
1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 1

Collaborative Business Process Fault Resolution
in the Services Cloud

Muhammad Adeel Zahid∗, Basit Shafiq∗ Jaideep Vaidya†, Ayesha Afzal‡ and Shafay Shamail∗
∗Department of Computer Science, Lahore University of Management Sciences, Lahore, Pakistan

Email: {muhammad.zahid, basit, sshamail}@lums.edu.pk
†MSIS Department, Rutgers University, Newark, NJ 07102

Email: jsvaidya@business.rutgers.edu
‡Computer Science Department, Air University Multan Campus, Multan, Pakistan

Email: ayesha@aumc.edu.pk

Abstract—The emergence of cloud and edge computing has enabled rapid development and deployment of Internet-centric
distributed applications. There are many platforms and tools that can facilitate users to develop distributed business process (BP)
applications by composing relevant service components in a plug and play manner. However, there is no guarantee that a BP
application developed in this way is fault-free. In this paper, we formalize the problem of collaborative BP fault resolution which aims to
utilize information from existing fault-free BPs that use similar services to resolve faults in a user developed BP. We present an
approach based on association analysis of pairwise transformations between a faulty BP and existing BPs to identify the smallest
possible set of transformations to resolve the fault(s) in the user developed BP. An extensive experimental evaluation over both
synthetically generated faulty BPs and real BPs developed by users shows the effectiveness of our approach.

Index Terms—Fault resolution, Business processes, Web services.

F

1 INTRODUCTION

Cloud computing and Internetware software paradigm
has enabled rapid development and deployment of Internet-
centric distributed applications, including distributed work-
flows, business processes and Web mashups [1]. These
applications are developed using computation, data, and
storage services available in the cloud data centers and
enterprise networks as well as large numbers of IoT and
edge computing devices providing diverse sensory and
computation services. Increasingly, there are new platforms
and tools [2], [3], [4], [5] available that can facilitate auto-
mated or semi-automated development of such distributed
applications by composing relevant service components in a
plug and play manner. These Internetware-based platforms
and tools have not only reduced the time and cost for
developing distributed applications, but also changed the
overall enterprise application development process.

However, BP applications developed using a plug and
play approach are not guaranteed to be fault-proof. BP
designers may make errors due to lack of semantic under-
standing of these web services, or incorrect and/or incom-
plete workflow specifications. Such errors result in faults
which may not necessarily be identified at design or de-
velopment stage and may only manifest during execution.
Therefore, there is a need to develop diagnostic capabilities
for Internet-centered BP development [6].

In this paper, we address the problem of detecting and
resolving faults in BPs that result in incorrect or unexpected
output. Faults in a BP can be grouped into four broad
categories listed in Table 1. This categorization and the

Manuscript received April 19, 2005; revised August 26, 2015.

underlying fault types within each category are based on the
comprehensive set of mutation operators defined by Estero-
Botaro et al. [7] for fault injection in BPEL processes. There-
fore, any design-time fault within a BP can be represented as
combination of these mutation operators. Note that Estero-
Botaro et al. [7] identified five different categories of muta-
tion operators. Of these, we explicitly cover four while also
implicitly covering the last (which relates to exception and
event mutation), since faults related to exception and event
mutation can be considered as special cases of control flow
or branching faults.

Fig. 1: Services cloud environment for BP composition.

The proposed approach enables detection and resolution
of design-time faults in BPs in the services cloud environ-
ment depicted in Fig. 1. We consider each component service
as a black box and focus only on the faults that may arise
during service composition, which are categorized in Table
1. We do not address faults related to service implemen-
tation errors, service failures, service deployment, or net-
work/communication issues, since these have already been

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 2

TABLE 1: BP-specific fault categories and types
Fault Cate-
gory

Fault Type Description Equivalent
Mutation
Operator

Variable as-
signment

Variable identifier replacement Replaces a variable identifier by another of the
same type, i.e, servce2.var1 = service1.var1 to
servce2.var1 = service1.var3 or service2.var1 = c

ISV

Expression

Arithmetic operator replacement Replace an arithmatic operator (+,−,×, /,mod) with
another of the same type

EAA

Unary operator removal Removes unary − or + operator from an expression EEU
Relational operator replacement Replaces a relational operator (<,≤, >,≥, 6=,=) by

another of the same type
ERR

Logical operator replacement Replaces a logical operator (∧,∨) by another of the
same type

ELL

Path operator replacement Replaces a path operator (/, //) by another of the
same type

ECC

Numeric constant modification Modifies a numeric constant by increment-
ing/decrementing its value by 1 or by
adding/removing one digit

ECN

Branching Branch path removal Deletes an Elseif element from an If activity AIE
Join condition removal Removes the joinCondition attribute from an activity AJC

Control flow

Activity removal Removes an activity AEL
Activities order exchange Exchanges the order of two sequence child activities ASI
Sequential to parallel loop replacement Replaces a sequential loop with a parallel one AFP
Sequence to flow replacement Replace a sequence activity by a flow activity ASF

addressed in prior work. For example, component service
implementation errors can be addressed in BP development
using unit testing based approaches [8], [9]. Similarly, run-
time faults in BPs due to service failure/unavailability, de-
ployment issues, and unexpected network failure have been
extensively studied in the literature for process adaptation
[10], [11], [12] and delta debugging [13], [14].

In the services cloud environment of Fig. 1, we refer to
a BP composed by a BP designer as user BP, which could
be faulty. A user BP may include web services that are
also used in BPs of other users. We refer to these other
users’ BPs that have one or more services common with
the user BP as existing BPs. Our proposed approach exploits
the knowledge of existing BPs with common services to
detect and resolve faults in a faulty BP. This is the unique
and novel aspect of the proposed approach as compared to
the existing BP fault detection and debugging approaches,
such as [14], [15], [16], [17], [18] that examine the faulty BP
in isolation. Therefore, we refer to our proposed approach
as a collaborative fault resolution approach. Essentially,
our proposed approach performs pairwise comparison of
a faulty BP with related BPs of other users to identify their
structural and semantic differences with the faulty BP. All
of the pair-wise differences are then holistically analyzed to
compute BP transformation rules that modify the faulty BP
by adding and/or removing some of its structural compo-
nents. Such modifications may resolve the fault but change
the BP workflow to such an extent that it does not meet its
original requirements or goal. Therefore, our objective is to
find a set of modifications such that: (i) these modifications
when applied remove the fault in the BP; and (ii) the set of
modifications is as small as possible, to reduce the likelihood
that the goal and output of the BP changes.

In order to avoid changing the scope and goal of the
original BP, the suggested modifications and the resulting
BP are reviewed by the BP designer who may selectively
accept the modifications and/or make additional changes in

the BP. Once the BP designer is satisfied with the changes,
the resulting BP is deployed.

The proposed approach assumes the following:
1) All of the existing BPs considered for resolving faults in a

given user BP are fault-free. Note that we consider a BP as
fault-free if it passes all the relevant test cases. Moreover,
we have complete knowledge of all the existing BPs in
terms of their control flow and data flow.

2) There is no syntactic or semantic heterogeneity among
the functionally similar web service operations across
BPs. For example, if two or more e-commerce related
BPs require computation of sales tax, then either they
use the same web service operation or the corresponding
web service operations have the same name, attributes,
preconditions, and post-conditions.
These assumptions are quite natural. Specifically in a

service cloud environment for BP development and deploy-
ment, the cloud service provider hosts and manages BPs of
different organizations and has complete knowledge of such
BPs [2]. Moreover, BPs running in a production environment
for a sufficiently long time are likely to be correct and fault
free. Also, if heterogeneity exists between operation and/or
attribute names across BPs, we can employ the existing
attribute based matching approaches [2], [19], [20] to resolve
differences in operation/attribute names before continuing
with the fault resolution approach.

The main contributions of this paper are:
• We formalize the problem of Collaborative BP Fault Res-

olution that aims to resolve the faults in a user developed
BP using information from existing BPs that use similar
services and that are known to be correct.

• We develop a heuristic approach based on association
analysis over pair-wise transformations to identify likely
transformation candidates, which are then iteratively se-
lected so that the fault(s) in the BP are resolved, while
reducing the modifications to the original BP. Our pro-
posed approach significantly improves on the existing

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 3

automated program repair approaches since we make use
of the knowledge of existing working BPs instead of just
analyzing the faulty BP in isolation. This allows us to
cover a broader range of BP fault categories and also
expand the search space to find valid fixes.

• We perform a comprehensive experimental evaluation
over both synthetic and real data. The synthetic data is
created by randomly injecting faults allowing compre-
hensive testing with all possible design time faults. The
real data comes from a user study that asks real users
to develop BPs as part of a class exercise, thus testing
the effectiveness of the approach in resolving faults intro-
duced by real users. We compare the proposed approach
to a baseline generate-and-validate (G&V) automated
program repair methodology. The results show that our
approach can resolve a broader range of faults with high
accuracy significantly outperforming the baseline.

The rest of the paper is organized as follows. Section
2 discusses the related work in the literature. Section 3
presents the preliminaries and the problem statement. Sec-
tion 4 presents the proposed approach. Section 5 presents
the experimental evaluation. Finally, Section 6 concludes the
paper and discusses future work.

2 RELATED WORK

Most of the prior work focuses either on fault localization
or on fault resolution, which we now discuss.
Fault localization. Fault localization techniques aim to iden-
tify positions in a faulty program (a list of statements,
branches, or blocks) that are likely to be responsible for
the fault. The goal is to help programmers in debugging/
patching by focusing on the identified faulty statement(s)
and to support automated program repair and recovery
[18], [21]. Traditional fault localization techniques include
program analysis based techniques [22] and dynamic anal-
ysis based techniques that analyze the run-time behavior
of passed and failed executions. Among program analysis
based techniques, program slicing is most extensively used
[21]. Program slicing involves analyzing the runtime pro-
gram behavior to identify suspicious slice (i.e., statement
blocks that directly affect program output) and prune the
program slices that do not correspond to the incorrect
output [17], [23], [24]. Among dynamic analysis based tech-
niques spectrum-based techniques are the most common.
Spectrum-based techniques make use of test case coverage
information to associate a suspicion value to program enti-
ties computed based on statistics of passed and failed test
case runs. The programmer is then expected to examine
the statements ranked in order of suspicion score to locate
faults [15], [17], [25]. Tarantula is one such technique that
performs statement-level fault localization [26] and has been
employed in the context of BPEL programs [15], [17].

Sun et al. proposed BPELswice [17] that is designed
specifically for fault localization in BPEL programs. BPEL-
swice employs predicate switching and backward program
slicing to locate the suspicious faulty code with a higher pre-
cision. Unlike other fault localization approaches that return
the blocks in BPEL code with possible faulty statements,
BPELswice performs program slicing to reduce the number
of statements within the suspicious blocks to help the BP
designer in debugging.

Delta debugging [13] is another frequently employed
approach for fault localization that can identify deploy-
ment and configuration related faults in addition to general
programming errors. In the context of microservices-based
systems, Zhou et al. [14] employed delta debugging to
uncover faults that occur in deployment, environmental
configuration and execution sequences of microservices.
Some recent approaches combine mutation testing [27] and
delta-debugging for accurate fault localization in a more
efficient manner.

In our approach we make use of statistical fault localiza-
tion. However, our approach is agnostic to the underlying
fault localization technique.
Fault resolution. There is significant work done on au-
tomated repair of programs written in Java and C/C++,
though none of these works address program repair in BPs
developed through web service orchestration. One widely
used methodology for automated program repair is generate-
and-validate (G&V) [18], [28], [29], [30], [31], [32], [33]. G&V
takes as input a faulty program and a group of passing and
failing tests, and heuristically searches the program space to
generate fix candidates. The validity of the fix candidates
is then checked by running all available tests. Xu et al.
have proposed an efficient G&V approach for repairing Java
programs [18]. Their approach employs fault localization to
identify a list of suspicious snapshots, including program
states that are indicative of faults. For each suspicious
snapshot a number of candidate fixes are generated by
considering different program mutations. However, instead
of validating each candidate fix for fault resolution, only
selected candidate fixes based on their suspicious score are
validated. It is possible that none of the selected candidate
fixes pass all the test cases. The candidate fixes that pass
some of the test cases are used to generate variants of
the original program and the entire process of fault local-
ization, fix generation and validation (called retrospective
fault localization) is repeated on the program variant. This
retrospective fault localization continues until valid fixes
are found. Retrospective fault localization provides efficient
search of the fix space by reusing the outcome of failed
fix validation to support mutation-based dynamic analysis
without exhaustively validating all candidate fixes.

Both fault localization and resolution approaches dis-
cussed above examine the faulty BP in isolation. Unlike
these approaches, our proposed approach leverages the
knowledge of existing BPs for fault diagnosis and resolution
which is a novel and unique aspect of our work. Moreover,
the existing approaches do not consider all types of faults
that may arise in BPs. For example, BPELswice is not de-
signed for faults caused by removal of activities/elements.

3 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we will explain the formalism used to model
a BP and provide a formal problem statement.

3.1 Notations and background

Definition 1. Business Process: A business pro-
cess BP is denoted by a typed Graph G =
(L, T, V,E, E , vstart, vend, vuser) where:

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 4

• L is the universal set of labels.
• T = {Service Operation, Xor Split, Xor Join, And Split, And

Join, Attribute} is a set of types for each v ∈ V . The type is
accessible through the operator v.type.

• V ⊆ L×T is the set of vertices. Each vertex has a label assigned
from L and a type assigned from T .

• E ⊆ V × V is the set of edges in G.
• E = {Boolean Expression, true, false}, for each edge.
• The vertex vstart corresponds to the start activity of the BP.
• The vertex vend corresponds to the terminal activity of the BP.
• The vertex vuser denotes a user and it is connected to all those

attribute vertices whose value are provided by the user.

Fig. 2: Example of an e-commerce BP graph

Fig. 2 shows a simple e-commerce BP graph. Each vertex
in this graph is annotated with its label. In addition to
vstart, vend, and vuser , there are three types of vertices in
this e-commerce BP graph: i) service operations represented
as shaded gray boxes (e.g., createOrder, completeOrder, etc.);
ii) attributes corresponding to input/output parameters of
service operations represented as white rectangular boxes
(e.g., cart id, orderId, etc.); and iv) XOR splits and joins
represented as a diamond with X.

The edges in the typed BP graph depicted in Fig. 2
are characterized as: i) control flow edges represented as
solid arrows (e.g., edge from createOrder to xor split); and ii)
dataflow edges. There are two types of dataflow edges. The
first type, represented as arrow with dotted line, is drawn
between a service operation and its input or output attribute
(e.g., edge from createOrder service operation to its output
attribute orderId) or between input attribute ord id and its
service operation creditCardPayment. The second type of
dataflow edge is represented as arrow with dashed line that
originates from output attribute of a service operation and
terminates at input attribute of another service operation.
These edges model the variable assignments (e.g., the edge
from orderId to o id where orderId is the output attribute
of createOrder service operation and its value is assigned
to o id, which is the input attribute of service operation
CODPayment). We say that a BP is a structurally valid BP if
all the service operation vertices, control flow vertices (e.g.,
XOR join/split, parallel join split), and attribute vertices
have valid predecessors and successors. This is formally
stated in the following definition.

Definition 2. Structurally valid BP: A BP, G =
(L, T, V,E, E , vstart, vend, vuser), is structurally valid, if
and only if:

• ∀v ∈ V−{vstart, vuser} and v.type 6= Attribute, ∃u ∈ V−
{vend, vuser} such that (u, v) ∈ E and u.type 6= Attribute

• ∀v ∈ V−{vend, vuser} and v.type 6= Attribute, ∃w ∈ V−
{vstart, vuser} such that (v, w) ∈ E and w.type 6=
Attribute

• ∀v ∈ V−{vuser} and v.type = Attribute, ∃u ∈ V−
{vstart, vend} such that (u, v) ∈ E and (u ∈ {vuser} or
u.type ∈ {Service Operation, attribute})

3.2 Problem Statement

We now formally specify the problem statement. Note that
given a set of test cases for a BP, we only denote the BP as
a faulty BP if it fails one or more of the test cases. Then,
given a faulty BP and a set of correct BPs, the collaborative
fault resolution problem aims to determine a set of trans-
formations that when applied to the faulty BP removes the
fault(s) and enables its correct execution with respect to the
given set of test cases.
Collaborative Fault Resolution Problem:
Given
• a set of BPs, B = {G1, G2, ...Gn} where each Gi corresponds

to some existing BP that is assumed to be correct,
• a faulty BP, Gf

• a set of test cases, T = {t1, . . . tm}
Compute the minimal set of transformation operations τF =
{τ1, . . . τk} that when applied to Gf results in a BP that suc-
cessfully executes all the test cases in T .

4 PROPOSED APPROACH

Our proposed approach exploits the knowledge of exist-
ing BPs for identification and resolution of faults in a
user developed BP. Fig. 3 shows the different steps of the
proposed approach. There are four main steps which are
executed repeatedly until all faults are resolved (as per the
execution on the test suite). If faults are detected, in the
first step, fault localization is done (discussed in Section
4.1) to identify one or more locations in the BP where the
fault is observed. We refer to each of these locations as
a fault observation point (fop). Note that an fop may not
necessarily correspond to the source of the fault in the BP.
The actual fault might lie at any location prior to the fault
observation point. In the second step (discussed in Section
4.2), we perform pairwise comparison of a faulty BP with
related BPs of other users to identify their structural and
semantic differences with the faulty BP. In step 3, all of the
pair-wise differences are holistically analyzed to compute
BP transformation rules that modify the faulty BP by adding
and/or removing some of its structural components. Our
objective is to select the set of transformations that resolve
the fault with minimal changes in the faulty BP. For this
purpose we develop a heuristic based approach (discussed
in Section 4.3) that employs association analysis over all the
transformations to filter out unnecessary transformations.
These transformations are then applied to the faulty BP. In
step 4, the resulting BP is deployed so that the test cases can
be re-executed to identify if faults remain.

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 5

Fig. 3: Collaborative BP fault resolution approach

Algorithm 1 outlines the steps of the proposed fault
resolution approach. This algorithm is invoked for each
fop. This algorithm tries to resolve the fault by iteratively
expanding the search region considered backwards from
the given fop. Let Sf denote the subgraph of the faulty
BP graph corresponding to the current search region. Sf is
compared with the subgraphs of existing BPs that include
a certain minimum degree of overlapping services with Sf .
This comparison is performed in a pair-wise manner and
computes the structural differences between Sf and the
subgraph Si of each existing BP that meets the overlapping
service criterion. These differences essentially correspond to
all the elements present in Sf but not in Si and vice versa.
Essentially, the pair-wise differences between Sf and Si can
be used to transform the subgraph Sf of the faulty BP to the
subgraph Si of an existing BP. Therefore, we refer to these
structural differences as transformations.

Depending on the size of the subgraph Sf , the entire
faulty BP may be transformed into some existing BP. Since
we assume that all existing BPs are correct and fault-free,
transforming the faulty BP to any of the existing BP would
remove the faults. However, this may change the scope or
domain of the BP, for example an e-commerce sales BP may
get transformed into an insurance BP. Therefore, we need to
identify a minimal set of transformations that removes the
fault without changing the scope / domain of the faulty BP.
As discussed above, we use an association analysis based
approach that generates a set of transformation rules with
changes that are common across multiple existing BPs. If
the existing BPs are not limited to a single domain then
considering the commonality of the transformation rule
between a certain minimum number of BPs would decrease
the likelihood of entirely changing the domain/scope of the
BP since the transformed structure occurs across multiple
different domains/scopes.

Our proposed approach may generate multiple trans-
formation rules. We apply these transformation rules iter-
atively and run the test cases after each iteration to check if
the resulting process passes all the test cases. In case the fault
is not removed, we expand the search region and repeat.
This process is depicted in Figure 3, and described below.

ALGORITHM 1: Fault Resolution

Input: Gf = (Lf , Tf , Vf , Ef , Ef , vstartf , vendf , vuserf) -
faulty BP

Input: fop - fault observation point returned by
fault localization procedure

Input: B = {G1, G2, . . . Gn} - existing BPs
Input: α0 - initial distance threshold
Input: δ - step size to increase the distance

threshold
Output: Gc - Corrected BP that passes all the test

cases
1: α← α0

2: T ← Φ
3: while α ≤ distance(vstartf , fop) do
4: Sf ← subgraphIncorrect(Gf , fop, α)
5: for each Gi ∈ B do
6: Si ← subgraphCorrect(Gi, Sf)
7: Ti ← GraphComparison(Sf , Si)
8: T ← T ∪ Ti
9: tRuleQ← association analysis(T , conf, sup)

10: while tRuleQ 6= φ do
11: r ← dequeue(tRuleQ)
12: Gc ← applyTranformations(r,Gf)
13: if Gc exhibits no more faults in testing upto

the given fop then
14: return Gc

15: α← α+ δ
16: return NULL

4.1 Fault Localization
Fault localization is the process of locating and isolating
bugs or faulty software components to determine the likely
causes of software failures or errors [21], [34]. For localizing
faults in a BP, we use the statistical debugging technique of
Liu et al. [35]. This technique considers predicate evaluation
in both correct and incorrect executions of the software and
considers a predicate to be fault-relevant if the evaluation
pattern in the incorrect execution significantly diverges from
the correct ones. Each predicate is assigned a fault-relevance
score and the predicates are ranked based on this score.

For fault localization in BPs, we define predicates charac-
terizing service invocation, successful execution, or service
failures for each service in the BP as well as for each branch-
ing condition. We evaluate the fault relevance score of each
of these predicates using the execution logs of test cases
run. The location in the BP corresponding to the predicate
with the highest fault relevance score is considered as fault
observation point (fop).

In order to efficiently locate and resolve the fault, we
limit our search to the subgraph Sf , which includes the
services and interconnections that precede the fop and it
is parameterized by the distance threshold α.

Given a faulty BP, Gf = (Lf , Tf , Vf , Ef , Ef ,
vstartf , vendf , vuserf) and a fault observation point fop, the
subgraph Sf = (VSf , ESf) is computed as:

• VSf = {v ∈ Vf |distance(v, fop) ≤ α ∧

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 6

ALGORITHM 2: Graph Comparison

Input: Sf = (Vsf , Esf) - subgraph of faulty BP
Input: Si = (Vsi , Esi) - subgraph of correct BP
Output: Ti - the set of transformations required to

convert Sf to Si
1: V r

i ← ∅, V a
i ← ∅, Er

i ← ∅, Ea
i ← ∅

2: for ∀v ∈ Vsf do
3: if v /∈ Vsi then
4: V r

i ← V r
i ∪ v

5: for ∀v ∈ Vsi do
6: if v /∈ Vsf then
7: V a

i ← V a
i ∪ v

8: for ∀(u, v) ∈ Esf do
9: if ((u, v) /∈ Esi) or (edge expressions of (u, v)

in Esf and Esi do not match) then
10: Er

i ← Er
i ∪ (u, v)

11: for ∀(u, v) ∈ Esi do
12: if ((u, v) /∈ Esf) or (edge expressions of (u, v)

in Esf and Esi do not match) then
13: Ea

i ← Ea
i ∪ (u, v)

14: Ti ← V r
i ∪ V a

i ∪ Er
i ∪ Ea

i

15: return Ti

distance(vstartf , v) < distance(vstartf , fop)} , and
• ESf = {(u, v)|u, v ∈ VSf and (u, v) ∈ Ef}

4.2 Comparison with Existing BPs

We compare the subgraph Sf of the faulty BP with all the
subgraphs of existing BPs that include certain minimum
number of overlapping services with Sf . Let γ denote the
threshold for the minimum number of overlapping ser-
vices between Sf and an existing BP. For an existing BP
Gi = (Vi, Si), its subgraph Si is computed for comparison
by considering the set of the common vertices between Gi

and Sf . Let Ui denote this set, i.e., Ui = {u|u ∈ Vi ∩ VSf}.
Gi will be considered for comparison if |Ui| ≥ γ.

Suppose umin, umax ∈ Ui are nodes that are at minimum
and maximum distance from the starting node of the BP Gi,
respectively. Then Si = (VSi, ESi) can be computed as:
• VSi = {v|v ∈ Ui ∨ distance(v, umax) ≤
distance(umin, umax)}, and

• ESi = {(u, v)|u, v ∈ VSi and (u, v) ∈ Ei}.
We perform pair-wise comparison between the subgraph

Sf of the faulty BP and the relevant subgraph Si of each
of the existing BP. The steps for this pair-wise comparison
between Sf and Si are given in Algorithm 2. Specifically,
this algorithm computes the difference between Sf and Si

in terms of the vertices, edges, and edge expressions. All
those vertices and edges that are present in Sf but not in
Si are returned as sets V r

i and Er
i , respectively. Similarly,

all those vertices and edges that are present in Si but not
in Sf are returned as set V a

i and Ea
i , respectively. Note that

an edge (u, v) that is present in both Si and Sf , but the
corresponding edge expressions are different in Si and Sf

is considered as a non-matching edge. This edge is placed
in both Er

i and Ea
i . In the Er

i it is associated with the edge

TABLE 2: Results of pair-wise graph comparison for the BPs
depicted in Fig. 4 and Fig. 5

Symbol Transformation BP Graphs
t1 calc dsicount+ G1

t2 (User, coupon code)+ G1

t3 (andJoin, createOrder)− G1, G3

t4 (calc discount, createOrder)+ G1

t5 (calc sales tax, calc discount)+ G1

t6 (tax amount, shipping)− G1, G2, G3

t7 (ship charges, sales tax)− G1, G2, G3

t8 (tax amount, sales tax)+ G1, G2, G3

t9 (ship charges, shipping)+ G2

t10 calc shipping− G1, G3

t11 (andSplit, calc shipping)− G1, G3

t12 (calc shipping, andJoin)− G1, G3

t13 (andSplit, calc sales tax)− G1, G3

t14 (calc sales tax, andJoin)− G1, G3

t15 (calc sales tax, createOrder)+ G3

t16 (User, shipping)+ G1, G3

t17 andSplit− G1, G3

t18 andJoin− G1, G3

expression of Sf , and in theEa
i it is associated with the edge

expression of Si.
As an example, consider a fragment of a faulty sales

order BP Gf shown in rectangular box of Fig. 4. Gf con-
tains two faulty data flow edges that are marked with ×.
Specifically, the value of tax amount is incorrectly assigned
to shipping and the value of ship charges is incorrectly as-
signed to sales tax. The subgraph Sf of this faulty BP that
needs to be compared with existing BPs is depicted in
the rectangular box in Fig.4. This subgraph is compared
with relevant subgraphs of three existing BPs that have
at least two overlapping services with Sf as shown in the
rectangular boxes in Figs. 5(a), 5(b), and 5(c). The results of
this comparison are shown in Table 2. Each row in this table
corresponds to a transformation operation. For example, the
transformation t6 : (tax amount, shipping)− implies that
the variable assignment from tax amount to shipping needs
to be removed from the faulty BP if it is to be transformed
into BPs of G1, G2, or G3. Similarly, the transformation
t8 : (tax amount, sales tax)+ needs to be added.

4.3 Association Rule Mining on Transformations

As discussed above, graph comparison yields transforma-
tions between faulty BP Gf and existing BPs Gis. Since all
the Gis are assumed to be correct, some of these transfor-
mations essentially correspond to the actual fault and its
resolution. In other words, applying all the transformations
within Ti changes the faulty BP Gf to Gi, thus fixing the
fault but the scope and domain of the resulting BP may
change as discussed in the introduction of Section 4.

The correct BPs may form groups based on their struc-
tural differences with respect to the faulty BP and therefore
they have common or overlapping transformation sets. The
differences across these groups may range from the domains
of the underlying BPs (characterized by the use of domain-
specific web services not present in the faulty BP) to varia-
tions in the ordering of common web services. Our objective
is to select the set of transformations that resolves the fault
with minimal changes in the faulty BP. Note that we do
not explicitly know the groups beforehand. However, if we

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 7

Fig. 4: Faulty sales order BP (Gf) and its subgraph (shown in rectangular box) used for pair-wise comparison

(a) Subgraph S1 of BP G1 (b) Subgraph S2 of BP G2 (c) Subgraph S3 of BP G3

Fig. 5: Subgraphs of existing BPs used for comparison with the faulty BP

can automatically identify the relationships/associations be-
tween sets of transformations, it may be possible to identify
the groups, and to use this information to select a minimal
set of transformations that can resolve the fault. Towards
this, we first define the fault covering transformation set.

Definition 3. Fault covering transformation set. With re-
spect to a given fop in a faulty BP (Gf), a fault covering
transformation set (FC) is a minimal set of transforma-
tions that resolves all faults in Gf up to the given fop.
In other words, after applying all the transformations in
the set FC to Gf , the resulting BP passes all the test cases
that validate conditions up to the given fop.

The proposed approach employs association rule mining
to first identify the relationship/associations between the
transformations across different groups of BPs w.r.t. the
faulty BP. The resulting association rules are then used to
systematically discover a minimal set of transformations
that contains the fault covering transformation set.

An association rule is an implication of the form X =⇒
Y , where X and Y are disjoint sets. In our context, if
the faulty BP differs with some group of BPs in terms
of the transformations in the antecedent set X , then the
faulty BP also differs with the same group in terms of the
transformations in the consequent set Y .

The following theorem establishes an important result
for identifying the fault covering transformation set based

on the implication relationship between the transformation
sets in association rules.

Theorem 1. Given a faulty (but structurally valid) BP Gf

and a set of correct and structurally valid BPs Gi, if
X =⇒ Y is an association rule with 100% confidence,
but Y =⇒ X is not, then for any fault covering
transformation set FC of Gf , if X ∪ Y contains FC then
X cannot contain FC , i.e., FC ⊆ X ∪ Y =⇒ FC 6⊆ X .

Proof: As discussed in the Introduction, we consider
faults of types branching faults, data flow faults (variable
assignment), control flow faults, and expression faults, listed
in Table 1. The faulty BP, Gf , may include any of these fault
types or their combination.

Since the faulty BP, Gf is structurally valid (i.e., all ser-
vice operation vertices, control flow vertices, and attribute
vertices in Gf have valid predecessors and successors –
Definition 2), the fault is manifested in one or more vertices
or edges in Gf . This implies that the edges or vertices
corresponding to the fault are present in Gf , but absent
in any correct BP. Note that absence of a vertex or edge
in Gf , which is present in some correct BP Gi, may also
correspond to a fault. However, the transformation to add
such vertex or edge in Gf in order to fix the fault requires
removing at least one edge fromGf because it is structurally
valid. For example, if the vertex to be added corresponds to
some service operation or control flow element, a control

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 8

flow edge needs to be removed from Gf and new edge(s)
from/to appropriate predecessor/successor vertices need to
be added inGf . Similarly, if the vertex to be added is of type
attribute, some data flow edge needs to be removed from
Gf and new data flow edges need to be added to keep the
resulting BP structurally valid. Also, if a fault corresponds
to some control flow or data flow edge that is present in Gi

but not in Gf , addition of such edge requires removal of
some other edge from Gf for the same reason.

Based on the above discussion and following the graph
comparison algorithm (Algorithm 2),we can deduce that:⋂

i

(V r
i ∪ Er

i) 6= φ (1)

Where, V r
i and Er

i denote the set of vertices and edges
that are present in Gf but not in Gi, respectively.

Equation (1) implies that the intersection of all Tis will
not be a null set, i.e.,⋂

i

(V r
i ∪ Er

i) ⊆
⋂
i

Ti 6= φ (2)

Since, all the Gis are correct, we can prove that any min-
imal fault covering set FC contains all the transformations
that are common across all Tis, i.e.,⋂

i

Ti ⊆ FC (3)

For any association rule X =⇒ Y with 100% confi-
dence, Y =⇒ X does not also hold with 100% confidence
⇐⇒ there is some correct BP Gj such that Y ⊆ Tj and
X 6⊆ Tj .

Based on this and the fact that FC ⊆ X∪Y , we can show
that: ⋂

i

Ti ∩ Y 6= φ (4)

and ⋂
i

Ti ∩ Y ⊆ FC (5)

and
Considering (3), (4), (5) and given that FC ⊆ X ∪ Y and

X ∩ Y = φ, we can deduce that FC 6⊆ X . �
Based on the above theorem, if we have identified two

transformation sets X and Y such that applying all the
transformations in those sets to a faulty BP removes its fault
and an association relationship exists between X and Y ,
then in order to find the minimal transformation set that
contains FC , we should start with the transformation set Y
first. If applying transformations in Y does not remove the
fault, then we should consider the transformation sets X
and Y jointly, but not X separately.

One simple approach that can be developed to detect
and fix faults is to find all the association rules considering
the faulty BP and correct BPs and then go through the
appropriate X and Y that jointly contain the fault covering
transformation set and result in minimal transformations to
the faulty BP. However, we may need to analyze a large
number a association rules given the exponential number of
rules that can be generated from a given itemset.

Fig. 6: SCC graph resulting from association analysis on
transformations listed in Table 2

Our proposed approach discovers and searches the as-
sociation rules for fault covering transformation set in a
systematic and efficient manner. The specific steps of the
proposed approach are listed in Algorithm 3: Association
Analysis. As shown in this algorithm, we use apriori al-
gorithm (line 2) to find association rules of length 2, i.e.,
both antecedent and consequent are single items in the
discovered rules. The reason that we start with rules of
length 2 is to reduce the number of association rules. From
the resulting set of association rules, we generate a directed
graph Gar = (Var, Ear), where a vertex in Var is either a
consequent or an antecedent of some association rule (line
3). The edges in Gar represent the antecedent→ consequent
relationship. Next, we find all strongly connected compo-
nents in Gar . A strongly connected component (SCC) in
the graph Gar essentially represents a non-trivial maximal
length antecedent or consequent of some valid association
rule that can be computed with the given transformation
dataset and support / confidence thresholds. Fig. 6 shows
a graph with 5 SCCs. This graph is generated using the
transformations listed in Table 2 and running association
rules with minimum support = 33% and confidence = 100%.
The edge between the SCCs in the graph represents a non-
trivial maximal length association rule. For example in Fig.
6 the edge from the SCC C3 to SCC C1 represent the
association rule C3 : {t9} =⇒ C1 : {t6, t7, t8}.

The SCC can be categorized as source, sink, or internal.
For example in Figure 6, C3, C4 and C5 are source SCCs,
C1 is sink SCC, and C2 is internal SCC. From this SCC
graph, we find the longest path between each source and
sink SCC pairs (lines 6 - 14). In case the SCC is both
source and sink (i.e., not connected to any other SCC), the
path includes only that SCC. The reason for considering
longest path is to encompass all the association rules that
can be computed with the given transformation dataset and
support / confidence thresholds.

As discussed above, we search for the fault covering
transformation set in each of these paths. For example for
a path C4 =⇒ C2 =⇒ C1 in Fig. 6, we first look for
the fault covering set in the sink SCC C1 by applying all
the transformations in C1 to the faulty BP. If the fault is
not resolved, we add C2 to this search and finally C4. To
keep the number of structural changes to the faulty BP to
a minimum, we sort all these paths in the ascending order
of length (i.e., number of transformations and path length)
and preferentially apply the smaller length transformations
to the faulty BP (line 15 of Algorithm 3 and lines 10 - 14 of
Algorithm 1).

The path (C4 =⇒ C2 =⇒ C1) in Fig. 6 trans-
forms the subgraph of faulty BP Sf into the subgraph

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 9

ALGORITHM 3: Association Analysis

Input: T =
⋃
Ti, where Ti is the set of

transformations required to convert Sf to Si
Input: Specified Confidence conf and Support sup

for Association Analysis
Output: tRuleQ - list of transformation rules sorted

in path length order
1: Create a binary matrix M|T |×n where Mki = 1 if
tk ∈ Ti, and Mki = 0 otherwise

2: rules← Apriori(M, sup, conf, length = 2)
3: Construct the directed graph Gar = (Var, Ear)

where vertices in Var correspond to sets of
transformations that are either a consequent or
antecedent for some rule, and edges in Ear

represent the antecedent −→ consequent
relationship.

4: Find all strongly connected components in the
graph Gar

5: tRuleQ← φ
6: for all components SCCi that are not connected

to any other component SCCj do
7: tlist← the set of all transformations in SCCi

8: tRuleQ← tRuleQ ∪ tlist
9: for each source component SCCsrc do

10: for each sink component SCCsnk do
11: if a path exists from SCCsrc to SCCsnk then
12: Find the longest path l from SCCsrc to

SCCsnk

13: tlist← the set of all transformations in l
14: tRuleQ← tRuleQ ∪ tlist
15: Sort tRuleQ by ascending order of length
16: return tRuleQ

S3 of existing BP G3 depicted in Fig. 5(c). The second
path (C5 =⇒ C2 =⇒ C1) resolves the faults by
transforming Sf to S1 depicted in Fig. 5(a). The last path
(C3 =⇒ C1) applies minimum transformations by remov-
ing two incorrect edges {t6 : (tax amount, shipping)−,
t7 : (ship charges, sales tax)−} and adding two re-
placement edges {t8 : (tax amount, sales tax)+, t9 :
(ship charges, shipping)+} to convert Sf into S2 depicted
in Fig. 5(b), thus resolving Gf with minimal changes.

4.4 Computation complexity
Graph Comparison (Algorithm 2). This algorithm compares the
faulty BP graph and an existing BP graph to compute the
transformation set. Therefore, its complexity is linear in the
size of the input graphs, i.e., O(|V |+ |E|).

Association Analysis (Algorithm 3). On line 2 of this algo-
rithm, Apriori association rule mining is called to compute
association rules of length 2. These association rules are
computed over T =

⋃
Ti, where |Ti| = O(|V | + |E|).

Therefore, |T | = O(n(|V | + |E|)), where n is the number
of existing BPs used for comparison. Let m = n(|V |+ |E|).
We can have a maximum of 2 ×

(m
2

)
= m(m − 1) rules of

length 2. In line 3 graph Gar = (Var, Ear) is constructed

from the resulting association rules, where |Var| ≤ m
and |Ear| ≤ m(m − 1). On line 4, we compute strongly
connected components (SCCs) in Gar with a computational
complexity of O(|Var| + |Ear|) = O(m2). In the worst case
the number of strongly connected components in Gar is m.
LetGSCC = (VSCC , ESCC) denote the SCC graph ofGar . In
lines 9-14, longest path from each SCCsrc to SCCsnk pair is
computed. Since GSCC is a directed acyclic graph, the com-
putation complexity of finding the longest path between any
SCCsrc to SCCsnk pair is O(|VSCC | + |ESCC |) = O(m2).
Therefore, the computation complexity of Algorithm 3 is
O(m2) = O(n2(|V |+ |E|)2).

Fault Resolution (Algorithm 1). The algorithm calls Algo-
rithm 2 n times and Algorithm 3 once in each iteration of
the search region parameterized by α. The search region is
incrementally expanded until the faulty BP is fixed or the
entire faulty BP is covered. Therefore, the overall compu-
tation complexity of fault resolution algorithm for a fixed
search region is O(n2(|V |+ |E|)2).

5 EXPERIMENTAL EVALUATION

We have performed an extensive experimental evaluation
of the proposed approach. Two independent strategies were
followed to evaluate the performance of our approach. In
the first case, we randomly injected faults (of different
types) into a correct BP and then employed our approach to
resolve the faults injected. In the other case, we asked actual
users to develop BPs using a BP composition tool. We then
examined only the BPs that were faulty, and tried to resolve
the faults using our approach. As such, the first case can
be considered equivalent to evaluation with synthetic data,
while the second can be considered equivalent to evaluation
with real data. In both cases, a repository of 48 existing BPs
was used (24 BPs from flight reservation and 12 each from
insurance and e-commerce sales domains). All these BPs
are derived from available open-source insurance systems
(e.g., OpenUnderWriter, Open Insurance, etc.), enterprise
resource planning (ERP) systems (e.g., Odoo, Apache OF-
Biz, inoERP, and Tryton, etc.), and online flight reservation
systems (e.g., Pakistan International Airline, Qatar Airways,
and Emirates Airline, etc.). We generated the BPs from the
execution logs of the installed ERP and insurance systems
or from the reference documentation. For flight reservation
systems, we created the BPs from the workflow structure
derived from the websites. A similar BP dataset collection
methodology was used in our prior work and is described
in detail in [2] . Table 3 shows the detailed statistics of the
developed BPs.

TABLE 3: Statistics of existing BPs
Domain No. of BPs Avg. no. of

services
Avg. no. of
branches

Ecommerce 12 25.66 2.91
Insurance 12 26.00 3.00
Flight Reser-
vation

24 22.00 3.00

Total 48 23.91 2.97

The experiments were performed on an Intel Xeon server
machine with 24 2.3 GHz cores running Ubuntu Linux 16.04
with an overall memory of 256 GB. Note, however, no

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 10

TABLE 4: α vs. average number of rules
α # of rules α # of rules α # of rules
2 88.95 7 1828.50 12 4881.55
3 186.54 8 2562.11 13 6365.96
4 362.34 9 2965.20 14 10593.71
5 596.85 10 3666.97 15 13878.29
6 843.72 11 3760.26 16 15499.64

parallelization was used (i.e., only one core was used and
no significant amount of memory was used).

5.1 Random Fault Injection
As mentioned above, in this case, we started with a correct
BP from the insurance domain (not included in existing
BP repository). The selected BP was composed of 26 Web
service operations with 3 branches and 2 parallel structures.
To generate faulty BPs, we applied random combinations
of the mutation operators listed in Table 1. This resulted
in 208 faulty BPs that were used for validation. The number
of mutation operators applied to generate a faulty BP varied
between 1 and 4 with a mean of 2.24 and standard deviation
of 0.81. Faults from each fault category and their random
combinations were tested.

We created a suite of test cases based on the expected
output covering all branching paths of the correct BP. Now,
a BP is considered as correct if it passes all the test cases
in the suite. We applied fault localization on each faulty
BP to determine their fop(s). The number of fop(s) varied
between 1 and 4 for the faulty BPs generated.

After determining the fops, we ran Algorithm 1 on
each faulty BP. The average number of rules returned by
the algorithm depends upon the value of α. The average
number of rules for different values of α are given in the
Table 4. We considered those rules that produce structurally
valid BP after their application to the faulty BPs. We sorted
these rules in ascending order of their size and applied them
one by one to the faulty BP. After application of each rule,
we tested the resulting BP using the test suite created earlier.
If the resulting BP passed all the test cases, we marked it as
correct and stopped. Note that a rule may resolve a fault
specific to the given fop, but there could be more faults
that are manifested later during BP execution. Therefore, in
our experimental evaluation, we clipped the BP up to the
given fop and run the relevant test cases to check if the BP
is fixed with respect to the given fop. Only after all fop-
specific test cases are passed, we run the complete suite of
test cases to look for any further faults. If any of the test
cases failed, we reinvoked the fault localization procedure
to find a new fop and repeat the entire process. The number
of transformations varied from 2 to 32 with a mean of 10.95
and standard deviation of 6.07.

Table 5 shows the fop-wise distribution of the faulty BPs
along with the accuracy of the proposed fault resolution
approach. As the results show, we were able to fix faults
in 73.83% of all the BPs. Note that the accuracy decreases as
the number of fops increases. This is due to the fact that the
faults corresponding to fops that are further apart are likely
to be independent of one another.

In terms of the computation time overhead associated
with the proposed fault resolution approach, Fig. 7(a) shows
the percentage of BPs fixed vs. number of iterations. Overall,
65% of the total BPs were fixed in 7 or fewer iterations.

TABLE 5: Accuracy results over synthetic dataset
No. of fops Total Fixed Failed Accuracy

1 46 39 7 0.85
2 119 87 32 0.73
3 24 17 7 0.71
4 19 10 9 0.53

Total 208 153 55 0.74

The BPs with 1 fop were all fixed in 11 or fewer iterations.
The BPs with 2 fops took at most 14 iterations to complete.
However BPs with 3 and 4 fops took more iterations with a
maximum of 26 and 32 iterations, respectively. The increase
in the number of iterations with the corresponding increase
in the number of fops is due to the fact that we resolve the
faults incrementally as explained above.

Fig. 7(b) shows the iteration-wise average time for fault
resolution per BP. As depicted in this figure, the average
time taken to fix a BP increases linearly in the iteration
intervals [1 - 5], [6 - 10], and [10 - 15]. Moreover the slope
of this linear trend also increases across these iteration
intervals. The reason is that in each iteration, α is increased
which expands the search region in the faulty BP, therefore
the computation time of association mining rules increases.
Based on Fig. 7(a) and Fig. 7(b), the faults of the 50% of
the total 153 BPs (that were fixed) were resolved in 3 or
fewer iterations. Therefore, the median average time taken
to resolve faults in a BP is 166 seconds.

We also evaluated the impact of structural similarity and
service overlap between the faulty BP and correct BPs on
fault resolution. Both similarity and service overlap was
computed w.r.t. the correct BPs that were part of the top
3 rules obtained after applying the association rule mining
step of Section 4.3. Let M ⊆ B denote the set of correct BPs
that are part of top 3 rules. As discussed above, Ti denotes
the set of transformations required to convert a faulty BP,
Gf = (Vf , Ef) into an existing BP Gi = (Vi, Ei). The struc-
tural similarity between a faulty BP and BPs in M can be
computed as the average of the number of transformations
required to transform Gf to Gi, normalized for each Gi:

Similarity = 1−

 1

|M |
∑

Gi∈M

|Ti|
max(|Ef |+ |Vf |, |Ei|+ |Vi|)


(6)

Similarly, the service overlap can be computed as the
average of the number of common services between the
faulty BP Gf and each Gi ∈M , normalized for each Gi:

Overlap =
1

|M |
∑

Gi∈M

|Vf ∩ Vi|
max(|Vf |, |Vi|)

(7)

As per these definitions, it is highly unlikely to have a high
service overlap but low similarity. Fig. 8(a) and Fig. 8(b)
show the number of BPs fixed vs. similarity and service
overlap, respectively. 68% of all the BPs were fixed at an
average similarity of 0.43 or less. Moreover, less than 10% of
the BPs were fixed when the service overlap was less than
0.62. From these results, we can infer that the likelihood of
resolving faults in a BP increases when the service overlap
is 0.7 or more and similarity is 0.43 or more.
5.1.1 Comparison with baseline approach
We would also like to establish the effectiveness of our ap-
proach with respect to an existing baseline. However, there

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 11

(a) Percentage of BPs fixed vs. number of iterations (b) Average time taken to fix a BP vs. number of iterations

Fig. 7: Comparison between percentage of BPs fixed vs. number of iterations and iteration-wise average time taken for
fault resolution per BP

(a) Percentage of fixed BPs vs. similarity (b) Percentage of fixed BPs vs. service overlap

Fig. 8: Comparison between percentage of BPs fixed vs. similarity and service overlap based on top 3 rules
TABLE 6: Accuracy comparison of proposed approach with G&V fault repair approach

Fault Category No. of BPs G&V with BPELswice Proposed Approach
Accuracy Avg. no. of candi-

date fixes applied
for fault resolution

Accuracy Avg. no. of rules
(candidate fixes)
applied for fault
resolution

Variable assignment faults 24 20/24=0.83 2192 12/24=0.5 57
Expression faults 5 5/5 = 1.0 464 5/5 = 1.0 5
Control flow faults (excl. element removal) 11 11/11=1.0 9351 9/11=0.81 16
Control flow faults (incl. element removal) 24 - - 11/24=0.45 41
Branching faults (incl. element removal) 3 - - 3/3 = 1.0 9
Multiple faults in different categories 141 - - 113/141=0.8 38

is no existing solution for BPEL fault resolution that we can
directly compare with. Therefore, we compare the proposed
collaborative BP fault resolution approach with generate-
and-validate (G&V) automated program repair methodol-
ogy. G&V takes as input a faulty program and a group
of passing and failing tests, and heuristically searches the
program space to generate fix candidates. The validity of the
fix candidates is then checked by running all available tests
[18]. G&V employs fault localization to identify suspicious
code blocks that may contain the fault. The candidate fixes
are generated by considering different mutations of the
statements within the suspicious code blocks. Currently
there is no implementation of G&V automated program
repair for BPEL programs, although there are several im-

plementations available for Java and C Programs [18].
For comparison, we implemented the G&V automated

program repair approach for BPEL programs by employing
BPELswice fault localization technique [17] to identify sus-
picious BPEL statements. For generating the candidate fixes,
we applied the mutation operators (listed in Table 1) to the
suspicious statements.

As mentioned in [17], BPELswice is not designed for
faults caused by removal of activities/elements. Therefore,
we consider only those fault categories that are relevant
to BPELswice. This comparison is shown in the first three
rows of Table 6. For variable assignment and control flow
fault categories (excluding activity/element removal), G&V
achieves higher accuracy than the proposed approach. For

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 12

expression faults both G&V and proposed approach resolve
all the faults. However, the average number of candidate
fixes applied for G&V is orders of magnitude higher than
the average number of rules (candidate fixes) applied by
the proposed approach for all three categories. This clearly
shows the efficiency of the proposed approach over G&V.

Note that the higher accuracy of baseline (G&V) is ex-
pected since the faulty BPS are created by applying mutation
operators on a correct BP. For instance, if the suspicious
code block include all the BPEL statements then we can
exhaustively generate all mutants of the faulty BP and at
least one of these mutants will be correct. Therefore, the
baseline approach would be able to resolve the fault by
exhaustively searching all possible mutants of the faulty BP
with a very high computation time overhead. On the other
hand, the proposed approach resolves faults by applying
very few transformation rules (candidate fixes).

The last three rows of Table 6 shows the accuracy results
of the proposed approach for those fault categories that can-
not be resolved by G&V + BPELswice. These include con-
trol flow and branching faults caused by activity/element
removal as well as combination of multiple faults from
different categories. Our proposed approach achieves high
accuracy in resolving branching and multiple faults. Over-
all, out of the 208 faulty BPs, our proposed approach was
able to fix 153 BPs resulting in an accuracy of 0.73.

These results clearly show that the proposed approach is
highly efficient and effective with respect to the number of
transformation rules (candidate fixes) applied for resolving
BP faults. Moreover, it provides a broader coverage of fault
categories as compared to the baseline. However, we note
that the accuracy of the proposed approach w.r.t. variable
assignment faults and control flow faults (caused by activity
removal) is low as compared to other faults categories.
Variable assignment faults are typically manifested at mul-
tiple locations in the BP. For example, an incorrect variable
assignment in an assignment block can result in subsequent
incorrect variable assignments. Control flow faults are dif-
ficult to detect and resolve due to the varying control flow
structure of activities in existing BPs. For example, one BP
may compose independent activities in a sequence, while
another may compose them in a parallel flow, thus, we may
not find sufficient BPs in the repository for comparison.
We plan to investigate a hybrid approach to improve the
accuracy for these cases as well in the future.

5.2 User Developed BPs
For this evaluation, we applied our fault resolution ap-
proach on BPs that were developed by actual users. These
users were students of a graduate class (Service-oriented
Computing, CS-585), who developed BPEL processes using
the ASSEMBLE tool [2] as part of their class assignment.

These BPs were related to ecommerce sales, insurance
sales, and flight reservation. We selected those BPs that did
not execute correctly. The users were not aware that their
developed BPs would be used for evaluation of the fault
resolution approach. Thus, there was no additional incentive
to either increase or decrease the number of faults in any
way beyond the normal goal of developing a correct BP.
Overall, there were 4 ecommerce sales BPs, 5 insurance sales
BPs, and 6 flight reservation BPs that were used for the

evaluation. We were able to fix 12 out of the 15 BPs. Table
7 lists all user developed BPs, with the type of faults that
were made by the users and the results of our approach.

Note that the accuracy of our approach is higher for
user developed BPs as compared to random fault injected
BPs. The reason is that user developed BPs typically have a
smaller number of faults because of the users’ understand-
ing of the BP and the underlying service semantic, as well
as the extensive debugging that they perform.

5.3 Parameter sensitivity
We now discuss the key parameters that affect the perfor-
mance of the proposed approach in terms of accuracy and
fault resolution time. There are three key parameters: i) α
that determines the size of the faulty BP subgraph for pair-
wise comparison with existing BPs; ii) similarity between
faulty BP and existing BPs; iii) service overlap between
faulty BP and existing BPs.

As shown in Table 4, increasing α results in increase in
the number of rules as well as the number of transforma-
tions encoded in the rules, thus increasing the computation
time. A large α value may result in comparison of the faulty
BP with unrelated BPs, which also results in generation of
transformation rules that may change the goal and scope
of the original BP. On the other hand, a small α value may
result in too small of a search region for fault resolution.
Therefore, it is important to start with a small value of α
and incrementally increase it until the fault is resolved as
per satisfaction of the BP designer.

The accuracy of the proposed approach depends on the
structural similarity and service overlap between the faulty
BP and some minimum number of BPs in the repository
of existing BPs. Higher the similarity and degree of service
overlap, the more likely it is to correctly resolve the faults
in a given BP as depicted in Fig. 8. The BP designer can
compute the similarity and service overlap values for a
given faulty BP, and if these values meet the threshold
values only then the fault resolution approach is applied.
These threshold values need to be determined beforehand
considering the available BP repository. As shown in Table
3, we considered a repository of 48 existing BPs from 3 dif-
ferent domains. Our experimental evaluation results show
that if the similarity and service overlap of the faulty BP
with at least 25 percent of existing BPs in the repository are
above 0.4 and 0.7 respectively, then the likelihood of fault
resolution increases significantly.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have formalized the problem of collabo-
rative BP fault resolution which utilizes information from
existing correct BPs that use similar services to resolve the
faults in a user developed BP. We present an approach based
on association analysis to identify and iteratively select
modifications to resolve the fault(s) in the user developed
BP. An extensive experimental evaluation over both syn-
thetically generated faulty BPs and real BPs developed by
users shows the effectiveness of our approach.

One limitation of our approach is that it only works
if there is no syntactic or semantic heterogeneity between
common services across BPs. Furthermore, we also assume
that the existing BPs are fault-free. In the future, we plan

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 13

TABLE 7: Evaluation results over user developed BP dataset
No. fops Status Domain Fault Types Time (sec.) Iterations Overlap Similarity
1 1 Resolved Insurance Relational operator replacement 68.30 1 0.63 0.25
2 1 Resolved Insurance Relational operator replacement,

Variable identifier replacement
66.24 1 0.63 0.25

3 1 Resolved Insurance Variable identifier replacement, Ac-
tivity order exchange

232.89 4 0.85 0.82

4 2 Failed Insurance Variable identifier replacement, Ac-
tivity order exchange

804.45 13 N/A N/A

5 2 Failed Insurance Variable identifier replacement, Ac-
tivity order exchange

869.39 12 N/A N/A

6 2 Resolved Flight Reser-
vation

Relational operator replacement,
Path operator replacement, Vari-
able identifier replacement

86.25 2 0.91 0.84

7 2 Resolved Flight Reser-
vation

Path operator replacement, Nu-
meric constant modification, Vari-
able identifier replacement

83.91 2 0.91 0.84

8 2 Resolved Flight Reser-
vation

Logical operator replacement, Path
operator replacement

88.76 2 0.87 0.76

9 2 Resolved Flight Reser-
vation

Relational operator replacement,
Branch path removal

330.96 6 0.79 0.63

10 1 Resolved Flight Reser-
vation

Branch path removal 332.08 6 0.79 0.63

11 1 Resolved Flight Reser-
vation

Path operator replacement, Nu-
meric constant modification

112.98 2 0.91 0.86

12 2 Resolved Ecommerce Relational operator replacement,
Variable identifier replacement

209.46 2 0.54 0.02

13 1 Resolved Ecommerce Numeric constant modification 237.16 4 0.82 0.66
14 1 Resolved Ecommerce Branch path removal, Variable

identifier replacement
44.22 1 0.53 0.31

15 1 Failed Ecommerce Relational operator replacement,
Variable identifier replacement

936.88 15 N/A N/A

to relax both of these assumptions, and develop solutions
that can take into account potential heterogeneity and work
even when the existing BPs are not completely fault-free.
Our current work also does not take privacy into account
in that it assumes that complete knowledge of the existing
BPs is available. In the future, we also plan to extend the
proposed approach taking into account privacy concerns.

ACKNOWLEDGMENTS
Research reported in this publication was supported by
the HEC and Planning Commission of Pakistan and LUMS
FIF grant as well as the NSF (CNS-1624503, CNS-1747728)
and the NIH (R01GM118574, R35GM134927). The content is
solely the responsibility of the authors and does not neces-
sarily represent the official views of the agencies funding
the research.

REFERENCES

[1] G. Huang, X. Liu, Y. Ma, X. Lu, Y. Zhang, and Y. Xiong, “Pro-
gramming situational mobile web applications with cloud-mobile
convergence: An internetware-oriented approach,” IEEE Transac-
tions on Services Computing, vol. 12, no. 1, pp. 6–19, 2016.

[2] A. Afzal, B. Shafiq, S. Shamail, A. Elahraf, J. Vaidya, and N. R.
Adam, “Assemble: Attribute, structure and semantics based ser-
vice mapping approach for collaborative business process devel-
opment,” IEEE Transactions on Services Computing, vol. 14, no. 2,
pp. 371–385, 2021.

[3] A. Kurniawan, Learning AWS IoT: Effectively manage connected de-
vices on the AWS cloud using services such as AWS Greengrass, AWS
button, predictive analytics and machine learning. Packt Publishing
Ltd, 2018.

[4] F. Brito e Abreu, J. Cardoso, J. Oliveira, C. Serrão, A. M.
Pinto, F. Araujo, R. P. Paiva, J. Correia, and A. Lopes, “Tav-
erna workflow management system,” https://taverna.incubator.
apache.org/, 2021 (accessed July 25, 2021).

[5] J. Kranjc, R. Orač, V. Podpečan, N. Lavrač, and M. Robnik-Šikonja,
“Clowdflows: Online workflows for distributed big data mining,”
Future Generation Computer Systems, vol. 68, pp. 38–58, 2017.

[6] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial sur-
vey, benchmark system, and empirical study,” IEEE Transactions
on Software Engineering, 2018.

[7] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo, “Muta-
tion operators for WS-BPEL 2.0,” in 21th International Conference on
Software & Systems Engineering and their Applications, 2008.

[8] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Ws-taxi:
A wsdl-based testing tool for web services,” in 2009 International
Conference on Software Testing Verification and Validation. IEEE,
2009, pp. 326–335.

[9] C.-a. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“A metamorphic relation-based approach to testing web services
without oracles,” International Journal of Web Services Research
(IJWSR), vol. 9, no. 1, pp. 51–73, 2012.

[10] H. Wang, X. Chen, Q. Wu, Q. Yu, X. Hu, Z. Zheng, and A. Bouguet-
taya, “Integrating reinforcement learning with multi-agent tech-
niques for adaptive service composition,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 12, no. 2, p. 8, 2017.

[11] W. Song and H.-A. Jacobsen, “Static and dynamic process change,”
IEEE Transactions on Services Computing, vol. 11, no. 1, pp. 215–231,
2016.

[12] L. Baresi and S. Guinea, “Self-supervising BPEL processes,” IEEE
Transactions on Software Engineering, vol. 37, no. 2, pp. 247–263,
2011.

[13] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Delta
debugging microservice systems with parallel optimization,” IEEE
Transactions on Services Computing, pp. 1–1, 2019.

[14] X. Zhou, X. Peng, T. Xie, J. Sun, W. Li, C. Ji, and D. Ding,
“Delta debugging microservice systems,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2018, pp. 802–807.

[15] C. ai Sun, Y. M. Zhai, Y. Shang, and Z. Zhang, “BPELDebugger: An
effective BPEL-specific fault localization framework,” Information
and Software Technology, vol. 55, no. 12, pp. 2140 – 2153, 2013.

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3112525, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 10, NO. 2, AUGUST 2020 14

[16] C.-a. Sun, Y. Zhao, L. Pan, H. Liu, and T. Y. Chen, “Automated
testing of ws-bpel service compositions: a scenario-oriented ap-
proach,” IEEE Transactions on Services Computing, vol. 11, no. 4, pp.
616–629, 2015.

[17] C.-a. Sun, Y. Ran, C. Zheng, H. Liu, D. Towey, and X. Zhang, “Fault
localisation for WS-BPEL programs based on predicate switching
and program slicing,” Journal of Systems and Software, vol. 135, pp.
191–204, 2018.

[18] T. Xu, L. Chen, Y. Pei, T. Zhang, M. Pan, and C. A. Furia, “Restore:
Retrospective fault localization enhancing automated program
repair,” IEEE Transactions on Software Engineering, 2020.

[19] E. Rahm, “Towards large-scale schema and ontology matching,”
in Schema matching and mapping. Springer, 2011, pp. 3–27.

[20] R. Shraga, A. Gal, and H. Roitman, “Adnev: Cross-domain schema
matching using deep similarity matrix adjustment and evalua-
tion,” Proceedings of the VLDB Endowment, vol. 13, no. 9, pp. 1401–
1415, 2020.

[21] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey
on software fault localization,” IEEE Transactions on Software Engi-
neering, vol. 42, no. 8, pp. 707–740, 2016.

[22] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “Jfix:
semantics-based repair of java programs via symbolic pathfinder,”
in Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2017, pp. 376–379.

[23] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” Journal of Systems and Software, vol. 89, pp. 51–
62, 2014.

[24] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating
faults with program slicing: an empirical analysis,” Empirical Soft-
ware Engineering, vol. 26, no. 3, pp. 1–45, 2021.

[25] P. Li, M. Jiang, and Z. Ding, “Fault localization with weighted test
model in model transformations,” IEEE Access, vol. 8, pp. 14 054–
14 064, 2020.

[26] J. Jones and M. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated software Engineer-
ing, ASE 2005, 01 2005, pp. 273–282.

[27] F. Schwander, R. Gopinath, and A. Zeller, “Inducing subtle muta-
tions with program repair,” in 2021 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2021, pp. 25–34.

[28] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013, pp. 356–366.

[29] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
without the contracts,” in 2017 32nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). IEEE, 2017, pp.
637–647.

[30] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 12–23.

[31] M. Martinez and M. Monperrus, “Astor: Exploring the design
space of generate-and-validate program repair beyond GenProg,”
Journal of Systems and Software, vol. 151, pp. 65–80, 2019.

[32] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim,
P. Wu, J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of
test suite based program repair: A systematic assessment of 16
automated repair systems for java programs,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 615–627.

[33] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A com-
prehensive study of automatic program repair on the quixbugs
benchmark,” Journal of Systems and Software, vol. 171, p. 110825,
2021.

[34] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empir-
ical study of fault localization families and their combinations,”
IEEE Transactions on Software Engineering, 2019.

[35] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debug-
ging: A hypothesis testing-based approach,” IEEE Transactions on
software engineering, vol. 32, no. 10, pp. 831–848, 2006.

Muhammad Adeel Zahid is a PhD candidate
in the Department of Computer Science at La-
hore University of Management Sciences, Pak-
istan. He is also serving as a Lecturer in Com-
puter Science at Government College University
Faisalabad, Pakistan. His research interests are
in the areas of distributed systems and service-
oriented computing.

Basit Shafiq is an Associate Professor and
Chair of the Department of Computer Science
in the Syed Babar Ali School of Science and
Engineering at Lahore University of Manage-
ment Sciences, Pakistan. He has published over
70 research papers in international conferences
and journals. His research interests are in the
areas of distributed systems, security and pri-
vacy, semantic Web and Web services. He is
on the editorial board of IEEE Transactions on
Dependable and Secure Computing, Computers

and Security, and ACM Digital Government: Research and Practice.

Jaideep Vaidya is a Professor of Computer In-
formation Systems at Rutgers University and the
Director of the Rutgers Institute for Data Sci-
ence, Learning, and Applications. He has pub-
lished over 190 papers in international confer-
ences and journals. His research interests are
in privacy, security, and data management. He
is an ACM Distinguished Scientist and IEEE Fel-
low. He is the Editor-in-Chief of the IEEE Trans-
actions on Dependable and Secure Computing.

Ayesha Afzal is an Assistant Professor at Air
University, Multan, Pakistan. Her research in-
terests are in the areas of distributed systems,
business process management and big data an-
alytics.

Shafay Shamail is a Professor of Computer Sci-
ence in the Syed Babar Ali School of Science
and Engineering at Lahore University of Man-
agement Sciences, Pakistan. He has worked
both in software industry and academia. His re-
search interests include software quality, cloud
computing and e-government architectures. His
publications include over 60 research papers.

Authorized licensed use limited to: LAHORE UNIV OF MANAGEMENT SCIENCES. Downloaded on March 14,2022 at 13:12:10 UTC from IEEE Xplore. Restrictions apply.

