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Abstract— The advent of deep learning has inspired research
into end-to-end learning for a variety of problem domains
in robotics. For navigation, the resulting methods may not
have the generalization properties desired let alone match
the performance of traditional methods. Instead of learning
a navigation policy, we explore learning an adaptive policy in
the parameter space of an existing navigation module. Having
adaptive parameters provides the navigation module with a
family of policies that can be dynamically reconfigured based on
the local scene structure and addresses the common assertion in
machine learning that engineered solutions are inflexible. Of the
methods tested, reinforcement learning (RL) is shown to provide
a significant performance boost to a modern navigation method
through reduced sensitivity of its success rate to environmental
clutter. The outcomes indicate that RL as a meta-policy learner,
or dynamic parameter tuner, effectively robustifies algorithms
sensitive to external, measurable nuisance factors.

1. INTRODUCTION

Autonomous navigation through static, unstructured envi-
ronments has advanced in the past decades but fundamentally
still relies on engineered approaches [1], [2]. Given an
approximate map, the approaches use sensor data to inform
updated estimates of the environment which are used to
evaluate future trajectories in terms of safety and other
characteristics with the aim of finding a collision-free, goal-
attaining path. Traditionally designed systems involve manual
parameter selection for general purpose navigation, which
exhibits sensitivity to environmental conditions.

This paper investigates the use of machine learning to
dynamically reconfigure the parameters of a hierarchical
navigation system according to the immediate, sensed sur-
roundings of the robot. We show that scene-dependent online
tuning improves navigation performance and reduces sensi-
tivity to environmental conditions. The final reinforcement
learning solution, called NavTuner, addresses the problem
of parameter sensitivity to operational variance. NavTuner is
publicly available as open source [3].

A. Research Context

1) Navigation and Machine Learning: One candidate ap-
proach to learning and navigation is to replace the tradition-
ally engineered system with an end-to-end sensor to decision
neural network [4]-[7]. Empirical and limited benchmarking
show some promise on this front. However, instead of directly
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solving the navigation problem itself, these methods solve
some highly specific subset of it, typically equivalent to the
local navigation problem. All argue for the need to integrate
with existing hierarchical schemes, though few actually do
so. Both [4], [8] show that reinforcement learning or reward-
based approaches for local planning in a local-global hierar-
chical planner can work. Instead of mapping sensor input to
navigation decisions directly, other learning based methods
seek to map the sensor data to higher level information for
decision making. Inverse reinforcement learning has been
used to learn a reward function from RGB-D features and
goal-directed trajectories [9]. A neural SLAM model has
learned to output necessary information for global and local
policies to control a robot [10]. Learning-based perception
can be combined with model-based control methods to
navigate in partially observable, unknown environments [11].

Overall, there is no substantive benchmarking of learning
based methods with traditional navigation schemes [7]. Thus,
the assertions that learning can overcome sensitivity to
environmental conditions and can outperform traditionally
engineered systems remain unconfirmed. As a preliminary
investigation, we implemented a couple methods and bench-
marked them in simulated ROS/Gazebo environments, see
Figure 1 (and §IV-A for more details). When compared to
a traditional hierarchical navigation approach [2], learning-
based navigation methods have lower performance and equiv-
alent or higher sensitivity to the environment. The sensitivity
can be seen by the drop in performance (e.g., higher slope)
as the environment becomes denser in the success rate vs
obstacle quantity graphs of the second row. The variable per-
formance across environments indicates poor generalization
to world structure by the learning methods.

2) Reinforcement Learning-Image to Action: Tasks in-
volving perception to action pipelines, such as visual nav-
igation, can be implemented using end-to-end reinforcement
learning (RL) based on deep convolutional neural network
policy learners [12]-[16]. This is perhaps the most pervasive
use of RL in vision-based navigation contexts. The learnt
policy directly maps visual sensor input (laserscan, RGB
image, or depth map) to actions, steering commands, or
velocities [13], [17], [18]. Policy learning can be improved
by using knowledge from previously learnt visual navigation
tasks when learning new tasks [18]. Adding decision relevant
auxiliary tasks can promote learning internal representa-
tions that support navigation [19] and improve the sample
efficiency of RL while speeding up the training process
[20]. In a similar vein, providing mid-level visual cues
improves the learning, generalization, and performance of
policies [21]. Also, learning subroutines instead of individual
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Fig. 1: Benchmark Worlds and Results. Top row: Depictions of the environments Maze, Campus, Sector, and Office with
100 obstacles. Bottom row: Navigation success rate versus obstacle count plots for egoTEB [2] and methods from [4], [5].

actions can boost the performance [22]. While navigation is
a good task to demonstrate RL methods, in many cases the
task focuses on navigation guidance more so than collision
avoidance. Evaluation does not focus on embodied navigation
nor realistic motion and collision models. Application of RL
to robotics places less emphasis on the policy learner and
more on the structure of the learning network [17], [23] and
on the use of existing navigation methods to generate policy
samples [5], [23], [24].

3) Vision-Based Navigation: Typical solutions for vision-
based navigation rely on a combination of path planning
and sensor-based world modeling to synthesize local paths
through the world based on recovered structure. The most
effective policies are hierarchical, with a global planner
establishing potentially feasible paths based on an estimated
map and a local planner following the global path as closely
as possible, subject to collision-avoidance constraints in
response to sensed obstacles missing from the map [25]-
[27]. Though exhibiting strong performance in Figure 1,
the variable maximum success rates and downward trends
of egoTEB [2] across the graphs indicates that traditional
methods are not immune to variation as induced by world
structure. There is potential value in modifying them based
on the local obstacle configuration space, i.e., in performing
online parameter tuning for navigation.

4) (Hyper)-Parameter Tuning: The potentially negative
impact of incorrect hyper-parameters or parameters is well
established in machine learning. Hyper-parameter optimiza-
tion improves learning outcomes without requiring major
modifications to the underlying learning structure [28]-[30].
When feasible to implement, the additional computation
needed is offset by the performance enhancement. Given
that RL policies can exhibit high variability to the training
process and parameter settings, the process of gradient-free
hyper-parameter and reward tuning is recommended when
the additional computational resources are available [31].

There is prior work on automatic parameter tuning ap-

plied to motion planning and navigation. Motion planning
algorithms can perform better with random or Bayesian
based [32] and model based [33] automatic parameter tuning
algorithms. The benefits also apply to safety constraints [34].
Parameter tuning can also be incorporated into the learning
process of a learning-based motion planning algorithm to
reduce sensitivity to manual tuning [35]. Adaptive planner
parameters of a planner can be learnt through intervention
[36], demonstration [37], and reinforcement learning [38].

II. ScoPE OF INVESTIGATION

This paper explores the performance impact of online
tuning for traditional navigation strategies. Per Figure 1 and
[36]-[38], they exhibit sensitivity to external world structure.
Some of the sensitivity is a function of manually specified
algorithm constants (i.e., parameters) that do not generalize
well to different free-space circumstances. The objective is to
reduce system sensitivity and improve performance outcomes
during deployment by learning a more optimal tuning policy
for the navigation parameters as a function of local geometry.

A. Hierarchical Navigation

The system to study is a hierarchical, vision-based nav-
igation system consisting of two distinct spatial-and time-
scales, global and local, with planning modules associated
to each scale. The global planner computes a candidate path
connecting the robot’s current pose to the goal pose based
on the current map. The local planner uses the global path
to generate a series of sub-goals that should be feasible to
sequentially achieve. Since the environment is unknown or
uncertain, the local planner solves the current sub-goal based
on a local map informed by the real-time integration of
sensory information regarding the structure of the local en-
vironment. Its spatial and temporal scale is sufficiently small
that real-time processing of the sensory data and short-time
trajectory synthesis with collision checking and trajectory
scoring is achievable. During navigation, information flow
between the two planners influences the paths planned and
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Fig. 2: Changing planning frequency fgp impacts path
taken (top-left). Changing look ahead distance di 4 impacts
candidate navigable gaps found (orange curves).

the paths taken. Parameters internal to the global and local
planners further influence their outputs. The parameters and
the interacting modules should work to achieve collision-
free navigation to the goal point while taking the shortest
path possible given a priori known and a posteriori sensed
information about the world. Here, the reference hierarchical
planning system will utilize the egoTEB local planner [39],
and the robot will be the differential drive Turtlebot.

B. Navigation Parameters

To illustrate the sensitivity of navigation performance to
internal parameters, this section describes the impact of two:
the global planning frequency and the local planner look
ahead distance.

1) Global Planning Frequency ( fgp): The global planner
recomputes the global path at a specified frequency to refresh
its estimated best path based on data accumulated during
navigation. Additionally, there are special events that trigger
new plans (such as arriving at a dead-end). The tunable
global planning frequency is upper bounded by the local
planning frequency (or sensing rate) and the rate at which
new global paths are generated. Other environmental events
(not part of the detected special events) impact the need
for new global plans. Sensory information accumulating in
the local map may indicate that the current global path is
no longer feasible and should be recomputed or that an
unavailable path option may now be feasible and should be
considered.

The effect of changing fgp for a given environment and
navigation goal is visually exemplified in Figure 2 (top-
left). Table I quantifies its influence. The table reports
the difference between the best performing and the worst
performing outcomes in the Maze environment as a function
of fgp across the different obstacle densities tested (50 re-
peated trials each). The difference is a measure of parameter
sensitivity to environment changes. SR stands for success
rate and PL stands for path length. In the environment with
the most obstacles (least spacing) there are almost 20 more
failures cases for the worst fgp setting versus the best. The

TABLE I: Performance changes vs. inter-obstacle spacing.

. GP dia
Spacing |—xgp (%)f APL (m) | ASR (%) | APL (m)
075 19 7.68 3 865
1.0 8 156 5 2.93
125 7 1.04 7 234
5 5 0.48 6 8

path length increases by 7.68m which is roughly 14% of the
average path length.

2) Look Ahead Distance (dpa): The source of local ob-
stacle information for egoT'EB is the egocircle. The egocircle
populates an egocentric polar data structure with sensed
obstacle points over time and uses it to synthesize a 1D
laser scan of the local environment. This egocircle scan is
processed by egoTEB to establish navigation gaps between
obstacles through which the robot may traverse. The gaps
represent different path opportunities to take to the goal state.

Gap processing uses dp 4 to define a look ahead distance
cut-off when detecting gaps. Measurements beyond dp 4 are
"ignored" in simulation of a shorter distance scanner. Local
paths generated as part of egoTEB will not extend beyond this
radius. Since only nearby obstacles are considered, lowering
dpa limits the quantity of gaps detected and candidate
paths generated and tested. Figure 2 depicts the local map
information and the detected gaps based on three different
dpa values. The parameter determines the spatial extent of
the local map, which ultimately influences several parts of the
local navigation strategy. The impact of dp 4 on navigation
is evident in Table L.

C. Scene Adaptive Policy Models

Learning a dynamic tuning policy can be done through
a variety of mechanisms, with one main difference being
batch learning versus reinforcement learning (RL). Both are
explored and evaluated in this study. Batch learning requires
sampling the input and output space to generate the training
data. In contrast, RL involves rollouts that test output values
chosen according to some training policy and record the
measured input values to generate the training data. The
input data is the egocircle scan and the output data is the
parameter choices. The discretization for di 4 ranges over
[1.0,5.5] meters in 0.5 increments (10 total), and for fgp
ranges over [!/16,1] Hz in factor of 2 increments (5 total).

1) Batch Learning: Several network models were chosen
for the batch learning approach. They include: a linear
network, a neural network (w/ReLu), and a convolutional
neural network (w/ReLu). Two output structures are tested
for each: a classifier structure over discretized values and
a regression model for continuous prediction (trained with
the discretized values). Training is performed by collecting
the performance statistics of constant parameter value runs
across a sweep of each discretized parameter individually.

2) Reinforcement Learning: The reinforcement learning
model is a deep Q network (DQN) [40] with an action
branching structure for multi-dimensional output [41], de-
picted in Figure 3. The reward structure uses knowledge
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Fig. 3: Structure of a Double Action DQN (2D-DQN).

of the shortest path between the start and goal. For each
training run the reference shortest path is obtained from the
D*-Lite algorithm [42] (other global planners would work).
During navigation, the reward is the negative of the distance
between the agent’s current position and the nearest point on
the shortest path. This reward is passed to the agent every
two seconds for a policy update. The agent also updates at
the end of a training run with the following terminal reward:

1000(Z/Lnin)
~1000

if goal attained

(D

R =
goal otherwise

based on the the Success Weighted by Path Length [43],

where [ and [,,;,, are the lengths of the actual path taken by

the robot and the reference shortest path, respectively.

III. EXPERIMENTS AND METHODOLOGY

All training methods use data generated from Gazebo
simulations of robot navigation engagements in unknown
environments. The robot used is a differential drive Turtlebot
equipped with a Microsoft Kinect sensor (60° x 45° FoV).
Depth images from the sensor are converted into laser scans
that update the egocircle. The Maze environment in Figure 1
is used for training while the other environments are used for
testing. For pose information, the true robot pose is accessed
from Gazebo.

A. Experimental Methodology

1) The Maze Environment: To define navigation scenarios
for which there is always a valid path between any random
start and goal poses, we designed a maze environment
consisting of maze walls placed within a 20m X 20m square
room. The maze walls are composed of 0.5m x 0.5m blocks
placed on a Manhattan grid within the maze free space.
Several different wall configurations for the mazes exist. The
occupancy maps of these different mazes are used as the
initial global occupancy map for the robot.

During a trial, the initial map provided for the maze is
incomplete because of the randomized placement of ob-
stacle cyclinders with a radius of 0.15m within the world.
There are two random placement strategies: uniform density
and non-uniform density. A non-uniform placement density
is achieved by dividing the environment into 5 X 5 sub-
regions and assigning each region a random uniform density.
The density specification for a maze region is given by
a minimum inter-obstacle distance from the discrete set
{0.75,1.0,1.25,1.5} m.

2) Batch Data Collection: To generate training data for
the supervised methods, we perform a single coordinate
parameter sweep over the uniform density and robot configu-
ration and run each configuration 50 times with valid random
start and goal poses. The result is a total of 50x5x4 = 1000
runs for fgp and 50 X 10 x 4 = 2000 runs for dp 4. Data
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Fig. 4: Best hyper-parameter versus obstacle density p.

recorded from each run includes all of the egocircle scans,
whether it succeeded, the total path length, and the runtime.

The binary success data provides a success rate for the
navigation parameter and density pairing combination. For
each density we choose the hyper-parameter value that max-
imizes the success rate. The average path length is used as a
tie breaker (then the average runtime in the case of another
tie). The best value versus the density p defines the selection
functions fgp(p) and dpa(p), which are depicted in Fig. 4.

3) Training the Neural Networks: The classifiers are
trained with cross entropy loss and the regressors are trained
with mean squared error loss, both using the SGD optimizer.
The training data consists of the known densities of the
mazes, the best hyper-parameter values for said densities,
and the recorded laser scan readings from the navigation
scenarios.

Since training for reinforcement learning requires evalu-
ating rollouts, it involves a different process. The DQN is
trained in a non-uniform environment using e-greedy with
the reward function described in Section II-C.2, either from
scratch or with a warm start using the collected batch data.

The model trained from scratch is trained for 1000 runs,
and the warm started one is trained for 800 runs after first
training with behavior cloning using the chosen best hyper-
params for 200 runs. We compare the two models to see how
previous knowledge acquired from experiments in uniform
environments influences model performance.

B. Testing and Evaluation

The evaluation experiments are all done in non-uniform
environments with the egoTEB planner set for dynamic
parameters. Every two seconds the parameter prediction
model predicts the optimal parameters and applies them. The
baseline implementation of egoTEB uses the fixed parameters
dia = 3m and fgp = 1Hz. The trained NavTuner is
directly evaluated in unseen new environments, without any
finetuning or additional online learning.

1) Testing Environments: Experiments are conducted in
the four environments: maze, sector (dense), campus (dense),
and office (dense). The last three are benchmark environ-
ments from [39]. The maze environment has two sets of
evaluation experiments: with the same maze and with a maze
different from the training maze. Changing the maze tests
whether the network models have learned the specific maze
wall setup instead of the local obstacle distribution.



To vary from the training data, we generate 4 differ-
ent types of random obstacles, including 0.3mx0.3m and
0.15mx0.15m boxes and cylinders with diameters of 0.3m
and 0.1m. The maximum number of obstacles is 200 for
the maze and sector environments and 500 for the campus
and office environments. In each environment, we run the 5
experiment configurations, consisting of 0, 25%, 50%, 75%,
and 100% of the maximum number of obstacles.

2) Evaluation Criteria: For each run, the performance
data collected is the result, the path length, and the runtime.
For the maze environment, we also run experiments with an
oracle version in which the parameters are updated using the
best value curves (Figure 4) and the known density.

IV. RESULTS AND ANALYSIS

This section reports and analyzes the results of several
experiments. Of the metrics recorded, the success rate ex-
hibited the most differences across the techniques, thus the
discussion and analysis will revolve around this quantity. The
experiments performed include (a) comparative performance
of egoTEB versus end-to-end learning schemes, (b) a first
pass evaluation of outcomes for the maze environment and
a single parameter, (c) a more complete evaluation across
environments, and (d) the extension of the best performing
method to more parameters. Lastly, there is a comparative
discussion regarding contemporary works with similar aims.

A. Comparison with End-to-End Learning

This experiment whose outcomes are in Figure 1 compares
the fixed parameter egoTEB to Perception-to-Decision (P2D)
[5] and to the local goal classifier (LGC) [4]. A third method,
IntentionNet [6] was implemented to the best of our ability
(including communication with the authors), but it would not
provide good results in the benchmark environments. Thus, it
is not included in the plots. The two methods implemented
were run in an end-to-end manner, as well as within the
same hierarchical navigation system as egoT'EB. There are
25 runs per environment. As discussed in §I-A.1, the fixed
parameter egolEB implementation outperforms all of the
learning-based implementations. The success rate is higher,
there is a smaller gap between the max and min success rates,
and the outcomes across environments are more consistent.
If end-to-end learning is to be pursued as a navigation
scheme, structurally different solutions than those explored
will be needed. For a traditionally engineered solution, such
as egol'EB, the environment sensitivity should be addressed.

B. Evaluation in Maze Environments

Moving to the learnt policy tuners, Table II contains the
success rates for the maze environment with the maximum
number of obstacles (200) and variation of dp4 only, for
the same/different maze environments. The success rates are
similar across all methods when examining the two maze
types (compare down columns); they vary by 3% or less.
The similarity indicates that the policy tuners are most likely
learning the local obstacle distributions and not the wall
setup. All tuner models outperform the default values (DV),

TABLE II: Success Rates for Maze Environments

Classifier Regressor
bv | BV L |NN[CNN|L [NN]|CNN | Sc|WS

Same |67 |78 |70 | 73 | 74 |69 ] 72 | 75 |81 80
Different | 68 | 75 [69 | 71 | 74 |69 | 71 | 73 |80 | 80

but they do not all outperform the best values (BV). The only
tuners which do are the RL implementations. This outcome
suggests that it is beneficial to have a closed-loop, embodied
learning process whereby the policy tuner evaluates and
corrects its own performance. Doing so more effectively
explores the parameter and environment space.

C. Evaluation in All Benchmark Environments

The success rate outcomes across all navigation environ-
ments and for all obstacle configuration levels are plotted
in the graphs of Figure 5 (top). Both parameters fgp and
dp 4 vary. The first property to note is that all policy tuners
operate at or above the success rate (SR) of the fixed parame-
ters egdI'EB implementation. The non-negative performance
impact shows that the results from §IV-B translate across
obstacle quantities and environments. The top two performers
continue to be the RL tuners since their traces often lie
above those of the others. Lower slopes for the policy tuners
relative to those of the default egoTEB implementation is
an indication of reduced sensitivity to the obstacle density.
Several policy tuners have this property for some obstacle
density ranges.

Figure 5 (bottom) quantifies the reduced sensitivity by
plotting bar graphs of the difference between the highest
and the lowest success rates (for a given method) across
the different obstacle count implementations. Almost all
methods have a lower difference versus the baseline egoTEB
implementation, though some just barely. In a couple cases
(mostly for the sector world), the higher difference is a
function of a higher best performance that increased the size
of the performance gap while still outperforming the default
egol'EB. Though better by number, having a large difference
is less than ideal. Again, the RL tuners exhibit the best
performance, with the DQN trained models having reduced
the difference to 35% and 46% of egoTEB’s on average for
training from scratch and warm start, respectively. One detail
in favor of a warm start is that it improved the zero obstacle
success rate for the maze and sector cases, which is where
the default egoTEB does not have perfect performance. This
boost is not seen for training from scratch.

D. Evaluation of a 7D-DQN NavTuner

Since the RL-based policy tuner has the best performance,
we will denote any such implementation to be a NavTuner for
short-hand. Given the good performance of the 2D NavTuner,
a 7D version with a 7D-DQN is deployed and trained using
the same training process but with 4000 rollouts (taking
4.2 days to train a model). The 2D-DQN is trained again
from scratch for the same 4000 rollouts. The global planner
parameter value to output is fgp, and the egoIEB local
planner parameter values to output are dpa, selection cost
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hysteresis, path switching blocking period, selection prefers
initial plan, inflation distance, and the number of poses in
the feasibility check (integer). Comparative results between
egolEB, the 2D-DQN, and the 7D-DQN are in the bar
charts of Figure 6 with the actual numerical values printed
above the bars. The 7D NavTuner boosts the performance
and reduces the difference, as seen by the higher bars and
the lower difference values. The zero obstacle performance
boost, not seen for the 2D NavTuner case with training from
scratch, now occurs. The campus and office worlds have near
perfect success rates across all implementations as evidenced
by the high success rate and low difference. Recall that they
start at 100% with no obstacles. Compared to egoT'EB, the
average success rate (marginalized across all environments)
for egoTEB with a 7D-DQN NavTuner improves by 13%,
from 85.2% to 96.3%. The sensitivity drops from an average
difference of 19.5% for egoTEB to 3.5% for the 7D NavTuner
version (82% lower). When compared to the 2D NavTuner,
the sensitivity drop is from 6% to 3.5% (42% lower).

E. Discussion and Comparison to Other Tuning Models

The online tuning of navigation parameters using deep
learning methods is relatively recent. This section discusses
the outcomes of a few methods in relation to the NavTuner

findings. The approach in [35] aimed to arrive at a differen-
tiable model for the deep network training process to correct
for structural deficiencies in soft-constraint optimal control
solvers. While the method did lower sensitivity to obstacle
configurations, it did not improve the success rate. It is doubt-
ful that such an approach could work for the class of soft-
constraint optimization solvers studied. Typically, soft con-
straints are addressed using a scale-space method that solves
the problem multiple times under different soft-constraint
parameters to incrementally approach the hard-constraint
solution. Even then feasibility is not guaranteed. The egoTEB
algorithm builds on TEB [1], which also employs a soft-
constraint optimal control solver using factor graphs like
[35]. By solving a highly localized problem for detected
gaps, obtaining multiple solutions, and performing feasibility
checking, many of the deficiencies of soft-constraint solvers
are avoided. That NavTuner boosts performance and reduces
sensitivity using a model-free and non-differentiable method
suggests that trying to derive a solution like [35] may not
be necessary when there are learning schemes that do not
require it. Model-free RL will be more effective when the
parameters are difficult to differentiate, as holds for the
egol'EB navigation parameters.

The approaches in [36]-[38] (APPLI, APPLD, and AP-
PLR) are the closest to NavTuner. For APPLI, rather than
report success rate a time penalty was assigned to the run,
and only the average completion times were reported. APPLI
reported a 43% relative improvement compared to fixed
parameters DWA [25], but also exhibited worse performance
for a smaller percentage of trials versus DWA. APPLD
discussed navigation failures in the text. Under APPLD, the
designed maze was traversed every time, while DWA failed
for the great majority. APPLD requires human demonstration
and cannot leverage simulation to automatically learn a
policy tuner. Hence the implementation of APPLR based
on RL, much like NavTuner. Evaluation of APPLR versus
DWA was mixed, in the sense that APPLR performed better
for a subset of experiments, but worse or equivalently for
another (with these latter being the harder scenarios). APPLR
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had high variance in traversal time versus DWA, which
led to the mixed outcomes. Though we did record path
length and runtime as performance metrics, we found that
they did not capture performance as well the success rate
did. Furthermore, it is more difficult to compare when the
approaches do not have comparable success rates, which may
explain the mixed outcomes of the APPLx implementations.
For example, Figures 7 and 8 compare the path lengths and
traversal times, respectively. There are two rows, with the top
being the averages across all successful runs for each method
and the bottom being the average for the common successful
runs across all obstacle configurations, thus it compares
comparable navigation scenarios and outcomes vs methods.
Performance is comparable when looking at the runs for
which all succeeded (bottom rows). Divergence of statistics
happens when including the differing outcomes, usually in
the form of more variance or a shift in performance. The
increased path length for office by the RL methods in the
bottom row may seem incorrect, but it persists in the top
row and these methods have the best success rate. This
shift most likely indicates that a longer, circuitous path is
being taken, but that is more favorable. Being longer is not
disadvantageous. For the sector case (top row), egolEB has
a monotonic increase while the others do not. The common
dip suggests that they are also leveraging some of the global
scene structure that egoI’EB with fixed parameters cannot.
Comparing path length and traversal time has more nuance
than just needing to be shorter.

One potential difference is that the APPLx navigation

scenarios resemble tunnel-like environments solvable using a
forward motion wander navigation method, which might be
the cause of the mixed outcomes. Additionally, AAPLX uses
a high or full field of view laser scanner while NavTuner uses
a limited field-of-view depth imaging sensor, leading to the
possibility of passing near unsensed regions. NavTuner learns
to modulate the parameters such that these partially ob-
served situations do not significantly impact navigation per-
formance. No sensitivity analysis for the APPLx algorithms
illuminated clear differences in outcomes for a variable
environmental parameter, thus it is more difficult to ascertain
the overall benefits of APPLR over DWA beyond traversal
time (the text does note more recovery behavior state events,
but does not quantify them). In the sensitivity analysis here,
the one variable that exhibited the most sensitivity, and also
happens to be the most important, is the success rate. Using
RL, NavTuner effectively learns a family of scene-sensitive
navigation policies to select from during navigation, thereby
leading to performance and robustness improvements.

V. CONCLUSION

This study provided experimental evidence using control-
lable simulations of navigation scenarios to show that online
adaptive tuning of navigation parameters for engineered nav-
igation systems can improve run-time performance and re-
duce sensitivity to environmental conditions. The sensitivity
associated to traditionally designed systems is often used as
a justification for replacing them with deep learning models.
This paper started by showing that contemporary deep learn-



ing navigation methods could not match the performance of
a fixed parameter navigation system. Furthermore, it showed
that learning a family of navigation policies for online
navigation parameter tuning further boosts performance. The
improvements are more substantive in comparison to existing
methods with similar contexts, suggesting that those studies
were incomplete. The code is open-sourced [3].

The use of the free space measurements as the input data
should permit some level of sim-to-real transfer since it is an
intermediate representation. Deep learning on intermediate
representations, or with them, is less sensitive to source
signal noise since it has been processed out. The APPLx
family of tuners provides evidence that transfer can happen.
Future work aims to confirm this conjecture for NavTuner.
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