right 2020-06).
Example differential cumulative probability (normalized histogram) for two
packet windows (NV = 217 and NV = 227) of the number (degree) of
source packets from each source using logarithmic bins di = 2i. Sources
sending out a single packet are denoted “leaf nodes”. The source with the
largest number of packets dmax is referred to as the “supernode”.

computed from At using the formulas listed in Table I. Be-
cause matrix operations are generally invariant to permutation
(reordering of the rows and columns), these quantities can
readily be computed from anonymized data.

Each network quantity will produce a distribution of values
whose magnitude is often called the degree d. The correspond-
ing histogram of the network quantity is denoted by nt(d). The
largest observed value in the distribution is denoted dmax. The
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normalization factor of the distribution is given by
X

d

nt(d)

with corresponding probability

pt(d) = nt(d)/
X

d

nt(d)

and cumulative probability

Pt(d) =
X

i=1,d

pt(d)

Because of the relatively large values of d observed, the mea-
sured probability at large d often exhibits large fluctuations.
However, the cumulative probability lacks sufficient detail to
see variations around specific values of d, so it is typical to
pool the differential cumulative probability with logarithmic
bins in d

Dt(di) = Pt(di)� Pt(di�1)

where di = 2i [35]. All computed probability distributions
use the same binary logarithmic binning to allow for con-
sistent statistical comparison across data sets [35], [36]. The
corresponding mean and standard deviation of Dt(di) over
many different consecutive values of t for a given data set
are denoted D(di) and �(di). Figure 4 provides an example
distribution of external ! internal source packets with packet
windows of NV = 217 and NV = 227 at two different times.
The resulting distribution exhibits the power-law frequently
observed in network data [37]–[43].

III. MULTI-TEMPORAL ANALYSIS

Network traffic is dynamic and exhibits varying behavior
on a wide range of time scales. A given packet window
size NV will be sensitive to phenomena on its corresponding
timescale. Determining how network quantities scale with NV

provides insight into the temporal behavior of network traffic.
Efficient computation of network quantities on multiple time
scales can be achieved by hierarchically aggregating data in
different time windows [15]. Figure 5 illustrates a binary
aggregation of different streaming traffic matrices. Computing
each quantity at each hierarchy level eliminates redundant
computations that would be performed if each packet window
was computed separately. Hierarchy also ensures that most
computations are performed on smaller matrices residing in
faster memory. Correlations among the matrices mean that
adding two matrices each with NV entries results in a matrix
with fewer than 2NV entries, reducing the relative number of
operations as the matrices grow.

One of the important capabilities of the SuiteSparse Graph-
BLAS library is support for hypersparse matrices where the
number of nonzero entries is significantly less than either
dimensions of the matrix. If the packet source and destination
identifiers are drawn from a large numeric range, such as those
used in the Internet protocol, then a hypersparse representation
of At eliminates the need to keep track of additional indices
and can significantly accelerate the computations [16].
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Fig. 5. Multi-temporal streaming traffic matrices. Efficient computation of
network quantities on multiple time scales can be achieved by hierarchically
aggregating data in different time windows.

IV. RESULTS

Over 40,000,000,000,000 CAIDA Telescope anonymized
packet headers from 2019 and 2020 have been collected
and analyzed. The network quantities in Table I have been
computed for window sizes corresponding to

NV = 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227

The averages and standard deviations of these quantities have
been computed over sets of 227 packets. A key property
is how the various network quantities scale as a function
of the window size NV . Figure 6 (top) shows the average
total number of unique sources as a fraction of the packet
window NV measured for the months of 2019-06 and 2020-
06. Figure 6 (bottom) is the result of scaling the data using
the formula

�N↵
V

Performing a similar analysis across all the network quanti-
ties produced the scaling relations for each month. Figures 7,
8, and 9 show the scaling exponents ↵ for the sources,
destinations, and links. In most cases, these scaling exponents
are remarkably consistent and lie in the range 0.9 < ↵ < 1.0.
Three notable exceptions are the scaling of the unique sources,
the unique destinations, and the destination supernode fan-in
(destination with the most unique sources). The unique sources
shown in Figure 7 (top) appear to scale as N0.5

V in 2019, which
increases to N0.7

V appearing in 2020, implying that the relative
diversity of observed darkspace sources grew during 2020. The
unique destinations shown in Figure 8 (top) consistently scaled
as N0.8

V throughout 2019 and 2020 indicating that although
the source variety may have increased the set of destination
addresses they were reaching out to remained similar. The des-
tination supernode fan-in scaling shows significant fluctuations
throughout 2019 and 2020 spanning 0.5 < ↵ < 1.0.

Table II summarizes the median scaling relations of both the
averages and standard deviations of all the network quantities
for 2019 and 2020. These results reveal a strong dependence
on these quantities as a function of the packet window size
NV as well as remarkable consistency between 2019 and
2020. To our knowledge, these scaling relations have not
been previously reported and represent a new view on the
background behavior of network traffic. The scaling relations
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Fig. 6. (top) Unique source fraction (left 2019-06, right 2020-06). Average total number of unique sources in a packet window of width NV measured at
each time over a month. (bottom) Normalized unique source fraction (left 2019-06, right 2020-06). Scaling (top) data by (NV /217)0.5 and (NV /217)0.49

aligns the different packet windows, indicating that the number of uniques sources is proportional to N1�0.5
V = N0.5

V and N1�0.49
V = N0.51

V . �↵ is the
difference between the best fit ↵ obtained using the different error norms | |2, | |, and | |0

TABLE II
APPROXIMATE SCALING RELATIONS.

Analysis of network quantities over packet windows NV = 217, . . . , 227 reveals a strong dependence of many of these quantities on NV as well as remarkable
consistency between 2019 and 2020.

2019
Average

2019
Deviation

2020
Average

2020
Deviation

Unique links 1.3 x NV
0.98 0.010 x NV

0.98 1.3 x NV
0.98 0.011 x NV

0.93

Max link packets (dmax) 0.0019 x NV
0.99 0.019 x NV

0.84 0.0014 x NV
0.99 0.051 x NV

0.76

Unique sources 79 x NV
0.50 8.7 x NV

0.41 13 x NV
0.58 0.062 x NV

0.69

Max source packets (dmax) 0.080 x NV
0.98 0.030 x NV

0.91 0.069 x NV
0.87 0.016 x NV

0.90

Max source fan-out (dmax) 0.11 x NV
0.94 0.031 x NV

0.90 0.12 x NV
0.93 0.014 x NV

0.89

Unique destinations 12 x NV
0.79 0.066 x NV

0.82 12 x NV
0.79 0.024 x NV

0.89

Max destination packets (dmax) 0.0025 x NV
1 0.011 x NV

0.86 0.0023 x NV
1 0.0080 x NV

0.89

Max destination fan-in (dmax) 0.0027 x NV
0.89 0.074 x NV

0.53 0.0023 x NV
0.84 0.00035 x NV

0.79
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Fig. 7. Source scaling exponents.
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Fig. 8. Destination scaling exponents.
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Fig. 9. Link scaling exponents.

provide a new baseline for predicting and reasoning about the
nature of this traffic.

V. CONCLUSIONS AND FUTURE WORK

Understanding the behavior of the Internet is essential as
the Internet has never been more important to our society.
The CAIDA Telescope provides a unique perspective on the
Internet by observing a continuous stream of darkspace traffic
representing 1/256 of the Internet. Over 40,000,000,000,000
unique packets were collected during 2019 and 2020. This is
the largest public corpus of Internet traffic ever collected. The
Supercomputing Centers at UC San Diego, Lawrence Berkeley
National Laboratory, and MIT have combined their resources
to analyze the spatial and temporal structure of anonymized
source-destination pairs leveraging GraphBLAS hierarchical
hypersparse matrices. Analysis of this unsolicited Internet
darkspace traffic has revealed many previously unseen scaling
relations. The data show a significant sustained increase in
unsolicited traffic corresponding to the start of the COVID19
pandemic, but relatively little change in the underlying scaling
relations associated with unique sources, source fan-outs,
unique links, destination fan-ins, and unique destinations. This
work provides a demonstration of the practical feasibility and

benefit of the safe collection and analysis of significant of
quantities of anonymized Internet traffic.
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