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ABSTRACT

In this article, we investigate community detection in networks in the presence of node covariates. In many
instances, covariates and networks individually only give a partial view of the cluster structure. One needs to
jointly infer the full cluster structure by considering both. In statistics, an emerging body of work has been
focused on combining information from both the edges in the network and the node covariates to infer
community memberships. However, so far the theoretical guarantees have been established in the dense
regime, where the network can lead to perfect clustering under a broad parameter regime, and hence the
role of covariates is often not clear. In this article, we examine sparse networks in conjunction with finite
dimensional sub-Gaussian mixtures as covariates under moderate separation conditions. In this setting
each individual source can only cluster a nonvanishing fraction of nodes correctly. We propose a simple
optimization framework which improves clustering accuracy when the two sources carry partial information
about the cluster memberships, and hence perform poorly on their own. Our optimization problem can be
solved by scalable convex optimization algorithms. With a variety of simulated and real data examples, we
show that the proposed method outperforms other existing methodology. Supplementary materials for
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1. Introduction

Community detection in networks is a fundamental problem in
machine learning and statistics. A variety of important practical
problems such as analyzing socio-political ties among politi-
cians (Gil-Mendieta and Schmidt 1996), understanding brain
graphs arising from diffusion MRI data (Binkiewicz, Vogelstein,
and Rohe 2017), investigating ecological relationships between
different tiers of the food chain (Jacob et al. 2011) can be framed
as community detection problems. Much attention has been
focused on developing models and methodology to recover
latent community memberships. Among generative models, the
stochastic block model (SBM) (Holland, Laskey, and Leinhardt
1983) and its variants (Airoldi et al. 2008), etc. have attracted
a lot of attention, since their simplicity facilitates efficient algo-
rithms and asymptotic analysis (Rohe, Chatterjee, and Yu 2011;
Amini et al. 2013; Chen and Xu 2016).

Although most real world network datasets come with
covariate information associated with nodes, existing approaches
are primarily focused on using the network for inferring the hid-
den community memberships. Take for example the Mexican
political elites network (described in detail in Section 4). This
dataset comprises of 35 politicians (military or civilian) and
their connections. The associated covariate for each politician
is the year when one came into power. After the military coup
in 1913, the political arena was dominated by the military. In
1946, the first civilian president since the coup was elected,
signaling the shift of power from revolutionary armed forces to
governmental financial elites. Hence those who came into power

later are more likely to be civilians. Politicians who have similar
number of connections to the military and civilian groups are
hard to classify from the network alone. Here the temporal
covariate is crucial in resolving which group they belong to.
On the other hand, politicians who came into power around
1940s are ambiguous to classify using covariates, since both
groups had equal presence in politics in the 1940s. Hence, the
number of connections to the two groups in the network helps
in classifying these nodes. Our method has higher accuracy
in classifying these politicians than existing methods (Zhang,
Levina, and Zhu 2016; Binkiewicz, Vogelstein, and Rohe 2017).

In statistics literature, there has been some interesting
work on combining covariates and dense networks (average
degree growing faster than logarithm of the number of nodes).
In Binkiewicz, Vogelstein, and Rohe (2017), the authors present
assortative covariate-assisted spectral clustering (ACASC)
where one does spectral clustering on the gram matrix of the
covariates plus the regularized graph Laplacian weighted by a
tuning parameter. A joint criterion for community detection
(JCDC) is proposed by Zhang, Levina, and Zhu (2016), which
could be seen as a covariate reweighted Newman-Girvan
modularity. This approach enables learning different influence
on each covariate. In concurrent work, Weng and Feng (2016)
provide a variational approach for community detection. Other
notable works include Newman and Clauset (2016) and Zhang
et al. (2017).

All of the above works are analyzed in the dense regime with
strong separability conditions on the linkage probabilities. In
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contrast, we prove our result for sparse graphs where the average
degree is constant and the covariates are finite dimensional sub-
Gaussian mixtures with moderate separability conditions. In
our setting, neither source can yield consistent clustering in the
limit.

Leveraging information from multiple sources have been
long studied in machine learning and data mining under the
general envelop of multi-view clustering methods. Kumar, Rai,
and Daume (2011) used a regularization framework so that
the clustering adheres to the dissimilarity of clustering from
each view. Liu et al. (2013) optimized the nonnegative matrix
factorization loss function on each view, plus a regularization
forcing the factors from each view to be close to each other. The
only provable method was by Chaudhuri et al. (2009), where
the authors obtain guarantees where the two views are mixtures
of log-concave distributions. This algorithm does not apply to
networks.

In this article, we propose a penalized optimization frame-
work for community detection when node covariates are
present. We take the sparse degree regime of SBMs, where one
can only correctly cluster a nonvanishing fraction of nodes.
Similarly, for covariates, we assume that the covariates are
generated from a finite dimensional sub-Gaussian mixture
with moderate separability conditions. We prove that our
method leads to better bounds on clustering accuracy under
weaker conditions on the separation between clusters from each
source. As byproducts of our theoretical analysis, we obtain new
asymptotic results for sparse networks under weak separability
conditions and kernel clustering of finite dimensional mixture of
sub-Gaussians. Using a variety of real world and simulated data
examples, we show that our method often outperforms existing
methods. We also illustrate in the simulations that, when the
two sources only have partial and in some sense orthogonal
information about the clusterings, combining them leads to
better clustering than using the individual sources.

Table 1. Population quantities used in the article.
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In Section 2, we introduce relevant notation and present our
optimization framework. In Section 3, we present our main
results, followed by experimental results on simulations and
real world networks in Section 4. All proofs are deferred to the
supplementary materials.

2. Problem Setup

In this section, we introduce our model and set up the convex
relaxation framework. For clarity, we list population quantities
in Table 1, random variables in Table 2 and other definitions and
notations that will be used later in Table 3.

Assume (Cy,...,C,) represent a r-partition for n nodes
{1,...,n}. Let m; = |C;| be the size of cluster i, and let m,;, and
Mmax be the minimum and maximum cluster sizes, respectively.
We use w; := m;/n, Tmin = Mmin/N and & = Myax/Mmin.
We denote by A the n x n binary adjacency matrix and by Y
the n x d matrix of d dimensional covariates. The generation
of A and Y share the true and unknown membership matrix
Z = {0,1}"". We define the graph model as

(Graphmodel)  P(A; = 112) = Z[BZ;, fori#j (1)

where Bis a r x r matrix of within and across cluster connection
probabilities. Furthermore A;; = 0,Vi € [n]. We consider the
sparse regime where n maxy, By is a constant and hence average
expected degree is also a constant w.r.t n. Amini and Levina
(2018) define two different classes of block models in terms of
separability properties of B. We state this below.

Definition 1. A SBM is called strongly assortative if miny By >
maxy¢ Bye, and is called weakly assortative if Yk # £, By >
Byg.

This distinction is important because the weakly assortative
class of blockmodels is a superset of strongly assortative models,

Notation Mathematical definition Explanation

n Number of nodes

d Dimensionality of covariates
lg Identity matrix of sized x d

diag(vq,...,v) € RKxK
r O(1)

Be[0,1]™" Bj=0©0/n),ij€r]
Z € {0,1}1%r
mj PPAIA))
7T mi
n
Mmax maxy my, ©(n)
Mmin ming my, ©(n)
o mmax/mmin, O(1)
Ck U:2G k) =1}
Xo € RMxN Zdiag(1/m1, ..., 1/m)ZT
ak nByk, ©(1)
by nmaxgc By, ©(1)
vs € Rxg L i Var(Ap), ©(1)
Hkr T
Yk
Ymax MaXke[r] Yk
dke ek — well
Qx Equation (7)
vk Equation (6)
v ming (ax — b + Agvg), ©(1)

Diagonal matrix with diagonal (v1, ..., vk)
Number of clusters

Symmetric probability matrix in SBM
Latent class memberships

Number of points in ith cluster

Proportion of points in jth cluster

Largest cluster size

Smallest cluster size

Ratio between largest and smallest clusters
Point set for kth cluster

Ground truth clustering matrix

Rescaled connection probability

Rescaled connection probability

Average variance of graph edges

Mean, covariance matrix for Y; ifi € C
Sub-Gaussian parameter for Y; if i € Cy
Largest sub-Gaussian parameter across all clusters
Distance between cluster centers for the covariates
Reference matrix for the kernel

Separation in Qg

Separation of ZBZT + AnK.

Scale parameter in kernel function
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Table 2. Random variables used in the article.

Notation Mathematical definition Explanation

A e {0, 131N Ajjli € Cy,j € Cp ~ Ber(Byy) Adjacency matrix (symmetric)

Yi e RY Covariate observation for ith point

K € [0,1]"%" K@, j) =f(lY; — Yj||§) Kernel matrix, symmetric and positive definite

Table 3. Useful notations and definitions.

Notation Mathematical definition Explanation

1n All one vector of length n

En 1,,1,T, All ones matrix of sizen x n

Ig Identity matrix of size d x d

Kg <1783 Grothendieck’s constant

f(x) : R>o — [0,1] exp(—nx) Kernel function

F =0 0=X= mmln Feasible set of the SDP
X1p =1y, trace(X) =r}

Xm argmaxy (M, X) st. X € F Solution matrix of the SDP

0;(M) ith eigenvalue of M

Ans Ao An = Ag/n, A9 = O(1) Tuning parameter between graph and covariates

and most of the analysis are done in the stronger setting. To our
knowledge, there has not been any work on weakly assortative
blockmodels in the sparse setting. For the covariates, we define,

.
Yi= > Zialta + Wi ()

a=1

(Covariate model)

where Wj’s are mean zero d-dimensional sub-Gaussian vectors
with covariance matrix X and sub-Gaussian parameter ¥y
(for i € Ci). We use standard definitions of sub-Gaussian
random variables and vectors as in Hsu, Kakade, and Zhang
(2012) and Wainwright (2015), which are presented in details
in Section A of the supplementary materials. Using properties
of sub-Gaussian random variables, it can be shown that the
operator norm of ¥y is no larger than . We define the distance
between clusters Cy and C; as diy = ||uxr — pme| and the
separation as dpi, = minge die.

2.1. Notation

We use ||M||r and || M]|| to denote the Frobenius and operator
norms of a matrix M € R™ ", respectively. The £, norm is
defined as: |[M|looc = max;j|Mj]|. For two matrices M,Q €
C™*", their inner product is (M,Q) = trace(M'Q). From
now on we use I, to denote the identity matrix of size n, 1, to
represent the all one n-vector and E,, E,,  to represent the all one
matrix with size n X nand n X k, respectively. We use standard
order notations O, 0, 2, w, etc. For example, t(n) = O(1/n) is
to denote that 7 - t(n) is a constant w.r.t n. O notation is used for
implicit multiplicative terms logarithmic in n.

2.2. Optimization Framework

We now present our optimization framework. There are many
available semidefinite programming (SDP) relaxations for clus-
tering block models (Cai and Li 2015; Chen and Xu 2016;
Amini and Levina 2018). The common element in all of these is
maximizing the inner product between A and X, for a positive
semidefinite (p.s.d.) matrix X. Here X is a stand-in for the clus-
tering matrix ZZT. Unequal-sized clusters is usually tackled with

an extra regularization term added to the objective function (see
Cai and Li 2015; Hajek, Wu, and Xu 2016; Perry and Wein 2017,
among others). While the above consistency results are for dense
graphs, Guédon and Vershynin (2015) and Montanari and Sen
(2016) show that in the sparse regime one can use SDP to obtain
an error rate which is a constant w.r.t n and depends on the gap
between the within and across cluster probabilities.

SDPs are not limited to network clustering. Several convex
relaxations for k-means type loss are proposed in the literature
(see Peng and Wei 2007; Yan and Sarkar 2016; Mixon, Villar,
and Ward 2017 for more references). In these settings one
maximizes (W, X), for some p.s.d. matrix X, where W is a matrix
of similarities between pairwise data points. For classical k-
means, Wjj canbe YiT Yj, whereas for k-means in the kernel space
one uses a suitably defined kernel similarity function between
the ith and jth data points (covariates). We analyze the widely
used Gaussian kernel to allow for nonlinear boundaries between
clusters. Let K be the n x n kernel matrix whose (i, j)th entry is
K@,j) =flYi— Yj||%), where f(x) = exp(—nx) for x > 0. This
kernel function is upper bounded by 1 and is Lipschitz continu-
ous w.r.t. the distance between two observations. Furthermore,
in contrast to network based SDPs, the above uses X as a stand-
in for the normalized variant of the clustering matrix ZZ7, that
l(k [) ,ifi € Cy,j € Cg. It can

is, the desired solution is (Xo);; =

be seen that ||X0||127 =r.

In our optimization framework, we propose to add a k-means
type regularization term to the network objective to maximize
(A4 A,K,X) s.t. X € F. This enforces that the estimated
clusters are also consistent with the latent memberships in the
covariate space. Here X, is a tuning parameter (possibly depend-
ing on n) and the constraint setis ¥ = {X > 0, 0 < X <
#, X1, = 1,, trace(X) = r}, which is similar to Peng
ancf1 Wei (2007). The mmin in the constraint can be replaced by
any lower bound on the smallest cluster size, and is mainly for
convenience of the analysis. In the implementation, it suffices to
enforce the elementwise positivity constraints, and other linear
constraints. For ease of exposition, let

Xp = arg m)?X(M,X) st. X e F. (3)



When K(i,j) = YiTYj, then the nonconvex variant of the
objective function naturally assumes a form similar to the work
of ACASC (modulo normalization of A).

In the next section, we provide theoretical guarantees for
the solution to the convex semidefinite relaxation problem in
Equation (3).

3. Main Results

Typically in existing SDP literature for sparse networks or sub-
Gaussian mixtures (Guédon and Vershynin 2015; Mixon, Villar,
and Ward 2017), one obtains a relative error bound of the devi-
ation of Xy (the solution of the SDP) from the ideal clustering
matrix Xo. This relative error typically has the form of a ratio
of two quantities; the first measures deviation of the observed
matrix M from some suitably defined reference matrix, which
leads to perfect clustering. The second quantity measures the
separation between the different clusters. Similarly, our theoret-
ical result shows that the relative error is a ratio of the combined
deviation resulting from the network and the covariates, and a
quantity, which is a nonlinear combination of the separations
stemming from the two sources. We first present an informal
version of the main result.

Main theorem (Informal). Let Xa4,x be the solution of (3).
Let s’é and s’é be constants denoting the separations of the kth
cluster from the other clusters defined in terms of the model
parameters of the network and the covariates, respectively. If
the tuning parameter 1, = Ao/n for some constant X¢, then
for some constant C,

cG + Aocc

2
X442,k — Xollp = C——F———~>
" ming (s’é + koslé)

where ¢ and cc represent the deviation of the graph adjacency
matrix A and the covariate kernel matrix K from their corre-
sponding reference matrices.

We will now make cg, cc, sg, and s¢ concrete. In SBM, that
is, when M = A, a natural choice of the reference matrix is
E[A|Z] which is block-wise constant. In this case, the separation
is given by miny (Bix —max;, Bk¢), and leads to a result on weakly
assortative sparse block models which we present in more details
in Section 3.1. A similar route for the kernel matrix is difficult
due to the pairwise dependencies of the entries of K. Hence, we
introduce a novel choice of the reference matrix, which is not
block-wise constant, but still has a small deviation from K. We
show this in Section D of the supplementary materials.

To better understand the role of the separation parameter, we
first present a key technical lemma bounding || Xy — Xo||r. The
main goal of this lemma is to establish an upper bound on the
Frobenius norm difference between the ideal clustering matrix
and the solution to the SDP with input matrix M.

Lemma 1. Let Xjr be defined by Equation (3) for some input
matrix M € R"*". Also let Q be a reference matrix where Q;; =

BI™,Vi,j € Cr,and B > Qj > 0,¥i € Cpj € Cpk # £.1f
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mink(ﬁliin) — ,BIEO‘“)) > 0, then

(M — Q, Xy — Xo)

2
I Xm — Xollp < 2 (n) _ (o)
PR )

(4)

Mpmin Ming (B

Remark 1. The above lemma formalizes the notion of the
reference matrix Q we have mentioned before. The deviation
between X and Xj is small if M — Q is small, and the separation
between blocks in Q is large. While the proof technique is
inspired by Guédon and Vershynin (2015), the fact that we use
different constraints and our reference matrix Q does not have to
be block-wise constant complicates the analysis. Moreover, our
reference matrix can be weakly assortative instead of strongly
assortative.

The results on networks, covariates and the combination of
the two essentially reduce to identifying a good reference matrix
(Q) for the input matrices A, K, and A 4+ LK, which

1. satisfies the properties of Q in the above lemma;

2. has a large separation ming (ﬂ,gm) — ,BIEOM)) increasing the
denominator of Equation (4);

3. has a small deviation from M, thereby decreasing the numer-

ator of Equation (4).

Now the main work is to choose the reference matrix Q for
A + AK. As pointed out before, a common choice for reference
matrix of A is E[A|Z]. For the covariates, define the set of “good”
nodes as follows:

S =U_ Sk where Sp = {i € Ci: |V — il < Ar). (5)

The intuition is that the “good” nodes are easier to cluster, and
the sub-matrix of K induced by S resembles a reference matrix
with a relatively large separation. Ay are selected such that the
kernel matrix induced by the rows and columns in S is weakly
assortative. Define

e =fQRA), sk:= I}l;?f(dkz — Ak — Ayp),

Vg = Ik — Sk. (6)

A simple use of triangle inequality gives min;jes, Kjj > r and
maX;es, jesy t#k Kij < sk. When max{3Ag + Ag,3A¢ + Ak} <
dk¢, the separation for cluster kis v > 0. We define the reference
matrix Qg as

(Qr)jj

F@2Ap,

B { ifi,j e Cy,
~ | min{f(dxe — Ak — A¢), Kjj},

iti € Cy,j € Co, k # L.
(7)

The choice of Ay is crucial. A large Ay makes the size of
nonseparable nodes S¢ small, but drives down the separation
k.

We are now ready to present our main result. As we will
show in the proof, the new separation is y = miny w.
Typically, in the general case with unequal sub-Gaussian param-
eters, one should benefit from using different Ay’s for different
clusters. For example for a cluster with a large a; — by, we can
afford to have a small vg. To think in terms of Ay, for this cluster
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one can have alarge Ay, which will make |Sk| larger than before,
but will not affect the separation (ax — bg) + Aovi of cluster
k very detrimentally. We now present our first main theorem.
All notations, B, ¥k, Tk, Tmin> dke> Mimin> £> and r are defined in
Table 1; f is defined in Table 3.

Theorem 1. Let ay = nBy, by = nmaxgpzBg, va =
% Zi<jvar(a,-j) > 9. Take A, = Ao/n, my = nTE, Mpin =
NTTmin, and 7o := ), (my exp(—Ai/Sl/f,f) + /my log my/2)/n.
Let X444,k be defined as in Equation (3). If 7, min = ©(1) and
ming (ax —bg+Xiovk) > 0, then, with probability tending to one,

I Xat2x — Xoll%
IXol17
63/Va + ko (20 + Y (1 — f(2A1)))

<2Kg :
12, ming (ax — bx + Aovk)

where v = f(2Ak) — maxy.x f (dke — Ag — Ag) (see Equation
(6)) for some Ay, Ay > 0and Ay + Ay < diy.

Here Kg is the GrothendiecK’s constant. The best value of
K¢ is still unknown, and the best known bound is Kg <
1.783 (Braverman et al. 2013). The proof can be found in Sec-
tion E in the supplementary materials. Since we work in the
sparse setting, we take A, = Ao/ for some constant 1. Hence,
the right hand side of the bound of Theorem 1 is a constant,
which decreases as the separation grows. Note that the assump-
tion that r and 7y, are both ®(1) is a common assumption in
the sparse setting (Guédon and Vershynin 2015; Montanari and
Sen 2016).

In general the upper bound depends on several parameters
such as 1 and the scale parameter 7 in the Gaussian kernel. We
provide procedures for tuning Ao and 7 in Section 4. The Aj’s
show up in the numerator as well as the denominator. Finding
the optimal Ay is cumbersome in the general case with unequal
Y’s. In Section 3.2, we derive an upper bound by setting all Ag’s
to be equal for concreteness.

Remark 2 (Connection to clustering accuracy). Intuitively, a
small Frobenius norm of X — X, for any matrix X should
result in good clustering if we conduct spectral clustering on X.
Indeed, as shown in Section G of the supplementary materials,
the average mis-clustering error rate per cluster can be upper
bounded using || X — Xo||F.

Remark 3 (Practical implications). All the theoretical results
in this article are about the global optima of the convex opti-
mization problem in Equation (3). There are many polynomial
time commercial softwares to solve a SDP, for example, Mosek,
SeDuMi, CVX, etc. Unfortunately even polynomial time com-
plexity can be prohibitive for moderately large networks. This
is why recently first-order methods like alternating direction
method of multipliers (Amini and Levina 2018) have gained
much popularity. However, first-order methods may not be
convergent (Chen et al. 2016).

In this article, we use a widely used (Li, Qi, and Yu 2013;
Rauhut and Stojanac 2015; Villar et al. 2016; Kushagra et al.
2017; Mixon, Villar, and Ward 2017) software SDPNAL+ Yang,
Sun, and Toh (2015), which uses second-order information.

The linear convergence properties of SDPNAL+ to the global
optima are presented in Yang, Sun, and Toh (2015, Theorems 3.1
and 3.2). One can also use divide and conquer type approaches
to compute SDP solutions using CVX, SeDuMi, or Mosek on
smaller local subgraphs and merge them to obtain the global
clustering as shown in Mukherjee, Sarkar, and Bickel (2017).
A more detailed discussion on different algorithms for solving
SDP’s is deferred to Section 4.2.

Now we present two natural byproducts of our analysis,
namely the result on graphs, that is, bounds on || Xy — X4 ||, and
the result on covariate clustering, that is, bounds on || Xo — Xk | -

3.1. Result on Sparse Graphs

While most community detection schemes give perfect clus-
tering in the limit for dense networks (Amini et al. 2013; Cai
and Li 2015; Chen and Xu 2016; Amini and Levina 2018; Yan,
Sarkar, and Cheng 2018), in the sparse case no algorithm is
consistent; however, semidefinite relaxations (among others)
can achieve an error rate governed by the within and across
cluster probabilities (Guédon and Vershynin 2015; Montanari
and Sen 2016). Most analysis for the sparse network are done
under strongly assortative settings.

Proposition 1 (Analysis for graph). Let ax, by defined as in Theo-
rem 1 are positive constants and v4 > 9. Then with probability

. Xa—X, 23a2r4/vA
tending to 1, % =

Q 1= Mmax/Mmin-

< ¢, if ming(ay — by) > where

The proof of Proposition 1 is in Section C of the supplemen-
tary materials. Note that in the above result, ay — by is constant
by definition, hence the error rate € never goes to 0. In addition,
both number of clusters r and the ratio between largest and
smallest cluster sizes o needs to be constant order w.r.t n to
guarantee the error rate does not increase when the size of the
network grows.

Remark 4. In contrast to having ming ax — maxy by (strong
assortativity) in the denominator like Guédon and Vershynin
(2015), we have ming (a; — bx) (weak assortativity), which allows
for a much broader parameter regime. It is important to note
that the condition in Proposition 1 requires the graph to be
fairly large. In fact, using a series of intricate and different tech-
niques, Montanari and Sen (2016) show that the constant 23 can
be improved to nearly match the information-theoretical lower
bound in the two parameter setting (within block probability
a/n and across block probability b/n) and equal-sized clusters.
In our general weakly assortative network and mixture of sub-
Gaussian covariates setting, optimizing the constant would be
much harder. We leave that for future work.

3.2. Result on Covariates

Analogous to the sparse graph setting, we present a result for
covariates: while SDP with covariates is not consistent with finite
signal-to-noise ratio, it achieves a small error rate if the cluster
centers are far apart. Before delving into our analysis, we provide
a brief overview of existing work.



For covariate clustering, it is common to make distributional
assumptions, such as mixture models with well-separated cen-
ters. The most well-studied model is Gaussian mixture mod-
els, which can be inferred by expectation-maximization algo-
rithm and its variants (Dasgupta and Schulman 2007). For
EM algorithm there have been some local convergence results
recently (Balakrishnan, Wainwright, and Yu 2017; Yan, Yin,
and Sarkar 2017). The condition required for provable recovery
on the separation is usually the minimum distance between
clusters being greater than some multiple of the square root of
dimension (or effective dimension).

Another popular technique is based on SDP relaxations. For
example, Peng and Wei (2007) and Mixon, Villar, and Ward
(2017) propose a SDP relaxation for k-means type clustering.
To make the analysis concrete, we present Proposition 2 with
A = A. The proof of Proposition 2 is deferred to Section D of
supplementary materials.

Proposition 2 (Analysis for covariates). Let K be the kernel
matrix generated from kernel function f. Denote vy as in Equa-

tion (6). If % > max {\/H, %}, then with properly chosen

1, with probability at least 1 — >, mik,

Xk — X 2 2 dmin
—” K 20”F §C042d—§m‘X max {log (—) ,r} .
”XO “F dmin wmax\/a

Remark 5 (Comparison with prior work). Inrecent work, Mixon,
Villar, and Ward (2017) show the effectiveness of SDP relaxation
with k-means clustering for sub-Gaussian mixtures, provided
the minimum distance between centers is greater than the stan-
dard deviation of the sub-Gaussian times the number of clus-
ters r. We provide a dimensionality reduction scheme, which
implies a weaker separation condition, in particular, dpi, =
Q (v/min(r, d)). Our proof technique is new and involves care-
fully constructing a reference matrix for Lemma 1.

3.3. Analysis of Covariate Clustering Whend > r

In high-dimensional statistical problems, the signal is often
assumed to lie in a low-dimensional subspace or manifold.
This is why much of Gaussian mixture modeling literature first
computes some projection of the data onto a low-dimensional
subspace (Vempala and Wang 2004). To reduce the dimension-
ality of the raw data, one could do a feature selection for the
covariates (e.g., Jin, Ke, and Wang 2017; Verzelen and Arias-
Castro 2017). In contrast, here we propose a much simpler
dimensionality reduction step, which does not distort the pair-
wise distances between cluster means too much. The intuition
is that, for clustering a sub-Gaussian mixture, if d > r, the
effective dimensionality of the data is r since the cluster means
lie in an at most r-dimensional subspace.

Assume ) mur = 0 for simplicity. We propose the fol-
lowing simple dimensionality reduction algorithm when d > r
in a spirit similar to Chaudhuri et al. (2009). We split up the
sample into two random subsets P; and P, of sizes n; and n—n;
and compute the top r — 1 eigenvectors U,_; of the matrix
S = Ziep V=TT e R4 where Y = Zie}zl -

S P Err— Now
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we project the covariates from subset P, onto this lower dimen-
sional subspace as Y, = UL ,Y; to get the low-dimensional
projections. We take n; = n/logn.

Lemma 2. Let M = ), ﬂkﬂkﬂf If ), mrpx = 0, and the

. . 2 dlogn
smallest eigenvalue of M satisfies 6,1 (M) > 5y, +Cy/ ——

for some constant C, the projected Y; are also independent
data points generated from a sub-Gaussian mixture in r — 1
dimensions, with sub-Gaussian parameter upper bounded by
Yy if i € Cy. Furthermore the minimum distance between the
means in the r — 1 dimensional space is at least dpin/2 with
probability at least 1 — O(r2n~%), where dpyy, is the separation
in the original space.

The proof of this lemma is deferred to Section F of the sup-
plementary materials. Typically 6,_; (M) signifies the amount
of signal. For example, for the simple case of mixture of two
Gaussians with 7, = 1/2,and g, = —u1, 61 (M) = |1 ll?,
which is essentially drznin /4. Hence, the condition on 6,_;(M)
essentially translates to a lower bound on the signal-to-noise

ratio, that is, d2. > 48y2  +C'/ dlog’n ¢ come constant C'.
min — max n

When d > r, if one applies Lemma 2 on the r — 1 dimensional
space, then as long as d2. = Q(¥2,,7), the separation in the
low-dimensional space also satisfies the separation condition in
Proposition 2. Thus, the dimensionality reduction brings down
the separation condition in Proposition 2 from €2 (I/Imax\/c_i) to
Q (Ymaxv/min(r, d)).

The sample splitting is merely for theoretical convenience
which ensures that the projection matrix and the projected data
are independent, resulting in the fact that the final projection
is also an independent sample from a sub-Gaussian mixture.
To be concrete, the labels of P; do not matter asymptotically,

since they incur a relative error in [|Xo — Xk||r/[|IXollF less

than ,/n2/(m?%. logn)//r < \/a?r/logn, where & and r are
both constants. In our setting, the relative error in Proposition 2
is a small but nonvanishing constant, and so this additional
vanishing error term does not affect it. One can make P; much
smaller, however, this will come at the expense of a slightly worse
separation condition and tail probability in Lemma 2. However,
this sample splitting step is not necessary in practice (Chaudhuri
et al. 2009), and so we do not pursue this further.

Remark 6. We would like to point out that, in Binkiewicz,
Vogelstein, and Rohe (2017), d grows with # to make the mis-
clustering rate converge to zero. It is natural to wonder, why do
dimensionality reduction? In other words, should large dimen-
sion somehow not help in the concentration of individual ele-
ments of the kernel matrix K? Indeed, the squared pairwise
distance between two nodes, respectively, in communities a and
b, concentrates around || ia — pp > + 2do? (for sub-Gaussian
mixtures with equal covariance matrices o2I;) at rate v/d. If
lta — mpll grows faster than V/d, indeed one should have
consistent clustering, similar to settings in El Karoui (2010)
and Yan and Sarkar (2016). However, in our case, we show
that ||;tg — wpll needs to be larger than just /min(d, r), which
can be much smaller than +/d in high-dimensional settings.
This can happen when the signal is embedded in some lower
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dimensional manifold. In these cases, dimensionality reduction
helps reduce noise, as we demonstrate with experiments in the
supplementary materials (Section H).

We now present the tuning procedure, and experimental
results.

4. Experiments

In this section, we present results on real and simulated data.
The cluster labels in our method are obtained by spectral clus-
tering of the solution matrix returned by the SDP. We will
use SDP-comb, SDP-net, and SDP-cov to represent the labels
estimated from X4y, x, X4, and Xk, respectively. The latter
two are used as references of graph-only and covariate-only
clustering, respectively. Clustering performance is measured by
normalized mutual information (NMI), which is defined as the
mutual information of the two distributions divided by square
root of the product of their entropies. We have also calcu-
lated classification accuracy which shows similar trends, so only
NMIs are reported here. We compare the following methods:
(1) covariate-assisted spectral clustering (ACASC) (Binkiewicz,
Vogelstein, and Rohe 2017); (2) JCDC (Zhang, Levina, and Zhu
2016), (3) SDP-comb, (4) SDP-net, and (5) SDP-cov.

4.1. High-Dimensional Covariates

When the data are high-dimensional, we reduce the dimen-
sionality of the high-dimensional covariates by projecting onto
the top r singular vectors of the sample covariance matrix of
covarjates Y (as described in Section 3.3). One may wonder
if it would help to do feature selection using contemporary
methods (Jin, Ke, and Wang 2017). Note that feature selection
will not work well if the means were to be rotated, whereas
a PCA-based dimensionality reduction would. We provide a
detailed discussion and more experiments comparing feature
selection with our simple dimensionality reduction in Section
H of the supplementary materials.

4.2. Implementation and Computational Cost

Semidefinite programs are used in a variety of practical
applications ranging from inference in networks (Cai and Li
2015; Chen and Xu 2016; Amini and Levina 2018), control
theory (Fares, Noll, and Apkarian 2002), and general clustering
problems (Mixon, Villar, and Ward 2017). The widely used
commercial softwares for solving them (CVX, SeDuMi, Mosek,
etc.) typically use interior point methods (Vandenberghe and
Boyd 1996). In a nutshell, a primal-dual interior point method
iteratively uses Newton’s method to solve for a sequence of
points which converge to the optimal solution. For a standard
SDP, these methods require roughly O(mn® + m*n* + m?)
operations (Monteiro and Zanjcomo 1999), where m denotes
the number of equality constraints and »n denotes the size of the
problem. However, even polynomial time is not good enough
for solving moderately large semidefinite programs. This is
why designing large scale SDP solvers with both linear and
nonlinear constraints has been an active area of research in

the optimization community (Wen, Goldfarb, and Yin 2010;
Monteiro, Ortiz, and Svaiter 2014; Zheng and Lafferty 2015).

In contrast to interior point methods, first-order methods
are characterized by simple operations per iteration (Burer and
Monteiro 2003; Renegar 2014): matrix-vector multiplications,
vector dot products, and top eigenvalue-eigenvector pair
computations, which are more scalable in practice. Despite
being scalable, first-order methods are not necessarily con-
vergent (Chen et al. 2016). To improve over existing first-
order methods, recently Yang, Sun, and Toh (2015) introduced
a second-order Newton-CG algorithm for solving conic
programming coupled with a convergent 3-block alternating
direction method of multipliers (Sun, Toh, and Yang 2014).
The corresponding solver is SDPNAL+, which enables the
authors to solve, for the first time, 95 difficult semidefinite
relaxations of quadratic assignment problems to an accuracy
of 107 efficiently, while existing first-order methods can only
successfully solve about a third of these.

SDPNAL+ has been widely used by researchers for solv-
ing semidefinite programs (Li, Qi, and Yu 2013; Rauhut
and Stojanac 2015; Villar et al. 2016; Kushagra et al. 2017;
Mixon, Villar, and Ward 2017) and optimization toolboxes
like Sum of Squares Optimization Toolbox for MATLAB
(SOSTOOLS, Papachristodoulou et al. 2013). One of the
problems tested by the authors is closely related to the relaxation
we use (Equation (3)).

Solving the SDP for a network of 2000 nodes with average
degree around 8, takes about 30 min on an Intel(R) Core(TM)
i7-4770 CPU @ 3.40GHz processor. In comparison, ACASC
takes less than 10 sec, and JCDC takes around 20 hr.

4.3. Choice of Tuning Parameters

In all experiments in Section 4, we set mpyi, = 1. The impact
of different choices of mpj, is discussed in Section H.2 of the
supplementary materials. We now present the tuning of the scale
parameter in the kernel matrix n and the tradeoff parameter
between graph and covariates 1,. In most of our experiments,
the number of clusters is assumed known. In this section, we
also provide a practical way to choose among candidates of r
when it is not given.

4.3.1. Choiceofy

We use the method proposed in (Shi, Belkin, and Yu 2009) to
select the scale parameter 7. The intuition is to keep enough (say
10%) of the data points in the “range” of the kernel for most (say
95%) data points. For each data point Y;, we compute g; as the
10% quantile of ||Y; — Yj||,j € [n], and the scale parameter as

95% quantile of g;
n= # and w = °q 9i

\/95% quantile of x3

4.3.2. Choiceof A,

As A, increases, the resulting Xa4,,x clustering gradually
changes from X4 clustering to Xx clustering. Our theoretical
results show that, with the right A,,, X443,k and Xy should be
close, and hence also have similar eigenvalues. Let 6;(M) be the
ith eigenvalue of matrix M. Define the eigen gap function for
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clustering matrices

&(X) = (0-(X) = 6r11(X))/0,(X). (®)

Using Weyl's inequality and the fact that || X441,k — Xollop <
Xats,x — Xollp, we have: 6,(Xo) — [ Xat,x — Xollr =<
Or(Xatik) < 0:(Xo) + [ Xa+a,& — Xollr. Since g (Xo) =
1, we pick the X, maximizing g-(Xa4x,x). Figures 1(a)-(c),
respectively, represent the situation where graph is uninfor-
mative (Erdés-Rényi), both are informative and covariates are
uninformative. We plot g,(X4+,,x) and NMI of the clustering
from X415,k with the true labels against A,,. Figure 1 shows that
gr(Xa+a,x) and NMI of the predicted clustering have a similar
trend, justifying the effectiveness of the tuning procedure.

4.3.3. Unknown Number of Clusters

It is hard to know the true number of clusters r in many real-
istic settings. While only a few methods have been proposed
for selecting r under the sparse SBM (Le and Levina 2015),
these are designed specifically for graph adjacency matrices and
cannot be generalized to kernel similarity matrices resulting
from the covariates. We observe that the eigen gap (Equa-
tion (8)) acts as an informative indicator for picking r. When
r is unknown, we run the SDP over a grid of {1, k}, and choose
the pair that maximizes the eigen gap gx(Xa+y1,x). As shown
in Figure 2, we construct two settings to test the performance
of using eigen gap to select r. In the first setting, the true

(b) true r = 10.

model has 3 clusterings with proportion 3:4:5, the probability

1.6 12 016

matrix is B = 001 % | 1.2 16 0.02 |. The covariates are high-
0.16 0.02 1.2

dimensional Gaussians centered at u; = (0,2,0,...,0), uy =

(-1,-0.8,0,...,0), u3 = (1,—0.8,0,...,0) with covariance
matrix Ijgo. We sample n = 800 data points, on which we
run SDP with different choices of 1, and specified number of
clusters k. For each pair of parameters, we compute the NMI
and gx(X) and plot them on the upper and lower panels of
Figure 2(a). On the x-axis we have a monotonically increasing
function of A, (which is p);—’in) for better illustration. As we can
see, the eigen gap and NMI has a similar trend, hence picking
the pair that optimizes the eigen gap gx(Xa41,k), will have a
relatively high NMI as well. Note that, here the mis-specified
k = 2 has a higher NMI than k = 3, which is the true value of
r. This indicates that, even when the number of clusters is mis-
specified, the SDP is still able to find structure that correlates
with the underlying model. This phenomenon is also observed
in several other works for dense graphs (Perry and Wein 2017;
Yan, Sarkar, and Cheng 2018).

In the second scenario, we generate from a SBM with 10
equal-sized clusters, where B = 0.046119+0.004Eo. The covari-
ates are generated from a mixture of Gaussians with means
[3 * L0 | 010,901, where [-|-] represents the horizontal stacking
of matrices and 0, , represents all 0 matrix of size m x n. We
conduct the same type of experiment as above and plot the NMI
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and eigen gap. In this case, the eigen gap successfully recovered
the true number of clusters.

4.4. Simulation Studies

In this section, we consider two simulation settings. In the

first setting, we generate three clusters with sizes 3:4:5, with
1.6 1.2 0.16

n = 800. The probability matrix is B=0.01%| 1.2 1.6 002,
0.16 002 12

and the covariates for each cluster are generated with 100
dimensional Gaussians, whose centers are only nonzero on
the first two dimensions with ©; = (0,2,0,...,0), u, =
(-1,-0.8,0,...,0), u3 = (1,—0.8,0,...,0), and covariance
Lgo. This is the same setting as in the first simulation for
unknown r. We first conduct dimensionality reduction by
projecting onto the top r singular vectors of the sample
covariance matrix of Y; then we solve the SDP with the tuning
procedure as in Section 4.3, and finally we get the cluster labels
by spectral clustering on the solution clustering matrix. In
this example, the network cannot separate out clusters one
and two well, whereas the covariates can. On the other hand,
clusters two and three are not well separated in the covariate
space, while they are well-separated by the network parameters.
The experiments are repeated on 10 independently generated
samples and the boxplot for NMI is shown in Figure 3(c).
SDP-comb performs better than ACASC and JCDC in these
experiments, possibly because the latter are better suited for
denser networks. The variance of JCDC is larger compared to
the other methods, possibly because JCDC solves a nonconvex

objective function via alternating minimization, and sometimes
gets stuck at local optima.

In Figures 3(d)-(f), we examine covariates with nonlinear
cluster boundaries. The graph used here is the same as above,
and the covariates are two-dimensional, whose scatterplot is
shown in Figure 3(e). Since the Gaussian kernel is more suitable
for detecting nonlinear decision boundaries, SDP-comb per-
forms better than ACASC, which uses the linear inner product
kernel. In both simulations, SDP-comb outperforms others.

In these experiments, ACASC seems to perform similarly
to SDP-net. In general, we noticed that when the network and
covariates are “aligned,” for example, both have separation for
all clusters, ACASC performs better than when they have com-
plementary information. For space constraints, we present more
experiments in Section H of the supplementary materials.

4.5. Real World Networks

Now we present results on a real world social network and an
ecological network. The performance of clustering is evaluated
by NMI with the ground truth labels.

4.6. Mexican Political Elites

As discussed before, this network (Gil-Mendieta and Schmidt
1996) depicts the political, kinship, or business interactions
between 35 Mexican presidents and close collaborators. The two
ground truth clusters consist of politicians with military back-
ground and civilian background. The year in which a politician
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Table 4. NMI with ground truth for various methods.
Dataset SDP-net SDP-cov SDP-comb ACASC JcDC
Mexican politicians 0.37 0.43 0.46 0.37 0.25
Weddell Sea 0.36 0.22 0.51 0.32 0.42

The highest values in the corresponding row are highlighted.

first held a significant governmental position is used as a covari-
ate. It gives a good indication of the labels as in Figure 4(b). This
is because the military dominated the political arena after the
revolution in the beginning of the twentieth century, and were
succeeded by the civilians.

Table 4 shows that our method outperforms other covariate-
assisted approaches in NMI. In Figures 4(a) and (c), node 35
has exactly one connection to each of the military and civilian
groups, but seized power in the 90s, which strongly indicates
a civilian background. Meanwhile, node 9 took power in 1940,
a year when civilian and military had almost equal presence in
politics, making it hard to detect node 9’s political affiliation. Yet
node 9 has more edges to the military group than the civilian
group. By taking the graph structure into consideration, we can
correctly assign the military label to it.

4.7. Weddell Sea Trophic Dataset

The next example we consider is an ecological network col-
lected by Jacob et al. (2011), describing the marine ecosystem
of Weddell Sea, a large bay off the coast of Antarctica. The
dataset lists 489 marine species and their directed predator-
prey interactions, as well as the average adult body mass for
each of the species. We use a thresholded symmetrization of the
directed graph as the adjacency matrix. Let G be the directed
graph, the (i, j)th entry of GG captures the number of other
species which i and j both feed on. We create binary matrices
A; = 1(GGT > ). Choosing different 7’s between 1 to 10 gives
similar clustering. We use 7 = 5.

All species are labeled into four categories based on their
prey types. Autotrophs (e.g., plants) do not feed on anything.
Herbivores feed on autotrophs. Carnivores feed on animals that
are not autotrophs, and the remaining are omnivores, which feed
on both autotrophs and other animals (herbivore, carnivore,
or omnivores). Since body masses of species vary largely from
nanograms to tons, we work with the normalized logarithm of
mass following the convention in Newman and Clauset (2016).

Figure 5(b) illustrates the log body mass for species. Without
loss of generality, we order the nodes by their prey types.

In Figure 5(c), we plot A;. Since the autotrophs do not feed
on other species in this dataset, and since herbivores do not
have too much overlap in the autotrophs they feed on, the upper
left corner of the input network is extremely sparse. On the
other side, the body sizes for autotrophs are much smaller than
those of other prey types. Therefore, the kernel matrix clearly
separates them out.

We see that SDP-net (Figure 5(e)) heavily misclusters the
autotrophs since it only replies on the network. SDP-cov (Fig-
ure 5(f)) only takes the covariates into account and cannot
distinguish herbivores from omnivores, since they possess sim-
ilar body masses. However, SDP-comb (Figure 5(d)) achieves
a significantly better NMI by combining both sources. Table 4
shows the NMI between predicted labels and the ground truth
from SDP-comb, JCDC and ACASC. While JCDC and ACASC
can only get as good as the best of graph or covariates, our
method achieves a higher NMIL.

5. Discussion

In this article, we propose a regularized convex optimization
framework to infer community memberships jointly from
sparse networks and covariates. Our theoretical bounds show
that, the proposed method works under weak separability
of clusters, which is a much broader parameter regime than
those in most existing work. Our methodology leads to higher
clustering accuracy especially when each source only reflects
clustering structure on a subset of the nodes. We demonstrate
the performance of our methodology on simulated and real
networks, and show that it in general performs better than
other state-of-the-art methods. While we limit ourselves
to two sources for ease of exposition, our method can be
easily generalized to multiple views or sources. Empirically,
we demonstrate that our method works for covariates with
nonlinear cluster boundaries, the theoretical analysis of which
is part of future work.
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Supplementary Materials for

Covariate Regularized Community Detection in Sparse Graphs

In this document we collect technical details and accompanying lemmas which are
necessary for the main results in the paper Covariate Regularized Community Detection
in Sparse Graphs. When we make references to equations or theorems etc. in the main
document, we follow the numbering scheme of the main document, and the references do
not have any alphabets in them.

In Sec. [A] we introduce the background for sub-gaussian random vectors. In Sec. [B,
we present the proof of Lemma 1. Proofs for graph only and covariates only SDP (Propo-
sitions 1 and 2) are shown in Sec. [C] and Sec. [D] respectively, and the proof of the main
theorem is in Sec. [E| Sec. [F| shows the results and proofs related to dimensionality reduc-
tion, and Sec. [G establishes an upper bound of clustering error in terms of the Frobenius
deviation of SDP solution to ground truth clustering matrix. Finally, we present additional
experimental results in Sec.

A Background on Sub-gaussian Random Vectors

In our analysis, we make use of some useful properties of sub-gaussian random vectors
from (Hsu et al., [2012; Wainwright, 2015).

Definition 1 (Sub-gaussian Random Variable). A random wvariable X with mean u is
defined to be sub-gaussian if there exists a positive number 1, such that the following holds:

E[MX 1] < V™2 For all N € R
1 1s also called the sub-gaussian parameter.
This can be easily generalized to sub-gaussian random vectors (Hsu et al., 2012).

Definition 2 (Sub-gaussian Random Vectors). A random vector X € R% with mean vector
p € RY is defined to be sub-gaussian if there exists a positive number 1), such that the
following holds:

E[evT(X—u)] < e¥’llIP/2 For all v € R?

Y 18 also called the sub-gaussian parameter.



B Proof of Lemma 1

We start with the following lemma.

Lemma B.1. For any X that satisfies X = 0,X >0, X1 = 1, we have || X||% < trace(X).

Proof. We first show that for all such X, the eigenvalues of X are in [0, 1]. Let v; be the
eigenvector of X corresponding to the i'* largest eigenvalue 6;. Since X is positive semi-
definite, §; > 0,Vi. Without loss of generality, let i* = arg max; |v1(7)], i.e. be the index of
the entry with the largest absolute value of v;. Since Xwv; = 6,v, and Zj Xi;=1,X;; >0,

we have:
Or01(i7) = | > Xie 01 (5)] < ZX
J

Therefore |0;| < 1.

DI < o (@)

1 X1% = 2912 < 291' = trace(X

Now we are in position to prove Lemma 1.

Proof of Lemma 1. Note that both Xy and X, are in the feasible set F, by optimality, we
have (M, X ;) > (M, Xo). We construct @) as stated in the lemma to obtain: (Q, X — Xo),
(M —Q, Xy — Xo) > (Q, Xo — Xur). Note that @ is constant on diagonal blocks and upper
bounded by ¢, on off-diagonal blocks, with respect to the clustering of nodes. Using the
fact that |Cy| = my, we have:

(M, Xo—Xor) =3 > (5,;” 3 (m—— Xt >+ZZQU (Xu ,j)>

k

k i€eCy j€Ck l#k jeCy
SH LD W ETEMNEE M
k ieC jeCh k £k jeC;
=2 ( " ( Z(XW) - (1 - Zwm))
k i€eCy jeCy jeCy
=3 =) (1 - Z<XM>U) = min(3" = 8" 0D (1 - Z(XM»J-)
k 1€Cy JjE€Ck k i€Cy 7€Ck

2



The third line and last inequality uses the constraint that Zj Xij =1, and 1 —
> jech Xy>1- > X;; = 0. On the other hand,

1Xar = Xollz =l Xarll — [1XollE + 2(Xo — Xar, Xo)

By Lemma|B.1, and the fact that || Xo||% = r, we have || Xa/||%— || Xo||% < trace(Xy)—r = 0.
. . in) _ n(out)
Since ming (3, L) >0,

| X0 — Xol|F < 2(Xo — X, Xo)

I N

k i€Cy jeCy
DRI (BN
k ZECk jeCk
2
<23 (1o o)
M e ey, jeCh
2
< <Q7 XO - XM>
M ITllIlk< (in) /BkOUt))
2
< ~ (M —Q, Xy — Xo)

Mmin mink (/Blizn) - ﬂ](gOUt))

C Proof of Proposition 1

We first introduce the following result on sparse graph with Grothendieck’s inequality by
Guédon and Vershynin (2015).

Lemma C.2 (Guédon and Vershynin| (2015)). Let Mf = {X : X = 0,diag(X) < I},
A = (a;;) € R™" be a symmetric matriz whose diagonal entries equal 0, and entries above
the diagonal are independent random variables satisfying 0 < a;; < 1. Let P = E[A|Z].
Assume that p = ﬁZiq Var(a;;) > %. Define the l«, — {1 norm of a matriz M as
| M||¢—e, = max, yeqryn Z - x;y; M. Then, with probability at least 1 — e*5™™, we have
maxy . [(A— P, X)| < KGHA Plloe e, < 3Kap'/*n®?, where K¢ is the Grothendieck’s
constant, and its best know upper bound is 1.783.



Proof of Proposition 1. Notice that A and P := E[A|Z] has zero diagonals. Therefore,

(P QX Xo) =3 Y ag/n (i - (Xm)
k ieCy Mk ’ (C.l)
S Zpk - pmintrace<XA) S T(pmax - pmin)
k

where prpax = maxy ai/n and py;, = ming a,/n. Thus by Lemma 1 and Eq (C.1),

2
Mmin Ming (ag /1 — by /n)

||XA _XOH%‘ S (<A_P7XA _XO> +T(pmax_pmin))

In sparse regime, both my;, Xo and my;, X4 belong to the set /\/lg Let vg = np > 9,
applying Lemma we get with probability at least 1 — 357",

22 \ n2'UA + 2r(pmax — pmin)
2 ming(ag/n —by/n) My, ming(ag/n — by/n)

Xi— X% <
24 = o[} <—

Substituting py, = ax/n, ¢z = b /n, and using the fact that

2T(pmax - pmin) o 2Tmmin<pmax - pmin) < 2 maxy Qg — 0 \/n_zg>
- )

Moin Ming (p, — qx) M2, ming(pr, — 1) — m2,, ming(px — i)

Recall that a := Mypax/Mmin, We get with probability tending to 1,

X — X2 _ 23n%,/va _ _230®roa
1 Xoll7 = rm2,, ming(ay — by) ~ ming(ay — bi)

min

D Proof of Proposition 2

Proof of Proposition 2. Recall that by definition, for i € C, Y; — uy is sub-gaussian random
vector with sub-gaussian parameter 1. Using the following concentration inequality from
Hsu et al.| (2012) for sub-gaussian random vectors, we have:

For i € Cy, P(||Y; — pux||? > ¢2(d + 2Vtd + 2t)) < e*

We take ¢ = c3d for ¢, > 1. Since 1+ 2¢ + 2¢2 < 5¢2 for ¢, > 1, we get P(||X —EX|]? <
5c03d) > 1 — exp(—cid). Let A, = v/5epbpv/d, we divide the nodes into “good nodes”
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(those close to their population mean) Sy and the rest as in Eq. (5), which we redefine for
completeness:

S, = {Z e (Cy: ||Y; — /~Lk‘|| < Ak}, S = Uzzlsk- (DQ)

Let m® = my, — |Sk|.  We want to bound m® with high probability. Note that

m = > ice, LIYi — pl| > Ay) is a sum of i.i.d random variables. Therefore, using the

Hoeffding bound we have:

P (mgk) — myP(i & Sk) > my,6) < exp(—2my,6°)
Using 6 = \/W, we have:

P (m® = miP(i g S) = Vmogmif2) < ——
Since P(i & S;) < exp(—cid), we have:

P (mﬁ’“) > my, exp(—cid) + v/my, logmk/2)> <

Finally, using union bound over all clusters we get:

1
P <mc 2 kaefc)%d + Z \ M lOg mk/2> S Z m—k (D3>
k k k

Now recall the reference matrix from Eq. (7). For completeness we redefine Qx below.

f(2Ay), iti, 7 € Cy

(@x)ij = {min{f(dkg —Ap —Ay), Kij}, ifi€CyjeCuk#L (D-4)

By Lemma 1, all diagonal blocks are blockwise constant and the off-diagonal blocks are
upper bounded by f(dkg — Ak — AZ) Let Ve = f(QAk) — IMaXy+g f(dkg — Ak — AZ); and

v = ming v;. If v, > 0, we have

Xk — Xollz £ ——(K — Qx, Xx — Xo)
Apply Grothendieck’s inequality,
2K,
Xk = Xoll7 € —=IIK = Qucllewes (D.5)



Now it remains to bound the ¢,, — ¢; norm of K — Q. Note that if i € Si,j € Sy, k # /,
then by a simple use of triangle inequality we have K;; < f(dp—Ar—Ay), so K;; = (Qk)ij;
and if 4, j € S, then K;; > f(24A).
1K = Qillesey = max > ziy; (Kij — (Qx)ij)
b 17]

< ’max Z zy; (Kij — (Qk)ij) + i max Z 2y (Kij — (Qx )ij)

nyelE" TS V" STies
(@)
< max T; i)+ 2m,
e (g s y; (I (@x)is)
@ max Z Z zy; (K — f(2AR)) + 2men
zyel£ln k 1,j€Sk
< Zmz(l — f(2Ay)) +2m.n
k

(D.6)

where (7) is due to |K;; — (Qk)ij| < 1, and (i) comes from the definition of k. Now

Eq. (D.5) follows as

| Xk — Xol|F <

m12nin’y
4KG 1-— f 2Ak —c2? \/§Kgn
= 2 (m% Famne Wy )4 SR ) milogm
min min k

(D.7)

Recall that f(z) = exp(—nz?), and v = ming {f(2Ax) — maxez, f(dre — Ar — Ag)}-

For simplicity, we assume ¢ = ¢y. We take ¢y = \/ log ( —ain_ > /d and the scale parameter

n= 2068%%’ for some ¢ > 0, which will be chosen later. Furthermore, we also define

dmin
T S eotmadd (D)

If € > 1, then dpin > 4v/5¢0UmaxVd, and hence v > 0. Also, since n(dmin—Q\/ECmeaX\/E)2 =
P€2, Yk, 0 € [r], if dmin := mingg diy > 4v/5¢0UmaxV/d, then

Y > f(2\/gcowmax\/3> - ( min 2\/_Cowmax\/_) - exp(—q§) - exp(—q§§2).



and

— f(2A1) <1 — F2VBCotmaxVd) = 1 — exp(o)

Recall @ = Mmax,
m

min

1 Xk — Xoll% (D.9)
1- /(2 2r exp(—cdd) . 22K, : I
§4K(;TO_/2 . f( \/gcowmax\/a) + TeXp< Cod) 1 \/_ GMmaxT \gmmax 0g Mpax
v ’ymmin
4Kgra? 9
< qro (1 — exp(_¢) + r;ﬁmax + r\/log mmax/Qmmax)
’y min
1 - — 2 1 max 2 max
<AK oo ( exp(—¢) + TwmaXdQ/dmm r\/ 08 Mumax/2m : (D.10)
exp(—¢) —exp(=0€?) " exp(—9) —exp(—¢¢?)
A ¥
We will first bound part (A).
eXp(¢) -1+ €Xp<¢)% 0 (b + %2 eXp((b) + eXp((b) 2rwmax
(4) = = (D.11)

1 — exp(¢ — ¢&?) = 1 —exp(¢ — ¢£?)

where (i) uses the Mean value theorem: for ¢® — 1 < x + e¥2?/2 for y € [0, z]. If w—r\‘/& >
max {1, %}, using the fact that logx < \/x, we have:

dfmn 180 dmm 180 d>. 9
T R ( : d) - e

max

Using Eq. - we see that & > ‘7 1 =2, and hence v > 0. Now we pick ¢ = .

Now we will use this to obtain a lower bound on 1 —exp(¢ — ¢&?). Since & > 2, we have
£2/4 > 1. Hence

1 —exp(¢ — ¢€) > 1 — exp(¢¢*/4 — ¢¢%)
= 1— exp(—¢362/4) = 1 — exp(—3log&/4) = 1 — £/
>1-2731= 4

Using the fact that the function l‘ff is monotonically decreasing when x > 2, we see that
¢ < log2/2? and exp(¢) < 1.2. Furthermore,

7 > exp(—¢)(1 —exp(p(1 - £))) > .3 (D.12)



Now Eq. (D.11]) yields:

¢? 23 d
¢+ 1.2 <7 + a2 ) < clog¢é  6ry?,.d

A) < n
( ) N 4 B 52 d?nin
(i1) 2 2 ) 2
< dlog(é+1)  6ry;,.d o Ui d log inin 67"7,Z)maxd7
(g + 1)2 d?nin d?nin 1/}max\/c_l d?nin

for some constant c. To get (i7), note that

log & < log(¢ + 1) < 2.25log(€ + 1)
S S (O

Finally, we bound (B) in Eq. (D.10) using Eq. (D.12)).

1 2
B) - /108 Mipax/ mmax2 <o [10g Mimax
exp(—¢) — exp(—p&?) Mmax

for some constant ¢; > 0. Putting pieces together, we have

X — X 2 2 d dmin 1 max
—H K 20”F <Ca? max —57— max q log ST 208 Mmax
| ’ XO ‘ ’ F dmin wmax \/E mmax

,VE > 2

E Analysis for X\
Proof of Theorem 1. Let K; be defined as in Eq. (7). Let

v = mkin(ak/n —be/n+ M\ (f(2A%) — I?Qgcf(dkg — A — Ay))).

When v > 0, Lemma 1 with Q = ZBZT + )\, K;, we have

1 Xasnx — Xoll7 <
2

Mmin”Y

<<A — PaXA-i-/\nK — XQ> + r(mkaxak/n — IIlkiIlCLk/TL) + )\n<K — KI7XA+/\nK — X0>> .

Now by Grothendieck’s inequality on both (A — P, X 41,k — Xo) and (K — K, X4,k — Xo),
one gets,

9 2K¢ ,
1 Xarie = Xoll € = (2[4 = Plles, + r(maxay/n —minay/n) + 20| K = Kl )

min




By Lemma and Eq ,

4K,
X i — Xol2 < —-C <6x/n313+)\n <2mcn—|— S i1 - f(ZAk))>>
k

Min™Y

Using A, = Xo/n, My = N7, Mumin = NWmin, and my = Y, (mgexp(—A7/(5¢7)) +
/mylogmy/2)/n in conjunction with Eq (D.3), we get with probability tending to 1,

6y/Ua + Xo (2m0 + >, (1 — f(2A)))

2. ming(ay — b, + Aovk)

min

[ X asrx — Xol|F < 4Kq

F  Analysis of Covariate Clustering when d > r

Before proving Lemma 2, we clearly state our assumptions and other useful lemmas.

Assumption 1. We assume that M is of rank r — 1, i.e. the means are not collinear, or
linearly dependent, other than the fact that they are centered.

Lemma F.3. Let M = Y, mpupi and S be the covariance matriz of n data points from
a sub-gaussian mizture {my, pig, X }iq, then S = M + > . mE;. Let S be the sample
covariance matriz S = Z?:l(Yi—i’)(%—Y)T' We have ||S — S| < C Loen for some constant

C with probability bigger than 1 — O(n~4%).

This is a direct consequence of Corollary 5.50 from [Vershynin| (2010). Note that while
Vershynin (2010) use the Orlicz norm formulation of sub-gaussian random variables, we
use the more classical moment generating function based formulation (Wainwright, 2015;
Hsu et al., 2012). However, these definitions are equivalent in the sense that a sub-gaussian
parameter under the classical Definition 1 is within a constant factor of the sub-gaussian
norm used by (Vershynin, 2010) (see e.g. Lemma 5.5 of Vershynin (2010)). The main
ingredient of the proof is provided below.

Lemma F.4. Let U,._y be the top r — 1 eigenvectors of S estimated using Py, 0,_1(M)
be the r — 1" eigenvalue of M, and ma = max{iy,--- 1.} be the largest sub-gaussian
parameter of all mizture components. For any vector v in the span of {u;}i—;, as long

as 0,1 (M) > 5( 2+ C %) we have |[UL || > ||v]|/2 with probability at least
1—0(n%).



Proof. First note that 0,_;(M) > 0 since M is positive semi-definite. For simplicity we will

use 6 to denote 6,_1(M). Take ny = - and v to be a vector in the span of {y;};_;. By

definition, we have ||Mv| > 8|jv||. Let R =S — S. Denote & = 3, 7,%;, and as defined in
the statement of Lemma S = M +X. Thus, we have S = M + S + R.

Below we show that the operator norm of ¥ is bounded by 92 _ . Let w be the unit
principal eigenvector of 3. Consider a sub-gaussian vector y from cluster k. Since y — iy, is
sub-gaussian with parameter ¢, a straightforward application of Definition 2 shows that,

w? (y — py) is also sub-gaussian with sub-gaussian parameter .

Eexp(w’ (y — ) < exp(¢7/2)

Furthermore, its variance is
Var(w” (y — ) = w' Spw = || S|

By property of sub-gaussian distributions (Wainwright, 2015), the variance of a sub-
gaussian random variable is less than or equal to the square of the sub-gaussian parameter,
hence || Xx|| < 7. Finally, since the operator norm is convex, using Jensen’s inequality, we
have:

max

IZ]] < max || < 4 (F.13)

Since S is estimated from P, with n; points, applying Lemma with n = n; we get
|Rl| <e=C dk’%. By Weyl’s inequality,

n

150] = 1(M + R+ S)oll = (0 — ¢ — O0]l- (F.14)

max

Let U,.4 be the eigenspace orthogonal to U,_;.Assume the contradiction that ||[UL o] <
|v]|/2. Then there has to be a unit d dimensional vector u € span(U,.4), such that |u’v| >
llv]|/2. Let us write u = e tv1- c2vt, for |¢| > 1/2 and some unit vector v+ orthogonal
to v. Using triangle inequaiity and Eq [F.14] this yields:

. 0 — 2 — .
R e E

Now we will provide an upper bound on ||Svt]|.

. i _ (i) _ (iid)
1o 2 (M + S+ Rt < 8] +e < (92 + o).

max

10



€1

In the above equation, (i) is true since S = M + ¥ + R; (ii) is true since v is orthogonal

to the span of M, and (7i7) is true by Eq. (F.13). Hence

|Sul| > (F.15)

0 3( max + 6)
5 :

On the other hand, we also have the following inequality.

(423)

(4t) _ (iv)
15| <|9( )| < 60,(5) +e < 0(M)+ S]] +e < Ut

n(
(i) holds since u € span(U,.4), (ii) and (iii) holds by Weyl’s inequality, and (iv) holds
since 6, (M ) = 0 and by Eq. (F.13). This contradicts with Eq. (F.15) since we assume
6 > 5(¢2,.,. + €). The result is proven by contradiction. O

We are now ready to prove Lemma 2.

Proof of Lemma 2. Recall that Y/ = U |Y; where U,_; and Y; are from two different
partitions and hence independent. Let Z; € [r] denote that latent variable associated with
1. Thus,

E[Y!|Z; = a, ] = U, E[Yi|Z; = a] = U, pa.

The means of the new mixture are pf, := U], 1, The covariance matrix after the projection
is UL 3,.U,_; for cluster k. For any xz € R"™!,

21707 |2 21112
E[GXP(ITUTT—1Y]‘>] < exp (M) — exp (¢k”2 1 )

Hence the sub-gaussian parameter for cluster k after projection is no larger than . Fur-

thermore, using Lemma we have miny. H,uk ol = ming e |UL (pr — e)]| > dinin/2-
Since this requires an application of Lemma [F.4| to each of the Vectors Lr — e, kL€ [r],

the success probability is at least 1 — é(rzn*d) by union bound. O]

G From X to Cluster Labels

From some solution matrix X , we can apply Spectral Clustering on it to get the cluster
labels. To remind the reader, Spectral Clustering proceeds by computing top r eigenvectors
of X and then doing k-means clustering on these. Below we present a theorem that bounds
the misclassification error by the Frobenius norm of matrix difference, given a (1 + ¢)
approximate solution in the k-means step in spectral clustering. The proof uses Lemma
5.3 of Lei et al.| (2015), which for completeness we include below.
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Lemma G.5 (Lemma 5.3 of Lei et al| (2015)). Define M,,, € {0,1}"*" be the set of
membership matrices, such that any element of it has only exactly one 1 on each row.
Consider two matrices U, U € R™" such that U = ©*M with ©* € M, ., M € R™". Let
Gy ={i: 03 =1}, i.e. the nodes in the k'™ cluster induced by ©*. Consider the k-means
problem:

arg  min  ||[U—6OM|>2% (G.16)

©eM,, »,MERT*"
Let (@, M) be a (1 + €) approzimate solution to Eq. (G.16) for e > 0:
U —-OM|%<(1+¢  min [|[U—-OM|3%.

O€eMy,r,MER X"

Let U = ©OM. For any Op < minggy ||Me — My, ||, define

Then

T

> CISkI6r < 4(4+26)|U = U7

k=1

Moreover, if (16 +8¢)||U — U\|% < nyd? for all k € [r], then there exists a v x r permutation
matriz J such that Og« = Og+J, where G = U,_;(Gg \ Sk) -

The following lemma bounds the mis-clustering error by the Frobenius norm of X — X,.

Lemma G.6. Consider the clustering label obtained from spectral clustering from some
clustering matriz X. If 64(2 + €)||X — Xo||% < 1, then there exists Sy C Gy, such that

1 —|S X — X2
—EjLﬂg6q2+@l———¥E,
T T [ Xol[%

and all nodes in Uj,_,(Cy \ Sk) are correctly clustered.

Proof. Let us first connect the quantities in our clustering problem to the general Lemmal|G.5!
We will use the true clustering matrix Z as ©*, and thus, by definition G} becomes the
true k™ community Cj (See Table 1). Let V,V be the eigenvectors of the ground truth
clustering matrix X and the solution of our SDP problem X. By Davis-Kahan theorem [Yu
et al. (2014), there exists a r x r rotation matrix O such that,

81X — Xol%
(0,(Xo0) — 0r11(X0))?

IV VOl < = 8|X — Xo||% (G.18)
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Given the structure of X, its top r eigenvalues are all ones, and

V = Zdiag((1/y/m1,...,1//m;))0,
where O’ is some r X r rotation matrix. We take M = diag(1l/\/m1,...,1/y/m,)O'O,

U=V0,and U =V. Now ||My, — M,||> = - + -. Taking 8, = ,/mik%—ﬁ, and

mi my
applying Lemma [G.5, we have
S <515 (o + ) = 3 15 < a2+ X - ol
1 T 1 mg My —

[]

6y/a+Ao0(2m0+ 3, 72 (1—F(2A4)))

Corollary G.1. Let v = 2Kg i (an b hor) . Under the conditions of Theo-

rem 1, if 64(2+ €)1 < 1, denote Sy be the set of mis-clustered node in cluster k. Then with
probability going to 1,

61/0a + Ao (20 + 3, TH(1 — f(QAk)))'

— ||
— < 128(2 K,
; mi 2+ Kq 72, ming(ay — by, + Aov)

min

Proof. Tt can be shown by combining Theorem 1 and Lemma [G.6. O

H Additional Experiments

In this section, we present some additional experiments that are left out of the main paper
due to space limit.

H.1 Additional Parameter Settings

In this section, we present simulation results where the information on graph and covariates
are not complementary but each have separation for all clusters. Consider a SBM with
n = 800,7 = 3 and equal sized clusters. The graph is generated from SBM with B =
le — 3% (7.613+ 0.4F3). The covariates are generated from an isotropic Gaussian mixture,
with each pair of centers at distance 2, and covariance matrix for each cluster is I; where
d = 100. In this extremely sparse case, where average expected degree is around 2, JCDC
does not work well, so we only report the result of SDP-comb, SDP-net, SDP-cov and
ACASC in Figure [A] From the figure we can see that ACASC returns comparable NMI as
that of SDP-comb.

13
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Figure A: NMI of various methods on aligned information from network and covariates.

H.2 Choice of my;,

For the experiment in Section we choose the true my;,, which is n/r in this example.
If one specifies a t that is smaller than the true value, then the ground truth solution
matrix will be excluded from the feasible set causing slower convergence and lower accuracy.
On the other hand, if the specified value for m%ﬂ is larger than the true value, then we
are searching over a larger set, and the SDP may return sub-optimal clustering result.
To illustrate the effect of the choice of my,;,, we use the same parameter setting as in
Section but with different values of specified my,, and plot the result in Figure [B.
From Figure [B) we see that if the element-wise upper bound is over-specified, then there
exists an interval which allows similar clustering accuracy. However under-specifying the
upper bound is more detrimental for the SDP.

Note that in the simulations and real data examples in Section 4 we set mpy;, = 1.
This choice works fine when the network is reasonably sparse, average degree 6 in a 800
node network. However, when the network is very sparse, for example in the setting for
Section , with average degree 2 for n = 800, the choice of m.,;, matters more. In
principle, this can be tuned jointly with A as we tuned r in Section 4.3.
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Figure B: Comparison of NMI on various choices of element-wise upper bound.

H.3 Dimensionality reduction

In this section, we present experimental results for the dimensionality reduction algorithm
proposed in Section 3.3 of the main paper. We construct a mixture of gaussians in a low
dimensional subspace contaminated by high dimensional noise. The centers of the gaussians
are j1 = (0,3,0---,0), g = (=v/3,0,0---,0), us = (v/3,0,0---,0), and the covariance
matrices are all equal to I;. We compare the clustering results for increasing d of the
following methods:

1. (Unprocessed) The unprocessed features to construct the kernel matrix

2. (PCA-dim-reduce) Using dimensionality reduction as in Sec 3.3 by projecting onto
the top r singular vectors of the sample covariance matrix

3. (IF-PCA) Influential feature PCA proposed in |Jin et al. (2016)
4. (Ground-truth) The ground truth covariates (first two dimensions).

5. (IF-PCA-on-rotated-data)A random rotation of the high dimensional data points,
where the pairwise distances remain unchanged. Here the pairwise distances remain
unchanged and hence Unprocessed, PCA-dim-reduce and Ground-truth perform iden-
tically as the original unrotated setting.

15



0.3 |[—§— PCA-dim-reduce I S ~3
~¥-IF-PCA ~ :

Unprocessed 3
-} IF-PCA-on-rotated-data T
—T Ground-truth

~.
~.
~

0.2

.1 L L L L L L L
100 200 300 400 500 600 700 800 900 1000
Dimension

Figure C: NMI of clustering for dimensionality reduction and feature selection methods.

The average clustering NMI over 30 repetitions are reported in Figure The result
shows that high dimensionality makes the clustering problem harder. Both dimensionality
reduction and IF-PCA help improve the clustering result over the original high dimensional
problem. Dimensionality reduction is robust to rotations, where IF-PCA on rotated space
does not work well because the signal is no longer sparse in the rotated axes.
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