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Abstract—We explore a novel multi-user mobile VR system for stream-
ing scalable 8K 360◦ video at high reliability and immersion fidelity, and
low interactive latency, via a synergistic integration of scalable 360◦ tiling,
dual-band millimeter wave (mmWave) and Wi-Fi transmission, and edge
computing. High rate directed mmWave links are studied to send VR
viewport-specific high-quality enhancement layers of the 360◦ content to
the individual users, while Wi-Fi broadcast of the base layer of the entire
360◦ panorama is sent to all users, to augment the system’s reliability.
The viewport-specific enhancement layers can comprise compressed and
raw 360◦ tiles, decoded first at the edge server. We explore the joint
optimization of the mmWave access point to user association, the choice
of 360◦ tiles to be transmitted decompressed, the allocation of mmWave
data rate across the compressed tiles in a viewport-specific enhancement
layer, and the allocation of computing resources at the edge server
and user devices. Our objective is to maximize the minimum delivered
VR immersion fidelity across all users, given transmission, latency, and
computing constraints. We demonstrate that our framework can enable a
significant improvement in immersion fidelity (8 dB to 10 dB) and spatial
resolution (8K vs. 4K), over MPEG-DASH that uses Wi-Fi transmission
only. We also show that an increasing number of raw 360◦ tiles are
sent, as the mmWave link rate or the edge server/user computing power
increase, exploring rigorously here the fundamental interplay between
computing and communication capabilities, end-to-end system latency,
and delivered VR immersion fidelity.

Index Terms—Mobile virtual reality, scalable 360◦ video tiling, dual-
band Wi-Fi/millimeter wave wireless streaming, edge computing, resource
allocation, geometric programming, rate-computing-delay interplay.

I. INTRODUCTION

A. Background

Virtual reality (VR) technologies are increasingly becoming popu-

lar. Related applications include entertainment and gaming, education

and training, healthcare, advertising, and social media. It is expected

that VR technology will represent a $120 billion market by 2022

[1]. 360◦ video is an integral part of VR systems and can enable

remote scene immersion for a VR user experiencing it. Relative to

traditional video streaming [2–10], VR based 360◦ video streaming

introduces these challenging requirements: ultra high data rate, ultra

low response latency, and intensive computing [11]. Thus, at present,

only low-quality/low-resolution 360◦ videos can be streamed over

wired networks. In the mobile setting, the quality of experience is

even worse, due to the much lower wireless bandwidth and computing

capability of such devices, attached to a VR headset. However,

seamless untethered VR applications integrating high-fidelity real

remote scene 360◦ content are expected to have the highest societal

impact, advancing quality of life, the global economy, and energy

conservation [12–14]. Enabling such applications is our objective.
The latency in 360◦ video streaming comprises communica-

tion/computing delays that need to be constrained to 10-20 millisec-

onds end-to-end [15]. Relative to traditional video, 360◦ video has

much higher resolution and temporal frame rates, and thus requires

much higher bandwidth to stream the remote scene it represents.
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1711592, CNS-1836909, and CNS-1821875, and in part by research gifts and
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A high quality 360◦ video at 120 frames per second and spatial

resolution of 12K, as recommended by MPEG, can easily consume

bandwidth of multiple Gigabits-per-second (Gbps) [16].

B. Proposed framework

Fig. 1: Future mobile VR arcade with integrated dual-band scalable 360◦
streaming, edge computing, and millimeter wave capabilities.

We explore a novel streaming system for future untethered VR

that enables high immersion fidelity and low interactive latency,

illustrated in Figure 1. It synergistically integrates for the first time
high fidelity scalable 8K 360◦ video, edge computing, and dual-

band Wi-Fi and millimeter wave wireless transmission. By using high

computing/high transmission rate capabilities at the network edge, our

system enables decompressing select tiles of the 360◦ content at the

edge server and transmitting them as raw data over mmWave links,

aiming to minimize the overall system delay. Thereby, we reduce

the delay induced by decompressing these tiles at the user device

and enhance the system efficiency, at the same time. In our system,

a user is assigned to a mmWave access point (AP) and viewport-

specific enhancement layers of the scalable 360◦ content are sent

to this user using mmWave transmission, comprising both raw and

compressed tiles, as selected by a related optimization.

mmWave links are fragile due to their narrow-beam directed

nature, and can be interrupted due to a transient line-of-sight loss

or blockage. Similarly, predicting the user’s imminent navigation

actions, for proactive delivery of the respective portions of the 360◦

content, to maintain the application’s ultra low latency nature, can

be imperfect. Both of these phenomena can impact the delivered

quality of experience. Hence, to address these challenges and augment

the system’s reliability and delivered immersion fidelity/application

quality, we compensate for the prospective mmWave link uncertainty

and VR viewport prediction error, by broadcasting the base layer of

the entire 360◦ panorama to all users, over Wi-Fi.
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C. Related work

Tiling-based streaming [17–20] is a popular approach for efficient

resource utilization, where 360◦ video frames are spatially divided

into smaller rectangular regions called tiles. Viewport-adaptive rate-

distortion optimized tiling-based unicast/multicast 360◦ video stream-

ing have been studied [21, 22]. Dynamic navigation-aware multiple

360◦ video representation based streaming in server-client and edge-

based systems have been studied [23–25]. Finally, a related tech-

nology, multi-view video streaming enables a viewer to dynamically

navigate a remote scene from a discrete set of viewpoints [26–32].

Only two studies to date have examined the integration of mmWave

and edge computing for mobile VR [33, 34], though with limited

contributions. [33] studies a user clustering strategy to maximize the

user field-of-view frame request admission. [34] studies proactive

computing and caching of synthesized interactive VR video frames,

to minimize the traffic volume of VR gaming. These approaches

are heuristic and do not necessarily enable higher VR immersion

fidelity for the user. Similarly, only low-quality/low-resolution (4K)

360◦ content has been considered. These shortcomings considerably

penalize the delivered quality of experience.

II. SYSTEM MODELS

A. General aspects

In our VR arcade system, illustrated in Figure 1, users receive the

360◦ video content through wireless VR headsets. The mmWave APs

and Wi-Fi router are interlinked with a collocated edge server, where

the compressed scalable content resides. The latter is streamed to the

users using dual-band Wi-Fi and mmWave transmission.

B. Scalable 360◦ Dual-Band Video Transmission

We introduce a scalable 360◦ representation method that synergisti-

cally integrates with mmWave and Wi-Fi communication for efficient

resource utilization. In particular, we denote the set of tiles at the

same spatial location (i, j) in a GOP as a GOP-tile and construct

embedded layers of increasing immersion fidelity for each GOP-

tile, as illustrated in Figure 2. We carry this out using the scalable

extension of the latest video compression standard, denoted as SHVC

[35]. GOP (Group Of Pictures) denotes a block of consecutive 360◦

video frames compressed together, with no reference to other frames.

Fig. 2: Scalable 360◦ tiling. Equirectangular projection is applied first.

The first layer of a compressed GOP-tile is known as the base layer,

and the remaining layers are denoted as enhancement layers. The

reconstruction fidelity of a GOP-tile improves incrementally as more

layers are being decoded progressively starting from the base layer.

Let L denote the collection of all GOP-tiles. To augment the system’s

reliability, and compensate for prospective mmWave link uncertainty

and viewport prediction error, the base layer of every GOP-tile l ∈ L
is broadcast over Wi-Fi to all users. Multiple enhancement layers of

viewport-specific GOP-tiles are then sent to the individual users over

mmWave links. All delivered scalable 360◦ layers are integrated at a

VR user to augment his immersion fidelity.

1) Wi-Fi 360◦ Base Layer Transmission: Each GOP-tile l ∈ L
exhibits an immersion reconstruction distortion Dl related to its

encoding rate Rl as Dl = alR
bl
l , where al and bl are constants

[21]. Let the immersion distortion of each GOP-tile l ∈ L which

is sent over Wi-Fi communication be Dμ and the corresponding

data rate of the GOP-tile be Rμ. The bandwidth available for Wi-

Fi communication is Bw. Therefore the delay in transmitting all the

GOP-tiles l ∈ L using broadcast is τc =
LRμ

Bw log(1+γbr)
, where γbr

is the broadcast SNR using Wi-Fi, and L = |L|.
2) mmWave 360◦ Enhancement Layers Transmission: We leverage

our ongoing work on statistical characterization of user viewport

navigation [21, 36], to identify Lu as the subset of 360◦ GOP-

tiles that overlap with the VR viewport of user u over that GOP.

Essentially, Lu comprises the GOP-tiles that exhibit a non-zero

likelihood of being navigated by the user during that GOP of the 360◦

content. Enhancement layers of tiles l ∈ Lu will be sent to user u
using mmWave transmission from one select AP. In particular, from

the Lu set of GOP-tiles to be sent via mmWave AP a, a Lu,r ⊆ Lu

subset of GOP-tiles are sent raw, while the remaining Lu \Lu,r tiles

are sent compressed. Let the size of the enhancement layer of each

GOP-tile l ∈ Lu,r after decoding be br in number of bits and the

data rate of each encoded GOP-tile l ∈ Lu \ Lu,r be Rl.

In parallel, the user receives the base layer of each GOP-tile l ∈
Lu (of data rate Rμ) over the Wi-Fi broadcast, as explained earlier.

Since we construct/encode the 360◦ content in scalable manner, the

number of bits required to be sent for the enhancement layers of each

compressed GOP-tile l ∈ Lu \ Lu,r is (Rl − Rμ). Thus, the delay

in transmitting all GOP-tiles l ∈ Lu using mmWave transmission

is τa,u =
|Lu,r|br+

∑
l∈Lu\Lu,r

(Rl−Rμ)

B log(1+γau)
. The transmitted GOP-tiles

Lu \ Lu,r are decoded at the user, upon reception.

C. Computing time and end-to-end delay analysis

We study the time delay induced by decoding GOP-tiles at the edge

server or a user. The time required to decode a GOP-tile depends upon

the data rate of the GOP-tile, which in turn depends on the number of

scalable layers from which the tile is decoded/reconstructed. When

carried out at the edge server, GOP-tile l ∈ Lu,r is decoded from

the highest available data rate (best quality) Rl,max of the GOP-

tile. This corresponds to reconstructing the tile from all K scalable

layers into which it has been encoded using our approach. At the

user, compressed GOP-tiles l ∈ Lu,r \ Lu of data rate Rl (received

via mmWave transmission) and GOP-tiles l ∈ L of data rate Rμ

(received via Wi-Fi broadcast) are decoded.

We analyzed the number of CPU computing cycles β required to

decode a GOP-tile as a function of its data rate R. We empirically

validated a closely-fitting polynomial relationship that we capture as

β = cR3−dR2+eR+f , where c, d, e, and f are positive constants.

Let the processing capability of the VR headset of user u be fu,

and let fu,1 and fu,2 be the processing power allocated by the user to

decode the GOP-tiles received over Wi-Fi and mmWave, respectively,

where fu,1 + fu,2 ≤ fu. Thus, the number of CPU computing

cycles required to decode the baseline GOP-tiles L of data rate Rμ

at the user is L · (cR3
μ − dR2

μ + eRμ + f). Hence, the induced

decoding delay can be formulated as: Tc =
L·(cR3

μ−dR2
μ+eRμ+f)

fu,1
.

Next, the aggregate decoding delay for the enhancement GOP-tiles

Lu,r at the edge server can be formulated as: Tu,1 =

∑
l∈Lu,r

βl,kr

Fu
,

where βl,kr = cR3
l,max − dR2

l,max + eRl,max + f is the number

of CPU cycles required to decode tile l ∈ Lu,r , and Fu is the edge

server’s computing resource allocated to user u. Finally, the decoding

delay of enhancement layer GOP-tiles Lu \ Lu,r at the user can



be formulated as: Tu,2 =

∑
l∈Lu\Lu,r

cR3
l −dR2

l +eRl+f

fu,2
. Thus, the

aggregate delay, comprising transmission and decoding components,

in receiving the GOP-tiles L via Wi-Fi transmission is Tc + τc.

Similarly, the aggregate delay in receiving the GOP-tiles Lu via a

mmWave link is Tu,1 + Tu,2 + τa,u.

III. PROBLEM FORMULATION

Let Π denote the set of all possible AP to user assignments, for the

AP set A and user set U , such that every member set π ∈ Π features

AP to user assignments comprising |U | disjoint AP user pairs.

Furthermore, let Lu be the power set of the set Lu which is the set

of all subsets of Lu, including the empty set and Lu itself. Using the

advances in [21, 22], we can characterize the likelihood pul of every

GOP-tile l ∈ Lu appearing in the viewport of user u over that GOP,

and the expected immersion distortion experienced by the user, given

a data rate allocation across the GOP-tiles. Concretely, we formulate

the latter quantity as
∑

l∈Lu,r
pul alR

bl
l,max +

∑
l∈Lu\Lu,r

pul alR
bl
l .

pul capture the expected fraction of the spatial area of a tile being

overlapped with the user’ viewport during a GOP, and integrate the

aspect that equatorial tiles are more likely navigated than polar tiles.

Hence, our distortion formulation above corresponds to a tile-level

WS-PSNR (Weighted Spherical PSNR) [37]. We aim to minimize

the maximum expected immersion distortion over all users, for given

system and application constraints. We formulate this problem as:

min
π∈Π,F ,Lu,r∈Lu,∀u

R,fu,1,fu,2

max
u∈U

∑
l∈Lu,r

pul alR
bl
l,max +

∑
l∈Lu\Lu,r

pul alR
bl
l ,

s.t.
L(cR3

μ − dR2
μ + eRμ + f)

fu,1
+

LRμ

r′
≤ τ, u ∈ U,

∑
l∈Lu,r

βl,kr

Fu
+

∑
l∈Lu\Lu,r

cR3
l − dR2

l + eRl + f

fu,2

+
|Lu,r|br +∑

l∈Lu\Lu,r
(Rl −Rμ)

ra,u
≤ τ, u ∈ U,

∑
u∈U

Fu ≤ F, fu,1 + fu,2 ≤ fu, u ∈ U, (1)

Here, r′ = Bw log(1 + γbr), ra,u = B log(1 + γau), and Bw

and γbr are the bandwidth and SNR of the Wi-Fi broadcast channel.

B and γau denote the respective channel quantities for the mmWave

link from AP a to user u. F is the vector of all values of Fu, u ∈ U ,

R is a set that contains all possible Rl, l ∈ Lu \ Lu,r , u ∈ U , and

τ is the maximum tolerable delay within which each GOP needs

to be received such that users do not experience any lag. The first

constraint in (1) imposes that the total delay of receiving all baseline

GOP-tiles l ∈ L at the user, via Wi-Fi communication, be bounded

by τ . Similarly, the second constraint imposes that the total delay

of receiving all enhancement layer GOP-tiles l ∈ L at the user via

mmWave communication be bounded by τ . The computing allocation

at the edge server is restricted by the total available resource F , as

shown in the third constraint. The restriction on computing resource

allocation for each user u ∈ U is given by the fourth constraint.

Note that minimizing the immersion distortion in (1) is the same as

maximizing the respective immersion fidelity, due to the one-to-one

mapping between them. Moreover, the (stronger) latency constraints

in (1) imply the respective transmission rate constraints on the Wi-Fi

and mmWave links over the same time period τ . Other system and

application aspects can be easily integrated into (1), e.g., further data

processing delays introduced at the edge server and mobile VR users.

IV. OPTIMIZATION SOLUTION

A. Solution outline

The optimization (1) is mixed-integer programming, which is

hard to solve optimally in practice, due to its complexity. Thus,

we investigate a lower-complexity solution that comprises three

steps applied sequentially. First, we fix the edge server’s computing

resource allocation, to be able to tackle the integer variables in the

optimization problem. Then, (1) decomposes into a joint mmWave

data rate allocation, user computing resource allocation, and raw tile

selection, for each user u to AP a pairing in a given assignment. We

compute solutions to each of these independent problems, for any

prospective user to AP assignment π, in Section IV-B. These solutions

will produce edge weights for any user u to AP a prospective pairing,

which we will then leverage in Section IV-C to compute the optimal

user to AP assignment π∗ using a graph-theoretic solution. Finally,

given this assignment and considering now F as a variable, we

resolve (1) to jointly identify/update the optimal computing resource

allocation at the edge server and users, and the mmWave data

rate allocation. This step completes our optimization strategy and

is carried out in Section IV-D. Due to limited space, we can only

describe the first step in detail here.

B. Computing optimal edge weights for AP to user pairings

Let the edge server’s computing resource allocation be fixed and

uniform across all users, i.e., Fu = F/M , where M = |U | denotes

the number of users. Due to the fixed allocation, (1) decouples into:

min
Lu,r∈LuR
fu,1,fu,2

∑
l∈Lu,r

pul alR
bl
l,max +

∑
l∈Lu\Lu,r

pul alR
bl
l , (2)

s.t.
L(cR3

μ − dR2
μ + eRμ + f)

fu,1
+

LRμ

r′
≤ τ,

∑
l∈Lu,r

βl,kr

Fu
+

∑
l∈Lu\Lu,r

cR3
l − dR2

l + eRl + f

fu,2

+
|Lu,r|br +∑

l∈Lu\Lu,r
(Rl −Rμ)

ra,u
≤ τ, fu,1 + fu,2 ≤ fu,

for each (user u, AP a) pairing in an assignment π. To solve

(2), we first fix the set of raw enhancement layer GOP-tiles Lu,r ,

and formulate an optimization strategy to solve the allocation of

mmWave data rate and user computing resource. Then, we show how

to integrate the selection of Lu,r into our optimization strategy, by

reformulating (2) accordingly.
1) Fixed set of raw GOP-tiles: We first solve (2), for a given Lu,r .

We can show that this problem is not convex. It can be reformu-

lated into geometric programming (GP) via the single condensation

method [38]. According to this method, for a constraint which is

a ratio of posynomials, the denominator posynomial (say f(x)) can

be approximated into a monomial using the following inequality:

f(x) =
∑

� f�(x) ≥ f̂(x) =
∏

�

[
f�(x)
δ�

]δ�
(3), where δ� > 0 and∑

� δ� = 1. Then, for δ� = f�(x̂)/f(x̂), f̂(x̂) is the best monomial

approximation of f(x) near x = x̂.

We formulate an iterative technique to optimally solve (2) in this

case. In particular, at each iteration t, the first constraint in (2) is

converted into a posynomial using (3). Similarly, at every iteration

t, we can convert the second constraint in (2) into a posynomial

using (3). Space limits prevent including these expressions here. Let

D(t) =
∑

l∈Lu,r
pul alR

bl
l,max+

∑
l∈Lu\Lu,r

pul alRl(t)
bl . Then, the

overall optimization to solve at iteration t is

min
R,fu,1,fu,2

D(t), s.t. convert. constr., fu,1(t) + fu,2(t) ≤ fu. (4)



The above optimization problem is GP and can be solved optimally.

The iterative optimization is carried out until |D(t)−D(t−1)| ≤ ε,
with 0 ≤ ε � 1. An algorithmic implementation is included in

Algorithm 1, which converges to the global solution [38].

Algorithm 1 GP based solution for (2), for a given Lu,r .

1: Set t = 1,

2: Initialize fu,1(t) = fu,2(t) = fu/2, Initialize Rl(t)
3: while true do � infinite loop

4: t = t+ 1
5: Calculate δ1(t), δ2(t)
6: Find the optimum fu,1(t), fu,2(t) D(t), Rl(t) solving (4)

using GGPLAB [39]

7: if |D(t)−D(t− 1)| ≤ ε then
8: Break

9: end if
10: end while
11: The optimal value of the optimization problem (2) is D(t)

2) Raw GOP-tile selection: The optimization problem in (2) can

be solved optimally in the following manner: (i) For each possible

tile set Lu,r ∈ L, find the mmWave data rate and user computing

resource allocation by solving (2), and then (ii) Find the best tile

set Lu,r for which the expected immersion distortion is smallest.

However, this scheme requires searching over 2|L| − 1 possible tile

sets. To solve (2) with low complexity, first, we reformulate our

problem as follows: Let xl be an indicator function that denotes

whether a tile is sent as encoded or raw, where xl = 1, if tile

l is sent as encoded, and xl = 0, if the tile is sent as raw. We

then reformulate (2) accordingly, omitting the resulting expression

here to save space. To solve the reformulated problem efficiently, we

first replace the binary constraints above with continuous equivalents

xl ∈ [0, 1], l ∈ L. We can then convert the resulting problem into

GP and solve it.

The obtained optimal solution for xl is continuous. To find the

desired raw GOP-tile selection, we pursue the following rounding

strategy. We first initialize Lu,r as empty. Then, at each step: (i)

We find the tile l∗ with smallest value of xl among the available

tile set L \ Lu,r , and (ii) If the expected immersion distortion

reduces, add l∗ to the raw tile set Lu,r . We continue this process

as long as the immersion distortion reduces further, and finally we

produce the desired tile set L∗
u,r , at the end. Then, the allocation

of mmWave data rate and user computing resource can be obtained

by solving (2), for the given L∗
u,r . Let D∗

a,u denote the optimal

expected immersion distortion experienced by user u, i.e., the value

of the objective function in (2), enabled by the produced solution.

Algorithm 2 summarizes formally our optimization procedure.

C. Optimal user to access point assignment

The optimal user to AP assignment can be identified by searching

over all possible assignments Π. But, this requires searching over

(M + N)!/M ! prospective assignments, where N = |A| is the

number of APs. We explore a lower-complexity alternative that uses

graph theoretic concepts. To solve the AP to user assignment, we first

formulate a weighted bipartite graph in which each AP a ∈ {1, .., N}
and each user u ∈ {1, ..,M} are represented by vertices v1a ∈ V1

and v2u ∈ V2, respectively, and the weight of the edges (v1a, v
2
u) is

expressed as ω(v1
a,v

2
u) = D∗

a,u.

Leveraging the development heretofore, we formulate and solve

the user to AP assignment subproblem from (1) as a bottle-

neck matching problem for the graph, defined by the maximum

Algorithm 2 Optimal solution of (2), with selection of L∗
u,r .

1: Set t = 1, Lu,r = ∅
2: Solve reformulated (2)

3: for i = 1 : |L| do
4: l∗ = arg minl∈L\Lu,r

xl

5: Lu,r = Lu,r ∪ l∗

6: Solve (2) considering raw tile set Lu,r ∪ l∗ and obtain

Da,u(Lu,r ∪ l∗)
7: if Da,u(Lu,r ∪ l∗) <= Da,u(Lu,r) then
8: Lu,r = Lu,r ∪ l∗

9: else
10: break

11: end if
12: end for
13: Output raw tile set L∗

u,r

14: Solve (2), given L∗
u,r . Compute objective D∗

a,u.

matching whose largest edge weight is as small as possible, i.e.,

minφ∈Φ max(v1
a,v

2
u)∈φ ω(v1

a,v
2
u), where Φ contains all possible max-

imum matchings. Φ is directly related to Π such that each maximum

matching φ ∈ Φ corresponds to a user to AP assignment in Π.

D. Joint Transmission and User/Edge Resource Allocation

In Section IV-B, as part of the optimization carried out therein, we

identified the optimal enhancement GOP-tile subset L∗
u,r that should

be transmitted as raw data over the mmWave link of a given user and

AP pairing (u, a). In Section IV-C, we identified the optimal user to

AP assignment π∗. Given these discrete optimization developments,

we can (re)solve jointly now the optimal allocation of user and edge

server computing resources, and mmWave link data rate across the

compressed enhancement layer GOP-tile subset Lu\L∗
u,r . Concretely,

we investigate the joint allocation of these three system resources by

solving (1), for given π∗ and L∗
u,r, ∀u.

We pursue a solution to this optimization problem by reformulating

it first as GP using the single condensation method, analogously

to Section IV-B1. We then solve the problem reformulation via an

iterative optimization method equivalent to Algorithm 1.

V. EXPERIMENTAL RESULTS

We carry out an experimental evaluation of the performance of

our system. We measure the delivered VR immersion fidelity as the

inverse of the respective distortion quantity, commonly known as

the Peak Signal-to-Noise ratio (PSNR). We benchmark our approach

relative to a state-of-the-art method that integrates the latest video

streaming standard MPEG DASH [18, 40], to deliver the 360◦ content

over Wi-Fi, given the same system constraints. No prior work has

considered our problem setting, to serve as another reference method.

In our simulation experiments, five users are uniformly distributed in

a 5m× 5m square room VR arcade. The mmWave APs and the Wi-

Fi router, linked to an edge computing server, are placed high on the

room walls. As 360◦ content, we use the ’Runner’ and ’Basketball’

360◦ videos captured at 30fps and 8K spatial resolution [41].

A. Immersion Fidelity vs. Edge Computing Resource

In Figure 3, we examine the performance of the proposed system

when the edge server computing power varies from 75 GHz to 175
GHz. The mmWave network links in the system exhibit diverse data

rates in the range 600−900 Mbps. We observed in this experiment

that as the server’s computing power increases, more enhancement

layer GOP-tiles can be decoded within a small computing latency



at the edge, which in turn reduces the computing latency at the

user. Thus, the mmWave APs can send a higher number of raw

enhancement GOP-tiles, and compressed enhancement GOP-tiles,

encoded at higher data rates, which improves the PSNR. We observe

consistently strong performance improvement of 8-9 dB and 9-10

dB over MPEG-DASH for Runner and Basketball, respectively. These

advances will considerably enhance the immersion fidelity and quality

of experience delivered to mobile users in our VR system.
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Fig. 3: PSNR performance versus edge server computing power.

B. Immersion Fidelity vs. mmWave Transmission Rate

Next, in Figure 4 we explore the performance of our system, when

the data rate of the mmWave network links in the system is uniform,

and is progressively increased from 400 Mbps to 1 Gbps. The edge

server’s computing power is fixed to 150 GHz in these experiments.

We can see that as the mmWave transmission data rate increases, the

PSNR of the proposed system increases, as expected. In particular,

as the data rate increases, more raw enhancement layer GOP-tiles

can be transmitted. In consequence, this will reduce the computing

time at the user, which together with the higher mmWave network

link data rate, will enable transmitting the remaining compressed

enhancement GOP-tiles, encoded at higher data rates. Again, we

observe consistently strong performance improvement of 7-9 dB and

8-10 dB over MPEG-DASH for Runner and Basketball, respectively.

These benefits considerably advance the state-of-the-art.
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Fig. 4: PSNR versus mmWave rate (F = 150 GHz).

C. Expected number of selected raw enhancement layer GOP-tiles

Finally, in Table I and Table II, we investigate the expected

number of raw enhancement layer GOP-tiles selected for mmWave

transmission in our system, in the case of the 360◦ content ’Runner’.

A positive non-integer valued entry in Table I, associated with a given

mmWave transmission data rate and edge server computing power

pair, can be explained with the following examples.

TABLE I: Expected number of enhancement layer raw GOP-tiles selected
for mmWave transmission vs. edge server computing power and mmWave
transmission data rate. User computing power fu = 3 GHz.

mmWave rate 400 Mbps 600 Mbps 800 Mbps 1000 Mbps

F = 50 GHz 0 0 0.6 1.1
F = 100 GHz 0 0 0.8 1.3
F = 150 GHz 0 0.2 1.0 1.6
F = 200 GHz 0 0.4 1.2 1.9

(i) if F = 150 GHz and mmWave rate is 600 Mbps, an expected

number of transmitted raw tiles of 0.2 can occur if for one of the

five users, one enhancement layer GOP-tile is transmitted as raw

data. For the other users, all enhancement GOP-tiles are transmitted

compressed. (ii) if F = 200 GHz and mmWave rate is 800 Mbps,

an expected number of transmitted raw tiles of 1.2 can occur if for

one of the five users, two enhancement GOP-tiles are transmitted

as raw data. For the other four users, one enhancement GOP-tile is

transmitted as raw data.

It can be observed from Table I that as the mmWave transmission

data rate and edge server computing power increase, a higher number

of raw enhancement GOP-tiles are selected by our optimization

framework, to augment the delivered immersion fidelity. This is

because with the increase in mmWave data rate and edge server

computing power, a higher number of enhancement GOP-tiles can be

decompressed at the edge server and transmitted as raw data over the

mmWave link, within a short time interval. In consequence, then only

a smaller number of compressed enhancement GOP-tiles, encoded at

higher data rate, would need to be delivered, which would lower

the decoding latency induced at the user. Both of these advances

will contribute to higher immersion fidelity delivered to the VR user,

while maintaining the required system latency.

TABLE II: Expected number of enhancement layer raw GOP-tiles se-
lected for mmWave transmission vs. user computing power and mmWave
transmission data rate. Edge server computing power F = 150 GHz.

mmWave rate 400 Mbps 600 Mbps 800 Mbps 1000 Mbps

fu = 3 GHz 0 0.2 1.0 1.6
fu = 4 GHz 0 0.2 1.0 1.7
fu = 5 GHz 0 0.2 1.1 1.8
fu = 6 GHz 0 0.3 1.2 1.8

We can observe from Table II that a higher number of raw

enhancement GOP-tiles are likewise selected for transmission, as the

mmWave transmission data rate and user computing power increase,

again to augment the immersion fidelity delivered to the user. This

outcome stems from reasons equivalent to those discussed earlier

in the context of the results presented in Table I. In particular, the

higher user computing power enables decoding faster compressed

enhancement GOP-tiles delivered to the user, i.e., with lower induced

delay. This in turn will leave more of the end-to-end system delay

constraint available to be consumed by mmWave transmission, which

coupled with the higher mmWave transmission data rate, enables

sending a higher number of raw enhancement GOP-tiles.



VI. CONCLUSION

We presented a novel mobile VR system for streaming scalable

8K 360◦ video at high reliability and immersion fidelity, and low

interactive latency, via the synergistic integration of embedded 360◦

tiling, dual millimeter wave (mmWave) and Wi-Fi transmission, and

edge computing. We explored the joint optimization of the mmWave

access point to user association, the choice of enhancement layer 360◦

tiles to be transmitted decompressed, the allocation of mmWave data

rate across the compressed tiles in a viewport-specific enhancement

layer, and the allocation of computing resources at the edge server and

user devices. Our objective was to maximize the minimum delivered

VR immersion fidelity across all users, given transmission, latency,

and computing constraints. We formulated a solution that comprises

multiple geometric programming algorithms and an intermediate

step of graph-theoretic VR user to mmWave AP assignment. We

demonstrated considerable gains in delivered immersion fidelity (8
dB to 10 dB) and spatial resolution (8K vs. 4K), over MPEG-

DASH that uses Wi-Fi transmission only. We have shown that an

increasing number of raw 360◦ enhancement layer GOP-tiles are

sent, as the mmWave link data rate or the edge server’s computing

power increases, exploring rigorously here the fundamental trade-

offs between computing and communication capabilities, end-to-end

system latency, and delivered immersion fidelity.
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