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Abstract—Identifying anomalies in data is vital in many domains, including medicine, finance, and national security. However, privacy
concerns pose a significant roadblock to carrying out such an analysis. Since existing privacy definitions do not allow good accuracy
when doing outlier analysis, the notion of sensitive privacy has been recently proposed to deal with this problem. Sensitive privacy
makes it possible to analyze data for anomalies with practically meaningful accuracy while providing a strong guarantee similar to
differential privacy, which is the prevalent privacy standard today. In this work, we relate sensitive privacy to other important notions of
data privacy so that one can port the technical developments and private mechanism constructions from these related concepts to
sensitive privacy. Sensitive privacy critically depends on the underlying anomaly model. We develop a novel n-step lookahead
mechanism to efficiently answer arbitrary outlier queries, which provably guarantees sensitive privacy if we restrict our attention to
common a class of anomaly models. We also provide general constructions to give sensitively private mechanisms for identifying
anomalies and show the conditions under which the constructions would be optimal.

Index Terms—sensitive privacy, differential privacy, outlier detection, anomaly identification, outlier analysis

1 INTRODUCTION

Outlier analysis is a fundamental data analysis task and is
extremely useful in practice. It is used to discover complex
non-conforming patterns in the data and can generate ac-
tionable insights. The ability to identify outliers, i.e. anoma-
lies, is an essential prerequisite to numerous applications
in various domains [1], [2], [3], [4], [5]. For example, to treat
cancer, we must tell if a tumor is malignant; to counter email
scams, we must filter spam; and to stop bank fraud, we must
flag the suspicious transactions — and the de facto approach
to solve these problems is outlier analysis. However, as it
is common for data analyses, outlier analysis is a double-
edged sword. While it helps us to solve challenging prob-
lems [6], [7], [8], it also poses a risk to our privacy.

The fundamental question that we face today for outlier
analysis is: Can we lift privacy restrictions, i.e. accurately
analyze data looking for outliers without hurting the privacy
of those who contribute their data? In this work, we answer
this question for the most practically relevant case, when
outliers are defined in a data-dependent way (i.e. a record is
anomalous only if it is “different” from other collected data).
“Data-dependent” means a query for anomalous records in
a database, models anomalies by comparing each database
record with nearby records, aiming to infer significant dis-
similarities. We should note that if one defines an anoma-
lous record independent to other records then conceptually
much simpler solutions can be given — in particular, those
that go through the typical differential privacy literature.
An immediate thought is to use differential privacy (DP)
[9], [10] to protect privacy in outlier analysis in the general
data-dependent case. However, DP is inherently unable to
identify or find outlier records accurately [11], [12], [13], [14],
[15].
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Under DP, the privacy is controlled through a parameter
€ > 0. This parameter also controls the accuracy/utility:
the higher the ¢, the lower the privacy and the higher
the utility. However, there is no non-trivial e-controlled-
tradeoff between privacy and utility for outlier detection or
identification.

Consider outlier detection; it outputs all the records in
the database, which are outliers. For this task, any e-DP
mechanism (i.e., algorithm) is bound to have a very poor
utility [12] even for not very small values of € (e.g., ¢ ~ 1).
This is because a DP mechanism’s output must remain
almost the same under addition or removal of any record in-
cluding the outlier records. Outliers are, however, typically
in sparse regions of (data)-space and may have no other
identical records in the database. In this case, removing an
outlier record would typically eliminate the outlier entirely
whereas adding a new record in any sparse region would
create an outlier, in both cases significantly reducing the
utility. Therefore, a DP mechanism performs very poorly
for this task. Although one can achieve a desired level of
utility by setting € high enough, this effectively provides no
privacy.

One way to obviate the low-utility problem is to vary the
privacy guarantee based on the outlyingness. However this
is not possible under DP, wherein every record is guaranteed
the same privacy. There are some variants of differential
privacy [13], [14], [15] that relax DP guarantee and are
relevant to outlier analysis. They, however, are either limited
in their application or are unable to deal with the data-
dependent notions of outliers — the focus of this work.

The modern data-dependent methods of anomaly identifi-
cation label a record as anomalous based on its degree of
dissimilarity from other existing records. Consequently, the
labeling of a record as anomalous is specific to a dataset, and
knowing that a record is anomalous can leak a significant
amount of information about the other existing records. This
is the key challenge that any privacy-preserving anomaly
identification method must overcome.

To solve this problem, we recently introduced the notion
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of sensitive privacy (SP) [11], which conceptualizes what it
means to protect privacy in outlier analysis. SP enables
one to accurately identify if a record is anomalous while
simultaneously affording a strong differential-privacy- like
guarantee to most of the records. SP is both computationally
realizable and amenable to analysis.

The key contributions of this article are to:

 Present the notion of sensitive privacy — which, com-
pared to DP, provides an additional knob to tune the
privacy-utility trade-off in outlier analysis — as well as
discuss its limitations.

« Relate sensitive privacy to other privacy definitions.

e Develop a novel n-step lookahead mechanism to effi-
ciently and privately answer arbitrary outlier queries
for a restricted class of anomaly models and prove why
it cannot be used in a general sense.

e Propose constructions to develop sensitively private
mechanisms for identifying anomalies, prove their pri-
vacy guarantees, and characterize the conditions under
which they yield optimal mechanisms.

o Establish the effectiveness of sensitively private mech-
anism (developed via our constructions) by empirical
evaluation of over real-world datasets.

The current article is a significantly extended version of our
prior work [11], further developing the concept of Sensitive
Privacy and improving its theoretical understanding.

2 RELATED WORK

Protecting privacy in data analysis aims to limit the in-
formation disclosure about individuals from the result of
a data analysis. Differential privacy [9], [16] was the first
mathematical notion to define privacy by quantifying this
information disclosure — and it has shaped the field of
private data analysis. It guarantees that no attacker can use
a differentially private result (of data analysis) to find out
with certainty if a particular person’s data were used in the
analysis. Thus, it affords “plausible deniability” to people,
that is, any person can claim that her data was not used in
the data analysis even if her data were used.

Differential privacy is an algorithmic definition of privacy,
which requires that the probability for any output of a
privacy-protecting mechanism (i.e. an algorithm that takes
a database as input) “should not change much” by adding
or removing any one record in the input database. Two
databases that differ by one record are called neighbors.
That is, we think of the huge space where each point in
this space is a whole database and a neighboring relation
between any two databases (in this simple case neighboring
databases are those that differ by one record). Here, “should
not change much” means that the probabilities (for any
output) corresponding to any two neighboring databases
should be within a multiplicative factor of e — this is
referred to as the privacy constraint. The ¢ > 0 is the
privacy parameter. The smaller the value of value of ¢, the
higher the privacy. Typically, to achieve differential privacy,
a mechanism probabilistically perturbs the correct answer
using noise sampled from a carefully calibrated distribution.
Differential privacy works well for many classes of ag-
gregate and statistical data analysis tasks. However, there
are various data analysis problems, anomaly identification
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being one of them, where the privacy-utility relationship
essentially makes it impossible to achieve both practically
meaningful privacy and utility [11], [12], [17], [18], [19].
In particular, these are data analysis problems where the
output of the database query is too sensitive to replacing
the input database by one of its neighbors. A good example
is when the output is a yes/no result (binary function). That
is, there are databases and records in these databases where
a simple local modification flips the output from yes to
no. Compare this with the typical application of differential
privacy in reporting averages or variances etc, where small
changes in a database do not have a drastic effect on the
output. This has led to the development of variants of dif-
ferential privacy to address important practical challenges in
data analysis. Many of these variants either generalize the
notion of neighboring databases or redefine what is meant
by “the output should not change much” for neighboring
databases (see [20] for a survey for different generalizations
and variants of differential privacy).

Below, we review some of the important variants of differen-
tial privacy and identify and discuss the gaps in the context
of private outlier analysis that still exist.

Pufferfish [18] and Blowfish [19] are two frameworks to give
generalized versions of differential privacy. Both of them
provide a way to redefine neighboring databases based
on what secret (i.e. the kind of information disclosure)
we want to protect (i.e. limit the information disclosure
about individuals). These frameworks add to our theoretical
understanding of private data analysis and are useful for
applications the secret that needs to be protected can be
clearly demarcated. However, these frameworks do not pro-
vide any method or direction to deal with outlier detection
or identification, especially, when the outliers are defined
in a data-dependent fashion. We solve this problem by
conceptualizing the notion of sensitive record and sensitive
neighborhood graph, both of which take into account the
data-dependent nature of the problem.

Protected (differential) privacy [13], which was proposed for
analyzing networks, divides the set of all possible records
into two categories: one is protected while the other is
not. Although we can use protected privacy (instead of
differential privacy) to boost the accuracy for some types
of outlier analysis, this does not work in many cases, and
especially, for the case when outliers are defined in a data-
dependent way. This shortcoming of protected privacy is
due to the fixed and data-independent categorization of
records into protected group and unprotected group (let’s
say the outliers), which is not possible when outliers are
defined in data-dependent way. This is particularly frag-
ile since without seeing the database it is not possible to
characterize a record as an outlier or not, and additionally,
changing (or adding/removing) a few records in the given
data may also affect the outlying status of a record as per
the specification of the chosen anomaly model. Thus, the
privacy guarantee cannot be quantified in the order speci-
fied in protected privacy. This is one of the main problems
that we tackle when defining sensitive privacy.

One-sided (differential) privacy [14] uses a similar approach
as in protected privacy. Similar to protected privacy, it is
useful for the cases where outliers are defined independent
of the data as it also defines the records to be protected inde-
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pendent of the database. Additionally, it further relaxes the
definition by only considering a subset of pair of neighbors
that must satisfy the privacy constraint. This leaves one-
sided privacy open to attacks that can infer if a particular
"protected” record is present in the data or not. Note that
sensitive privacy is immune to such an attack.

Another way to generalize differential privacy is to have
different levels of privacy (i.e. the value of ¢) for different
records, which Personalized (differential) privacy adopts
[21]. Personalized privacy requires that the level of privacy
be pre-specified for each record. For examples, when sharing
their data, people can specify the level of privacy they want.
However, when the outliers are defined in a data-dependent
fashion, and we want to provide privacy as per the degree of
outlyingness of each record (which is required to make the
analysis useful), this notion of privacy (for similar reasons
discussed above) is also not applicable.

As opposed to Personalized privacy, Tailored (differential)
privacy quantifies the level of privacy for each record as a
function of the record and the database [22]. Thus it allows
one to tailor the privacy guarantee across all records. Outlier
privacy, an instantiation of tailored privacy, defines privacy
in the presence of outliers, however, the problem that [22]
focuses on is different than ours as it aims to protect outliers
with higher privacy guarantee compared to rest of the
records in the data. Below, we discuss some limiting features
of outlier privacy to highlight the problems it presents in
carrying out an accurate private outlier analysis.

Outlier privacy affords a stronger privacy guarantee to
outliers (depending upon their degree of outlyingness) com-
pared to the other records in the data. For the problem of
computing private histograms, the notion of outlier that
[22] uses is equivalent to that of (8,0)-anomaly (defined
in Section 3). However, this notion of outlier is too simple
to work in practice for many tasks, and the mechanisms
introduced in [22] cannot address the problem of identifying
anomalies with practically meaningful accuracy. In most
practical cases, the outlyingness of a record ¢ also depends
upon the other records in the data, this nature of data-
dependence must also be taken into account. Furthermore,
when we provide more privacy to outliers, the utility of
the outlier analysis degrades, even more than when we
use plain differential privacy. Thus, this work [22] does not
apply to the problem of identifying anomalies accurately.
We propose the notion of sensitive privacy to address all of
the above mentioned shortcomings. Additionally, we con-
sider outlier models that are more general, data-dependent,
and provide constructions of privacy mechanisms to iden-
tify outliers in data — these are constructions of mechanisms
that preserve utility and protect privacy.

A final related work is that of anomaly-restricted (dif-
ferential) privacy [15] which does take into account the
data-dependent nature of anomalies (i.e. outlier). However,
it does so in a very restricted setting: in [15] the input
databases are guaranteed to have only one outlier, a struc-
ture not present in typically available databases, which
is in addition to other restrictions on the input database.
Although it has theoretical value, it is inapplicable for most
practical settings for outlier analysis. Sensitive privacy does
not make such restricting assumptions, has immediate inter-
pretation, is amenable to analysis, and efficiently realizable
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In general, when mechanisms are developed to meet privacy
as per the models stated above, the assumption is that a
trusted curator has access to the data and is able to employ
the mechanism to answer a given query. However, when no
such trusted curator exists, secure multiparty computation
[23], [24] can be used to simulate such a trusted curator in
a distributed setting. This has also been done for outlier
analysis [25], [26], [27], but it is not the focus of this work.

3 PRELIMINARIES
DATABASES

In this work a database is a histogram. The set of all possible
databases is denoted by D = {y € N* : ||y||; < oo}, where
N = {0,1,2,...}, X is an arbitrary finite set of possible
values of records, and || - ||1 is the ¢; norm. Thus, for any
database = and i € X, x; is the number of records' in z that
are identical to 7 , ¢ € x is the binary predicate which is true
if and only if (iff) z; > 1. That is, the notations i € & and
i € x have completely different interpretation. We assume
that each record in the database is associated with a single
person.

Furthermore, for any i € X', we use e’ to denote the database
consisting only of one record of value i, that is, eﬁ =1 and
for all j # i, ez- = 0. Finally, we use £ to denote the function
that makes the negative coordinates of any given w € RY,
zero, that is, for every i, {(w); = w; if w; > 0 and {(w); =
otherwise.

ANOMALIES (I.E. OUTLIERS)

To characterize the outlyingness of a record, we will use the
concept of normality property instead of an anomaly model.
We first define an anomaly model and then use it to define
the normality property.

An anomaly model is a predicate F' over the domain X x D
such that for any ¢ € X and « € D, F(i,z) = 1 if a record
of value ¢ is anomalous with respect to the database z,
otherwise F(i,z) = 0. We emphasize that for the predicate
to be true, a record of value i need not present in z,
namely, F'(i,x2) = 1 does not imply i € .

Now, for a fixed anomaly model F', a normality property is a
predicate p : X x D — {0, 1} such that for every i € X’ and
every x € D, p(i,x) = 1 iff i is present in z (i.e. i € x) and
i is non-anomalous with respect to z (i.e. F'(i,z) = 0). Note
that the normality property is not simply the negation of
anomaly model since the normality value is also predicated
on the presence of the record in the given database, which
is not the case for the anomaly model.

Henceforth, when we fix a normality property, we assume
an underlying fixed anomaly model. Thus, we shall omit
mentioning the anomaly model when it is clear from the
context.

We use P = {property : X x D — {0,1}} to denote the set
of all properties, wherein the set of all normality properties
makes a subset of .

1. It is common in the literature to call i € X as “type”, whereas
for added clarity in the context of anomaly identification we will be
referring to ¢ as “record”.
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Anomaly identification function :

We now introduce the important notion of anomaly identifica-
tion function. It tells us if a record is present in the database
as an anomalous record. For a fixed anomaly model, we
say a boolean function g : X x D — {0,1} is an anomaly
identification function if for every i € X and z € D,
g(i,z) =1 < i € x and ¢ is an anomalous record with
respect to z (note that no change is made to ).

We will mainly focus on the above formulation of identi-
fying anomalies because it represents a fundamental and
one of the most conceptually difficult to deal with cases of
privacy-preserving outlier analysis, especially, for differen-
tial privacy such as definitions of data privacy [11], [12].
Alternatively, we could have defined g without predicating
on the existence of 4 in x. But when we drop the predicate on
the existence of 7, we in effect blur the distinction between
the notion of a void spot (that in a different database
could have been occupied by a record) in the database
and the notion of an anomaly. We, however, note that the
above given formulation is extensible to the case where the
database, over which anomaly identification is performed,
is considered to include the record for which anomaly
identification is desired. Here, for example, the anomaly
identification for a record ¢ over a data x can be computed
over the database that consists of all the records in x as well
as the record i.

The main anomaly model we are considering :
Although, some of our developments are for general anoma-
lies/outliers, we will be focusing on (8, r)-anomaly as the
notion of outlier. We choose the (3, r)-anomaly model since
it is quite prevalent in practice, it generalizes many statis-
tical anomaly models, and has many well-known variants
and extensions [4], [28], [29] that our work naturally extends
to them. Under (3, r)-anomaly model, a record is considered
anomalous (i.e. outlier) if there are no more than 3 records similar
to it. The parameters 3 and r are given by the domain
experts [29] or found through exploratory analysis.
We use the following notation to give the definition of (3, 7)-
anomaly. Forany z € D, ¢ € X, r > 0, and distance function
dy : X x X — [RZOf Bz(i,’f‘) = Z Z;.

JEX:id (i,§)<r
Definition 1 ((3, r)-anomaly [29]). An anomaly is defined for
a database x € N~ and a record i € X as follows. We say that
i is a (B, r)-anomaly in the database x if i € x (i.e. i is present
in x), and B, (i,7) < [ (i.e. there are at most (3 records in x that
are within distance r from ).

Whenever we refer to a (8,r)-anomaly, we assume that
there is any fixed distance function dy. Thatis, (X,dx) is a
metric space.

PRIVACY

A remark on terminology: The term “query” is overloaded.
In general, a “query” is a function. A “query instance” is
a function together with the inputs to the function. We
think of queries as the problem we have to solve, whereas a
mechanism is an algorithmic solution to this problem. In the
differential privacy literature mechanisms are randomized
algorithms whose only input is a database (and nothing
else). However, our intuitive real-world problem regards
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“querying” a specified database and a specified record;
i.e. we ask whether the specified record is an anomaly in
the database. To deal with this notational issue we consider
a family of algorithms { Mrecord } g < x one for each record.
In other words, a “query” resolved by a privacy mechanism
regards a fixed record, whereas an intuitive notion of a

query gets as input both the database and the record.

Differential privacy :

Definition 2 (differential privacy [9], [16]). For a given € > 0,
we say a mechanism M is e-differentially private if for every
x,y € D such that ||x — y||1 = 1, and every measurable R C
Range(M),

P(M(x) e R) <eP(M(y) € R).

Private anomaly identification query & mechanism :

The query associated with an anomaly identification func-
tion, g, is called anomaly identification query (AIQ). Since, the
input to the private mechanism is only the database, for
AIQ, we think of each AIQ for each fixed record. Thus, we
specify an AIQ by the pair (4, g), and we also write g;, where
i is a record and g is an anomaly identification function.
Now, for a fixed AIQ, g;, a private anomaly identification
mechanism, M; : D — {0, 1} is identified by its distribution,
where for every z, P(M;(z) = g;(z)) is the probability
that M, outputs correctly, and P(M;(z) # g;(z)) is the
probability that M; errs on x. When there is no confusion
we write M instead of M;.

Privacy induced graphs :

We rely on the following graphs to define privacy for outlier
analysis. These graphs are used to appropriately generalize
differential privacy and play a central role in our analysis,
for more details see [18], [19], [30]. We consider simple
graphs over the databases and call them neighborhood graphs.

Definition 3 (neighborhood graph). A simple graph G =
(D, E), where D is the set of all nodes, is called a neighborhood
graph if the set of edges, E, is such that

EC {{z,y}: v,y Dand ||z —y||; = 1}.

Note that a neighborhood graph is typically infinite. For any
given neighborhood graph, G, £(G) denotes the set of edges
in G. For any two neighborhood graphs G and G’ over the
same set of vertices, we say G’ is subgraph of G if £(G’) C
E(G). As an example, let us look at the neighborhood graph,
G, associated with differential privacy. G is such that for
every 2,y € D, {z,y} € £(6) < ||z —y|l1 = 1. We call G
the DP neighborhood graph. Note that every neighborhood
graph is a subgraph of C.

For any given neighborhood graph, G, we define the short-
est path metric over each of the connected components, G’
of G, i.e. dg, which gives the shortest path length between
any two nodes of the connected component G’, where
the path length corresponding to any two nodes directly
connected by an edge is 1. We refer to this metric as the
shortest path metric. For simplicity, we abuse the notation,
and write dg to denote the collection of all metrics, each
for a connected component of the neighborhood graph G.
We stress out that the d¢ is only defined for the databases ,
i.e. nodes, that are connected in G. Any two databases x and
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y that are connected by an edge in the neighborhood graph
G (i.e. dg(x,y) = 1) are called neighbors.

Another important concept in this context is that of Lipschitz
continuity, a property of a function f with respect to the
neighborhood graph G (f is defined over the entire G — we
do not have a different f for each connected component of
(). We use this notion to define a necessary constraint for
privacy-protecting mechanisms to identify outliers. In our
exposition we will consider f from X x D to R>o U {L}. So
we will extend the standard notion of Lipschitz continuity,
considered in privacy literature [30], to cover the non-real
part of the function (i.e. L) as well.

Definition 4 (Lipschitz continuity). For any given neighbor-
hood graph, G, o > 0, we say a function f : X xD — Rs>oU{L}
is a-Lipschitz continuous if for every i € X and neighboring x
and y in G, the following holds:
if f(i,2) = Lor f(i,y) = L then f(i,x) = f(i,y) = L
otherwise |f(i,z) — f(i,y)] < a

Privacy setting :

We consider the trusted curator setting for privacy. The
trusted curator is a fully trusted third party, who has access
to the database. It receives the query (for example, an AIQ),
uses a mechanism to compute the query, and sends the
result back. Now, if the curator uses a private mechanism,
then we are guaranteed that the query is answered in a
privacy-preserving fashion.

4 SENSITIVE PRIVACY (SP)

We now define the notion of sensitive privacy. Sensitive pri-
vacy requires privacy protection of every record that may be
normal under a small change in the database. By “privacy
of a record i € X” we mean the “privacy of the mechanism
M,;”. To achieve this, we define sensitive privacy using a
metric space over the databases and require a private mech-
anism to statistically blur the distinction between databases
that are close in the metric space.

While differential privacy uses the ¢;-metric, we utilize a
different metric over databases, which we define using the
notion of sensitive record. Informally, we say a record is
sensitive with respect to a database if it is normal or becomes
normal under a small change in the database. Although,
sensitive records are technically important just because they
help us appropriately generalize differential privacy, as a
bonus we also get that the definition of a sensitive record it
happens to be a natural one and is inspired from the existing
literature on outlier analysis [31], [32].

Recall that, by definition, an anomalous record significantly
diverges from other records in the database. [31], [32]; That
is, if we make a small change (e.g. add or remove a few
records) to the database, the label (provided by the anomaly
model) of an anomalous record should not change. So, the
records whose labels do change are not anomalous, and all
of these are protected” under sensitive privacy.

Now, given the notion of sensitive record, we define the
metric over the databases by considering a graph over the

2. A mechanism M; for a record i is where we quantify privacy. We
say that a “record i is protected” meaning that there is a mechanism
M; (which should be clear from the context) that has sufficiently good
privacy guarantees.
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databases. In this graph, called sensitive neighborhood graph,
every two nodes (i.e. databases) that differ by a sensitive
record are connected by an edge. The metric distance over
the databases is now given as the shortest path length
between the databases in the same connected component of
the graph. This metric space has the property that databases
differing by a sensitive record are closer compared to the
databases differing in a non-sensitive record. As a result this
metric space enables us to fine-tune the trade-off between
accuracy and privacy in outlier analysis. A conceptual con-
tribution of this work is to express this trade-off only via
two parameters (i.e., ¢ and k, see below).

Formalization

Let us start by formalizing the concepts of sensitive record
and sensitive neighborhood graph.

We use the notion of normality property p to identify the
normal records that exist in the database. We formalize the
notion of “small change” in the database as the addition
or removal of k records from the database. We consider this
change to be typical and want to protect the privacy of every
record that may become normal under this small change.
Next, we use this notion of small change in the database to
define the key concept of sensitive record. Informally, for a
fixed normality property, all the records whose privacy must
be protected are termed as sensitive records.

Definition 5 (sensitive record). Arbitrarily fix k > 1 and a
normality property p. For any given database x € D, we say an
1 € X is k-sensitive with respect to x if there is a database
y € D such that ||z — yl|y < kand p(i,y) = 1.

As an example of sensitive record, consider (8 = 3,r = 0)-
anomaly and k& = 2. In this case, for any given z, an ¢ will
be 2-sensitive with respect to x if x; > 2. This is because
if z; < 1, then adding (and/or removing) any two records
from x can never make ¢ a non-outlier in z as x; will remain
at max 3. However, when z; > 2, adding 2 records of value
1 to x ensures that ¢ will be a non-outlier.

Next, we give the important notion of k-sensitive neigh-
borhood graph. It generalizes the DP neighborhood graph
through the concept of sensitive records. Throughout this
work, we use G to depict the DP neighborhood graph (see
Preliminaries for the definition).

Definition 6 (sensitive neighborhood graph). For arbitrarily
fixed k > 1 and normality property p, a neighborhood graph
G is called k-sensitive neighborhood graph for p if for every
{z,y} € £(C), {z,y} € E(Gs) < thereisani € X such
that: 1) |x; —y;| =1 and 2) i is k-sensitive with respect to x or y.

Note that although sensitivity of a record is determined by
the addition and/or removal of k records, the neighboring
databases in k-sensitive neighborhood graph (Gg) differ by
exactly one record. For instance, if we are given that 7 is k-
sensitive with respect to x, the neighbors of = that differ in
1 can be at most two: one is obtained by adding ¢ to = and
the other is obtained by removing i from z.

Furthermore, Gg (as opposed to ©) is tied to the normal-
ity property, and hence, the anomaly definition. Distances
(i.e. shortest path lengths) is these graphs allow us to
generalize in a clean way the differential privacy as well
as other privacy definitions (see Section 7).
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Definition 7 (sensitive privacy). Arbitrarily fixe >0,k > 1,
and a normality property p, and let G be the k-sensitive
neighborhood graph for p. Then we say a mechanism M is (e, k)-
sensitively private if for every two neighbors x and y in Gg,
and every measurable R C Range(M),

P(M(x) € R) <e°P(M(y) € R).

Sensitive privacy requires that for every two neighbors, any
statistical test 12 one may be concerned about should occur
with “almost the same probability”. Namely, the presence
or the absence of a k-sensitive record should not affect the
likelihood of occurrence of any event. Here, “almost the
same probability” means that the above probabilities are
within a multiplicative factor e, which for reasonably small
0<e<lwehavee® = (1+¢).

When ¢,k and p are fixed, for any input database x, we
are guaranteed that the output of the sensitively private
mechanism remains the “same” under addition or removal
of any one record from z that is k-sensitive for x or any
of its neighbors. Thus, from a sensitively private output, an
attacker cannot infer if a sensitive record was present in the
database. This always holds for all the normal records since
every normal record is k-sensitive for all values of k.

When p is fixed, € and k relate to the SP guarantee as
follows: the lower the value of ¢, the higher the privacy
guarantee of sensitive privacy (which is similar to DP); in
contrast to ¢, the higher the value of k, the higher the privacy
guarantee.

Furthermore, sensitive privacy also has the properties of
composition and post-processing [11]. However, unlike
differential privacy (where the composition is with respect
to €), the composition for sensitive privacy is with respect
to € and a fixed k-sensitive neighborhood graph.

For outlier analysis, we will show that sensitive privacy
admits mechanisms that can accurately identify whether
a record is anomalous while simultaneously guaranteeing
strong privacy by making it statistically impossible to infer
if a non-anomalous record was included in the database.

5 UNDERSTANDING SENSITIVE PRIVACY

In this section, we first discuss how the parameters € and
k relate to the SP-guarantee, especially, in terms of the sen-
sitive neighborhood graph. Since the analysis for the third
parameter (the normality property) is non-trivial and com-
plicated, it is separately detailed in Section 6. Second, we
elaborate on the distinguishing characteristics of sensitive
privacy for anomaly identification, and how it compares to
differential privacy through indicative experimental results
over data generated from 2D Gaussian distribution.

SP: the role of c and &

The privacy parameter ¢ plays the same role in sensitive
privacy as it does in differential privacy: the smaller its
value, the higher the privacy. For neighboring databases
in a sensitive neighborhood graph (Gs), the guarantee of
sensitive privacy is exactly the same as that of differential
privacy. However, if the two databases = and y, differ by one
record that is non-sensitive (for both the databases), then
they are not neighbors in G's, and the SP-guarantee for such
a pair is weaker than of differential privacy, nevertheless, it
has the same form.
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Fig. 1: (a) gives the density plot of the distribution of the
example data. z; and z; axes give the coordinate of a point
(record). (b) and (c) respectively show the accuracy (on ver-
tical axis) for (3,7)-AIQ’s (for each record, i.e., data point)
via (0.25,1)-SP and 0.25-DP mechanisms (in Section 8.4).
The plots give the interpolated results(footnote# 5) to clarify
the relationship of outlyingness and accuracy. (d) and (e)
give the privacy (on vertical axis for ¢ = In(4;)) for each
i in the data for private (3, r)-AIQ. All the green (normal)
points in (d) are at the same level as all the points in (e).

Next, we discuss the parameter k. It quantifies the level of
sensitivity of records: (for a fixed ¢ and p) the higher the
value of k, the stronger the SP-guarantee. A higher value of
k results in more records being considered sensitive. This
is because a record that is k-sensitive (with respect to a
database x) is also (k + 1)-sensitive (with respect to z). In
a typical setting3, if G and Gy are two sensitive neighbor-
hood graphs for k and &’ such that k¥ > &/, then, compared to
G’s, more databases are neighbors in Gg (£(Gg) 2 £(G%)).
Thus, if k is large enough, the SP-guarantee is the same
as the DP-guarantee. Hence, k provides a way to trade-off
privacy and utility in anomaly identification.

Indicative Experimental Results comparing SP and DP

Here, we wish to use Figure 1 and 2 (showing empirical
results’) as a means to understand what distinguishes sen-

3. In a typical setting, every record i can be an anomalous or normal
depending upon the database, i.e., for each 3, there are two databases:
in one, ¢ is anomalous, and in the other ¢ is normal.

4. The results are obtained over database of size n = 20, 000, samgled
from the 2D normal distribution, N (i1, ), for n = (0,0) and & = [2 9]

The § and r are set as follows: 8 = 1.2x 10 3nand r = 0.13,/0? + o2.
This relationship is adapted from [29], which established this relation-
ship for one-dimensional (1D) data (i.e. not the same as in the example
of Figure 1). For (the 1D case) any record ¢ in a sampled database,
with empirical mean p and empirical standard deviation o, we say ¢
is anomalous if |¢ — p| > 30. This fundamental notion of anomaly is
equivalent to (8 = 1.2 x 1073n, r = 0.130)-anomaly [29], where n is
the size of the database.
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sitive privacy from differential privacy for anomaly identifi-
cation.These plots are based on our SP and DP mechanisms
for (5, 7)-AIQ (from Section 8.4), which we used to compute
and plot the accuracy” and privacy for each record.

We know that under SP — unlike DP — all the records do
not have the same privacy guarantee; and additionally, SP-
guarantee for every record 7 varies across databases (due
to the data-dependent nature of sensitivity, i.e., sensitive
record). So, for the purpose of comparing SP and DP, we
quantify the privacy guarantee of a mechanism — whether
SP or DP - for any ¢ in the context of the given database (this
approach is similar to that of tailored DP [22], discussed
in Section 7). For our mechanisms (both SP and DP) and
a given database z, the privacy guarantee for any record
i can be given as® ¢; = In(4;) (which measures the max
divergence in the probability of M;’s outputs for 2 and its
neighbors in 7 — note that ¢ is not necessarily sensitive):

A; = max
we{y,z} be{0,1}

{P(Mi(x) =b) P(Mi(w) = b)}
P(M;(w) =b)" P(M;(x) =b)
where M, : D — {0, 1} is the privacy mechanism (either SP
or DP) for (3, r)-AlQ for i, y = £(x + e') and 2z = £(z — e?).
Let us now discuss the distinguishing features of sensitive
privacy and how they compare with differential privacy.

o Under sensitive privacy, every k-sensitive ¢ has ¢; = «¢.
For instance, in Figure 1d, all the green points are non-
anomalous and have the same privacy . This privacy
guarantee is the same as provided by DP (green points
in Figure 1d are at the same level as all the points in Fig-
ure le). This is because most of the records in real-world
databases are not anomalous, and hence, are sensitive.

o In practice, for anomaly identification, sensitive privacy
guarantee strong and similar privacy guarantee for most
of the records in the data. In Figure 1d, the vast majority
of points is green (or greenish), i.e. non-anomalous, and
for each such i, ¢; ~ €.

« Sensitive privacy provides a novel way to define outly-
ingness, and relates it to the privacy-accuracy trade-off
of the mechanism. For a given database x and record i,
outlyingness of ¢ is measured by the smallest distance
from z at which there is a database y in Gg (the sensitive
neighborhood graph) such that ¢ is k-sensitive for y — the
greater the distance, the stronger the outlyingness. Under
this notion of outlyingness, the weaker the outlyingness of
a record, the higher privacy it gets with sensitive records
getting the highest privacy, i.e. € (see the level of green,
blue, and brown points in Figure 1d). In contrast, under
DP all record have the same privacy e.

o Furthermore, the higher the outlyingness of a record,
the higher the accuracy the SP mechanism is allowed to

5. To make the visualization clear, we interpolate the results from
30 sampled databases by using one-degree polynomial in the two
coordinates (Figure 1b-c). For this, we used “ListPlot3D” function of
Mathematica 12 with “InterpolationOrder” as 1.

6. Under our mechanisms, for any i, it suffices to measure the privacy
loss under M; (as opposed to M for any other j # i) by contrasting =
with databases y and z. This is because, for (3, r)-AlQ for the record 3,
the center of the ball is at ¢ and thus it is exactly for M; and databases
y and z where the privacy loss is maximized. This can be confirmed by
looking at the mdd-function for (3, r)-anomaly identification function
(under DP) and Ay, for SP, both given in Section 8.4.
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achieve for AIQ the record, which is in contrast to DP
(compare Figures 1b and 1c). Similarly, the higher the non-
outlyingness of a record (i.e., the record is ‘super’ normal),
the higher the accuracy the SP mechanism can achieve,
and this is akin to DP.

¢ The parameter k defines the boundary between the sensi-
tive and non-sensitive records: the higher the value of k,
the more records are considered sensitive, and therefore,
must be protected with higher privacy guarantee. See
Figure 2, where we show how increasing &, increases the
number of sensitive records and the privacy guarantee.

6 SP-GUARANTEE ANALYSIS W.R.T. NORMALITY
PROPERTY

The normality property plays a central role in defining
the sensitive privacy guarantee. For instance, assume a
constant normality property p, which always outputs 0
(i.e. p(i,) = 0 for every ¢ and z), and a mechanism
(to compute a function f) that always outputs the correct
answer. This mechanism is sensitively private (for p), but it
is not differentially private.

Now, on the other hand, consider a normality property p
that outputs 1 if the database’s size is odd and 0 otherwise
(i.e. p(i,2) =1 <= |z|is odd, for every i and z).

For such a property, every record is sensitive with respect
to every database. Therefore, in this case, a mechanism is
sensitively private if and only if it is differentially private
(see Section 7 for details on how DP is related to SP).
Between the aforementioned two extremes lies a set of
practically-meaningful properties (P C ‘B) that we call reg-
ular (defined shortly). Regular properties not only provide
a meaningful SP guarantee for anomaly identification but
also corresponds to many of the anomaly models used in
practice. Informally, a property p € P is called regular
if every two nodes (i.e. databases), each of which has at
least one sensitive record, are connected in the sensitive
neighborhood graph for p.

To define the notion of regular property, we need to clarify
some notation and definitions. For arbitrarily fixed £ > 1
and a property p € ‘B, let D? be a subset of D such that
DP = {x € D: Ji € X st iis k-sensitive w.r.t. z}. Now
for a given DP and a k-sensitive neighborhood graph, G,
corresponding to p, let Gg(D?) = (DP, E) be a subgraph of
G's such that for every z,y € D?, {z,y} € E if an only if
{z,y} € £(Gg). The definition of regular property follows.

Definition 8 (regular property). For any given property p €
B, we say p is regular if for every k > 1, Gg(DP) is connected,
where G g is the k-sensitive neighborhood graph for p.

Thus, for any regular property p, all the databases that
have at least one sensitive record are in one connected
component, Gg(DP), of Gg, and the databases that are
not connected with Gg(DP) do not have any sensitive
record. However, such databases do not correspond to the
databases for outlier analysis that we encounter in practice
or for which the anomaly models are conceived. Since by
definition, outliers make a minority of the records in a
database [4], [5], hence, regular properties are representative
of the practical settings for outlier analysis.
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Fig. 2: (a)-(c), the plot is for the same data and SP mechanism
as in Figure 1 but for varying k. The two axes give the
coordinates of a point. The color gives the level of privacy
in terms of the value e~¢ (for each i, ¢ = In(4;)), under
(0.25,k)-SP AIQ. (@), k =1.(b), k = 7. (o), k = 14.

On the other hand, if a property p is not regular, then
the databases in Gs(DP) belong to at least two different
connected components. Now for an (g, k)-SP mechanism
M, it becomes possible that for two databases z,y €
Gs(DP) and an R C Range(M), P(M(x) € R) > 0 while
P(M(y) € R) = 0. However, this situation does not occur
for regular properties (Lemma 2).

In the next section, we discuss and analyze normality prop-
erties associated with (3, r)-anomaly model.

Regular vs. non-regular (5, r)-normality properties

We use ps,,) to depict an arbitrary (3, r)-normality prop-
erty, i.e. the normality property corresponding to (5,7)-
anomaly. Different values of 8 and r and the distance
function over the records correspond to different settings.
It turns out that for most practical settings, ns,,) is indeed
regular, but not for all.

Since the notion of regular property is defined via sensitive
records, let us first discuss what makes a record k-sensitive
under pg,). For a given k,p(3,) and z, a record i is k-
sensitive for z if there are (§+ 1 — k)-many records in z that
are within distance r of i (i.e., B;(i,r) > f+1—k; Lemma 1).
For instance, consider the case for k = 2 and B,.(i,r) = -1
(for B > 2). Here, i is k-sensitive for x. This is because
by adding two records — one of value ¢ and the other of
any value j such that dx(i,j) < r - to z, ¢ will become
a non-outlier. There is, however, a subtlety when it comes
to considering the neighbors in sensitive records. Take a y
such that By (i,r) = § — 2. Clearly, ¢ is not k-sensitive for y;
because by adding or removing any two records from y, i
cannot become a non-outlier. Yet x is a neighbor of y. This is
because i is k-sensitive for z, and thus, z+e* and z —e* = y
are neighbors of z.

Lemma 1 ( [11]). Forevery k > 1, R A€ X,and x € D,
i is k-sensitive for v <= B,(i,r) > S+ 1—k.
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For instance, for k < f, (8,0)-normality property is not
regular (Claim 1). The non-regularity of p(5 ] causes anoma-
lous records to have no privacy, however, the privacy for
the sensitive records remains the same. At the same time
the non-regularity of n5 ¢ also allows us to develop a very
simple and efficient mechanism to achieve sensitive privacy
to compute any given query (see Section 8.1).

Note that when k > 3, the k-sensitive neighborhood graph,
G's, for nig o) is the same as C. This holds because for every
1 € X and x € D, there is a neighbor y of = (in Gg) such that
i is k-sensitive for x or y. Any property p € P that yields
a k-sensitive neighborhood graph equal to G is regular.
However in such a case, the SP guarantee is identical to
the DP guarantee.

Claim 1. Forevery 1 <k < Band 3 > 1, p(g g is not regular.

To confirm the above claim, arbitrarily fix 8 > 1 and k£ < .
Let z and y be two databases such that for some i # j,
z; = f+1—-kand z; = 0,and y; = O and y; = S+1—k. Note
that 4 is k-sensitive for x but not y, and j is k-sensitive for
y but not x (follows from Lemma 1). Although there is one
sensitive record for x and one for y, they are not connected
in the k-sensitive neighborhood graph. This holds because
for every database z that differs from x by one record, j is
not k-sensitive for z (as z; + k < f); thus, z; = z; = 0.
Hence, for every neighbor z of z, z; = x; = 0 as well.
Furthermore, a simple inductive argument (on the databases
at distance ¢ € R from x) shows that any database, w, that
is connected to = has w; = 0. Thus, we conclude that y is
not connected to z, and the (3, 0)-normality property (for
k < f) is not regular.

We now characterize the condition that makes a p(g,,] reg-
ular. For this, we use the parameter 7. When r is non-trivial,
Ps, is regular (Claim 2). To define what makes 7 non-
trivial, we first clarify some notation. Weuse S : X x N —
2% (where 2% is the power set of X) to define the sets of
records that are reachable from any record :. For a given 7,
every £ € Nand i € X, §(i,¢) = U  X(j,r), where

jeS@E,e—1)

S(i,0) = {i} and X (i,7) = {5/ € X : dx(3,5") < r} (recall
that (3, r)-anomaly comes with a distance function dx, see
Section 3).

For (53, r)-anomaly and dx, we say the parameter r > 0 is

non-trivial if there exists s € N such that for every ¢ € X,
S(i,8) = X. Claim 2 follows.

Claim 2. For any given distance function dx, if the parameter r
is non-trivial, then n(g, | is regular.

Proof. Arbitrarily fix a set X of order m and a (8,7)-
normality property, 3.}, for arbitrarily fixed 3 > 1,7 > 0
and dy such that r is non-trivial for the distance function
dx. Next, fix an arbitrary value of £ > 1, and let G g be the
k-sensitive neighborhood graph for n3 ;1.

We now recall that DP.71 is the maximal set such that
Dr.r1 C D and for every x € D, x € DPI8.r1 <= there
exists ¢ € X that is sensitive with respect to (w.r.t.) z.

We prove the claim in two steps through a reachability argu-
ment, where we show every database (node) in Gg(D"#-1)
is connected to a fixed database that has § mass in each
coordinate. For the proof, we arbitrarily fix an x € D"
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and an ¢ € X such that 7 is k-sensitive w.r.t x, and hence,
B,(i,7) > 8+ 1 — k (follows from Lemma 1).

Next, we define a function, w,, to give databases that are
same as z except they differ from x in the coordinate i.
For every a € N, we define w,(a) = = + a - sgn(B — z;)e’,
where sgn is the standard signum function that outputs 0
for the input 0. Thus, w;(a) is the same as = except for ith
coordinate where its mass is more (less) by a than that of =
if x; < B (respectively if z; > f).

Part (a): Here we show that x is connected to a database in
Gg(D"s.1) that is same as x except for the coordinate 7,
where it has mass S (i.e. the database w,. (|5 — x;|)).
When |3 —z;| = 0, the claim holds trivially (as z is reachable
from itself). So, we consider the case for |3 — z;| > 0. Here,
fora=1,...,|8 — x|, wy(a — 1) is a neighbor of w,(a) in
Gs, and both w; (a — 1) and w,(a) belong to D”15.71 because
for every a (as given above), 7 is sensitive w.r.t. w;(a) due to
By, (a)(i,r) > B+1—k.
From the above it follows that x is connected to the
database w, (|8 — z;|) € D" through the path given by
<z,wz(1),...,we (|8 —x5]) >.
Part (b): Here, we will use an inductive argument to show
that the database, which has  mass in each coordinate, is
reachable from z.
For our fixed database x and any J C X, let y‘] be a database
such that for every j € J, y}’ = f3, and for every j € X'\ J,
y] = x;. And let s be the smallest integer such that S(i, s) =
X — this holds because r is non-trivial. We want to show
that yS(-*) reachable from z.
Firstly, note that y°(10) can be reached from z (Part (a))
— this proves the base case. Next, assume that for some ¢
such that 0 < ¢ < s, y$9 is reachable from x (inductive
hypothesis). We show that y°(¢*1) is reachable from z.
Let J = S(i,0) U (8,0 + 1) \ S@,0) = S(i,0) U
{i1,12,...,in} for somen, and for every tin {0,1,2,...,n},
Ji = 8(i,0) U {i1,42,...,it}, where Jy = S(4, ).
Note that every j € J is k-sensitive with respect to y(*).
To confirm this, arbitrarily fixa j € J. If j € S(4,¢) then j
is sensitive with respect to (%) (follows from Lemma 1 as
yf(l’é) = f). If, however, j € J \ S(i,¢), then there exists
a j € 8(i,0) such that dyx(j,j') < r (follows from the
definition of S), and for z = y5®9, B,(j,7) > f; thus, j
is k-sensitive w.r.t. z = yS(% (Lemma 1).
Now, from Part (a), it follows that, 7/t is reachable from y”°,
and y”2 is reachable from y’t, and so on. Thus, y’/» (= y”) is
reachable from y”/0, that is, the inductive hypothesis implies
that y5(»¢*+1) is reachable from .
Thus, we conclude that y°(»*) is reachable from . Since k
and x € D*18.1 were fixed arbitrarily, the claim holds true
for every k > 1 and x € D?1#.71. This completes the proof.
O

7 SP IN RELATION TO OTHER DEFINITIONS

In this section, we show how sensitive privacy relates to the
other related data privacy concepts in the literature.

Differential privacy: We begin by restating the definition
of differential privacy in terms of the neighborhood graph.
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Definition 9. For any given € > 0, we say a mechanism M is
e-differentially private if for every two neighbors x and y in G
and every R C Range(M),

P(M(z) € R) <eP(M(y) € R).

The restatement of differential privacy makes it easy to see
that if a k-sensitive neighborhood graph, G'g, is the same
as G (i.e. Gg = G), then a mechanism is (g, k)-sensitively
private if and only if it is e-differentially private. One can
easily confirm this by: (1) comparing Definition 7 with
Definition 9, and (2) using the fact that Gg = C.
Furthermore, if a mechanism is e-differentially private then
itis also (g, k)-sensitively private for all £ > 1 and normality
properties. This follows from the fact that every k-sensitive
neighborhood graph is a subgraph of DP neighborhood
graph.

Protected differential privacy (PDP): In [13], the authors
present a definition of privacy and private algorithms for
a targeted search in social networks, which can be used
to search for anomalies (e.g. terrorists) as well. Their algo-
rithms are private under protected differential privacy, their
proposed notion.

However, the definition of anomaly (or the normality prop-
erty in our context) that can be considered under PDP
cannot be data-dependent in a non-trivial manner. Namely,
for a pre-specified X C X (the set of the protected popula-
tion), we can define the corresponding normality property,
p, where p is such that for every ¢ € X and € D,
p(i,x) =1 <= i € X. Thus, protected differential privacy
deals with a subclass of definitions from sensitive privacy.
Furthermore, in this context, solving the problem for the
data-dependent definition of anomalies is an open question
[13] that sensitive privacy answers.

Tailored differential privacy: Tailored differential privacy
[22] generalizes differential privacy, wherein the privacy
parameter, ¢, is a function of a record and a database (i.e.
€ : X XD — Rso U {oo}). Hence, it allows for having
different levels of privacy (i.e. the value of ¢) for different
records.

Definition (TDP). For any given € : X x D — R>¢ U {o0},
we say a mechanism M is e(-)-tailored differentially private if
for everyR and « € D and every ¢ € X such that z; > 1,

Pr[M(z) € R] < e Pr[M(x — ¢') € R]

and ' _
Pr[M(z — ') € R] < ¢“®) Pr[M(z) € R]

Sensitive privacy deals with a subclass of mechanisms that
are private under tailored differential privacy. If a mech-
anism is sensitively private then there exists a function e
such that the mechanism is also ¢(-)-tailored differentially
private. Alternatively, we can say that for a specific function
€, a mechanism is sensitively private if and only if it is
tailored differentially private (Claim 3).

Next, we define the privacy-functions, €, that we need to for-
mally state Claim 3. For any given k-sensitive neighborhood
graph G (for an arbitrary p € ) and a fixed a > 0, we say
€a + X X D = R>o U {oo} is a privacy-function if for every
i € X and every z € D, €,(i,2) = a - dgg(z,&(x — €Y)) if x
and £(z — e') are connected in G5 otherwise ¢, (i, ) = oco.
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Recall that &, for a given input, replaces the negative value
of each coordinate with zero.

Claim 3. Arbitrarily fix k > 1, a > 0, and a normality property
p, and let Gg be the k-sensitive neighborhood graph for p. If €,
is the privacy-function for Gg (as given above) then for every
mechanism M, M is («, k)-sensitively private <> it is e, (-)-
tailored differentially private.

Proof. Arbitrarily fix £ > 1, a normality property along with
the corresponding k-sensitive neighborhood graph, G5, and
a > 0. Let €, be the privacy-function for G5, and M be a
mechanism with domain D.

We first show the = direction. Let M be («, k)-sensitively
private (SP). Arbitrarily pick x € D and ¢ € X such that
r; > 1. Lety = o — e’. Thus, by definition of Gg, y is a
node in Gg. Now, if z and y are connected in G g, then for
an arbitrarily fixed R C Range(M), it follows that

P(M(z) € R) <e®des=¥P(M(y) € R)
P(M(z) € R) <eS"®)P(M(y) € R)

The first inequality follows from the definition of sensitive
privacy, whereas the second one follows from the definition
of €,. Thus one of the constraints of tailored differential
privacy (TDP) holds for 2 and 4. Similarly, from symmetry
of dg4 and the second constraint imposed by SP, the other
privacy constraint of TDP follows.

On the other hand, if + and y are not connected in Gg,
the probabilities corresponding to x and y are allowed to
arbitrarily diverge from each other. The same is the case for
TDP under our ¢,, which is equal to co here. Thus, in this
case, the claim holds as well. Since z, ¢, and R were picked
arbitrarily, the constraints hold for every = and ¢ (such that
x; > 1) and R. Hence by the definition of TDP, M is €,(+)-
TDP.

Next, we prove the <= direction. Let M be ¢,(-)-TDP.
Arbitrary pick neighboring database x and y in Gg, and
R C Range(M). Since x and y are neighbors, there exists
i € X such that ||z — y|[y = |z; — yi| = 1; let us fix this 4.
Now, if x; > y;, then it follows that

P(M(z) € R) <e““(:P(M(y) € R)
P(M(z) € R) <els@YP(M(y) € R)
P(M(z) € R) <e"P(M(y) € R)

The first inequality holds because M is €,(:)-TDP; the
second one follows by the definition of €,, and the third
one holds because dg(z,y) = 1 for neighbors. Similarly,
the second privacy constraint for SP follows from the other
privacy constraint of TDP. In the case, z; < y;, we get
P(M(z) € R) < e«(¥P(M(y) € R); here again we can
show, in a similar fashion as above, that both the privacy
constraints for SP hold. Since we picked the neighboring
databases and I? arbitrarily, the privacy constraints for pri-
vacy parameter v and k-sensitive neighborhood graph Gg
hold for all the neighboring databases and R. Hence, M is
(o, k)-SP. This completes the proof. O
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8 SENSITIVE PRIVACY AND MECHANISM CON-
STRUCTION

How can we achieve sensitive privacy for identifying
anomalies? In this section, we answer this question. We will
first look at the simple case, where we look for (3,r = 0)-
anomalies with the guarantee of sensitive privacy. To do
this, we develop a sensitively private mechanism, named
n-step lookahead mechanism, which works well for this
case. However, when r is non-trivial (defined in Section 6),
we show that n-step lookahead mechanism cannot achieve
sensitive privacy.

We will then introduce a construction to give SP mechanism
for AIQ. We will also show, how this construction can be
used to give optimal mechanisms for AIQ, and develop SP
as well as DP mechanisms to identify (5, r)-anomalies.

8.1 n-Step lookahead mechanism

Here, we give a sensitively private mechanism, named n-
step lookahead mechanism, to compute a given query, f, for
outlier analysis. For a fixed normality property p and n €
N, n-step lookahead mechanism, M), , adds noise to each
coordinate ¢ of the given database z if 7 is n-sensitive with
respect to z, that is, if in n-steps (i.e. adding or removing n
records) from x gives a database y such that p(i,y) = 1. It
then computes f on the perturbed database.

n-Step lookahead mechanism, M; , ,:

1) Input: database x

2) For the fixed i € X

3) IfisSensitive(i,z,p,n) = True:

4) setx =z + Lap(1/¢e) x e

5) Return f(£(z)).
In n-step lookahead mechanism, f : D — R denotes
the query function for analyzing data for anomalies, e.g.
an anomaly identification function — we assume f is
computable. Lap(l/e) denotes an independent sample
from Laplace distribution of mean 0 and scale 1/e. For
given n and p (normality property) the mechanism M;
also uses isSensitive function, which for given record
i and database x returns True if there is a y such that
[lz — y|l1 < nand p(i,y) = 1, and False otherwise.

For any pn(g,q), the n-step lookahead mechanism M, , ,, is
(e,k)-SP if n = k + 1 (Claim 4). For this, isSensitive
is simple and easily computable. For any i, x, (3,0}, and n,
isSensitive(i,x, pg,,n) = (s > f+1—n).

n-Step lookahead mechanism works well for (f,0)-
normality properties. For the practical settings (i.e. 8 >
k+1), M; 44 o,n Only has an additional linear (in size of the
input database) computational overhead. Because, for any
given database x, we only need to perturb the coordinates
that have non-zero mass (i.e. ¢ € X such that z; > 1) as
others will not be k-sensitive.

Claim 4. Arbitrarily fix an ¢ > 0, a query f, and let
isSensitive(i,x,nig,0),n) be as given above. Then, for every
k > 1 and pig ), (k + 1)-step lookahead mechanism is (e, k)-
sensitively private.

Proof. Arbitrary fix X (a finite set), €, and f as given above.
Next, fix arbitrary values of # > 1 and £ > 1. And let
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isSensitive(i,x, pg,,n) = (v; > B+ 1 —n) for every
i€ Xand z € D, and let M), , , » be the n-step lookahead
mechanism for n = k + 1.

For the proof, we note that the mechanism (M;p, ,,n)
perturbs the coordinates of the input database using Laplace
distribution of mean zero and scale 1/¢. Thus, the perturbed
database it generates will be guaranteed to be sensitively
private if, for every two neighbors x and y, (1) the mecha-
nism perturbs the same set of coordinates J C X in x and
in y, and (2) J is a super set of all coordinates that are either
sensitive in one neighbor or the other.

We first prove (1). Arbitrarily fix an 7 € X and two neigh-
bors z and y in G such that ||z —y||1 = |z; —y;| = 1. Thus,
all the coordinates of x and y except for ¢ are the same,
and M, ,, , » will perturb the same coordinates in x and y
except for i. So, we next show that M; ;, , , » perturbs the
coordinate ¢ for both x and y.

When 17 is k-sensitive w.r.t. to both the databases, the mech-
anism perturbs the ¢ coordinate of both x and y. Because
when i is k-sensitive w.rt. to z € D, B,(i,r = 0) = z >
B+1—k>pF+1—n(fromLemmalandn =%+ 1).
Thus, without loss of generality, let ¢ be k-sensitive w.r.t z,
but not w.r.t y. Since ¢ is k-sensitive w.rt z, z; > 8+ 1 —k
and y; > B —k (as |x; — y;| = 1). In this case, M; ,, ,,» Will
perturb the coordinate 7 in both = and y.

Lastly, note that, for every database z and every coordinate
7, Mi,ﬂ[ﬁm,n perturbs the coordinate j if z; > 3 — k. Hence,
the set of coordinate that Mim[ B0 perturbs for both z and y
is a super set of the coordinates that are sensitive either with
respect to x or y. Since, the x, y, ¢ were chosen arbitrarily,
the claim holds for all the neighbors in Gs.

Now, given that the perturbed database is guaranteed to
be sensitively private, from post-processing property, we
conclude the claim holds. This completes the proof.

[8,0]>

O

Limitations of the look-ahead mechanism

We show that the n-step lookahead mechanism does not
work for (8, r)-normality properties in general; especially,
when the normality property is regular. That is we show
that for a regular (3, r)-normality properties, it is impossible
for n-step lookahead mechanism to achieve (&, k)-SP when
n, k < B (Theorem 1).

In Theorem 1, we only consider n,k < . Since for every
k > [, every ¢ € X is k-sensitive with respect to every
database * € D. Thus, in such a case, the k-sensitive
neighborhood graph (G's) is the same as DP neighborhood
graph (i.e. Gs = G). And using sensitive privacy instead of
differential privacy will not result in any gain in utility.

Theorem 1. Arbitrarily fix € > 0, finite set X, distance function
dx, regular pig ) , and let g be the (3, r)-anomaly identification
function. If there exist i,j € X such that dx(i,5) > 2r then for
every k and n such that 1 < k,n < f3, n-step lookahead mecha-
nism for (B, r)-AIQ, (j, g), is not (e, k)-sensitively private.

Proof. Arbitrarily fix &’ (a finite set), dx, and p3 ;) such that
(1) 8,y is regular and (2) i, j € X such that dx(i,j) > 2r.
Choose an arbitrary value of ¢ > 0, and let g as given above.
Next, fix an arbitrary value of k such that 1 < k < 3, and
let G 5 be the k-sensitive neighborhood graph for n(g, 1.
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To prove the claim, we consider two databases that are
connected in Gg. Note that there exist z and y in D such
that Ty =T; = B, ||IH1 = 25, and Yi = ﬂ, ||y||1 = ﬂ Thus,i
and j both are k-sensitive w.r.t. z, while i is k-sensitive w.r.t.
y but j is not (Lemma 1). Since pg ;] is regular, z,y € DP5.7]
are connected (by Definition 8).

Now, let (j, g) be the (8,7)-AIQ, and let f = g;. Note that
f(z) =1and f(y) = 0. Next, fixany n such that 1 <n < 3,
and let M, , ., be the n-step lookahead mechanism for f.

Here, j is m-sensitive w.r.t. to = but not w.r.t. y because
By(j,7) + n < B (Lemma 1). So, M, , » will perturb
z; but not y;, and hence, P(M,,  n(z) € {1}) > 0
but P(M, (y) € {1}) = 0. Now, from Lemma 2, we

(B,
conclude that M, , » is not (¢, k)-SP. Since, n and k were
fixed arbitrarily the claim follows. O

Lemma 2. Arbitrarily fix e > 0, k > 1, and p € B, and let
Gs be the k-sensitive neighborhood graph for p. Now, for any
mechanism M : D — R that is (e, k)-SP, it holds that for every
x,y € D that are connected in G g and every R C R,

P(M(z) € R) =0 < P(M(y) € R) =0

Proof sketch. We prove the claim by contradiction. Assume
M : D — R is an (g, k)-SP mechanism. Fix any z,y € D
and R C R such that for some ¢ € R such that £ > 0,
das(z,y) = and P(M(y) € R) > P(M(z) € R) = 0.

Since M is (g,k)-SP, P(M(y) € R) < e*P(M(z) € R)
must hold. But there are no ¢,¢ € Ry that satisfy the
above constraint. This implies M is not sensitively private,
which contradicts our assumption. One can prove the other
direction using the other privacy constraint in a similar way.
Thus, the lemma follows. O

8.2 SP Mechanism Construction for AlQ

We now present our construction (Construction 1) to de-
velop sensitively private mechanism for AIQ. We will also
show how to use Construction 1 to develop an optimal sen-
sitively private mechanism as well as a differentially private
mechanism. Finally, we will instantiate Construction 1 for
(B8, r)-anomaly [29] (a prevalent anomaly model). Although
we instantiate the construction for (3, r)-anomaly, it is not
tied to any specific anomaly definition or model, and hence,
is generally applicable for other anomaly models.

We define the notion of minimum discrepant distance (mdd)
over a sensitive neighborhood graph (Gg), which plays
the central role in our construction. Roughly speaking, for
given Gg and a function f, mdd of a database z is the
distance to the closest point y where f changes the value
it has on z, i.e. f(z) # f(y). To measure mdd for anomaly
identification, we define the mdd-function (Definition 10).
Construction 1 uses mdd-function to give an SP mechanism
for an arbitrary AIQ, which has very high accuracy in
practice. For instance, the SP mechanism for (3, r)-AIQ errs
with exponentially small probability on most of the typical
inputs (Theorem 5).

Definition 10 (mdd-function). Let G'g be a sensitive neighbor-
hood graph (for an arbitrary k > 1 and a normality property).
Then, for any anomaly identification function g, we say a func-
tion, Agg : X x D — NU{L}, is the minimum discrepant
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distance function for g, if for every i € X and database x € D,
the following holds:
If there is z € D such that z ~ x (i.e. connected to x in Gg) and

9i(2) # gi(x) then

9i()%9; (=)
otherwise, Ag,(i,x) = L.

A simple and efficient mechanism for anomaly identification
— which is both accurate and sensitively private — can be
given if g and the corresponding mdd-function, Ag,, can
be computed efficiently.

However, for an arbitrary normality property, computing
the mdd-function efficiently is a conceptually non-trivial
task, one that we conjecture it cannot be done efficiently.
This is because the metric, dg,, which gives rise to the
metric-based property captured by the mdd-function, is in-
duced by (a) the definition of anomaly (e.g. specific values of
[ and r as we saw in Section 6) and (b) the distance function
over the records. Thus, making it exceedingly difficult to
analyze it in general.

Therefore, in the next section, we present our constructions
that instead uses a lower bound on the mdd-function to give
sensitively private mechanism.

8.3 SP-mechanism via lower bounding mdd

Construction 1 uses a lower bound, A (a function over
X x D), for the minimum discrepant distance (mdd). We
parameterize Construction 1 by A, which is associated with
a sensitive neighborhood graph. Since the sensitive neigh-
borhood graph is defined for an anomaly definition, hence,
the graph becomes concrete for each concrete anomaly defi-
nition (e.g. see Section 8.4).

Now, for any fixed AIQ, (7, g), and given A, Construction 1
provably gives an SP mechanism as long as A is an acceptable
lower bound on the mdd-function (Theorem 2).

Below, we define the notion of acceptable lower bound on
an mdd-function. Arbitrarily fix a neighborhood graph G
and an anomaly identification function ¢ (for the definitions
given below). We say A : X x D — Rx>o U {L} is a lower
bound on the mdd-function A¢ for g if for every ¢ € X and
x € D, the following holds: if Ag(i,z) = L, then A(i,x) =
L or A(i,z) € R>q, otherwise A(i,z) < Ag(i,x). For any
given o > 0, we say A is a-acceptable if: (1) for every ¢
and z, if A(4,2) € R>p, then A(é,z) > 1, and (2) A is a-
Lipschitz continuous over G (defined in Section 3). Finally,
for any given mdd-function, Ag, and a > 1, we say A is an
a-acceptable lower bound on Ag, if it is a-acceptable and a
lower bound on Ag.

Remark: Although at first it appears that the Lipschitz conti-
nuity condition is some side technicality, in fact bounding its
value constitute the main part of our argument for privacy
of our mechanisms. Thus giving an SP mechanism for (7, g)
via Construction 1 reduces to giving a Lipschitz continuous
lower bound for the mdd-function corresponding to g.

Construction 1. U)
1) Input x € D
2) If Mi,z) =L, sett =0
3) Else, set t = e==(A2)=1) /(1 4 ¢2)
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4) Sample b from {0, 1} such that P (b # g(i,x)) =t
5) Return b

Note that as it is common in the privacy literature, the
notation for sampling with probability P (b # g(i,z)) = ¢,
in practice means to sample with probability exponentially
close to ¢ (within error 1/2™ for input length parameter
n). Also, note that the above is a family of constructions
parameterized by ), i.e. one construction, Uy, for each A.
This construction is very efficiently realizable as long as we
can efficiently compute g and A. Furthermore, the error of
the mechanism, yielded by the construction, for any input is
exponentially small in A (Theorem 2).

Theorem 2 (U, is SP). Arbitrarily fix e > 0, k,a > 1, and
a normality property p. Let Gg be the k-sensitive neighborhood
graph for p, and (i, g) be an arbitrary AIQ, where g and p are for
the same anomaly definition.

Forevery A : X x D — R>oU{L}, if X is an c-acceptable lower
bound on Ag, for g, then Construction 1 yields an (ec, k)-SP
mechanism, Uy, such that for every x € D and A(i,x) € R>o,

P(UAa) # gli.2)) = e=“CEI7D (1 4

Proof of Theorem 2. Arbitrarily fix e > 0,k > 1, « > 1, and
a normality property p. Let Gg be the k-sensitive neigh-
borhood graph for p, and g be the anomaly identification
function for the anomaly definition for p.

Fix A to be an a-acceptable lower bound on the mdd-
function, Agy, for g. Let Uy be as given by Construction 1.
Next, arbitrarily fix an AIQ, (4,¢9), and z,y € D that are
neighbors in Gg (i.e. dgg(z,y) = 1).

We will show that the privacy constraint for both the out-
puts 0 and 1 are satisfied by U.

If A(4,2) = L then A\(i,y) = L (and vice versa) because A
is Lipschitz continuous (follows from A being a-acceptable).
Since A is a lower bound on Ag, A(4,2) = L implies that
either (a) there is no z in Gg such that g(i,2) # g(i,z), or
(b) every 2z’ that is connected with z is such that g(i,2’') =
g(i,x). In both cases we get that g(i,z) = ¢(i,y) as there
is no z connected to z, and hence to y, such that g(i, z) #
g(i, z). And in this case, the privacy constraint hold trivially.
Therefore we will assume that (i, x), \(i,y) # L.

Firstly, consider the case, when g¢(i,2) = g(i,y) = b for
some b € {0, 1}. Here, from the a-Lipschitz continuity the
following holds.

P(U)\(I) =1- b) _ 65(,)\(i7m)+)\(i,y)) < 0
P(Ux(y) =1-1)

Now for the other constraint, we have the following:

P (Ux(z) =
P (Ux(y) =

) _1-PU@) =1-b)
) 1 PO =11
B 14 ef — efe(A(i,:c)fl)

b
b

= 1d e — e 0GwD M

Next, we show that e*“ is indeed an upper bound for the
expression given in (1). Since ¢ > 0 and A(¢, y) and « are at
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least 1, we get the following;:

es/\(i,y)(l + 65) — efe—E
ea)\(i,y)(l + 6‘5) — ef —

because — a < A(i,y) — A(4, z), the following holds

AV (1 4 ¢F) — = (A9) - A1)

eaa

es)\(i,y)(l + 66) — €€ <e

14 ef — e—s()\(i,.’r)—l)

eEOz

T4 of —e—0Gw-D =

Now consider the case of ¢(i,z) # ¢(i,y). Here, A(i,z) =
A(4,y) = 1. To confirm this, recall that dg,(z,y) = 1, and
Ags(d,z) > A(j,2) > 1forevery j € X and z € D. Thus,
Ags(i,z) = Agy(i,y) = 1 implies A(4,2) = A(i,y) = 1.
Therefore, the privacy constraints hold trivially for this case.
Since, z and y were picked arbitrarily, the above shows that
all the privacy constraints hold for all the neighbors. This
concludes the formal argument. O

Optimal SP mechanism via Construction 1

For A = Ag,, Construction 1 gives a pareto optimal sensi-
tively private mechanism (Theorem 3).

For arbitrarily fixed ¢ > 0, £ > 1, and a normality prop-
erty p, we say a mechanism U is pareto optimal (e, k)-
sensitively private if (1) it is (e, k)-SP and (2) for every
(€,k)-SP mechanism M : D — {0,1} and every database
x € D, P(U(x) = g;(x)) > P(M(z) = gi(z)). Particularly,
this implies that of all the SP mechanisms yielded by Con-
struction 1, each corresponding to a different A, the “best”
mechanism is for A = Ag,.

Theorem 3. Arbitrarily fix ¢ > 0, k > 1, and a normality
property p. Let G s be the k-sensitive neighborhood graph for p,
and (i, g) be an arbitrary AIQ, where g and p are for the same
anomaly definition.

If A is the mdd-function for g, then U, . (Construction 1) is
pareto optimal (e, k)-sensitively private.

Proof. Let ¢,k,p, g, and Gs be as given above. Arbitrarily
fixi € X, and let Ag, be the mdd-function for g, and Ua s
be as given by Construction 1.

Firstly, note that Ux=a._ is (¢, k)-SP. This follows from
Theorem 2 and the fact that, for A = Ag,, A is 1-acceptable
lower bound on A (Lemma 3 since G'g is a neighborhood
graph).

Next, we prove the optimality claim by contradiction. As-
sume that Un, is not pareto optimal. That is, there exits an
(e, k)-SP mechanism M (for p) such that

o forevery z, P(M(z) = gi(z)) > P(Uag, () = gi(x)) and
« fora database y, P(M(y) = 4:(s)) > P(Uno, (1) = 9:(1))

Let us fix the y given above. Using y and our assumption
about it, we show that there is an input database z, where
M does worse than Ua,, -
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Let z be a database such that dg,(y,2) = Ags(i,y)
and g;(z) # g¢i(y). Note that if there is no such z, then
Ags(i,y) = L. In this case, our assumption about the
database y, and hence, M cannot hold because, in this case,
P(Uag, (y) = gi(y)) = 1. Furthermore, similar would be
the case if z is not connected to y (i.e. Agg (4, y) = L). Thus,
if the assumptions about M holds, then dg,(y, 2) € N (i.e.
y and z are connected).

If we let w be a neighbor of z on the shortest path from
y to z such that g;(w) # g;(z), then g;(w) = g¢;(y) and
dag(y,w) = Agg(4,y) — 1. Since M (e, k)-SP, for b = g;(w),
it follows that

P(M(w) # b) <e*Pesw.w)P(M(y) # b)
(y

:eE(AGS(ivy)*l)p<M ) # b)
<eE(AGs(i7y)_1)P(UAGS (y) #b)
11+ ) @

The first inequality is due to the SP constrains on M.
The second inequality is due to the fact that M is strictly
better than Ua,_, on y. The last equality holds because
P(Ung, (y) # 9i(y)) = e =BesGV=D /(1 4 ¢%) (follows
from Construction 1).

Since M is assumed to (e, k)-SP, we get the following;:

P(M(z) #1—1b) >e “P(M(w) # 1 —b)
=e *P(M(w) = b)
et (1 - P(M(w) 1))
>1/(1+€°) (3)

The first inequality is due to M being SP. The first equality
is due to the fact that there are only two possible outputs.
The last inequality holds because P(M (w) # b) < 1/(1+¢°)
(which follows from the inequality given by (2)).

Finally, for b = g;(w), it follows that

P(M(z) = gi(z)) =P(M(z) =1—1)
—1—P(M(2) #1—b)
<e*/(1+ )
=P(Unc, (2) = 9i(2))

The first equality is due to the fact that b = g;(w) # g:(2).
The first inequality is due to the inequality given by (3).
The last equality holds due to the following facts: (1)
P(Unac, (2) # gi(2)) = e =@es2710 /(1 4 ¢7), and (2)
Agg(i,2) = 1 because dg (2, w) = 1 and g¢;(z) # gi(w).

From the above, we reach a conclusion that contradicts our
assumption that M is strictly “better” than Ua, . Thus, we
conclude the U, is pareto optimal. O

Lemma 3. Arbitrarily fix a neighborhood graph G and an
anomaly identification function g, and let A be the mdd-function
for g. Then for A = Ag, X\ is 1-acceptable lower bound on Ag.

Proof. Let G, g, Ag, and A be as given above. We show that
A is 1-acceptable and is a lower bound on Ag.

To show that A is 1-acceptable, we first prove that Ag is
1-Lipschitz continuous. For this, arbitrarily fix an ¢ € X and
two neighbors z and y in G, i.e. dg(z,y) = 1.

Firstly, consider the case when Ag(i,2) = L (this is with-
out loss of generality as x and y were picked arbitrarily).
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Ag(i,z) = L implies that either (a) there is no z in G such
that g(i,2) # g(i,x), or (b) every 2’ that is connected with
x is such that g(i, z") = g(4, z). In both the scenario, we get
that ¢g(i,2) = g(4,y) as there is no z connected to x, and
hence to y, such that ¢(i, z) # g(i,z); thus, Ag(i,y) = L.
Hence, for this case, the Lipschitz continuity constraints
hold.

Next, we consider the case where A (4, ), Ag(i,y) € N
(i-e. there is a z connected to x, and hence to y, such that
g(i,z) # g(i,x)). Let D* C D be such that every z € D is
connected to z in G g.

Now, note that by triangular inequality we get that for every
database z € D%, dg(z,2) < dg(z,y) +da(y,z) = 1+
da(y, z). Thus, Ag(i,z) = Minepe.g,(2)2g, () da(T,2) <
14+A¢ (4, y). Since x and y were chosen arbitrarily, swapping
x and y gives Ag(i,y) < 1+ Ag(i,x). Thus, 1-Lipschitz
continuity constrains holds for x and y. Because we arbi-
trarily picked, i, and neighbors z, and ¥, the claim holds for
all the neighbors and every ¢ € X'. Hence, Ag is 1-Lipschitz
continuous.

Next, we show that if, for any ¢ and x, Ag(i,2) € N, then
Ag(i,z) > 1. For this, arbitrarily fix ¢ € X and x such
that Ag(4,z) € N. This implies that there is a database z at
distance dg(z, y) from z such that g(i, z) # g(i, x). For this
to hold, z # x, and hence, dg(z, ) > 1. Thus, by definition
of mdd-function, Ag(4,z) > 1. Since ¢ and = were picked
arbitrarily, the claim holds. Thus, the above shows that Ag
is 1-acceptable.

Since for every i and x, A(i,2) = Ag(i,2), A is indeed a
lower bound on Ag. This completes the proof. O

DP mechanism via Construction 1

For Construction 1, if we use a A that is an a-acceptable
lower bound on the mdd-function of the DP neighborhood
graph, Ag, then the construction yields a differentially
private mechanism for AIQ (Corollary 1).

Corollary 1. Arbitrarily fix e > 0, & > 1, and an AIQ (i, g).
For every X such that it is a-acceptable lower bound on Ag for
g, U (given by Construction 1) is an eo-differentially private
mechanism.

To confirm above claim, note that from Definition 7 (of
sensitive privacy) and Definition 9, it follows that differ-
ential privacy is a special case of sensitive privacy, when
the k-sensitive neighborhood graphs, G, is the same as
neighborhood graph, G, ie., Gs = G (for more details see
Section 7). Thus, for Gs = G, a mechanism is e-differentially
private if and only if it is e-sensitively private. Hence,
Corollary 1 follows from Theorem 2.

8.4 (3, r)-anomaly identification via Construction 1

Here, we first use Construction 1 to give an optimal differ-
entially private (DP) mechanism for (3, r)-AIQ (Theorem 4).
We do this for two reasons. First, we will use this optimal
DP mechanism as a baseline to compare our SP mecha-
nisms’ performance. Second, and importantly, we need Ag
(the mdd-function for G and (3, r)-anomaly identification
function), which we use to give the optimal DP mechanism,

NIV OF MANAGEMENT SCIEN

ES. Downloaded on March 1

14

to define a lower bound for the mdd-function for k-sensitive
neighborhood graph (for ng 1) and (3, r)-anomaly identi-
fication function. We use this lower bound to develop SP
mechanism for (3, r)-AlQ.

Optimal e-DP mechanism for (3, r)-AlQ

Construction 1, for A = Ag, gives a pareto optimal DP
mechanism for (3,7)-AIQ, where Ag (mdd-function) is
given by (4) (Theorem 4).

Ag, provided below, is for arbitrary (5, r)-anomaly identi-
fication function with arbitrary values for 8 > 1, r > 0,
i € X,and x € D — which is indeed the mdd-function for

(8,7)-AIQ [11]. Recall that B, (i,7) = > zj.
JEX:dx(i,5)<r
1 x;=0A By(i,r)<
Ag(i,z) = 2+ B, (i,r) = x;=0A Bg(i,r)>
’ min (z;, 84+1—B.(i,7)) 2;>1A Bg(i,7) <
By(i,r) — B 2 >1A By(i,r)>
(4)

Theorem 4 (Up,, is optimal and DP). Arbitrarily fixe > 0and
(8, r)-anomaly identification function g, and let Ag be as given
by (4) for g. Then, for any fixed i € X, U, (Construction 1) for
(8,1)-AIQ, (i, g), is pareto optimal e-DP mechanism.

Since Ag is the mdd-function for (5, r)-anomaly identifica-
tion function, the claim that the Up,, is differentially private
follows from Lemma 3 and Corollary 1. And for Gg = G,
Theorem 3 establishes the optimality claim of Ung.

(e, k)-SP mechanism for (3, r)-AlQ

Below, we have provided Mg, a (1,1)-acceptable lower
bound on the mdd-function for the k-sensitive neighbor-
hood graph for (8, r)-normality property [11]. For this A,
Construction 1 yields (e, k)-SP mechanism, U}, , for (8, r)-
AIQ such that, for non-sensitive records, Uy, can have
exponentially small error in 8 (Theorem 5). Below, we give
Ay, for arbitrary k,6 > 1,r > 0,i € X,and x € D.

Ap(i,x) B.(i,r) > 8+1—k

B+ 1— Bg(i,r) )
+min(0, 2 — k) By(i,r) < B+1—k
®)

It is clear from the definition of A;, (given by (5)) that when a
record, i, is k-sensitive with respect to x, A, (i, ) = Ag(4, z),
which implies that there is no gain in utility (i.e. accuracy)
compared to the pareto optimal DP mechanism. However,
when a record is not sensitive, A(i,z) > Ag(¢,x), our SP
mechanism achieves much higher utility compared to the
optimal DP mechanism, which is especially true for the
records that are (3, r)-anomalous with a higher degree of
outlyingness, for example, the records that lie in a very
sparse region.

Theorem 5 (accuracy and privacy of Uy, ). Arbitrarily fix
e >0,k >1,and a (8,r)-AIQ, (i,9). Let A\ be as given
by (5) and Gg be the k-sensitive neighborhood graph for (3,r)-
normality property. Then, the mechanism, Uy, (Construction 1)
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is (e, k)-SP such that for every i € X and x € D if i not k-
sensitive for x, then

P(Ux, (2) # g(i,@)) < e~elFHimhmBa

For the )y, the privacy claim follows from Theorem 2, while
the error bound follows from Theorem 2 and the definition
of A\, — note that B, (i,7) < 4+ 1 — k implies that ¢ is not
sensitive for x (Lemma 1).

The theorem suggests that the error of the SP mechanism,
Uy,, will be exponentially small with respect to ¢|3 — k|
in the typical settings, where an outlier has a very small
number of records nearby, i.e., B;(i,r) is very small. This
will be further confirmed in the empirical evaluation in the
next section. We give an example to show that Uy, achieves
high accuracy in typical settings. Fix & < (3/10. Now for
any record i in a database z, satisfying B, (i,7) < /2 is an
outlier for which Uy, will err with probability less that e~255/5,

9 EMPIRICAL EVALUATION

We empirically evaluated the performance of the SP and
DP mechanisms for (8, 7)-AIQ (given in Section 8.4) over
synthetic as well as real-world datasets from diverse do-
mains: Credit Fraud [33] (available at Kaggle [8]), Mammog-
raphy and Thyroid (available at Outlier Detection DataSets
Library [34]), and APS Trucks (APS Failure at Scania Trucks,
available at UCI machine learning repository [35]). We also
compared the performance of our SP mechanism with that
of the pareto optimal DP mechanism for (3, r)-AIQ. Table 1
provides the datasets specifications.

We used synthetic data to evaluate the performance in the
high-dimensional case. To generate the synthetic data with
outliers we used a mixed and 200-dimensional Gaussian
distribution. For this, we followed the strategy of Dong et
al. [36], which is the standard practice in the literature and
is described in [11].

We emphasize that the aim of this work is to study the effect
of achieving privacy in identifying anomalies. So we focus
on evaluating the proposed approach for achieving privacy
for this problem, and how it compares to differential privacy
in real world settings.

For the higher dimensional datasets, we first performed
dimension reduction using PCA (i.e., principal component
analysis, which is the standard practice for identifying out-
liers in high-dimensional data [31], [37]). From the output
of PCA, we chose, top 6,9, and 12 features for the Credit
Fraud, Synthetic, and APS Trucks datasets respectively.
Next, we obtain the values of 5 and 7 by using the protocol
outlined in [11] (i.e., typically these values are provided
by the domain experts [29]). Table 1 gives the values of
B and r, along with the number of true (5, r)-anomalies

Dataset size dim B, r) true (3, 7)-
anomalies
Credit Fraud 284,807 28 [(1022,6.7) 103
APS Trucks 60,000 170 [(282,16.2) 677
Synthetic 20,000 200 (97,3.8) 201
Mammography | 11,183 6 (55,1.7) 75
Thyroid 3,772 6 | (18,0.1) 61

TABLE 1: Dataset specifications and parameter values.
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Fig. 3: Box plots of the errors of the SP and DP mechanisms
for (8,r)-AIQ over all the true (8,r)-anomalies in each
dataset for ¢ = {1,0.1,0.01}. The sub-figures (a)-(e), follow
the legends and axis labels given in the top-left sub-figure.

(true anomalies identifiable by (8, r)-anomaly method for
the given parameter values).

Results

Our first evaluation metric is the error. The error of a private
mechanism (i.e., a randomized algorithm) is its probability
of a wrong answer — recall that in the case of AIQ, there
are only two possible answers, i.e. 0 and 1. For each AIQ
for a fixed record, we estimate the error as the fraction of
wrong answers over the m computations of the AIQ. For
our experiments we choose m = 10000.

In the first set of experiments, we evaluated the errors of SP
and DP mechanisms and how they vary for different levels
of privacy, i.e,, e = 1, 0.1, 0.01. For this, we computed the
error of each mechanism for all true (8, r)-anomaly in each
dataset, which are given by the box plots in Figure 3.

The error of the SP-mechanism is overwhelmingly concen-
trated about zero (Figure 3), which is also true for the
smaller values of . This is in direct contrast with the
error of DP-mechanism. In many cases, the error of the
SP mechanism is so small (e.g. of the order 10~!® or even
smaller for larger values of ¢) that it can be considered zero
for all practical purposes.

Furthermore, we see that as the dataset’s size increases, the
error of SP-mechanism as well as its variance both decrease.
This is due to the fact that, for typical (5, r)-outliers, the
error of the SP-mechanism is exponentially small in |5 — k|
(as discussed earlier), and f3 is directly proportional to the
size of the dataset. Additionally, compared to the optimal
DP-mechanism — which performs very poorly on almost all
the outliers — the error for the SP-mechanism grows at much
smaller rate (Figure 3). In fact, the errors of DP-mechanism
are concentrated about 1/(1+e®) (Figures 3 and 4). This is in
accordance with our theoretical results and the assumption
that the databases are typically sparse. For stronger privacy
guarantee (i.e. the smaller values of ¢), the error of DP-
mechanism is consistently close to that of random coin flip
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(i.e. selecting 0 or 1 with probability close to 1/2) except for
a few cases.

One interesting point to note in Figure 3 is that for the
two high dimensional datasets (APS and Synthetic), while
the majority of the outlier records have very low (and
concentrated error), relative to the other datasets, they do
have a larger number of boxplot-outliers (i.e., outlier records
which have a much higher error, in some cases close to the
error of the DP-mechanism.) We believe that this may be due
to problems faced by the underlying (3, 7)-outlier model
in high dimensional data. Specifically, (5, r)-outlier model
works well, if 8 — B, (i,7) is large (e.g., greater than 0.503)
if 7 is an outlier. It turns out that this does not hold for the
outlier records corresponding to the boxplot-outliers, which
is why the error is high in these cases.
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Fig. 4: (a)-(e), give the errors of SP and DP mechanisms.
AIQ rank is given by the error of SP-mechanism for each
anomaly: the higher the rank, the lower the error. In all the
figures, e = 0.1. (a), Thyroid, (b), Mammography, (c), Credit
Fraud, (d), APS Trucks, (e), Synthetic data.

Next, we evaluate how the error of the SP-mechanism
changes by varying k. We choose k as 10%, 20%, and 30%
of 3. Recall that for £ > 1, most of the records in the
typical real-world databases are protected with the privacy
guarantee of € (see Section 5 for details). Further, recall that
increasing k increases the number of records that would be
considered sensitive, regardless of whether they are present
in the database. Infact, when & > f, all possible records
would be considered sensitive, and the sensitive graph is
identical to the DP-neighborhood graph, further implying
that the error of the SP mechanism will be exactly the same
as the DP mechanism. Figure 4 plots the errors of (¢, k)-SP
mechanism for (3, )-AlQ for varying k’. Here, we also plot
the error for the optimal DP mechanism as a reference for
comparison.

The results in Figure 4 show that even for the higher values
of k SP-mechanism performs reasonably well. Here again, if

7. Recall that k quantifies the typicality of the ‘small change’ in the
database (as discussed in Sections 4 and 5) via the notion of sensitive
record.

NIV OF MANAGEMEN

SCIENCES. Downloaded on March 1

16

the size of the dataset is large enough, the loss in accuracy
for most of the records is negligible.
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Fig. 5: (a) and (b), give the average errors of SP and DP
mechanism for AIQ over all the normal records from each
data set; ¢ = 0.1.

Dataset mean error mean error

(anomalies)
SP DP SP

Credit Fraud 1.1127E-21 0.4750 1.1127E—21

APS Trucks 2.9719E—13 | 0.4750 | 2.9719E—13

Synthetic 3.2173E-5 0.4750 | 3.2173E—5

Mammography | 0.0022 0.4749 | 0.0021

Thyroid 0.0870 0.4750 | 0.0867

TABLE 2: “mean error” is over the randomly picked n
records from the possible values of the records for each
dataset for SP and DP mechanisms for (5, 7)-AIQ. “mean
error (anomalies)” is only over the anomalous records in the
n picked records. Here, n is 20% of the size of the dataset,
e=0.1.

Next, we evaluated the performance over the normal
records. Here, both the SP and the DP mechanisms perform
equally (Figure 5). This is because for a fixed value of ¢, all
the sensitive records — which include all the normal records
— have the same privacy under (g, k)-SP as all the records in
under ¢-DP. Again the pattern continues, the datasets with
larger sizes exhibit very small error.

To evaluate the performance over future queries, we picked
n records uniformly at random from the space of possible
(values of) records for each dataset, where n was set to be
20% of the size of the dataset. Here too the SP-mechanism
outperforms the DP-mechanism significantly (Table 2). This
is because most of the randomly picked records are anoma-
lous as per the (3, r)-anomaly, which is due to the sparsity
of the databases. This fact becomes very clear when we com-
pare the mean error over the random records to the mean
error over the anomalous records in the randomly picked
records (see the second and the last column of Table 2). Since
the probability of observing a mistake is extremely small
(e.g., 1in 1010 trials) , in Table 2, the mean is computed over
the actual probability of error of the mechanism instead of
the estimated error.

Finally, to evaluate the overall performance of our SP-
mechanism for (3,7)-AIQ, we computed precision, recall,
and F-score [31]. We also provide a comparison with two
different baseline mechanisms, B, B in addition to pareto
optimal DP mechanism (see Table 3).

B and B are the best performing mechanisms (i.e., with
the highest F';-score) from two families of mechanisms. This
mechanisms serve as the naive base lines. Each mechanism
in each of the family is identified by a threshold ¢, where
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Dataset Precision Recall F-score
B1 B2 DP SP B1 Bo DP SP B1 Bo DP SP
Credit Fraud 0.0101 | 0.0230 | 0.9930 | 0.9963 1.0000 | 0.0498 | 0.5250 | 0.9968 0.0199 | 0.0315 | 0.6868 | 0.9966
APS Trucks 0.0115 | 0.0165 | 0.9870 | 0.9931 1.0000 | 0.0753 | 0.5263 | 0.9954 0.0227 | 0.0271 | 0.6865 | 0.9943
Synthetic 0.0101 | 0.0114 | 0.9930 | 0.9963 | 1.0000 | 0.1189 | 0.5250 | 0.9968 | 0.0199 | 0.0208 | 0.6868 | 0.9966
Mammography | 0.0070 | 0.0081 | 0.0211 | 0.2004 | 0.8244 | 0.1000 | 0.5250 | 0.9977 | 0.0138 | 0.0149 | 0.0435 | 0.3337
Thyroid 0.0174 | 0.0191 | 0.1427 | 0.3100 | 0.6656 | 0.2918 | 0.5250 | 0.8993 | 0.0339 | 0.0358 | 0.2244 | 0.4610

TABLE 3: B; and B, are the best mechanisms from two families of mechanism. DP and SP are the mechanisms from
Section 8.4 and Section 8.4 respectively. Going from red to blue the value decreases. For our SP and DP mechanisms,

e=0.1

0 <t < 1. Below, we describe the mechanisms from both the
families for fixed ¢, threshold ¢, record i € X, and database
zecD.
The mechanism in the first family is given as follows.
i +(z) = 1if and only if O(x) + Lap(1/e) > t x (||z]|y +
Lap(1l/e)); here O(xz) gives the number of anomalies in x
and Lap(1/e) is independent noise from Laplace distribu-
tion of mean zero and scale 1/¢. The mechanism in the
second family is given as follows. B} ,(z) = 1 if and only if
O(x) + Lap(B/e) >t x (||z]|1 + Lap(1/e)).
Note that, the mechanism from the first family are ¢;-DP,
where €1 = ( + 1)e. This is due to composition of DP
and the fact that max, yep:|jz—y|,=1 |O(z) —O(y)| = B and

maxgy yep:(ja—yll:=1|/|Z|/1 = [|y[|1| [16]. However the mech-
anism from the second family are e5-DP, where €5 = 2¢.
Thus, our evaluation over a range of real-word datastes
show that we can have higher privacy guarantee for sensitive
records, while still being able to accurately identify anomalies.
And the fact that the error for SP mechanism for (3, r)-AIQ
becomes smaller with the increase of the size of the dataset
indicates that our approach is even more appropriate for big
data settings.

10 CONCLUSION

In this article, we have considered the problem of anomaly
identification, which has numerous applications, while tak-
ing privacy into consideration. While differential privacy
is the state of the art model for privacy, it is inherently
incapable of allowing good utility if reasonable privacy
is to be met. Therefore, we develop the novel notion of
sensitive privacy and relate sensitive privacy to other im-
portant notions of data privacy so that one can port the
technical developments and private mechanism construc-
tions from these related concepts to sensitive privacy. We
have developed a novel n-step lookahead mechanism to
efficiently and privately answer arbitrary outlier queries for
a restricted class of anomaly models. We also provide gen-
eral constructions to give sensitively private mechanisms for
identifying anomalies and show the conditions under which
the constructions would be optimal. In the future we plan
to examine how effective mechanisms can be developed
for other anomaly models, and examine how the sensitive
privacy model can be used for other types of data analysis
problems.
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