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ABSTRACT: An efficient synthesis of chiral nonracemic diene ligands is facilitated by an enantioselective dearomative inter-
molecular arene cyclopropanation of anisole. The functionality of the resulting cycloheptatriene engenders distinct chemical
environments in a downstream tricyclic bis(enol) triflate that permits selective late-stage functionalization. The synthesis of
diverse Ci- and pseudo-Cz-symmetric dienes is therefore viable by iterative palladium catalyzed cross-coupling reactions. The
ligands provide moderate to high selectivities in known Rh(I)-mediated asymmetric transformations.

Chiral dienes are a privileged ligand class in transition
metal-catalyzed asymmetric carbon-carbon bond forming
reactions.! Foundational reports by Hayashi? and Carreira3
demonstrated efficient aryl transfer reactions of organobo-
ron reagents to prototypical Michael acceptors, and subse-
quent work has expanded the diversity of effective electro-
philes to yield synthetically useful 1,2-* and 1,4-aryl® trans-
fer reactions. In addition, Rh(I)-chiral diene complexes have
been employed as catalysts for asymmetric [4+2]-cycload-
ditions,® arylative carbocyclizations,” intermolecular car-
bene insertions,® and o,y-difunctionalization of electron-
poor dienes.? Chiral dienes have also been integrated into
heterogenous catalysts, allowing for facile catalyst recovery
and recycling.’® Extant syntheses of chiral diene ligands
have some remaining limitations and a practical modular,
de novo synthesis would be of interest.

Chiral dienes based on the bicyclo[2.2.2]octadiene (bod)
scaffold have attracted considerable attention and prior
synthetic efforts can be organized into three categories: (1)
resolution of racemic starting materials;24>11 (2) modifica-
tion of chiral pool reagents;312 and (3) asymmetric cataly-
sis1314b (Figure 1a). Despite successful application to other
diene ligand scaffolds,'* asymmetric catalysis has not been
as widely demonstrated as a method of preparing bicy-
clo[2.2.2]octadienes. Possible attractive features include
obviating classical chiral resolution and allowing access to
both enantiomers of the chiral diene ligands through cata-
lyst selection. We were interested in the novel Ci-symmetric
bis(aryl) dienes demonstrated by Abele and coworkers and
wondered if a late-stage divergent approach to the synthe-
sis of both Ci-symmetric and pseudo-Cz-symmetric dienes
was possible (Figure 1b). Our interest in [2+1]-annulations

of readily available aromatic feedstocks's led to the hypoth-
esis that cycloheptatriene 3, reported by Fleming and
Beeler,!% offers the possibility for direct access to chiral
dienes. The dirhodium tetracarboxylate catalyst that facili-
tates that intermolecular Buchner reaction (vide infra) is
commercially available in both enantiomeric forms, which
could allow for straightforward access to both enantiomers
of the proposed diene ligands. Herein, we describe a cata-
lytic, asymmetric, dearomative approach to the synthesis of
chiral dienes as ligands for Rh(I)-mediated asymmetric pro-
cesses.
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Figure 1. Bicyclo[2.2.2]octadiene (bod) ligands

Using a modified batch procedure based on the flow method
developed by Fleming and Beeler,1¢2 cycloheptatriene 3 was
synthesized with high enantio- and regioselectivity in mod-
erate yield (Scheme 1). With gentle warming, norcaradiene
3’ participated in a highly diastereoselective [4+2]-cycload-
dition with the ketene equivalent nitroethylene!” to give tri-
cycle 4 in good yield (81% yield, dr 20:1). The exclusive for-
mation/participation of the illustrated exo-ester norcaradi-
ene 3’ versus its endo diastereomer in the cycloaddition is
not fully understood at this stage, but is consistent with
prior examples in the literature.!¢® A single recrystallization
from EtOAc/hexanes gave enantiopure tricycle 4 with min-
imal loss of material (86% recovery, >99:1 er). Sequential
treatment of tricycle 4 with p-toluenesulfonic acid and so-
dium nitrite!® afforded nitro-ketone intermediate 5 (not
shown) and dione 6, respectively. Bis(enol) triflate 7 was
obtained in 84% yield upon reaction of dione 6 with
Comins’s'® reagent under basic conditions. Bis(enol) triflate
7 offers a particularly clear example of diamagnetic chemi-
cal shift anisotropy: the proton (Hs) lying within the mag-
netic field of the pendant arene is shifted upfield by 1.39
ppm (see SI page S22 for the full 'H NMR spectrum).

Scheme 1. Synthesis of bis(enol) triflate 7¢
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aReagents and conditions: (a) Rhz[(R)-PTAD]4 (0.1 mol %), 23
°C, slow addition over 2 h; (b) nitroethylene (2.5 equiv), PhMe,
50 °C, 3 h; (c¢) Recrystallization (23% EtOAc in hexanes); (d)
pTSA (5.0 equiv), THF/H20, 50 °C, 5 h; (e) NaNOz (6.0 equiv),
DMSO/Hz0, 65 °C, 16 h; (f) Comins’s reagent (3.2 equiv),
LiHMDS (3.0 equiv), THF, -78 °C to 0 °C, 3 h.

The different steric environments of the enol triflates at C6
and C8 was exploited to allow for selective functionalization
of each position via palladium-catalyzed cross-coupling
(Scheme 2), allowing us to synthesize a diverse set of elec-
tron-neutral and electron deficient bis(aryl) dienes, which
have seen the widest application in the literature. The reac-
tion of bis(enol) triflate 7 with Pd(PPhs)4 and an aryl-
boronic acid at room temperature for 16 h installed the
arene at the more sterically accessible C6-position with
minimal over-reaction, giving mono(enol) triflates 8a-b.
The reaction of bis(enol) triflate 7 with Buchwald’s 4t gen-
eration XantPhos palladacycle?? and arylboronic acids at 85
°C allowed for incorporation of an arene at both the C6- and
C8-positions to give pseudo-Cz-symmetric dienes 9a-d. This
methodology was also applied to the conversion of the
mono(enol) triflates 8a-b to C;-symmetric dienes 9e-f. Us-
ing the same catalyst, mono(enol) triflate 8a can be selec-
tively reduced to give diene 9g. Single crystal X-ray diffrac-
tion analysis of diene 9a unambiguously confirmed the ab-
solute stereochemistry of the tricyclononadiene (tnd) lig-
ands 9a-9g.

Scheme 2. Selective functionalization of bis(enol) tri-
flate 72b
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aReagents and conditions: (a) Pd(PPhs)4 (5 mol %), ArB(OH)2
(3.0 equiv), 2 M aq. Na2COs3 (10 equiv), PhMe/MeOH, 23 °C, 16
h. (b) G4 XantPhos palladacycle (5 mol %), ArB(OH)z (5 equiv),
CsF (10.0 equiv), 1,4-dioxane/H20, 85 °C, 16 h; (c) G4 XantPhos
palladacycle (5 mol %), HCOzH (3.0 equiv), BusN (3.0 equiv),
DMF, 60 °C, 16 h. bX-ray structure of 9a is shown at 50% ther-
mal ellipsoids and hydrogen atoms are omitted for clarity.

Table 1. Benchmark conjugate addition to cyclohex-
enone 10%b<

([C2H4l2RN),Cly

(0]
(2.0 mol % Rh)
9 (2.4 mol %)
+ PhB(OH), ——>

(2 equiv) KOH (20 mol %)

Dioxane, 40 °C, 3 h Ph
10 1
entry diene yield % erd
1 9a (92)e 98:2
2 9a (98)98 98:2
3 9b 85 98:2
4 9c 80 98:2
5 9d 75 96:4
6 9e 95 97:3
7 9f 76 88:12
8 9g 87 84:16

aAll reactions were carried out on a 0.20 mmol scale; values
shown represent an average of two individual experiments.
bWe use () to denote 1H NMR yield using phenanthrene as an
internal standard. cThe absolute stereochemistry was assigned
by comparing the sign of the optical rotation to values reported
in the literature. 9Determined by HPLC using a chiral stationary
phase. eldentical conditions but 1.0 mol % of Rh and 1.2 mol%
of 9a.

To assess the utility of the tnd-ligands in asymmetric trans-
formations, the benchmark Rh-catalyzed 1,4-conjugate ad-
dition of PhB(OH)2 to cyclohexenone was probed (Table 1).
Initial results using ligand 9a were promising, and slightly

diminished yields (but identical enantioinduction) was ob-
served using 1 mol % of rhodium. The tnd-ligands 9b-9g
were subjected to identical reaction conditions to assess the
utility of the ligand class. The bis(naphth-2-yl) tnd-ligand
9b and bis(4-trifluoromethylphenyl) tnd-ligand 9c pre-
formed comparably to diene 9a, although with slightly re-
duced yields. The tnd-ligand 9e performed significantly bet-
ter in this transformation than the other Ci-symmetric
dienes (97:3 er). The reaction delivered ketone 11 in high
enantioselectivity, albeit in slightly lower yield, on a 1 mmol
scale using 2 mol % of rhodium and diene 9a (89% yield,
97:3 er, see SI S76.)

Scheme 3. Application to other synthetically useful sys-
tems using diene 9a and 9eb<d
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c. silane insertion of diazoacetate 16
(IC2H412RN),Cl, (3.0 mol % Rh)
N, 9 (3.4 mol %) SiPhMe,
)k + HSiPhMe,
Ph CO,Et (1.5 equiv) DCM, 50 °C, 16 h Ph CO,Et
16 17
ligand 9a ligand 9e
yield 65% er 94:6 | yield 82% er 90:10
d. arylative dynamic kinetic resolution of ketoester 18
(IC2H4l,RN),Cl, (5.0 mol % Rh)
CO,Et 9 (5.2 mol %) FOEL
Me + PhB(OH Me _\''OH
0 3.5 (equizf) CsF (30 mol %) Ph
Ar ) TEA (3.5 equiv) Ar
- CHCI3, 40°C, 48 h
18 19
Ar = 2-naphthyl ligand 9a ligand 9e
yield 70% yield 53%

er 91:9 dr >20:1 er 955 dr >20:1

aAll reactions were carried out on a 0.20 mmol scale; values
shown represent an average of two individual experiments.
bEnantioselectivity was determined by HPLC using a chiral sta-
tionary phase. cThe absolute stereochemistry was assigned by
comparing the sign of the optical rotation to values reported in
the literature. 9The diastereoselectivity was determined by 1H
NMR spectroscopic analysis of the crude reaction mixture.

To further evaluate the utility of the tnd ligands, we sub-
jected both a high preforming C1- and pseudo-Cz-symmetric
ligand to a variety of synthetic transformations (Scheme 3).
Ligands 9a and 9e both facilitated the 1,2-arylation of N-sul-
fonyl aldimine 12. In particular, ligand 9a gave sulfonamide
13 in 90% yield and 99:1 er. The use of phenylboroxine is



vital to high performance in these reactions, as phenyl-
boronic acid facilitated the rapid hydrolysis of imine 12 to
the aldehyde precursor. The tnd-ligands 9a and 9e also suc-
cessfully arylated a significantly more challenging Michael
acceptor, enamide 14 (31% yield, 80:20 er). While the iso-
lated yields are modest, the level of enantioinduction is sim-
ilar to Hayashi’s Ph-bod* ligand in the original report (73%
yield, 85:15 er).5421 We also wanted to confirm the tnd-lig-
ands were proficient facilitators of Rh(I)-mediated carbene
insertions. The pseudo-Cz-symmetric tnd-ligand 9a outper-
formed Ci1-symmetric tnd-ligand 9e (65% yield, 94:6 er), in
contrast to the findings of the Xu group who obtained higher
yield and enantioinduction using a similar Ci-symmetric
diene® (84% yield and 97:3 er). The differing results high-
lights the complementary reactivity of these ligands in com-
parison to existing scaffolds. Finally, both diene 9a and 9e
performed effectively in the arylative dynamic kinetic reso-
lution of an a-ketoester.*d Diene 9e gave higher enantiose-
lectivity, albeit in slightly lower yields than diene 9a (53%
yield, >20:1 dr, 95:5 er).

In summary, we have developed an efficient synthesis of
chiral diene ligands originating from the dearomative,
asymmetric, intermolecular arene cyclopropanation of ani-
sole. The steric environment of the diene precursors proved
to be advantageous, as this allowed for improved late-stage
diversification. These ligands have been demonstrated to be
proficient steering ligands for several asymmetric transfor-
mations. Further applications of these tnd-ligands are cur-
rently being explored in our research group.
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