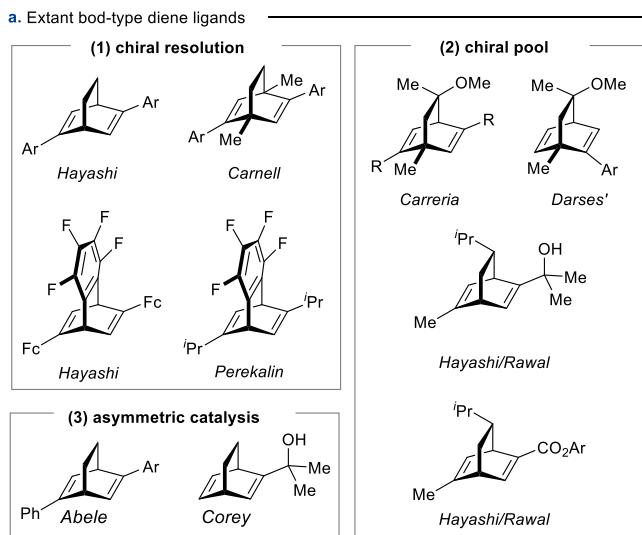


A Dearomative Synthesis of Chiral Dienes Enables Improved Late-Stage Ligand Diversification

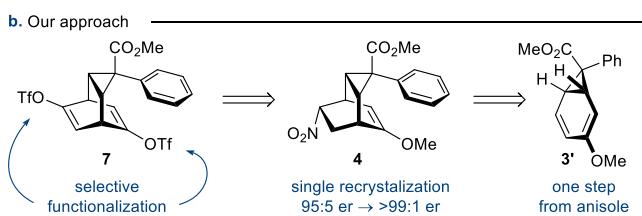
Evan T. Crawford, Kendrick L. Smith, Jeffrey S. Johnson*

University of North Carolina at Chapel Hill, Chapel Hill, NC, 25799-3290, United States

Supporting Information Placeholder



ABSTRACT: An efficient synthesis of chiral nonracemic diene ligands is facilitated by an enantioselective dearomative intermolecular arene cyclopropanation of anisole. The functionality of the resulting cycloheptatriene engenders distinct chemical environments in a downstream tricyclic bis(enol) triflate that permits selective late-stage functionalization. The synthesis of diverse C_1 - and pseudo- C_2 -symmetric dienes is therefore viable by iterative palladium catalyzed cross-coupling reactions. The ligands provide moderate to high selectivities in known Rh(I)-mediated asymmetric transformations.


Chiral dienes are a privileged ligand class in transition metal-catalyzed asymmetric carbon-carbon bond forming reactions.¹ Foundational reports by Hayashi² and Carreira³ demonstrated efficient aryl transfer reactions of organoboron reagents to prototypical Michael acceptors, and subsequent work has expanded the diversity of effective electrophiles to yield synthetically useful 1,2-⁴ and 1,4-aryl⁵ transfer reactions. In addition, Rh(I)-chiral diene complexes have been employed as catalysts for asymmetric [4+2]-cycloadditions,⁶ arylative carbocyclizations,⁷ intermolecular carbene insertions,⁸ and α,γ -difunctionalization of electron-poor dienes.⁹ Chiral dienes have also been integrated into heterogenous catalysts, allowing for facile catalyst recovery and recycling.¹⁰ Extant syntheses of chiral diene ligands have some remaining limitations and a practical modular, *de novo* synthesis would be of interest.

Chiral dienes based on the bicyclo[2.2.2]octadiene (bod) scaffold have attracted considerable attention and prior synthetic efforts can be organized into three categories: (1) resolution of racemic starting materials,^{2,4b,11} (2) modification of chiral pool reagents;^{3,12} and (3) asymmetric catalysis^{13,14b} (Figure 1a). Despite successful application to other diene ligand scaffolds,¹⁴ asymmetric catalysis has not been as widely demonstrated as a method of preparing bicyclo[2.2.2]octadienes. Possible attractive features include obviating classical chiral resolution and allowing access to both enantiomers of the chiral diene ligands through catalyst selection. We were interested in the novel C_1 -symmetric bis(aryl) dienes demonstrated by Abele and coworkers and wondered if a late-stage divergent approach to the synthesis of both C_1 -symmetric and *pseudo-C₂*-symmetric dienes was possible (Figure 1b). Our interest in [2+1]-annulations

of readily available aromatic feedstocks¹⁵ led to the hypothesis that cycloheptatriene 3, reported by Fleming and Beeler,^{16a} offers the possibility for direct access to chiral dienes. The dirhodium tetracarboxylate catalyst that facilitates that intermolecular Buchner reaction (*vide infra*) is commercially available in both enantiomeric forms, which could allow for straightforward access to both enantiomers of the proposed diene ligands. Herein, we describe a catalytic, asymmetric, dearomative approach to the synthesis of chiral dienes as ligands for Rh(I)-mediated asymmetric processes.

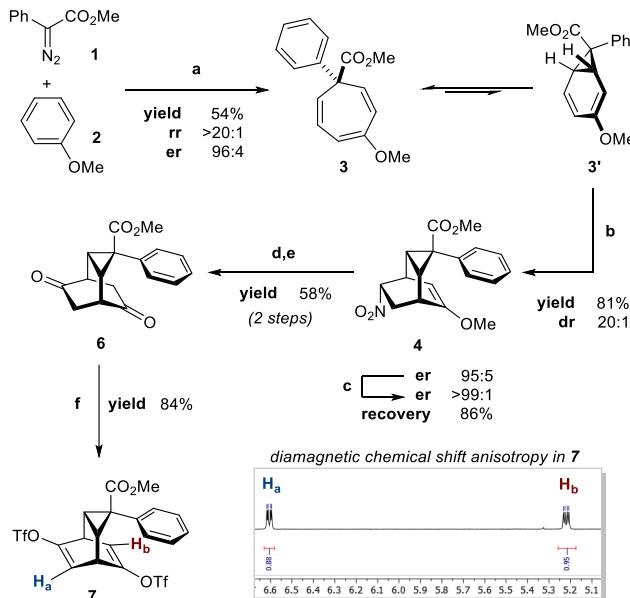
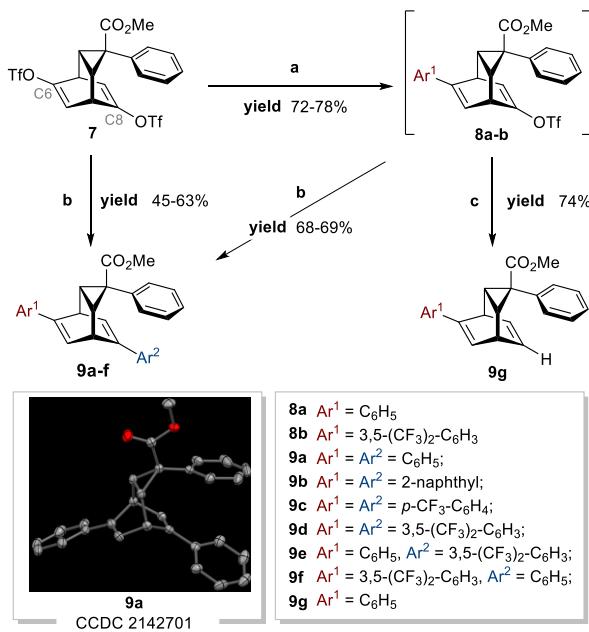
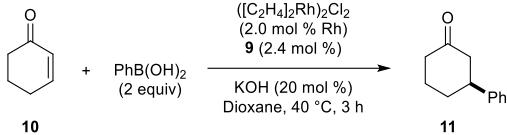

Challenge: Development of a modular and tunable *de novo* synthesis

Figure 1. Bicyclo[2.2.2]octadiene (bod) ligands

Using a modified batch procedure based on the flow method developed by Fleming and Beeler,^{16a} cycloheptatriene **3** was synthesized with high enantio- and regioselectivity in moderate yield (Scheme 1). With gentle warming, norcaradiene **3'** participated in a highly diastereoselective [4+2]-cycloaddition with the ketene equivalent nitroethylene¹⁷ to give tricycle **4** in good yield (81% yield, dr 20:1). The exclusive formation/participation of the illustrated *exo*-ester norcaradiene **3'** versus its *endo* diastereomer in the cycloaddition is not fully understood at this stage, but is consistent with prior examples in the literature.^{16b} A single recrystallization from EtOAc/hexanes gave enantiopure tricycle **4** with minimal loss of material (86% recovery, >99:1 er). Sequential treatment of tricycle **4** with *p*-toluenesulfonic acid and sodium nitrite¹⁸ afforded nitro-ketone intermediate **5** (not shown) and dione **6**, respectively. Bis(enol) triflate **7** was obtained in 84% yield upon reaction of dione **6** with Comins's¹⁹ reagent under basic conditions. Bis(enol) triflate **7** offers a particularly clear example of diamagnetic chemical shift anisotropy: the proton (H_b) lying within the magnetic field of the pendant arene is shifted upfield by 1.39 ppm (see SI page S22 for the full 1 H NMR spectrum).


Scheme 1. Synthesis of bis(enol) triflate **7^a**

^aReagents and conditions: (a) $Rh_2[(R)-PTAD]_4$ (0.1 mol %), 23 °C, slow addition over 2 h; (b) nitroethylene (2.5 equiv), PhMe, 50 °C, 3 h; (c) Recrystallization (23% EtOAc in hexanes); (d) *p*-TSA (5.0 equiv), THF/H₂O, 50 °C, 5 h; (e) $NaNO_2$ (6.0 equiv), DMSO/H₂O, 65 °C, 16 h; (f) Comins's reagent (3.2 equiv), LiHMDS (3.0 equiv), THF, -78 °C to 0 °C, 3 h.

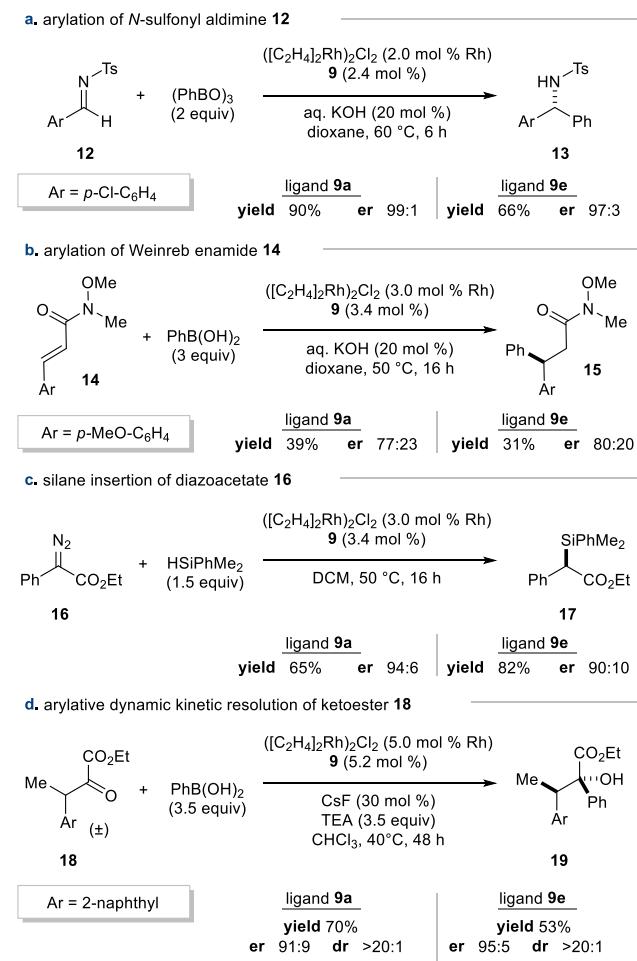

The different steric environments of the enol triflates at C6 and C8 was exploited to allow for selective functionalization of each position via palladium-catalyzed cross-coupling (Scheme 2), allowing us to synthesize a diverse set of electron-neutral and electron deficient bis(aryl) dienes, which have seen the widest application in the literature. The reaction of bis(enol) triflate **7** with $Pd(PPh_3)_4$ and an arylboronic acid at room temperature for 16 h installed the arene at the more sterically accessible C6-position with minimal over-reaction, giving mono(enol) triflates **8a-b**. The reaction of bis(enol) triflate **7** with Buchwald's 4th generation XantPhos palladacycle²⁰ and arylboronic acids at 85 °C allowed for incorporation of an arene at both the C6- and C8-positions to give *pseudo-C₂*-symmetric dienes **9a-d**. This methodology was also applied to the conversion of the mono(enol) triflates **8a-b** to *C₁*-symmetric dienes **9e-f**. Using the same catalyst, mono(enol) triflate **8a** can be selectively reduced to give diene **9g**. Single crystal X-ray diffraction analysis of diene **9a** unambiguously confirmed the absolute stereochemistry of the tricyclononadiene (tnd) ligands **9a-9g**.

Scheme 2. Selective functionalization of bis(enol) triflate **7^{a,b}**

^aReagents and conditions: (a) Pd(PPh₃)₄ (5 mol %), ArB(OH)₂ (3.0 equiv), 2 M aq. Na₂CO₃ (10 equiv), PhMe/MeOH, 23 °C, 16 h. (b) G4 XantPhos palladacycle (5 mol %), ArB(OH)₂ (5 equiv), CsF (10.0 equiv), 1,4-dioxane/H₂O, 85 °C, 16 h; (c) G4 XantPhos palladacycle (5 mol %), HCO₂H (3.0 equiv), Bu₃N (3.0 equiv), DMF, 60 °C, 16 h. ^bX-ray structure of **9a** is shown at 50% thermal ellipsoids and hydrogen atoms are omitted for clarity.

Table 1. Benchmark conjugate addition to cyclohexenone **10^{a,b,c}**

entry	diene	yield %	er ^d
1	9a	(92) ^e	98:2
2	9a	(98) 98	98:2
3	9b	85	98:2
4	9c	80	98:2
5	9d	75	96:4
6	9e	95	97:3
7	9f	76	88:12
8	9g	87	84:16


^aAll reactions were carried out on a 0.20 mmol scale; values shown represent an average of two individual experiments.

^bWe use () to denote ¹H NMR yield using phenanthrene as an internal standard. ^cThe absolute stereochemistry was assigned by comparing the sign of the optical rotation to values reported in the literature. ^dDetermined by HPLC using a chiral stationary phase. ^eIdentical conditions but 1.0 mol % of Rh and 1.2 mol % of **9a**.

To assess the utility of the tnd-ligands in asymmetric transformations, the benchmark Rh-catalyzed 1,4-conjugate addition of PhB(OH)₂ to cyclohexenone was probed (Table 1). Initial results using ligand **9a** were promising, and slightly

diminished yields (but identical enantioinduction) was observed using 1 mol % of rhodium. The tnd-ligands **9b-9g** were subjected to identical reaction conditions to assess the utility of the ligand class. The bis(naphth-2-yl) tnd-ligand **9b** and bis(4-trifluoromethylphenyl) tnd-ligand **9c** performed comparably to diene **9a**, although with slightly reduced yields. The tnd-ligand **9e** performed significantly better in this transformation than the other *C*₁-symmetric dienes (97:3 er). The reaction delivered ketone **11** in high enantioselectivity, albeit in slightly lower yield, on a 1 mmol scale using 2 mol % of rhodium and diene **9a** (89% yield, 97:3 er, see SI S76.)

Scheme 3. Application to other synthetically useful systems using diene **9a and **9e**^{a,b,c,d}**

^aAll reactions were carried out on a 0.20 mmol scale; values shown represent an average of two individual experiments.

^bEnantioselectivity was determined by HPLC using a chiral stationary phase. ^cThe absolute stereochemistry was assigned by comparing the sign of the optical rotation to values reported in the literature. ^dThe diastereoselectivity was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture.

To further evaluate the utility of the tnd ligands, we subjected both a high preforming *C*₁- and *pseudo-C*₂-symmetric ligand to a variety of synthetic transformations (Scheme 3). Ligands **9a** and **9e** both facilitated the 1,2-arylation of *N*-sulfonyl aldimine **12**. In particular, ligand **9a** gave sulfonamide **13** in 90% yield and 99:1 er. The use of phenylboroxine is

vital to high performance in these reactions, as phenylboronic acid facilitated the rapid hydrolysis of imine **12** to the aldehyde precursor. The tnd-ligands **9a** and **9e** also successfully arylated a significantly more challenging Michael acceptor, enamide **14** (31% yield, 80:20 er). While the isolated yields are modest, the level of enantioinduction is similar to Hayashi's Ph-bod* ligand in the original report (73% yield, 85:15 er).^{5d,21} We also wanted to confirm the tnd-ligands were proficient facilitators of Rh(I)-mediated carbene insertions. The pseudo-*C*₂-symmetric tnd-ligand **9a** outperformed *C*₁-symmetric tnd-ligand **9e** (65% yield, 94:6 er), in contrast to the findings of the Xu group who obtained higher yield and enantioinduction using a similar *C*₁-symmetric diene^{8c} (84% yield and 97:3 er). The differing results highlights the complementary reactivity of these ligands in comparison to existing scaffolds. Finally, both diene **9a** and **9e** performed effectively in the arylative dynamic kinetic resolution of an α -ketoester.^{4d} Diene **9e** gave higher enantioselectivity, albeit in slightly lower yields than diene **9a** (53% yield, >20:1 dr, 95.5 er).

In summary, we have developed an efficient synthesis of chiral diene ligands originating from the dearomatic, asymmetric, intermolecular arene cyclopropanation of anisole. The steric environment of the diene precursors proved to be advantageous, as this allowed for improved late-stage diversification. These ligands have been demonstrated to be proficient steering ligands for several asymmetric transformations. Further applications of these tnd-ligands are currently being explored in our research group.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website.

Experimental details, materials, methods, characterization data, NMR spectra for all compounds, chromatograms for chiral separations, and information on X-ray diffraction experiments (PDF).

AUTHOR INFORMATION

Corresponding Author

Jeffrey S. Johnson – Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 275599-3290, United States; orcid.org/0000-0001-8882-9881; Email: jsj@unc.edu

Author Contributions

Evan T. Crawford - Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 275599-3290, United States;

Kendrick L. Smith - Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 275599-3290, United States;

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The project described was supported by an award from the National Science Foundation (CHE-1954835). X-ray crystallography was performed by E. T. Crawford (compound **9a**, CCDC 2142701) with the assistance of Dr. C.-H. Chen (UNC Chemistry

X-Ray Core). The authors would also like to acknowledge and thank N. C. Turman of these laboratories (UNC) for helpful discussions in connection with parallel reaction development using the tnd ligands.

REFERENCES

- (1) Reviews: (a) Glorius, F. Chiral Olefin Ligands - New "Spectators" in Asymmetric Catalysis. *Angew. Chemie - Int. Ed.* **2004**, *43*, 3364–3366. (b) Johnson, J. B.; Rovis, T. More than Bystanders: The Effect of Olefins on Transition-Metal-Catalyzed Cross-Coupling Reactions. *Angew. Chemie - Int. Ed.* **2008**, *47*, 840–871. (c) Defieber, C.; Grützmacher, H.; Carreira, E. M. Chiral Olefins as Steering Ligands in Asymmetric Catalysis. *Angew. Chemie - Int. Ed.* **2008**, *47*, 4482–4502. (d) Shintani, R.; Hayashi, T. Chiral Diene Ligands for Asymmetric Catalysis. *Aldrichimica Acta* **2009**, *42*, 30–38. (e) Tian, P.; Dong, H. Q.; Lin, G. Q. Rhodium-Catalyzed Asymmetric Arylation. *ACS Catal.* **2012**, *2*, 95–119. (f) Hirano, M.; Komine, N.; Arata, E.; Gridneva, T.; Hatori, A.; Kaizawa, N.; Kamakura, K.; Kuramochi, A.; Kurita, S.; Machida, S.; Okada, H.; Sawasaki, A.; Uchino, T. Recent Advances of Achiral and Chiral Diene Ligands in Transition-Metal Catalyses. *Tetrahedron Lett.* **2019**, *60*, 150924.
- (2) Foundational reports by Hayashi: (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. A Chiral Chelating Diene as a New Type of Chiral Ligand for Transition Metal Catalysts: Its Preparation and Use for the Rhodium-Catalyzed Asymmetric 1,4-Addition. *J. Am. Chem. Soc.* **2003**, *125*, 11508–11509. (b) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. Preparation of C2-Symmetric Bicyclo[2.2.2]Octa-2,5-Diene Ligands and Their Use for Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids. *J. Org. Chem.* **2005**, *70*, 2503–2508.
- (3) Foundational reports by Carreira: (a) Defieber, C.; Paquin, J. F.; Serna, S.; Carreira, E. M. Chiral [2.2.2] Dienes as Ligands for Rh(I) in Conjugate Additions of Boronic Acids to a Wide Range of Acceptors. *Org. Lett.* **2004**, *6*, 3873–3876. (b) Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. Readily Available [2.2.2]-Bicyclooctadienes as New Chiral Ligands for Ir(I): Catalytic, Kinetic Resolution of Allyl Carbonates. *J. Am. Chem. Soc.* **2004**, *126*, 1628–1629.
- (4) (a) Berthon-Gelloz, G.; Hayashi, T. Expanding the C2-Symmetric Bicyclo[2.2.1]Hepta-2,5-Diene Ligand Family: Concise Synthesis and Catalytic Activity in Rhodium-Catalyzed Asymmetric Addition. *J. Org. Chem.* **2006**, *71* (23), 8957–8960. (b) Nishimura, T.; Kumamoto, H.; Nagaosa, M.; Hayashi, T. The Concise Synthesis of Chiral Tfb Ligands and Their Application to the Rhodium-Catalyzed Asymmetric Arylation of Aldehydes. *Chem. Commun.* **2009**, *38*, 5713–5715. (c) Liao, Y. X.; Xing, C. H.; Hu, Q. S. Rhodium(I)/Diene-Catalyzed Addition Reactions of Arylborons with Ketones. *Org. Lett.* **2012**, *14*, 1544–15479. (d) Bartlett, S. L.; Keiter, K. M.; Johnson, J. S. Synthesis of Complex Tertiary Glycolates by Enantioconvergent Arylation of Stereochemically Labile α -Keto Esters. *J. Am. Chem. Soc.* **2017**, *139*, 3911–3916.
- (5) (a) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Chiral Norbornadienes as Efficient Ligands for the Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Fumaric and Maleic Compounds. *Org. Lett.* **2004**, *6*, 3425–3427. (b) Paquin, J. F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Catalytic Asymmetric Synthesis with Rh-Diene Complexes: 1,4-Addition of Arylboronic Acids to Unsaturated Esters. *Org. Lett.* **2005**, *7*, 3821–3824. (c) Shintani, R.; Okamoto, K.; Hayashi, T. Carbon-Carbon Bond-Forming Enantioselective Synthesis of Chiral Organosilicon Compounds by Rhodium/Chiral Diene-Catalyzed Asymmetric 1,4-Addition Reaction. *Org. Lett.* **2005**, *7*, 4757–4759. (d) Shintani, R.; Kimura, T.; Hayashi, T. Rhodium/Diene-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to α,β -Unsaturated Weinreb Amides. *Chem. Commun.* **2005**, *25*, 3213–3214. (e) Shintani, R.; Duan, W. L.; Hayashi, T. Rhodium-Catalyzed Asymmetric Construction of Quaternary Carbon Stereocenters: Ligand-Dependent Regiocontrol in

the 1,4-Addition to Substituted Maleimides. *J. Am. Chem. Soc.* **2006**, *128*, 5628–5629.

(6) Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. A Cationic Rhodium-Chiral Diene Complex as a High-Performance Catalyst for the Intramolecular Asymmetric [4+2] Cycloaddition of Alkyne-1,3-Dienes. *Angew. Chemie - Int. Ed.* **2007**, *46*, 7277–7280.

(7) (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. Catalytic Asymmetric Arylation of Alkynals: Phosphine-Free Rhodium/Diene Complexes as Efficient Catalysts. *J. Am. Chem. Soc.* **2005**, *127*, 54–55. (b) Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Highly Chemo- and Enantioselective Arylation of Alkyne-Tethered Electron-Deficient Olefins Catalyzed by Rhodium Complexes with Chiral Dienes. *Angew. Chemie - Int. Ed.* **2005**, *44*, 3909–3912. (c) Choo, K. L.; Mirabi, B.; Demmans, K. Z.; Lautens, M. Enantioselective Synthesis of Spiro-Oxiranes: An Asymmetric Addition/Aldol/Spirocyclization Domino Cascade. *Angew. Chemie - Int. Ed.* **2021**, *60*, 21189–21194.

(8) (a) Nishimura, T.; Maeda, Y.; Hayashi, T. Asymmetric Cyclopropanation of Alkenes with Dimethyl Diazomalonate Catalyzed by Chiral Diene-Rhodium Complexes. *Angew. Chemie - Int. Ed.* **2010**, *49*, 7324–7327. (b) Chen, D.; Zhang, X.; Qi, W. Y.; Xu, B.; Xu, M. H. Rhodium(I)-Catalyzed Asymmetric Carbene Insertion into B-H Bonds: Highly Enantioselective Access to Functionalized Organoboranes. *J. Am. Chem. Soc.* **2015**, *137*, 5268–5271. (c) Chen, D.; Zhu, D. X.; Xu, M. H. Rhodium(I)-Catalyzed Highly Enantioselective Insertion of Carbenoid into Si-H: Efficient Access to Functional Chiral Silanes. *J. Am. Chem. Soc.* **2016**, *138*, 1498–1501.

(9) Cooze, C. J. C.; McNutt, W.; Schoetz, M. D.; Sosunovych, B.; Grigoryan, S.; Lundgren, R. J. Diastereo-, Enantio-, and Z-Selective α,δ -Difunctionalization of Electron-Deficient Dienes Initiated by Rh-Catalyzed Conjugate Addition. *J. Am. Chem. Soc.* **2021**, *143*, 10770–10777.

(10) (a) Sawano, T.; Ji, P.; McIsaac, A. R.; Lin, Z.; Abney, C. W.; Lin, W. The First Chiral Diene-Based Metal-Organic Frameworks for Highly Enantioselective Carbon-Carbon Bond Formation Reactions. *Chem. Sci.* **2015**, *6*, 7163–7168. (b) Shen, G.; Osako, T.; Nagaosa, M.; Uozumi, Y. Aqueous Asymmetric 1,4-Addition of Arylboronic Acids to Enones Catalyzed by an Amphiphilic Resin-Supported Chiral Diene Rhodium Complex under Batch and Continuous-Flow Conditions. *J. Org. Chem.* **2018**, *83*, 7380–7387. (c) Kuremoto, T.; Yasukawa, T.; Kobayashi, S. Heterogeneous Chiral Diene-Rh Complexes for Asymmetric Arylation of α,β -Unsaturated Carbonyl Compounds, Nitroalkenes, and Imines. *Adv. Synth. Catal.* **2019**, *361*, 3698–3703.

(11) (a) Luo, Y.; Carnell, A. J. Chemoenzymatic Synthesis and Application of Bicyclo[2.2.2]Octadiene Ligands: Increased Efficiency in Rhodium-Catalyzed Asymmetric Conjugate Additions by Electronic Tuning. *Angew. Chemie Int. Ed.* **2010**, *49*, 2750–2754. (b) Ankudinov, N. M.; Chusov, D. A.; Nelyubina, Y. V.; Perekalin, D. S. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E-H Bonds. *Angew. Chemie - Int. Ed.* **2021**, *60*, 18712–18720.

(12) (a) Gendrneau, T.; Chuzel, O.; Eijsberg, H.; Genet, J. P.; Darses, S. C1-Symmetric Monosubstituted Chiral Diene Ligands in Asymmetric Rhodium-Catalyzed 1,4-Addition Reactions. *Angew. Chemie - Int. Ed.* **2008**, *47*, 7669–7672. (b) Okamoto, K.; Hayashi,

T.; Rawal, V. H. Simple Chiral Diene Ligands Provide High Enantioselectivities in Transition-Metal-Catalyzed Conjugate Addition Reactions. *Org. Lett.* **2008**, *10*, 4387–4389. (c) Okamoto, K.; Hayashi, T.; Rawal, V. H. Electronic and Steric Tuning of Chiral Diene Ligands for Rhodium-Catalyzed Asymmetric Arylation of Imines. *Chem. Commun.* **2009**, *32*, 4815–4817.

(13) (a) Abele, S.; Inauen, R.; Spielvogel, D.; Moessner, C. Scalable Synthesis of Enantiomerically Pure Bicyclo[2.2.2]Octadiene Ligands. *J. Org. Chem.* **2012**, *77*, 4765–4773. (b) Abele, S.; Inauen, R.; Funel, J.; Weller, T. Design and Scale-Up of a Practical Enantioselective Route to 5-Phenylbicyclo[2.2.2]Oct-5-En-2-One. *Org. Process Res. Dev.* **2012**, *16*, 129–140.

(14) (a) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T. C2-Symmetric Bicyclo[3.3.1]Nonadiene as a Chiral Ligand for Rhodium-Catalyzed Asymmetric Arylation of N-(4-Nitrobenzenesulfonyl)Arylimines. *Org. Lett.* **2005**, *7*, 307–310. (b) Brown, M. K.; Corey, E. J. Catalytic Enantioselective Formation of Chiral-Bridged Dienes Which Are Themselves Ligands for Enantioselective Catalysis. *Org. Lett.* **2010**, *12*, 172–175. (c) Sun, C.; Meng, H.; Chen, C.; Wei, H.; Ming, J.; Hayashi, T. Asymmetric Synthesis of Chiral Bicyclo[2.2.1]Hepta-2,5-Diene Ligands through Rhodium-Catalyzed Asymmetric Arylative Bis-Cyclization of a 1,6-Enyne. *Org. Lett.* **2021**, *23*, 6311–6315.

(15) (a) Smith, K. L.; Padgett, C. L.; Mackay, W. D.; Johnson, J. S. Catalytic, Asymmetric Dearomatic Synthesis of Complex Cyclohexanes via a Highly Regio- and Stereoselective Arene Cyclopropanation Using α -Cyanodiazoacetates. *J. Am. Chem. Soc.* **2020**, *142*, 6449–6455. (b) MacKay, W. D.; Johnson, J. S. Kinetic Separation and Asymmetric Reactions of Norcaradiene Cycloadducts: Facilitated via H₂O-Accelerated Cycloaddition. *Org. Lett.* **2016**, *18*, 536–539.

(16) (a) Fleming, G. S.; Beeler, A. B. Regioselective and Enantioselective Intermolecular Buchner Ring Expansions in Flow. *Org. Lett.* **2017**, *19*, 5268–5271. For related reactions giving racemic products, see: (b) Mbuvi, H. M.; Woo, L. K. Additions of Carbenes Derived from Aryldiazoacetates to Arenes using Chloro(tetr phenylporphyrinato)iron as Catalyst. *J. Porphyrins Phthalocyanines* **2009**, *13*, 136–152.

(17) Ranganathan, S.; Ranganathan, D.; Mehrotra, A. K. Ketene Equivalents*. *Synthesis* **1977**, *5*, 289–296.

(18) Gissot, A.; N'Gouela, S.; Matt, C.; Wagner, A.; Mioskowski, C. NaNO₂-Mediated Transformation of Aliphatic Secondary Nitroalkanes into Ketones or Oximes under Neutral, Aqueous Conditions: How the Nitro Derivative Catalyzes Its Own Transformation. *J. Org. Chem.* **2004**, *69*, 8997–9001.

(19) Comins, D. L.; Dehghani, A. Pyridine-Derived Triflating Reagents: An Improved Preparation of Vinyl Triflates from Metalloc Enolates. *Tetrahedron Lett.* **1992**, *33*, 6299–6302.

(20) Bruno, N. C.; Niljianskul, N.; Buchwald, S. L. N-Substituted 2-Aminobiphenylpalladium Methanesulfonate Precatalysts and Their Use in C-C and C-N Cross-Couplings. *J. Org. Chem.* **2014**, *79*, 4161–4166.

(20) Hayashi's Ph-bod* ligand is not the optimized ligand in this report but is the best point of comparison to the ligands that are discussed in this manuscript.