
1

Reliable Wide-Area Data Transfers for
Streaming Workflows

Hemanta Sapkota and Engin Arslan

Abstract—Many large science projects rely on remote clusters for (near) real-time data processing, thus they demand reliable
wide-area data transfer performance for smooth end-to-end workflow executions. However, data transfers are often exposed to
performance variations due to the changing network (e.g., background traffic) and dataset (e.g., average file size) conditions,
necessitating adaptive solutions to meet stringent performance requirements of delay-sensitive streaming workflows. In this paper, we
propose FStream++ to provide reliable transfer performance for large streaming science applications by dynamically adjusting transfer
settings to adapt to changing transfer conditions. FStream++ combines three optimization methods as dynamic tuning, online profiling,
and historical analysis to swiftly and accurately discover optimal transfer settings that can meet workflow requirements. Dynamic tuning
uses a heuristic model to predict the values of transfer parameters based on dataset characteristics and network settings. Since
heuristic models fall short to incorporate many important factors such as I/O throughput and resource interference, we complement it
with online profiling to execute a real-time search for a subset of transfer settings. Finally, historical analysis takes advantage of the
long-running nature of streaming workflows by storing and analyzing previous performance observations to shorten the execution time
of online profiling. We evaluate the performance of FStream++ by transferring several synthetic and real-world workloads in
high-performance production networks and show that it offers up to 3.6x performance improvement over legacy transfer applications
and up to 24% over our previous work FStream.

Index Terms—Distributed workflows; streaming science applications; high-speed networks; throughput optimization; online profiling

✦

1 INTRODUCTION

An increasing number of scientific applications demand re-
liable wide-area data transfer performance to quickly move
the data from data sources to remote processing facilities.
For example, The Laser Interferometer Gravitational-Wave
Observatories (LIGO) [1] are located in Hanford, WA and
Livingstone, LA, but the captured data is streamed to more
than ten institutions across the United States (US) and Eu-
rope in real-time to take advantage of distributed comput-
ing power and enable collaboration. Similarly, astronomical
survey project Legacy Survey of Space and Time (LSST)
captures images of the southern sky at an observatory (Vera
Rubin Observatory) in Chile but requires the data to be
transferred to High Performance Computing (HPC) facilities
in the US within 7 seconds of data capture to quickly
coordinate with other observatories and detect transient
events [2].

In addition to online streaming workflows, offline anal-
ysis of large scientific datasets also necessitates reliable data
transfer performance to overcome storage and compute lim-
itations. For example, when a bioscientist wants to process a
large volume of genome sequence datasets stored in central
repositories (e.g., NCBI), storage limitations may preclude
the scientist from downloading the entire dataset before run-
ning the analysis. Thus, even offline data analysis jobs may
need to adopt a streaming approach to overcome storage
limitations and improve overall execution times. Therefore,
devising reliable data transfer solutions is essential more

• Hemanta Sapkota and Engin Arslan are with the University of Nevada,
Reno
E-mail: hsapkota@nevada.unr.edu, earslan@unr.edu

than ever to accommodate this trend towards streaming
workflows.

While it is relatively straightforward to attain high trans-
fer throughput when transfer conditions are predictable
and stable, it is rather challenging to do the same when
the transfer conditions fluctuate over time. For example,
dataset characteristics (i.e., average file size and the num-
ber of files) of a transfer may evolve based on observa-
tion/simulation status. Similarly, the long-running nature
of streaming workflows makes them susceptible to changes
in background traffic, especially when shared networks are
used to run the transfers. Since the optimal transfers settings
are highly dependent on the dataset characteristics, network
settings, and background traffic conditions [3], [4], [5], an
adaptive solution is essential to provide reliable network
performance for long-running streaming workflows.

Although there are both proprietary (e.g., Google Mill-
Wheel [6] and Amazon Kinesis [7]) and open source (e.g.,
Apache Kafka [8]) solutions to handle streaming data flows,
they are primarily designed to handle a large number of
small messages between multiple producers and consumers.
On the other hand, scientific applications have significantly
higher data generation rates (reaching the orders of giga-
bytes per second [9]) in addition to storing data in non-
volatile storage systems before transferring it to remote clus-
ters. Therefore, commercial streaming frameworks do not fit
well for the needs of scientific workflows that require both
network and I/O optimizations to fully utilize available
resources in high-performance clusters and networks [10].

Moreover, legacy high-speed file transfer applications
are not well-suited for streaming workflows for several
reasons. First, most high-speed data transfer applications
(e.g., Globus [11] and bbcp [12]) do not accept new files

978-1-7281-6677-3/20/$31.00 ©2020 IEEE

2

to transfer queue once the transfer is initiated, hence they
require a separate transfer task to be created for every
file transfer request. This is, however, not desirable as it
incurs channel setup and tear-down costs for every new
transfer task. Second, they either do not tune transfer settings
(e.g., the number of parallel connections and I/O block
size) at all and thus yield poor transfer performance or
use fixed transfer settings and fail to adapt to changing
transfer conditions. Third, they do not provide a quality
of service (QoS) guarantee for transfer throughput as they
rely on best-effort transport protocols (e.g., TCP Cubic) to
adjust transfer speeds. While this may be acceptable behav-
ior for delay-tolerant jobs, streaming workflows have more
stringent performance needs to effectively pipeline compute
and transfer operations and analyze data in real-time. Even
though some of these issues may be addressed through
point solutions, we believe that a comprehensive solution
is needed to satisfy all these requirements and facilitate the
execution of streaming workflows in production high-speed
networks.

In this paper, we introduce FStream++ to provide reliable
performance for streaming transfers of distributed science
workflows. FStream++ adopts the heuristic approach [13] to
determine the initial transfer settings, but complements it
with hill-climbing based online profiling to explore search
space for a subset of transfer parameters in real-time. The
evaluation results show that online profiling is a key to
increasing resource utilization in high-speed networks and
adapting to changing background traffic conditions. Finally,
FStream++ leverages the long-running nature of stream-
ing workflows and derives regression models to quickly
converge to optimal solutions, especially when throughput
requirements of application change while the transfer is still
running. In summary, we make the following contributions:

• We demonstrate that existing high-speed transfer op-
timization algorithms fall short to meet the stringent
performance requirements of streaming workflows.
We also show that application-layer transfer settings
can be tuned in real-time to adapt to changing trans-
fer conditions and sustain high performance.

• We design and develop FStream++ that employs dy-
namic tuning, online profiling, and historical data
analysis methods to offer reliable transfer perfor-
mance for streaming workflows in the presence of
changing dataset characteristics, background traffic,
and throughput demands.

• We carry out extensive experiments using high-
speed production networks with both synthetic and
real-world datasets to compare the performance of
FStream++ against the state-of-the-art transfer appli-
cations and services under varying workload and
traffic conditions. We find that FStream++ outper-
forms the legacy transfer solutions by up 3.6x and
FStream [14] by 24%.

Compared to our previous work on the optimization
of streaming file transfers (FStream [14], this paper makes
the following unique contributions: First, we use the hill-
climbing method to shorten the convergence time of the on-
line profiling module by around 50%. Given that online pro-
filing may need to execute frequently to adapt to changing

conditions, reducing its execution time leads to significant
improvement in the overall transfer throughput. Second,
we introduce a novel online modeling method to efficiently
utilize historical profiling reports and swiftly converge to
the optimal transfer settings when transfer conditions or
quality of service requirements change. Specifically, while
FStream uses match-action policy to utilize historical transfer
logs, which require historical logs to have the same transfer
settings as target transfers, FStream++ derives regression
models to mitigate this requirement and predict the per-
formance of previously untested transfer settings. Third, we
reveal that data transfers in shared production networks are
indeed exposed to significant throughput fluctuations and
show that FStream++ offers reliable performance under such
circumstances. Fourth and final, we present experimental
results for FStream++ in non-HPC environments to demon-
strate that its optimization strategies are not only applicable
to high-speed production networks.

2 BACKGROUND AND RELATED WORK

TCP’s poor performance in high-speed wide-area networks
has led to the development of new congestion control
algorithms, such as BBR [15], PCC [16], and HTCP [17].
While these TCP variants addressed some of the perfor-
mance limitations, such as severe throughput degradation
in the presence of random packet losses, end-host issues
(e.g., low I/O throughput and misconfigured data transfer
nodes) are increasingly becoming the source of bottlenecks
in high-speed networks. ESnet introduced ScienceDMZ [18]
architecture to mitigate some of the last mile problems.
Precisely, it separates research traffic from regular internet
traffic to minimize interference. It also creates an isolated
path for science flows to bypass firewalls and other middle-
ware devices. ESnet also documented preferred hardware
and software configurations for end hosts (aka Data Trans-
fer Node [19]) to handle high-speed transfers. Although
ScienceDMZ and DTN architectures can mitigate some of
the performance problems, several others reasons for poor
transfer performance remain unsolved, such as low disk I/O
performance, and network and I/O congestion.

Researchers also proposed application layer solutions to
mitigate the most common performance problems by means
of tuning application-level transfer settings. For example,
command pipelining [20], parallel connections [21], concur-
rent file transfer [4], [5], socket buffer size [22], and I/O
block size [23], [22] are among application layer parame-
ters that can be tuned to significantly improve end-to-end
data transfer performance without the need to change the
underlying transfer protocols. Previous studies show that
command pipelining (aka pipelining), network parallelism
(aka parallelism), and concurrent file transfers (aka con-
currency) are the most effective ones in increasing transfer
throughput in high-speed networks [11], [3], [4], [13]. In a
nutshell, pipelining eliminates the delay between consecu-
tive file transfers by sending multiple transfer commands
to source and destination endpoints such that the files
can be transferred back-to-back without any delay in be-
tween [20]. Parallelism overcomes performance problems of
TCP in wide-area networks by creating multiple connections
to transfer the different portions of the same file. Finally,

3

1 2 4 8 16 32 48 64
Parameter Value

0
5000

10000
15000
20000
25000
30000
35000
40000

Th
ro
ug

hp
ut
 (M

bp
s) Concurrency

Parallelism
Pipelining

Fig. 1. Application-layer transfer parameters can improve transfer
throughput significantly.

concurrency improves both I/O and network performance
by transferring multiple files simultaneously on separate
network connections. It is particularly important to increase
I/O throughput in HPC facilities that are equipped with
parallel file systems such as Lustre and GPFS. Please note
that concurrency defines how many files to transfer simul-
taneously, whereas parallelism sets the number of network
channels to use for each file transfer. To give an example, if
concurrency is set to 2 and parallelism is set to 3, then two
files will be transferred simultaneously, and each file will be
streamed over three network connections, creating a total of
6 network channels.

Figure 1 shows the impact of pipelining, parallelism, and
concurrency on transfer throughput when a set of 1 GiB files
is transferred from Expanse [24] to Stampede2 [25] super-
computers that are connected with 40 Gbps network band-
width. While the default values of these transfer parameters
(i.e., one file is transferred (concurrency = 1) over one
network channel (parallelism = 1) and transfer commands
are sent one by one (pipelining = 0) yield less than 2 Gbps
throughput, the optimal values attain more than 36 Gbps
throughput. On the other hand, discovering the optimal
setting requires domain expertise due to the large search
space and complex interplay between the parameters. For
example, while parallelism is helpful for large files, it may
degrade performance when combined with concurrency.
Moreover, using very large values for all parameters is
not desirable as it will overload the network and end-
system resources and increase power consumption at the
end hosts [26]. Therefore, it is essential to discover optimal
values that lead to high throughput and low overhead.

Researchers applied heuristic [11], [13], supervised [27],
[4], and online [28], [3] learning models to predict the opti-
mal values for these parameters. Globus, a widely adopted
data transfer service, relies on heuristic models to predict the
values for pipelining, parallelism, and concurrency parame-
ters [11]. Although heuristic approaches perform better than
the default settings, they fail to offer reliable performance
due to failing to incorporate dynamic system conditions
(e.g., network and disk interference) in decision making.
For example, if a streaming application initially creates a
dataset with predominantly small files, the heuristic models
will choose a large pipelining value. However, this choice
will become suboptimal if the application starts emitting
fewer large files. Supervised models can yield close-to-
optimal transfer performance in networks that they are
trained for; however, deriving an accurate model requires
a large amount of historical data to be collected in a variety
of transfer settings (e.g., file size, file count, RTT, bandwidth,
and traffic condition), which may take weeks or months. Yet,

they need to be periodically re-trained with up-to-date data
to adapt configuration changes (e.g., file system upgrade).

Online learning models offer promising alternatives as
they can discover optimal values in the runtime; however,
existing solutions in this domain are inadequate to provide a
practical option for streaming transfers as their convergence
time can take hours. For instance, Yun et al. proposed
ProbData [28] to tune the number of parallel streams and
buffer size in real-time using stochastic approximation, but
the optimization process takes more than two hours to find
a solution; thus, it is not suitable for real-time optimizations.
Yildirim et al. proposed an online search algorithm to find
optimal settings through an online search, but the proposed
algorithm executes the search only once at the beginning
of transfers, thus not well suited for streaming applications
that require dynamic solutions to adapt to changing net-
work settings and dataset characteristics.

3 SYSTEM DESIGN
As application-layer transfer parameters can be used to
address both network and I/O bottlenecks, we introduce
FStream++ to tune these parameters in real-time to provide
a robust transfer experience for delay-sensitive distributed
streaming workflows. FStream++ consists of Data Finder and
Transfer Controller components as illustrated in Figure 2.
Data Finder periodically checks for new files and classifies
them based on file size to allow transfer applications to
customize the transfer settings (e.g., high pipelining value
for small files and high parallelism for large files), which
is found to be an effective way of improving transfer
throughput [13], [3]. We adopt a similar strategy described
in [13] and place files to “small” group if their size is smaller
bandwidth/8 and to “large” otherwise. Please note that Data
Finder only captures metadata information of files, including
name, path, and size; thus, its network usage is negligible
compared to actual file sizes.

On the other hand, the Transfer Controller is responsi-
ble for selecting and applying transfer settings. To do so,
it employs Dynamic Tuning, Online Profiling, and Histori-
cal Analysis methods. Dynamic Tuning predicts the values
for all three parameters (i.e., pipelining, parallelism, and
concurrency) using a heuristic model. Online Profiling and
Historical Analysis methods, on the other hand, only tunes
concurrency to reduce the execution time of online modeling
and searching. As shown in Figure 1, concurrency, when
tuned properly, is often sufficient to achieve high perfor-
mance as it can mitigate both I/O and network bottlenecks.
Hence, we rely on the heuristic model to predict the values
of pipelining and parallelism and use Online Profiling and
Historical Analysis to fine-tune the concurrency parameter.

3.1 Dynamic Tuning
Dynamic Tuning use an heuristic model to estimate the initial
values of pipelining (pp0), parallelism (p0), and concurrency
(cc0) using following calculations:

pp =
BDP

avgF ileSize

p = Min(

⌈︃
BDP

bufferSize

⌉︃
,

⌈︃
avgF ileSize

bufferSize

⌉︃
) (1)

cc = Min(

⌈︃
BDP

avgF ileSize

⌉︃
,maxCC)

4

Apply (!!, #, ##)

Classify
Data Finder Small File

File Metadata

Large File
Transfer
Controller

Transfer Queues

High-Speed
Network

Dynamic
Tuning

Online
Profiling

Historical
Analysis

Large

Small

FStream++

[cc]

[cc,p, pp]

[cc]

Fig. 2. The system architecture of FStream++. Data Finder discovers new files at the data source and passes them to Transfer Controller after
classifying them based on file size. Transfer Controller utilizes Online Profiling, Dynamic Tuning, and Historical Analysis optimizations to determine
the values of transfer parameters. Despite using similar approaches as FStream [14], FStream++ extends Online Profiling and Historical Analysis
(highlighted) methods significantly to quickly find the optimal transfer settings.

where BDP is bandwidth-delay product [29] of the
network, bufferSize is the maximum allowed TCP buffer
size, and avgF ileSize is an average file size of the dataset.
In a nutshell, the heuristic model returns high pipelining
and concurrency values for small files and high parallelism
and low-to-moderate concurrency values for large files. As
discussed in Section 2, pipelining eliminates the delay be-
tween consecutive file transfers, parallelism overcomes TCP
buffer size limitations. Since it is important to read/write
multiple files simultaneously to take advantage of parallel
file systems, especially when transferring a large number of
small files, the heuristic model returns a high concurrency
value for datasets dominated by small files.

As the data source creates new files, the dataset’s char-
acteristics may change. As an example, an application may
create a few large files in the first interval and many small
files in the next one due to the observation of certain events,
which in turn requires the transfer settings to be updated
based on the current content of the dataset to sustain high
transfer performance. Dynamic Tuning thus calculates new
values for transfer parameters (cc1, p1, pp1) when new files
are added to the transfer queues. Suppose the new values
are different than the current ones (cc0, p0, pp0). In that case,
the Transfer Controller takes the following steps to update
them: If the new concurrency value is smaller than the
current value, cc0 − cc1 transfer processes 1 are marked as
“passive”– not actively used for transfers but kept alive for
potential use in the future. If the new concurrency value is
higher than the current one, cc1 − cc0 additional processes
are created. Since parallelism value can only be set when
transfer processes are first created, it is not possible to
update the parallelism value of a transfer process later.
Therefore, FStream++ first identifies existing processes, cc′,
whose parallelism value matches with the new parallelism
value such that they can be reassigned. If the total number
of remaining processes, cc0− cc′, whose parallelism value is
different than the new one, they are restarted with the new
parallelism value in addition to creating additional cc1−cc0
new processes. Otherwise, cc1 − cc′ of existing processes
are restarted with the new parallelism value, and the rest is

1. Since concurrent transfers are handled by separate processes, the
term “process” is used to refer each one of concurrent transfers

Algorithm 1 — Binary search-based Online Profiling method
to discover the optimal concurrency level.

Global: Throughput(k) - Function that returns throughput when using k
concurrency. Null if not available.
Input: current - current concurrency value; lowerBound - current lower
bound for concurrency; upperBound - curent upper limit for concurrency;
Output: New concurrency value

1: function OPTIMALCONCURRENCYSEARCH(lowerBound, current,
upperBound)

2: while True do
3: upThr = Throughput(upperBound)
4: lowThr = Throughput(lowerBound)
5: curThr = Throughput(current)
6: if (upThr == Null) then ▷ We are still yet to reach maximum

throughput, keep increasing
7: lowerBound = current
8: current = (current+ upperBound)/2
9: return(current)

10: end if
11: if (curThr > lowThr and upThr > curThr) then
12: lowerBound = current
13: current = (current+ upperBound)/2
14: return(current)
15: end if
16: if (curThr ̸> lowThr) then ▷ Lower concurrency if higher values

do not result in noticeable (e.g., 1%) throughput gain
17: upperBound = current
18: current = (current+ lowerBound)/2
19: else ▷ Inconclusive results, lower current value slightly
20: current = current− 1
21: end if
22: end while
23: return(current)
24: end function

marked as passive. Since pipelining defines the number of
outstanding commands for each transfer process, its value
can easily be updated without restarting the connection.

Online Profiling
Although Dynamic Tuning adjusts the transfer settings by
re-evaluating the Equation 1 periodically, its performance is
inherently limited to the performance of the heuristic model.
Previous work showed that heuristic models fail to guar-
antee high performance as transfer throughput depends
on many factors that existing heuristic techniques cannot
incorporate into their prediction policies, such as the degree
of background traffic and file system configurations [4]. For
example, Globus [11] adopts a heuristic model and sets
the concurrency value to 2 when the average file size of

5

a dataset is larger than BDP, however, this mainly results
in poor I/O performance due to failure to take full ad-
vantage of I/O parallelism, especially when using parallel
file systems. Similarly, heuristic models are oblivious to
background traffic, thus they fail to ensure performance
guarantee in shared networks as optimal transfer settings
are highly dependent on network congestion. Consequently,
despite yielding higher performance compared to one-time
optimization approaches (e.g., [3], [30]), Dynamic Tuning is
constrained by the limitations of the heuristic method. We
therefore introduce Online Profiling that executes real-time
search to discover optimal transfer settings. Since evaluating
the performance of a transfer setting takes several sec-
onds [31], searching the optimal value for multiple transfer
parameters in real-time can take a long time (i.e., minutes
or even hours [28]). Thus, Online Profiling focuses only on
concurrency as it can help to mitigate both I/O and network
bottlenecks.

Algorithm 1 describes how Online Profiling explores the
search space for the concurrency parameter. It takes the
current concurrency value (current) as an argument and re-
turns a new concurrency value using a binary search-based
hill-climbing algorithm. It defines an upper (upperBound)
and lower (lowerBound) boundary for concurrency and
determines the search direction as well as step size when
choosing a new value. The initial values of boundaries are
configurable with default values of 1 for lowerBound and
40 for upperBound. The Throughput(x) function returns
the throughput of concurrency value x based on measure-
ments. If x is not evaluated yet or it was evaluated a
long time ago, then it returns Null, indicating that it is
not available. Even though The Throughput method only
returns the results from the last 60 seconds to ensure that
it can adapt to changing network conditions. As an exam-
ple, if background traffic changes, the throughput of all
concurrency values will be negatively affected, thus using
values that are obtained in different traffic conditions will
cause confusion and lead to incorrect estimations. Thus,
we limit the throughput history to close to the execution
time of the online search algorithm (around 60 seconds as
presented in the results) to be able to keep exploring the
search space, thereby adapting to changing network and
end-system traffic conditions.

When OptimalConcurrencySearch is method is called,
the throughput of upper and lower concurrency boundaries
may not be available (i.e., line 6), in which case we choose
to keep the search in the upward direction to explore high
concurrency values first. As we explore the solution space
using the binary search, upper and lower boundaries will
eventually be set to one of the evaluated concurrency values
(lines 7, 12, and 17). Please note that while it is possible to
evaluate the performance of boundary values right at the
beginning of the search to make more precise decisions, it
may have an adverse impact on the system performance due
to creating too many I/O threads and network connections,
especially if the optimal solution is far from the initial
boundary values. Thus, we take a moderate approach and
increase/decrease the value of concurrency in any direction
gradually. Note that similar to the expiration of throughput
history for concurrency values after a certain time, we also
reset lower and upper boundaries to their initial values (1

and 40, respectively) to detect and adapt to changing trans-
fer conditions. If the throughput of the currently evaluated
concurrency value is not noticeably (e.g., 1%2) higher than
the throughput of the lower bound, then FStream++ prefers
lower concurrency values to minimize system overhead
while achieving close-to-maximum performance as shown
in line 16.

Unlike FStream which increases its step size slowly,
FStream++ employs binary search to guarantee logarithmic
convergence time. Specifically, FStream starts with a small
concurrency value (i.e., 1) and doubles it as long as through-
put increases, thus it takes several intervals before it can take
large steps. For example, it takes five intervals for FStream to
increase the concurrency value 1 to 16. On the other hand,
FStream++ can quickly jump to high values as it sets the con-
currency value to the middle between current value and up-
per boundary as shown in lines 8 and 13. More importantly,
FStream++ is able to quickly move out of suboptimal zone
by taking large steps at the beginning. For instance, if the
upperBound is set to 32 and the optimal concurrency is 32,
then it will take 6−7 steps for both FStream and FStream++ to
converge to the optimal. However, FStream spends 5 of 6 six
steps on concurrency values that are less than half of the
optimal, i.e., {1, 2, 4, 8, 16, 32}. In contrast, FStream++ will
test concurrency values in {1, 16, 24, 28, 30, 31, 32} order.
This in turn leads to average concurrency value of 10.5 for
FStream and 21.6 for FStream++ in the first six intervals,
which allows FStream++ to yield higher average through-
put.

It is fair to say that FStream will converge to small op-
timal concurrency values faster than FStream++. Yet, taking
larger steps is still preferable because of two reasons. First,
as network capacity of high performance networks keeps
increasing, optimal concurrency level for transfers is likely
to be on the higher end of the potential values. As presented
in the Evaluation section, the optimal concurrency value is
more than 10 in all production networks while reaching
to 40 in some networks. Second, despite incurring higher
overhead, large concurrency values do not typically lead
to significant drop in transfer throughput. As an example,
even if it takes more steps for FStream++ to converge to the
optimal concurrency value of 4 compared to that of FStream,
their overall throughput will be similar.

Once a new concurrency value is determined by
OptimalConcurrencySearch method, FStream++ adjusts
the number of concurrent processes to evaluate the perfor-
mance of the new setting. To do so, we first utilize passive
transfer processes before creating new ones to speed up the
transition phase. As FStream++ keeps track of the paral-
lelism value of passive processes, they can be re-assigned
to file groups (i.e., small or large) with the same parallelism
value. For example, when FStream++ decides to activate a
passive process with parallelism value of 4, it will attempt
to assign it to large file group, assuming that the large file
group demands parallelism value 4. By doing so, it avoids
to restart processes which speeds up the transition process.
Please note that even though Dynamic Tuning also predicts

2. We define the noticeable increase rate as a value that is slightly
higher than measurement noise. We observed that 1% increase ex-
pectation is sufficient in all experimental networks, but leave the
optimization of it to future work.

6

(a) Data Preprocessing

0 5 10 15 20 25 30
Concurrency Co nt

0
5000

10000
15000
20000
25000
30000

Th
ro
 g

hp
 t
 (M

bp
s)

Polynomial(a× cc+ b)
NP-1(acc + b)

NP-2(a3√cc + b)
Thro ghp t

Polynomial(a× cc+ b)
NP-1(acc + b)

NP-2(a3√cc + b)
Thro ghp t

(b) Model representation with limited data

0 5 10 15 20 25 30
Concurrency Co nt

0
5000

10000
15000
20000
25000
30000

Th
ro
 g

hp
 t
 (M

bp
s)

Polynomial(a× cc+ b)
NP-1(acc + b)
NP-2(a3√cc + b)
Thro ghp t

Polynomial(a× cc+ b)
NP-1(acc + b)
NP-2(a3√cc + b)
Thro ghp t

(c) Model representation with full data

Fig. 3. Data preprocessing is used to remove outliers in historical data (a). Representation of regression model performance with limited (b) and full
data (c). Model a 3

√
cc+ b performs well both using limited and full data, thus can be used to derive models in the runtime.

the value of concurrency, FStream++ will use the estimations
done by Online Profiling as real-time search is a superior
method over the heuristic model. However, Dynamic Tuning
will still be used to adjust the level of parallelism and
pipelining parameters.

3.2 Historical Analysis

Execution of Online Tuning can take up 50 − 60 seconds
(around 5 − 6 steps with 12 seconds per step) to find a so-
lution, which can have adverse impact on the performance
especially if the throughput requirement of an application
changes frequently. For example, when an application starts
to produce more data than its usual rate for a short period
of time due to transient events, it may demand higher
throughput to handle the surge in a timely manner. Running
Online Tuning from scratch is therefore undesirable due to
relatively long execution time. FStream++ thus exploits the
long running nature of streaming workflows and caches
previous profiling results to re-use them when applications’
throughput requirement change. To do so, FStream++ uses
regression analysis on historical profiling results to de-
rive a relationship between concurrency value and transfer
throughput such that it can be used to make predictions
for previously unseen throughput values. As an example, if
Online Profiling tested concurrency values of 1, 16, 24, and 26
recently while searching for the optimal concurrency value,
we can use the obtained results to derive a regression model
which can be used to predict the throughput of concurrency
value of 8.

In the previous work, we proposed a simple match-
action policy to utilize historical profiling reports, which re-
quires an exact match between historical reports and target
throughput utilize the information stored in the historical
data. For example, if the historical data contains throughput
reports for concurrency values 2 (5 Gbps) and 16 (20 Gbps),
but application updates its throughput demand to 15 Gbps,
then FStream’s simple match policy fails to utilize available
reports since it is unable to extrapolate.

We apply few polynomial and non-polynomial models
to discover the relationship between concurrency value and
transfer throughput. As a polynomial model, we choose
linear regression in the form of t = a× cc+ b, where a and b
are coefficients, cc is concurrency value, and t is throughput.
We apply t = a

cc + b (NP-1) [32] and t = a 3
√
cc + b (NP-

2) as non-polynomial models. Unlike the linear regression,
the non-polynomial models can capture the diminishing
impact of concurrency on transfer throughput. As can be
seen in the Figure 1, while concurrency has somewhat linear

relationship with the throughput initially, its impact starts
to disappear at high values. The non-polynomial models
differ in terms of how fast the impact of concurrency on
transfer throughput disappears. Specifically, NP-1 expects
that throughput gain for increased concurrency will decline
much faster compared to NP-2.

In regression analysis, we first preprocess historical data
to remove outliers as throughput fluctuations are common
in shared production networks due to transient issues such
as bursty background traffic or I/O interference. We then
categorize throughput reports based on their concurrency
values in case there are multiple throughput reports for the
same concurrency value3. We next calculate z-scores for each
throughput report in the same concurrency category, which
is commonly used for outlier detection [33]. The throughput
reports with z-scores greater than 1 or less than −1 are
discarded as they deviate from the average significantly.
We finally take the average of remaining reports to repre-
sent the throughput of a concurrency value. We repeat the
process for all distinct concurrency values before fitting the
models. Figure 3(a) illustrates the impact of the described
preprocessing on the performance of the linear regression.
We observe that filtering out outliers significantly improves
the estimation accuracy of the model.

Figure 3(b) and 3(c) illustrates the fitness of the re-
gression models based on available historical data. When
a transfer starts with a small throughput demand (e.g., 5
Gbps in Figure 3(b)), the historical data will only contain
reports for low concurrency values. Absence of data for
high concurrency values in turn causes linear regression to
overestimate and NP-1 to underestimate the throughput of
high concurrency values. For instance, NP-1 (i.e., a

cc + b)
predicts that concurrency value of 30 will return around
10 Gbps throughput whereas the linear regression model
estimates that the concurrency value of 15 will be sufficient
to achieve 30 Gbps; both of which are far from actual
observations. On the other hand, NP-2 (i.e., t = a 3

√
cc + b)

is able to capture the relationship between concurrency and
throughput more accurately in a way that it incorporates the
diminishing impact of the concurrency while avoiding to
converge too fast. As the transfer executes long enough and
gathers throughput reports for higher concurrency values
(i.e., as a result of setting the target throughput to higher
values and executing Online Profiling), the linear regression
and NP-1 models evolve in a way the the slope of the linear

3. Since we execute a transfer setting for multiple intervals to ac-
curately measure its performance, there will be multiple throughput
reports for the same transfer setting.

7

Workload Time Interval
1 2 3 4 5 6

1 S L S L S L
2 L S L S L S
3 XS XL L L L L
4 S+L S+L S+L S+L S+L S+L

TABLE 1
File types and arrival orders for synthetic datasets. File sizes range

between 0-10MB (Extra Small (XS)), 10-100MB (Small (S)),
100MB-2GB (Large(L)) and >2GB (Extra Large (XL)).

regression decreases and convergence throughput for NP-
1 increases to 20 Gbps as shown Figure 3(c). Yet, they still
result in high error rates, therefore, we use NP-1 as a default
regression model for FStream++ to process the historical
data. Since network conditions may change over time, we
define maximum duration for an historical report to be
included in the model. By default, it is set to 10 minutes
but it can be extended to implement an adaptive method
that adjusts the time limit based on the estimation error
of the model. In other words, if the predictions made by
a model turns out to be significantly far from the actual
observations, then the older reports in the historical data
can be removed before 10 minute threshold to quickly adapt
to new conditions. We leave such optimization as a future
work as we observe that background traffic in production
networks typically change in the order of tens of minutes or
hours.

4 EVALUATION

We used both synthetic and real-world workloads to eval-
uate the performance of FStream++. For synthetic work-
loads, we created multiple workloads with different data
generation behaviors (i.e., average file and arrival orders),
as shown in Table 1. Since streaming workflows produce
a new file(s) at certain intervals, we add new files to the
transfer directory at 30-second intervals to emulate stream-
ing applications. We used files with different sizes as Extra
Small (XS) (smaller than 10MB), Small (S) (between 10MB
and 100MB), Large (L) (between 100MB-2GB), and Extra
Large (XL) (larger than 2GB) to thoroughly evaluate the
performance of FStream++. Specifically, Workloads 1, 2, and
3 are designed to evaluate the performance of the transfer
applications under extreme scenarios in which the average
size files changes drastically in consecutive intervals. For
example, Workload 1 and 2 represent cases where stream-
ing applications emit new files with completely different
characteristics in successive intervals. On the other hand,
Workload 4 represents a more stable data generation pat-
tern. Note that if there are still files in the transfer queue
when new files arrive, we add the new files to the end of
the transfer queue, as shown in Figure 2.

In addition to synthetic workloads, we also used real-
world workloads to represent bioinformatics and free-
electron laser physics workflows. The bioinformatics work-
flow (henceforth SRA workflow) streams genome sequence
data from Sequence Read Archive (SRA) and runs a se-
ries of transformations to extract process-ready SAM/BAM
files [34]. Although SRA workload is not generated in real-
time, the massive size of the repository when combined
with storage limitations of computing clusters necessitates

users to download and process files in a streaming manner.
As of January 2020, NCBI SRA stores 2.8M public genome
sequence for “homo sapiens” with a total size of 1.4 PB. We
took a sample of this dataset whose file size and file count
distribution is shown in Figure 5. Although we significantly
reduced the number of files due to time/storage constraints,
the sampled subset follows a similar file size distribution as
the original one.

Linac Coherent Light Source (LCLS) takes X-ray snap-
shots of atoms and generates terabytes of data per ex-
periment, which is moved to supercomputers located in
Berkeley, CA (Cori), Chicago, IL (Mira), and Oak Ridge,
TN (Titan) in near real-time to carry out data analysis,
thus it is an ideal example to demonstrate the potential
benefits of improved wide-area transfer performance. The
LCLS workload is dominated by large files as the average
file size is 13.1 GB and the median file size of 4 GB [35].
Similar to synthetic workloads, we split the SRA and LCLS
workloads into six groups randomly and added them to
the transfer directory one by one in 30-second intervals.
Besides changing dataset characteristics, we also evaluate
the impact of dynamic network conditions in Section 4.3. We
used three pairs of XSEDE [36] sites as Stampede2 [25] to Ex-
panse [24], OSG [37] to Stampede2, and OSG to Expanse to
run transfers, which are connected via a shared high-speed
network with up to 40 Gbps bandwidth. The round trip
times are 38ms, 32ms, and 58ms for Stampede2-Expanse,
OSG-Stampede2, and OSG-Expanse transfers, respectively.

We compare FStream++ against Globus [11], an adaptive
version of the heuristic model [30] (Dynamic-H henceforth),
and FStream [14]. Although all of the transfer algorithms use
GridFTP as a transfer protocol, they configure its settings
(i.e., pipelining, parallelism, and concurrency) differently4.
Globus uses fixed transfer settings based on the average
file size of a dataset or based on endpoint-specific pre-
defined values. For example, it uses < 20, 4, 4 > values
for <pipelining, parallelism, concurrency> parameters for
all Stampede2-Expanse transfers. Moreover, since Globus is
a closed-source transfer service and does not allow new
files to be added to ongoing transfer tasks, we initiate a
separate transfer task for each batch of files in consecutive
intervals using Globus Command Line Interface (CLI). If a
new batch of files arrives while the transfer of previous files
is still running, Globus will allow both transfers to run in
parallel as long as the number of active transfers does not
exceed 3. Please note that the performance of Globus will
be higher when multiple of its instances execute in parallel
to transfer a set of files that arrive in different intervals;
one cannot rely on this as it heavily depends on the time
gap between the arrival of new files. In other words, if
the transfer of previous files is completed when new files
arrive, Globus will not benefit from concurrent execution
of multiple instances. Nevertheless, we used Globus “as-
is” and submitted new transfers as soon as they arrived
(i.e., in 30-second intervals). We also turned off the integrity
verification as none of the compared solutions implements
it. The Dynamic-H uses the heuristic model (Algorithm 1) to

4. Note that even though we utilized GridFTP as a transfer protocol,
the parameters FStream++ tunes are either readily available or can
easily be implemented in other protocols such as FTP and bbcp

8

1 2 3 4 SRA LCLS
Workload

0

10000

20000

30000

40000

Th
ro
ug
hp
ut
 (M
bp
s)

Globus
Dynamic-H

FStream
FStream++

(a) Stampede2-Expanse

1 2 3 4 SRA LCLS
Workload

0

2000

4000

6000

8000

10000

Th
ro
ug

hp
ut

 (M
bp

s)

Globus
Dynamic-H

FStream
FStream++

(b) OSG-Stampede2

1 2 3 4 SRA LCLS
Workload

0

2000

4000

6000

8000

10000

Th
ro
ug

hp
ut

 (M
bp

s)

Globus
Dynamic-H

FStream
FStream++

(c) OSG-Expanse

Fig. 4. Performance comparison of different algorithms in Stampede2-Expanse (a), OSG-Stampede2 (b), and OSG-Expanse (c) networks for six
workload types. FStream++ outperforms Globus, Dynamic-H, and FStream by up to 3.6x, 3.1x, and 1.24x, respectively.

0-10M
10M-100M

100M-1G
1G-10G

10G-100G
100G+

File Size

0.0

0.2

0.4

0.6

0.8

1.0

O
rig

in
al

 F
ile

 C
ou

nt
 (i

n
M

ill
io

n)

0

80

160

240

320

400

S
am

pl
e

Fi
le

 C
ou

nt

Sample
Original

Fig. 5. File size distribution of original and sampled SRA dataset.

estimate the values of transfer parameters at the beginning
of the transfer and updates them every time a new set of
files arrive by rerunning Equation 1, similar to Dynamic
Tuning component of FStream++. Thus, comparisons against
the Dynamic-H demonstrate the benefit of Online Profiling
and Historical Analysis components. Finally, FStream uses
an adaptive approach to configure transfer settings similar
to FStream++; however, the two differ in terms of how
Online Profiling and Historical Analysis operates as detailed
in Section 3.1 and 3.2. We repeat the transfers five times and
report the average values.

4.1 Changing Workload Characteristics

The average throughput results for all workload types
are given in Figure 4. Adaptive approaches Dynamic-H,
FStream, and FStream++ outperform Globus, which adopts
a static approach when tuning transfer settings. Specifi-
cally, they yield up to 1.9x − 3.6x higher throughput than
Globus, especially for synthetic workflows with changing
datasets in consecutive intervals (i.e., Workload 1, 2, and
3). As an example, Dyanmic-H attains up to 1.9x, 1.7x, and
1.4x higher throughput compared to Globus for Stamped2-
Expanse, OSG-Stampede2, and OSG-Expanse, respectively.
Please note that the performance gap would be much
higher if Globus transfers are initiated sequentially to let
one Globus transfer instance run in parallel, similar to
other algorithms. Regardless, its performance still stays
below Dynamic-H in most cases and much lower compared
to FStream and FStream++. Despite yielding better perfor-
mance than Globus, Dynamic-H falls below FStream and
FStream++ significantly, which demonstrates the importance
of real-time optimization. Specifically, FStream outperforms
Dynamic-H by up to 2.6x, 1.83x, and 2.0x in Stampede2-
Expanse, OSG-Stampede2, OSG-Expanse transfers, respec-
tively.

FStream++ attains up to 20 − 25% higher through-
put compared to FStream in Stampede2-Expanse, OSG-
Stampede2, and OSG-Expanse transfers. The difference can
be attributed to the efficient implementation of Online Pro-
filing. As detailed in Section 3.1, unlike FStream which
increases its step size slowly when scanning search space
for concurrency parameter, the use of binary search-based
hill-climbing method helps FStream++ to take bigger steps
initially and move out of the suboptimal region of the
search space quickly. As transfers in the Stampede2-Expanse
network obtain the highest throughput, we only present
results for that network in the rest of the paper.

Figure 6 presents the instantaneous throughput of
Dynamic-H, FStream, and FStream++ for one of the five
transfers whose average results are shown in Figure 4(a).
Dynamic-H yields more than 20 Gbps only for Workload 3,
in which the dataset in the first interval consists of very
small files. This is because the heuristic model returns large
concurrency values when the average file size of a dataset
is very small. Both FStream and FStream++ are able to reach
close to 35 Gbps instantaneous throughput all workloads
with the help of online optimization, however, there is
a clear difference in how fast they can reach maximum
speed. Except for Workload 3, it takes nearly 100 seconds
for FStream to reach 30 Gbps instantaneous throughput,
whereas it takes less than 50 seconds for FStream++. Similar
to synthetic workloads, FStream++ outperforms FStream for
the transfer SRA and LCLS workloads as shown in Fig-
ure 6(e) and 6(f). The benefit of using a fast-converging
algorithm (i.e., binary search in FStream++ vs. linear search
in FStream) in the online search phase is more visible in
LCLS workload transfer since suboptimal transfer settings
return significantly lower throughput when datasets are
dominated by small files.

4.2 Stable Transfer Performance
By default, Online Profiling searches for a concurrency value
that can yield maximum transfer throughput. However,
trying to maximize the throughput for all applications may
not be the best objective, especially when using shared
networks due to fairness concerns. Thus, we allow appli-
cations to specify the desired throughput for their transfers
such that FStream++ can focus on satisfying the application
demand rather than maximizing the throughput. While one
may argue that obtaining higher or lower throughput does
not affect total transfer size, keeping the throughput at
a minimum possible rate can have a considerable impact

9

0 50 100 150 200 250 300
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000
40000

Th
ro
ug

hp
ut
 (M

bp
s)

Dynamic-H
FStream
FStream++

(a) Workload 1

0 50 100 150 200 250 300
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000
40000

Th
ro
ug

hp
ut
 (M

bp
s)

Dynamic-H
FStream
FStream++

(b) Workload 2

0 50 100 150 200 250 300
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000
40000

Th
ro
ug

hp
ut
 (M

bp
s)

Dynamic-H
FStream
FStream++

(c) Workload 3

0 50 100 150 200 250 300
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000
40000

Th
ro
ug

hp
ut
 (M

bp
s)

Dynamic-H
FStream
FStream++

(d) Workload 4

0 100 200 300 400
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000

Th
ro
ug

hp
ut
 (M

bp
s)

Dynamic-H
FStream

FStream++

(e) SRA Dataset

0 50 100 150 200 250 300
Time (Sec)

0
5000

10000
15000
20000
25000
30000
35000

Th
ro

ug
hp

ut
 (M

bp
s)

Dynamic-H
FStream
FStream++

(f) LCLS Dataset

Fig. 6. Instantaneous throughput of the dynamic heuristic (Dynamic-H), FStream and FStream++ for synthetic and real-world datasets in
Stampede2-Expanse network.

0 50 100 150 200 250 300 350
Time (Sec)

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (M

bp
s)

8 Gbps 12 Gbps 20 Gbps

(a) Workload 1

0 50 100 150 200 250 300 350
Time (Sec)

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (M

bp
s)

8 Gbps 12 Gbps 20 Gbps

(b) SRA Dataset

0 50 100 150 200 250 300 350
Time (Sec)

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (M

bp
s)

8 Gbps 12 Gbps 20 Gbps

(c) LCLS Dataset

Fig. 7. FStream++ can be used to attain fixed, stable performance for workflows that do not require maximum transfer throughput for their execution.

on competing flows. For example, running a transfer with
6 Gbps throughput for 30 minutes versus with 3 Gbps
throughput for 60 minutes will transfer the same amount
of data, the transferring at a higher speed will have more
adverse impact on contending flows due to using more of
available resources during the transfer period. Moreover,
transferring at very high speeds can overwhelm storage
space at the destination facility if processing speed is much
slower compared to transfer speed. Hence, FStream++ sup-
ports fixed-speed transfers for streaming applications to
keep transfer throughput within a close range of the desired
value.

To achieve this goal, FStream++ first adjusts the level
of concurrency to bring the transfer throughput within
the 20% range of the desired throughput, then configures
pipelining and parallelism parameters to move it to the 10%
range of the target. Figure 1 shows that while concurrency
can be used to make significant improvements for transfer
throughput, parallelism and pipelining can help to make
small adjustments. Therefore, we pick parallelism for large
files and pipelining for small files and increase/decrease
their values by one until transfer throughput falls within the
10% range of the expected value. Note that FStream++ still
uses the binary search algorithm with a slightly different

logic to stop increasing the concurrency once the throughput
is 20% higher than the desired value.

To assess the effectiveness of the fixed throughput
method, we transferred Workload 1, LCLS, and SRA work-
loads between Stampede2 and Expanse clusters. Figure 7
shows instantaneous transfer throughput when the desired
throughput is set to 8 Gbps, 12 Gbps, and 20 Gbps. Except
for the initial 50 seconds of transfers during which Online
Profiling is executed for the first time, FStream++ is able to
keep the throughput within 10% of the desired throughput
for all three datasets. In Workload 1, transfer throughput
decreases significantly at around 120s and 210s when the
desired throughput is set to 20 Gbps as a result of finishing
the transfer of all large files. However, FStream++ is able
to recover from this quickly by readjusting the values of
concurrency and pipelining for the remaining small files.
In addition, transfer throughput fluctuates more for the
LCLS dataset, especially for smaller target throughput val-
ues (e.g., 8 Gbps), which can be attributed to the fact that
it is more challenging to fine-tune transfer throughput at
lower speeds. Specifically, concurrency value of 1 returns
5−6 Gbps throughput whereas concurrency value 2 returns
10−11 Gbps. Since FStream++ tries to configure the concur-
rency value until the throughput is within the 20% range

10

0 100 200 300 400 500
Time (Sec)

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (M

bp
s)

Congestion

(a) Throughput

0 100 200 300 400 500
Time (Sec)

0

5

10

15

20

25

30

C
on

cu
rr

en
cy

 (C
C

)

Congestion

(b) Concurrency

Fig. 8. Performance analysis of FStream++ under varying background traffic conditions when transferring SRA workload between Stampede2 and
Expanse clusters. It is able to keep the throughput very close to 15 Gbps desired throughput by transfer settings, one of which is concurrency.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time (Hours)

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (M

bp
s)

Target Throughput = 20,000 Mbps

Throughput
Concurrency

0

5

10

15

20

25

30

C
on

cu
rr

en
cy

 C
ou

nt

Fig. 9. The performance of FStream++ in Stampede2-Expanse network when the desired throughput is set to 20 Gbps. FStream++ changes the
transfer settings to react to changing background traffic events, thereby providing reliable throughput performance to streaming transfers.

of the desired throughput, it is unable to achieve it due
to large throughput changes between the two consecutive
concurrency values.

4.3 Dynamic Background Traffic

In addition to changing dataset characteristics, background
traffic may also vary over time, impeding the reliability of
transfers. Yet, FStream++ can detect and mitigate the impact
of changing background traffic by periodically executing
Dynamic Tuning and Online Profiling to readjust the transfer
settings, since from FStream++’s perspective, throughput
degradation triggers the same action regardless of the root
cause. Figure 8 shows transfer throughput when the desired
throughput is set to 15 Gbps for the transfer of SRA work-
load in the Stampede2-Expanse network. Although there is
always some background traffic between Stampede2 and
Expanse clusters due to being production systems, we inject
additional traffic by running a memory-to-memory transfer
between them to intensify the degree of the congestion.
We start the transfers under normal background traffic
and inject the additional traffic at around 140s. We let
the additional traffic run for 140 seconds and terminate
it at around 280s. The interval with additional traffic is
marked with a “Congestion” label in the figure. We present
both throughput and concurrency values to demonstrate
FStream++’s reaction to the changing background traffic.

When the transfer first starts, FStream++ uses the Dy-
namic Tuning and Online Profiling to discover the transfer
settings that can satisfy the throughput requirement. When
the background traffic is injected at 140s, the throughput
declines by 15%, which triggers FStream++ to increase the
concurrency value to bring the transfer throughput back to
the desired level. When the background traffic is terminated
at around 280s, the transfer throughput increases sharply
since the concurrency value used during the congestion pe-
riod results in higher transfer throughput when the network

0 100 200 300 400 500 600
Time (Sec)

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (M

bp
s)

FStream
FStream++ (NP-1)
FStream++ (NP-2)
Target

Fig. 10. Comparison of different regression models for online modeling.
The non-polynomial model t = a 3

√
cc + b achieves faster convergence

to target throughput.

is less congested. Hence, FStream++ lowers the concurrency
value to roughly what it was before the congestion to again
bring the throughput to its desired range.

We also assessed the performance of FStream++ for long
transfers in the Stampede2-Expanse network for SRA work-
load. We set the desired throughput to 20 Gbps and run the
transfer for three days. Since Stampede2 and Expanse are
production clusters and connected by a shared network (i.e.,
XSEDENet), I/O and network interference are inevitable
which affects the performance of long transfers even with-
out injecting background traffic manually. Figure 9 shows
that while concurrency value of 15−20 is sufficient to satisfy
throughput demand for most of the time, FStream++ sets to
as low as 10 and as high as 30 when the transfer through-
put falls outside of the desired range, demonstrating the
effectiveness of FStream++ to sustain high performance in a
production shared network.

4.4 Changing Throughput Requirement

Long-running streaming workflows may demand higher
transfer performance at certain times to handle a sudden in-
crease in data rates caused by transient events. For example,

11

0 50 100 150 200 250 300 350 400 450
Time (Sec)

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (M

bp
s)

FStream++ (NP-2)
Target

Fig. 11. Demonstration of FStream++ in controlling transfer settings
to meet desired transfer throughput between two data transfers nodes
located in the same local area network.

Vera Rubin Observatory requires high-resolution images
captured in Chile to be transferred to High Performance
Computing (HPC) facilities in the United States within 7
seconds of data capture to quickly coordinate with other
observatories and detect transient events [2]. As detailed in
Section 3.2, although Online Profiling can adjust the transfer
settings to meet new requirements, it can take 50 − 60
seconds to find the optimal. Thus, Historical Analysis is
designed to leverage the long-running nature of stream-
ing workflows to cache previous performance observations
such that they can be applied when throughput demand
changes. Different from FStream’s match-action policy which
requires an exact match in the historical data to benefit
from it, FStream++ implements online regression analysis
to be able to predict transfer settings that are not evaluated
previously.

Figure 10 evaluates the performance of two regression
models along with FStream’s match-action policy. When
target throughput is increased from 6 Gbps to 20 Gbps
at 200s, FStream++ with NP-2 is able to predict close-to-
optimal concurrency value and converges to the desired
throughput in less than 20 seconds whereas it takes close
to 80 seconds for NP-1. Note that while NP-1 is unable to
find a solution, Online Profiling takes over and finds the
right concurrency value through online search, hence they
all converge to the optimal eventually. However, it takes
longer for Online Profiling to converge to a solution, thus
Historical Analysis using accurate regression models such as
NP-2 offers an opportunity to speed up the search process.
It is worth noting that, when throughput is decreased to
9 Gbps, FStream++ with NP-2 again converges to the opti-
mal setting faster than the other approaches, including the
match-action method as adopted by FStream. NP-2 reduces
the convergence time from 45 seconds to 20 seconds (55%
reduction) when target throughput is increased and reduces
it from 80 seconds to 40 seconds when target throughput is
decreased. Please note that since we wait for all active and
pipelined transfers to complete before closing a channel (i.e.,
reducing concurrency value), it takes longer to converge to
the optimal setting when target throughput is decreased.

Finally, we evaluate the performance of FStream++ in
non-HPC settings to demonstrate its effectiveness. Figure 11
shows instantaneous throughput for FStream++ when it
is used to transfer the SRA workload between two data
transfer nodes in the local area network. The nodes are
connected with a 40 Gbps link and use a RAID array with 4

NVMe SSD drives. We initially set the desired throughput to
12 Gbps but changed it to 25 Gbps and 8 Gbps later. When
target throughput is increased from 12 Gbps to 25 Gbps,
FStream++ increases concurrency level from 2 to 12 first
then settles at concurrency value 10. Similarly, it reduces
concurrency value to 1 when target throughput is reduced
to 8 Gbps at 300s to lower its throughput to the desired
level.

5 CONCLUSION

As scientific applications demand reliable and high perfor-
mance for wide-area data transfers to process data near
real-time, it is becoming increasingly important to design
streaming transfer applications that can meet the stringent
demands of these applications. Existing transfer applica-
tions are designed for batch transfers, thus they fail to
meet the expectations of streaming scientific workflows due
to a lack of support for reliable performance. Therefore,
this paper introduces FStream++ to provide reliable trans-
fer performance for large distributed streaming projects.
FStream++ implements multiple optimization methods to
adjust transfer settings in real-time to adapt to changing
network and dataset conditions, thereby sustaining high
transfer throughput. The results gathered in various produc-
tion and dedicated networks using synthetic and real-world
workloads show that FStream++ yields nearly 3.6x higher
throughput than legacy transfer applications. It is also able
to outperform its previous implementation, FStream, by up
to 24% with the help of a binary search-based hill-climbing
model, which helps to reduce the convergence time of the
search phase significantly. In addition to maximizing trans-
fer throughput, FStream++ also allows transfer throughput
to be set to a fixed rate such that it will try to adjust the
transfer settings to keep the transfer throughput close to
the desired rate even if higher throughput is possible. As
future work, we plan to incorporate FStream++ to commonly
used workflow execution frameworks (e.g., Pegasus [38]) to
facilitate its adoption by the research community. Moreover,
we intend to extend FStream++ with end-to-end integrity
verification to detect and mitigate undetected errors that
can happen while transmitting data in the network or while
writing it to storage [39], [40].

6 ACKNOWLEDGMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award number OAC-1850353.

REFERENCES

[1] “Laser Interferometer Gravitational-Wave Observatory (LIGO),”
https://www.ligo.caltech.edu/, 2021.

[2] “High energy physics network requirements review final report,”
https://escholarship.org/uc/item/78j3c9v4, 2020.

[3] E. Yildirim, E. Arslan, J. Kim, and T. Kosar, “Application-level
optimization of big data transfers through pipelining, parallelism
and concurrency,” IEEE Transactions on Cloud Computing, vol. 4,
no. 1, pp. 63–75, 2015.

[4] E. Arslan and T. Kosar, “High speed transfer optimization based
on historical analysis and real-time tuning,” IEEE Transactions on
Parallel and Distributed Systems, 2018.

12

[5] M. Arifuzzaman and E. Arslan, “Online optimization of file
transfers in high-speed networks,” in High Performance Computing,
Networking, Storage and Analysis, SC21: International Conference for.
IEEE, 2021.

[6] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle,
“Millwheel: fault-tolerant stream processing at internet scale,”
Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 1033–1044,
2013.

[7] “Kinesis,” 2020, http://aws.amazon.com/kinesis/.
[8] “Apache Kafka,” 2020, https://kafka.apache.org/.
[9] “Processing: What to record?” 2020,

”https://home.cern/about/computing/processing-what-
record”.

[10] G. Fox, S. Jha, and L. Ramakrishnan, STREAM2016: Streaming
Requirements, Experience, Applications and Middleware Workshop, Oct
2016. [Online]. Available: http://www.osti.gov/scitech/servlets/
purl/1344785

[11] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a service for data scientists,” Communi-
cations of the ACM, vol. 55:2, pp. 81–88, 2012.

[12] “BBCP,” https://www.slac.stanford.edu/ abh/bbcp/, 2015.
[13] E. Arslan, B. A. Pehlivan, and T. Kosar, “Big data transfer opti-

mization through adaptive parameter tuning,” Journal of Parallel
and Distributed Computing, vol. 120, pp. 89–100, 2018.

[14] D. Ucar and E. Arslan, “Streaming file transfer optimization for
distributed science workflows,” in 2020 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 2020, pp. 187–197.

[15] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5,
p. 50, 2016.

[16] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “{PCC} vivace: Online-learning congestion control,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 343–356.

[17] “H-tcp - congestion control for high delay-bandwidth product
networks,” https://www.hamilton.ie/net/htcp.htm, 2021.

[18] “ESNet Science DMZ,” 2020, https://fasterdata.es.net/science-
dmz/.

[19] “Data transfer nodes,” 2018, http://fasterdata.es.net/science-
dmz/DTN/.

[20] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, I. Foster et al.,
“Gridftp pipelining,” in Proceedings of the 2007 TeraGrid Conference,
2007.

[21] E. Yildirim, D. Yin, and T. Kosar, “Prediction of optimal parallelism
level in wide area data transfers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 12, pp. 2033–2045, 2011.

[22] N. S. Rao, Q. Liu, S. Sen, G. Hinkel, N. Imam, I. Foster, R. Ket-
timuthu, B. W. Settlemyer, C. Q. Wu, and D. Yun, “Experimental
analysis of file transfer rates over wide-area dedicated connec-
tions,” in IEEE 18th High Performance Computing and Communica-
tions. IEEE, 2016, pp. 198–205.

[23] M. J. Rashti, G. Sabin, and R. Kettimuthu, “Long-haul secure
data transfer using hardware-assisted gridftp,” Future Generation
Computer Systems, vol. 56, pp. 265–276, 2016.

[24] “Expanse,” https://www.sdsc.edu/services/hpc/expanse/,
2021.

[25] “Stampede2,” https://www.tacc.utexas.edu/systems/stampede2,
2021.

[26] I. Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer
algorithms,” in SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2015, pp. 1–12.

[27] M. S. Z. Nine and T. Kosar, “A two-phase dynamic throughput
optimization model for big data transfers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 269–280, 2020.

[28] D. Yun, C. Q. Wu, N. S. Rao, Q. Liu, R. Kettimuthu, and E.-S. Jung,
“Data transfer advisor with transport profiling optimization,” in
Local Computer Networks (LCN), 2017 IEEE 42nd Conference on.
IEEE, 2017, pp. 269–277.

[29] “Bandwidth-delay product,” https://en.wikipedia.org/wiki/Bandwidth-
delay product, 2021.

[30] E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning algo-
rithms for high performance data transfers,” in European Conference
on Parallel Processing. Springer, 2013, pp. 725–736.

[31] H. Sapkota, M. Arifuzzaman, and E. Arslan, “Sample transfer opti-
mization with adaptive deep neural network,” in 2019 IEEE/ACM
Innovating the Network for Data-Intensive Science (INDIS). IEEE,
2019, pp. 69–76.

[32] H. Sapkota, B. A. Pehlivan, and E. Arslan, “Time series analysis
for efficient sample transfers,” in Proceedings of the ACM Workshop
on Systems and Network Telemetry and Analytics, 2019, pp. 11–18.

[33] D. Ghosh and A. Vogt, “Outliers: An evaluation of methodolo-
gies,” in Joint statistical meetings, vol. 2012, 2012.

[34] “Sequence read archive,” https://www.ncbi.nlm.nih.gov/sra.
[35] M. Yang, X. Liu, W. Kroeger, A. Sim, and K. Wu, “Identifying

anomalous file transfer events in lcls workflow,” in Proceedings
of the 1st International Workshop on Autonomous Infrastructure for
Science, 2018, pp. 1–4.

[36] “Extreme Science and Engineering Discovery Environment,”
http://www.xsede.org/, 2020.

[37] “Open science grid,” https://opensciencegrid.org/, 2021.
[38] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil,

M.-H. Su, K. Vahi, and M. Livny, “Pegasus: Mapping scientific
workflows onto the grid,” in European Across Grids Conference.
Springer, 2004, pp. 11–20.

[39] B. Charyyev, A. Alhussen, H. Sapkota, E. Pouyoul, M. H. Gunes,
and E. Arslan, “Towards securing data transfers against silent data
corruption.” in CCGRID, 2019, pp. 262–271.

[40] B. Charyyev and E. Arslan, “Riva: Robust integrity verification al-
gorithm for high-speed file transfers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 6, pp. 1387–1399, 2020.

Hemanta Sapkota received MS degree in Com-
puter Science and Engineering at the University
of Nevada, Reno in 2021 and received his BS
degree in Software Engineering from Fudan Uni-
versity in 2016. His research focus is modeling,
optimization, and anomaly detection for high-
speed data transfers.

Engin Arslan has been an Assistant Professor
at the Department of Computer Science and
Engineering at the University of Nevada, Reno
since 2017. He received his Ph.D. from Uni-
versity at Buffalo in 2016 and worked at Na-
tional Science for Supercomputing Applications
(NCSA) as a postdoctoral research associate for
one year. His research interests include high-
performance computing and networking, edge
and cloud computing, computer networks, dis-
tributed systems, and file systems. He is the

recipient of several prestigious awards including NSF CRII in 2019 and
NSF CAREER in 2021.

http://www.osti.gov/scitech/servlets/purl/1344785
http://www.osti.gov/scitech/servlets/purl/1344785
https://www.hamilton.ie/net/htcp.htm

	Introduction
	Background and Related Work
	System Design
	Dynamic Tuning
	Historical Analysis

	Evaluation
	Changing Workload Characteristics
	Stable Transfer Performance
	Dynamic Background Traffic
	Changing Throughput Requirement

	Conclusion
	Acknowledgments
	References
	Biographies
	Hemanta Sapkota
	Engin Arslan

