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A CAMERA AND RANGE SENSOR FUSION APPROACH FOR
AUTONOMOUS NAVIGATION SYSTEMS DRIVEN BY ROBUST

ADAPTIVE CONTROL

Caleb Peck*, Julius Marshall†, Christoper Miller‡, Kookjin Sung§, Manoranjan
Majji¶, Peter Arslanian||

An integrated sensing approach that fuses vision and range information to land an
autonomous class 1 unmanned aerial system (UAS) controlled by e-modification
model reference adaptive control is presented. The navigation system uses a fea-
ture detection algorithm to locate features and compute the corresponding range
vectors on a coarsely instrumented landing platform. The relative translation and
rotation state is estimated and sent to the flight computer for control feedback.
A robust adaptive control law that guarantees uniform ultimate boundedness of
the adaptive gains in the presence of bounded external disturbances is used to
control the flight vehicle. Experimental flight tests are conducted to validate the
integration of these systems and measure the quality of result from the navigation
solution. Robustness of the control law amidst flight disturbances and hardware
failures is demonstrated. The research results demonstrate the utility of low-cost,
low-weight navigation solutions for navigation of small, autonomous UAS to car-
ryout littoral proximity operations about unprepared shipdecks.

INTRODUCTION

As opportunity for autonomous flight on Earth and in space widens, there is an increasing pres-
ence of small, unmanned vehicles among consumers and the industry as a whole. These vehicles
are particularly of interest for concepts such as swarm flight, reconnaissance, and supply delivery
due to their lower cost and a smaller overall footprint. As the frame of these vehicles shrink, so
too must the on-board sensing and navigation hardware. This paper introduces a prototype sensor
suite (see Figure 1(a)) which fuses light detection and ranging (LIDAR) and optical camera data to
compute a relative navigation solution. Since this is a relative pose solution, absolute positioning
is not required. Thus, it is suitable for close proximity, GPS-denied environments. This sensor is
integrated onto a class 1, autonomous, unmanned aerial system (UAS) (see Figure 1(b)), which uses
an adaptive control law capable of rejecting flight disturbances.

LIDARs, such as flash LIDAR and scanning LIDAR, have become a key sensing component for
autonomous vehicles.1, 2 One major application is terrain relative navigation (TRN), in which the
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imaged terrain is compared to a known map of the area such that a vehicles position, velocity and
attitude can be obtained.3 This capability is critical in the Entry, Descent, and Landing (EDL) phase
of space missions such as the Mars 2020 Mars Perseverance Rover.4 The DragonFlyer mission on
Titan, which will take advantage of the combined low gravity and high atmospheric density, is slated
to use a LIDAR for TRN since the craft will be able to hover for longer periods of time compared
to a Martian or Lunar descent.5 In a similar concept, the navigation solution presented herein uses
aligned LIDAR and camera data to compute the relative position and attitude from the vehicle to
a known location. In this experiment, the known location is a user-defined feature frame on a
simulated ship landing deck. However, the concept can be cast to any cooperative active proximity
operation, including TRN and Rendezvous, Proximity Operations, and Docking (RPOD).

Ship-board landing poses a unique environment for manned and un-manned aircraft. Airflow
across the deck produces a large region of turbulent airflow behind the stern,6, 7 which renders
aircraft approach to and landing on the ship a region of increased pilot workload.8 This turbulent
flow offers a rich environment of study for many different disciplines, from modeling the flow
through CFD to disturbance-rejecting control of vehicles.9, 10 In addition to the chaotic flow, the
ground effect phenomenon is apparent with every landing. The surface diminishes the strength of the
drag-inducing downwash produced by the wingtip vortices, which effectively creates a “cushion” of
lift at the instant of landing.11 These dynamic lift characteristics near the ground offer yet another
‘disturbance’ for which a robust control method must be able to reject.

Figure 1. ANS Sensor System and Quadrotor Vehicle

Model Reference Adaptive Control (MRAC) is an adaptive control method that changes the dy-
namics of the plant in real time to fit some desired reference model based on the state’s output.12, 13

It is shown that adaptive control is robust to flight disturbances and mathematically guarantees sta-
bility against bounded disturbances.14–16 The non-linear, coupled dynamics of a quad-rotor drone
offer a rigorous platform to experiment adaptive control methods.17, 18 This paper covers the im-
plementation of model reference adaptive control with e-modification [12, pp. 327-329] on a small
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UAS subjected to flight disturbances including motor failure, mass uncertainties, and wind gusts.

The scope of this work focuses on the performance of a camera-based navigation solution and a
controller that can improve the incoming images by maintaining a steady hover amidst the distur-
bances. The next section will introduce the Autoland Navigation Solution (ANS), followed by the
mathematical theory behind e-modification model reference adaptive control (e-MRAC). Then, the
flight experiment and the results will be presented.

NAVIGATION SOLUTION

The navigation solution employs an off-the-shelf sensor suite which houses a RGB camera, LI-
DAR and Inertial Measurement Unit (IMU). The algorithm locates features on a user-defined frame
of interest and computes the relative translation and rotation of the feature vector from the feature
frame to the camera frame. This is achieved by detecting features using the camera, and matching
the feature location with a range measurement from the LIDAR. The experiments presented in this
paper use the ArUco marker library19, 20 since there are several readily available and reliable de-
tection algorithms for these markers. It must be said that this LIDAR/vision-based system may be
applied to any structured feature or cooperative relative navigation problem where the location of
features are known and can be detected.

The relative translation and rotation is computed and can serve as the tracking error, which the
controller would regulate to zero during landing. This section covers the pinhole camera model,
which relates the feature pixel location to a world location based on the intrinsic parameters of the
camera. Then, the ANS algorithm is presented.

Pinhole Camera Model

The pinhole camera model,21 illustrated in Figure 2, is an idealized model of a camera which
assumes all light enters through a single point and then re-projected onto an image plane. This
model can be used to calibrate a camera and estimate the focal lengths (fx, fy) and principal point
(cx, cy), also known as the camera’s intrinsic parameters.
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Figure 2. Pin-Hole Camera Model

The extrinsic parameters of a camera map a point in the world frame, W , to the camera’s frame,
C, through a rigid body rotation, R, and translation t. Once the world point is cast to the camera
frame, the intrinsic matrix transforms the camera frame vector, up to some length scale s, to a pixel
location in the canonical image plane. This transformation is carried out as follows
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The vector [Xw, Yw, Zw]
T is defined as rc in the following section. The application of ANS assumes

the intrinsic parameters of the camera are known through calibration. Thus, the pixel location of a
feature can be transformed into world frame coordinates up to some length scale, s. The ambiguity
of this length scale is resolved through the line-of-sight depth data provided by the aligned LIDAR
frame. It will be shown that the extrinsic parameters, and thus the relative pose of the camera, may
be measured by comparing the camera’s observation of a point to the point’s known location in
some feature frame.

Autoland Navigation Solution (ANS) Algorithm

The ANS algorithm stems from a matched 3D feature registration algorithm used in Simultaneous
Localization and Mapping (SLAM) applications [22, pp. 407-411]. The algorithm begins with
transforming the feature frame corner vector, rf , to the camera frame corner vector, rc through
some unknown rotation matrix R and translation t, illustrated in Figure 3.

rc = Rrf + t (2)
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Figure 3. Autoland Navigation Solution Feature Co-Location

Cayley Transform22 is applied to re-parameterize the rotation matrix to Classical Rodrigues Pa-
rameters (CRPs) q = [q1, q2, q3]

T which reduces the number of independent attitude parameters
from six to three.
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Substituting this into equation (2)
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d = �q̃s+ t0 (5)

Where

d = (rc � rf ) , s = (rc + rf ) , t0 =
⇥
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t (6)

Given n � 3 detected corners, a linear matrix equation is formed.
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The least squares solution for the state vector, x, is given by

x =
�
ATA

��1
ATy (8)

Finally, the relative translation vector is recovered by

t = [I+ q̃]�1 t0 (9)
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FLIGHT VEHICLE

ANS is attached to a quad-rotor UAS that is controlled autonomously using e-modification Model
Reference Adaptive Control (e-MRAC). This section briefly outlines the dynamics of the quad-
copter, e-MRAC control technique, and the hardware integration of the navigation system.

Flight Dynamics

The translational kinematic equation of a quadrotor is given by17

ṙIA(t) = R(�(t), ✓(t), (t))vA(t) (10)

rIA(t0)
= rIA,0 (11)

� 2 [0, 2⇡), ✓ 2
⇣
�⇡
2
,
⇡

2

⌘
,  2 [0, 2⇡)), t � t0

and R is the Euler 3-2-1 rotation sequence. The rotational kinematic equation of a quadrotor is
given by [23, Th. 1.7]
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where �(�(t), ✓(t)) is defined as

�(�(t), ✓(t)) ,

2
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0 cos�(t) � sin�(t)
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Since ✓ 2 (�⇡
2 ,

⇡
2 ), the matrix � is invertible [23, pp. 18-19]. Assuming constant quadrotor mass

m, the translational dynamic equation is given by24

Fg(�(t), ✓(t))� FT (t) + Fa(t) = m[v̇A(t) +
⇥
!(t)⇥

⇤
vA(t) + r̈C(t)

+
⇥
!̇(t)⇥

⇤
rC(t) + 2

⇥
!(t)⇥

⇤
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vA(t0) = vA,0 (16)

where [·⇥] denotes the skew-symmetric cross product matrix of a vector, FT is the thrust force,
u1(t) is the control input, the term Fa captures the aerodynamic forces acting on the system and Fg

is the force due to gravity defined by

Fg(�, ✓) = mg
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The rotational dynamic equation of a quadrotor, whose chassis is modeled as a rigid body and
propellers are modeled as thin, spinning discs, is given by24

MT (t) +Mg (rC(t),�(t), ✓(t)) +Ma(t) =
⇥
r⇥C

⇤ ⇥
v̇A(t) +

⇥
!(t)⇥
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⇤

+ I!̇(t) +
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where MT is the moment due to the propeller forces given by [u2(t), u3(t), u4(t)]T, u2 is the mo-
ment about the x-axis of the body reference frame, u3 is the moment about the y-axis of the body
reference frame, u4 is the moment about the z-axis of the body reference frame, Mg, is the mo-
ment due to the quadrotor’s weight with respect to the reference point A, Ma is the moment due
to aerodynamic forces with respect to A, lct is the inertial counter-torque, and lg is the gyroscopic
effect.

The control input u(t) is related to the necessary thrust produced by the ith propeller Ti(t) along
the z(·) axis of the body reference frame J by

u(t) = MuT(t) (19)

where u(t) is given by
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where Mu is the mixer and defined as
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where Lx, Ly > 0 is the distance of the propellers from the reference point A along the x-axis and
y-axis, respectively; cT > 0 denotes the propeller’s aerodynamic drag coefficient. Let T(t) denote
the vector of thrust forces given by

T(t) =

2
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3

75 (22)

where Ti, i = 1, . . . , 4, denotes the force produced by the ith propeller along the z(·) axis of the
body reference frame J. The mixer M is invertible if and only if the product LxLycT 6= 0. Note
that this mixer is defined for a quadrotor in X-configuration, with the motor labelling shown below:
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Figure 4. Motor ordering diagram for quadrotor in X-configuration.

The propeller’s angular velocity is related to the thrust force generated by the ith propeller by

Ti(t) = k⌦2
P,i(t) (23)

where k > 025, 26

e-MRAC Algorithm

This section presents a form of Robust MRAC based on the e-modification from [12, pp. 327-
329], which is also considered as � modification.27 This control law enjoys the benefits of the
classical MRAC, while being robust to bounded external disturbances, and guarantees uniform ul-
timate boundedness of the adaptive gains. Bounded adaptive gains help to alleviate an issue with
classical MRAC known as “parameter drift”. Furthermore, after a finite time transient, this control
law guarantees that the plant’s measured output will track a given reference signal with bounded
error, despite uncertainties in the model and the presence of external disturbances. The main differ-
ence between the e-modification and classical MRAC is that the classical MRAC does not guarantee
uniform ultimate boundedness of the adaptive gains, or trajectory tracking error in the presence of

unmatched uncertainty, ⇠̂(·).
Consider the nonlinear, time-varying plant dynamics given by

ẋp(t) = Apxp(t) +Bp⇤[u(t) +⇥T�(xp(t))] + ⇠̂(t) (24)
xp(t0) = xp,0, t � t0

where xp(t) denotes the trajectory of the plant, u(t) 2 Rm denotes the control input, Ap 2 Rnp⇥np

is unknown, Bp 2 Rnp⇥m, ⇤ 2 Rm⇥m is diagonal, positive-definite, and unknown,⇥ 2 RN⇥m is
unknown, � is the Lipschitz continuous regressor vector, ⇠̂ is continuous, unknown, and is assumed
to be bounded i.e k⇠̂k ⇠max 8 t � t0.
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It is assumed that ⇤ is such that the pair (Ap, Bp⇤) is controllable and ⇤minIm⇥m  ⇤, for some
⇤min > 0. The plant’s parametric and matched uncertainties are captured in ⇤ and ⇥T�(xp),
respectively, which includes possible malfunctions in the control system. The term ⇠̂(·) captures the
unmatched uncertainties such as external disturbances of the plant like wind gusts.

Consider the plant’s sensor dynamics given by

ẏ(t) = ✏Cpxp(t)� ✏y(t), y(t0) = Cpxp,0 (25)

where y(t) 2 Rm denotes the system output, ✏ > 0, and Cp 2 Rm⇥np . Thus, the sensor dynamics
are modeled as linear dynamical systems. The uncontrolled sensor dynamics are exponentially
stable and characterized by the parameter ✏ > 0. Now, consider a given reference command r,
which has a continuous first derivative, and define r2(t) , ṙ(t), and assume that both r(t), r2(t) are
bounded, i.e

kr(t)k  rmax, t � t0 (26)
kr2(t)k  rmax,2for some rmax, rmax,2 > 0 (27)

The goal of Robust MRAC is design a feedback control law, u(·), such that, after a finite-time
transient, the measured output y(·) is able to track the reference signal r(·) with some bounded
error i.e.

if ky(t0)� r(t0)k  a (28)
then ky(t)� r(t)k  b; t � t0 + T, a 2 (0, c), b, c > 0 (29)

For this, we create an augmented system where n , np+m and x(t) ,
⇥
xTp (t), [y(t)� r(t)]T

⇤T 2
Rn, t � t0, which allows (24) and (25) to be expressed as

ẋ(t) = Ax(t) +B⇤[u(t) +⇥T�(xp(t))] + ⇠(t), x(t0) =
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Cpxp,0 � r(t0)

�
, t � 0 (30)
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� ⇥
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⇤
+


1np

0m⇥np

�
⇠̂(t)

Also consider the reference model whose dynamics are given by

ẋref(t) = Arefxref(t) +Brefr(t), xref(t0) =


xp,0

Cpxp,0 � r(t0)

�
, t � t0 (31)

Aref =


Aref,1 0np⇥m

0m⇥np Aref,2

�

where xref(t) 2 Rn is the reference model system state, Aref,1 2 Rnp⇥np and Aref,2 2 Rm⇥m are
both Hurwitz, and Bref 2 Rn⇥m is such that the pair (Aref , Bref) is controllable.

9



Define the error as e , x(t)� xref(t), and let the control be of the form

�(K̂,⇡) = K̂T(t)⇡(t) (32)

K̂T =
⇥
KT

x ,K
T
r ,�⇥T

⇤

⇡(t) =
⇥
x(t), r(t),�(x(t))

⇤T

where K̂T 2 Rm⇥(n+m+N) is the control gain, Kx 2 Rn⇥m, Kr 2 Rm⇥m, ⇥ 2 RN⇥n and
⇡(t) 2 Rn+m+N .

The adaptive law is given by

˙̂KT(t) = ��
⇣
⇡(t)eT(t)PB + �kBTPe(t)kK̂T (t)

⌘
(33)

K̂(t0) = 0(n+m+N)⇥(n+m+N) t � 0

� =

2

4
�x 0n⇥m 0n⇥N

0m⇥n �r 0m⇥N

0N⇥n 0N⇥m �✓

3

5 (34)

� 2 R(n+m+N)⇥(n+m+N),�x 2 Rn⇥n,�r 2 Rm⇥m,�✓ 2 RN⇥N

� ,

2

4
�xIn 0n⇥m 0n⇥N

0m⇥n �rIm 0m⇥N

0N⇥n 0N⇥m �✓IN

3

5 (35)

�x,�r,�✓ 2 R, �x,�r,�✓ > 0

where �i are the adaptive learning rates which are user-defined and positive-definite, and P 2 Rn⇥n

is the positive definite solution to the Lyapunov equation given by

0 = AT
refP + PAref +Q (36)

where Q 2 Rn⇥n is user-defined and positive definite. If Kx and Kr exist such that the following
matching conditions are satisfied,

Aref = A+B⇤KT
x

Bref = B⇤KT
r

(37)

then the nonlinear time-varying system (30) with u(t) = �(K̂,⇡), t � t0, is uniformly ultimately
bounded and (28) is verified.

Application

To apply this adaptive control technique to the quadcopter UAV, the quadcopter’s dynamics is
first cast to the form of (24). It is typical to consider the altitude dynamics and attitude dynamics
separately. The coupling of translational dynamics (x, y) and attitude dynamics combined with
the under-actuation of the quadrotor UAV lead to a decomposition of the control structure to an
outer/inner loop architecture. The outer loop considers the user-defined reference trajectory, and
uses a PID controller to compute the ideal acceleration to stabilize the vehicle about the trajectory.
By assuming small angle approximations and small angular velocities, the corresponding reference
attitude is determined. This reference attitude is the reference command sent to the inner loop,
which employs the adaptive control law to drive the attitude of the vehicle to the desired attitude.
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Outer Loop Let rcmd(t) = [xcmd(t), ycmd(t), zcmd(t), cmd(t)]T denote the user-defined refer-
ence trajectory. The purpose of the outer loop is to convert rcmd(t) to reference roll, �cmd(t), and
pitch, ✓cmd(t), angles. Given rcmd(t) such that ṙcmd(t)  rd,max, the ideal accelerations ẍideal,
ÿideal, z̈ideal are computed using a PID controller:

ẍideal(t) = �Kp,xex(t)�Ki,x

Z t

0
ex(t)dt�Kd,xėx(t)

ÿideal(t) = �Kp,yey(t)�Ki,y

Z t

0
ey(t)dt�Kd,yėy(t)

z̈ideal(t) = �Kp,zez(t)�Ki,z

Z t

0
ez,outer(t)dt�Kd,zėz,outer(t)

ex(t) , xq(t)� xcmd(t)

ėx(t) = ẋq(t)� ẋcmd(t)

where the error dynamics for y and z, outer are defined similarly and [xq(t), yq(t), zq(t)]T and
[ẋq(t), ẏq(t), żq(t)]T denote the inertial position and velocity of the body reference frame, respec-
tively. From the small angle and angular velocity assumption, the ideal force along the z-axis of the
inertial frame is given by

Fz,ideal(t) = m (z̈ideal � g) (38)

The reference attitude is determined using trigonometry

�cmd(t) = m
ẍcmd(t) sin( (t))� ÿcmd(t) cos( (t))

dead(Fz,ideal(t))

✓cmd(t) = m
ẍcmd(t) cos( (t)) + ÿcmd(t) sin( (t))

dead(Fz,ideal(t))

where

dead(x) ,
(
x, if x > ✏dead
✏dead otherwise

is a dead-band function. This is used to avoid a singularity in the case the applied force in the z-
direction Fz(t) is zero. The limit for the dead-band is typically ✏dead = 0.1. This reference attitude
is sent to the inner loop, where the vehicle’s attitude is driven to the reference attitude using an the
adaptive control law.

Inner Loop In model reference adaptive control, the first step is to determine an ideal reference
model (31) for the plant to track. For this application, reference model is split into four systems,
one for each of the four inner loop “channels” which are the altitude z(t), and three Euler angles
�(t), ✓(t), and  (t). Each reference model is designed to mimic a mass-spring damper system,
which has easily quantifiable properties such as rise time, overshoot, settling time, etc; and is physi-
cally intuitive. After selecting the reference model, you must solve the Lyapunov equation to obtain
the sensitivity matrix P , which is a 2⇥ 2 matrix for each channel.

Given the inner loop command signal rcmd,inner(t) = [zcmd(t),�cmd(t), ✓cmd(t), cmd(t)]T, the
reference model is integrated to determine the ideal trajectory for each channel using Runge-Kutta
4. This yields the altitude trajectory tracking error ez(t) = z(t) � zref(t), with e�(t), e✓(t), and
e (t) defined similarly. The trajectory tracking errors and inner loop command signal are two of

11



three necessary pieces of information for computing the adaptive law. The third piece, the regressor
vector, is computed below.

Consider the altitude dynamics of the quadcopter UAV

ż(t) = vz(t),

z̈(t) =
u1(t) cos(�(t)) cos(✓(t))

m
� g

This system is cast in the form of (24) by first adding and subtracting u1
m on the right hand side of

the z̈(t) equation

ż(t) = vz(t),

z̈(t) =
u1(t) cos(�(t)) cos(✓(t))

m
� g +

u1(t)

m
� u1(t)

m

hence, in state space form:

ż(t)
z̈(t)

�
=


0 1
0 0

�

| {z }
Az


z(t)
ż(t)

�
+


0
1

�

|{z}
Bz

1

m

�
u1(t) +⇥T

z �z(t, xp(t))
�
+ ⇠z(t)

⇥z = m

�z(t, x(t)) = �g

⇠z(t) =
u1(t) (cos(�(t)) cos(✓(t))� 1)

m

Note that the mass of the vehicle m may be subject to uncertainty, or be entirely unknown, hence
⇤z = 1

m which is sign-definite, diagonal, and unknown; furthermore, ⇠z(t) is unknown. Lastly,
since it is reasonable to assume m > 0, and the total thrust that can be applied to the quadcopter
UAV by the propellers u1(t) is finite, then ⇠z(t) is bounded. Also note that if the UAV is level at
time t = tn, such that �(tn) = 0 and ✓(tn) = 0, then ⇠z = 0, and there is no unmatched uncertainty.
However, if the system was modeled to account for more complicated physical phenomena such as
inertial counter-torque, gyroscopic effect, or the center of mass not coinciding with the reference
point (which in reality, is always the case), the unmatched uncertainty will not be equal to zero.

Assume the reference point and center of mass coincide. For Class 1 UAVs, the effects of iner-
tial counter-torque and gyroscopic effect are negligible, and can be ignored. Consider the attitude
dynamics of the quadcopter UAV

u(t) = I!̇(t) + !⇥(t)I!(t) + IP

4X

i=1

2

4
0
0

⌦̇P,i(t)

3

5+ !⇥(t)IP

4X

i=1

2

4
0
0

⌦P,i(t)

3

5

!(t0) = !0, t � t0.

where MT (t) = [u2(t), u3(t), u4(t)]T is the control torque. The attitude dynamics of the quadcopter
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UAV can be expressed equivalently as

!(t) =

Z
!̇(t)dt, t � t0

!̇(t) = I�1
|{z}
B⇤

�
u(t) +⇥T

att�att(t, xp(t))
�
+ I�1

0

@IP

4X

i=1

2

4
0
0

⌦̇P,i(t)

3

5+ !⇥(t)IP

4X

i=1

2

4
0
0

⌦P,i(t)

3

5

1

A

| {z }
⇠att(t)

⇥att = diag
✓
I2 � I3

I1
,
I1 � I3

I2
,
I1 � I2

I3

◆

�att(t, xp(t)) = [!2!3,�!1!3,!1!2]
T

Note that since I is positive-definite, I�1 exists. Assuming the angular acceleration of the propeller
⌦̇P,i(t) is finite (since the torque that the actuators can apply is finite), then ⌦P,i(t) is also finite.
Hence, ⇠att(t) is bounded. The unmatched uncertainty thus far has been a result of the modeling of
the vehicle’s dynamics, and not necessarily unforeseen disturbances. A common disturbance can be
drag and aerodynamic moments due to wind, and can be considered as an unmatched uncertainty.
Since the UAV’s speed is finite, the drag and aerodynamic torque acting on the vehicle is finite,
hence, the unmatched uncertainty is finite, and the e-modification of MRAC can be applied.

EXPERIMENTAL METHOD

The lab experiments were performed within an indoor flight area equipped with Cortex Motion
Capture to provide truth position and attitude; see Figure 5 for a schematic of the experiment.
The landing platform is a 6 DOF Stewart platform attached atop a remote-controlled cart driven by
Mecanum wheels such that the cart can linearly translate forwards and sideways, as well as yaw. The
platform is programmed to simulate the motion of a ship experiencing a heave sea-state value of one,
corresponding to heave motion amplitudes up to six inches; the angular sea-state is set at four which
corresponds to roll and pitch amplitudes up to fifteen degrees. The objective of the experiment was
to exercise the adaptive control law to understand the operational limit of the controller, and also to
observe the performance of the ANS relative pose solution. With this objective, the following flight
test cadence was designed.

The flight test began with take-off from the Stewart platform, while carrying an 85 gram payload
attached to a servo near the nose of the craft. The quadrotor was prescribed a circle trajectory given
by

xref(t) = 0.75 cos(t� tc,0), t � tc,0

yref(t) = 0.75 cos(t� tc,0),

zref(t) = 1.50m,

 ref(t) = 0

where tc,0 > 0 denotes the start time of the circle trajectory. During the flight, the quadrotor
was subjected to multiple disturbances. At t = 55s, a simulated motor failure of up to 20% is
injected into the system as a matched uncertainty. This was done by multiplying the second row
of the mixer (21) by the % failure value, i.e. 0.15 for a 15% motor failure. The payload was
dropped roughly 5s after the motor failure. A large fan was used to introduce a wind gust into
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the mission, and can be considered an unmatched uncertainty. The fan was pointed such that the
freestream velocity was tangent to the circle trajectory and hence, the UAV flew into and out of the
freestream at certain points along the prescribed trajectory. Soon after the payload was released,
the quadcopter was commanded to begin tracking the moving ground robot/Stewart platform. Let
rq(t) = [xq(t), yq(t), zq(t)]T denote the position of the UAV , and rs(t) = [xs(t), ys(t), zs(t)]T

denote the position of the landing platform. The trajectory executed by the UAV was prescribed by
the following function

rref(t) =

(
�(t)rq(t) + (1� �(t))rs(t), if {krq(t)� rs(t)k> 1.0} [ {� 2 [0, 1]}
rs(t), otherwise.

 ref(t) =  s(t),

where �(t) = t�ts,0
4 , and ts,0 � 0 denotes the time at which the follow ship command was given.

With this �(t), the UAV was given 4 seconds to arrive at the ship position. Note that if krq(ts,0) �
rs(ts,0)k> 1.0 the ANS solution typically had not been acquired yet, so a different solution was
required to deduce the pose of the ship. For this demonstration, the motion capture solution was
used. Finally, the quadrotor landed on the moving ground robot/Stewart platform, according to the
landing profile:

xref(t) = xs(t), t � t`,0

yref(t) = ys(t),

zref(t) =

(
�(t)zq(t) + (1� �(t))zs(t), if {krq(t)� rs(t)k> ✏} [ {�(t) 2 [0, 1]},
zs(t), otherwise,

 ref(t) =  s(t).

where t`,0 > 0 denotes the time at which the UAV was given the command to follow the ground
robot, �(t) = t�t`,0

6 giving the UAV 6 seconds of smooth descent. This landing profile was selected
to ensure that the UAV would not decrease altitude if the UAV is not at least ✏ = 0.15m from the
landing platform’s position rs(t) = [xs(t), ys(t), zs(t)]T. If the condition krq(t) � rs(t)k> ✏ was
met, the initial time t`,0 was reset to the current time t, giving the UAV extra time to finish the
landing maneuver. This was done to ensure a soft landing on the motion platform.
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Figure 5. Schematic of Experimental Setup

Flight Data

Flight data from a representative test is shown below. Displayed in Figure 6 is the defined refer-
ence trajectory (red line) and the actual path that the UAS flew (black line). As shown, the quadrotor
is able to accurately track the prescribed position and attitude despite the disturbances. In each sub-
figure, around time t = 55s, the 20% motor failure takes effect, causing large excursions in the
trajectory tracking error, which is rapidly compensated for by the adaptive controller. Noticeably,
the figure in the top row, third column, presents the altitude of the UAV and reference altitude. It
can be seen that at the time of the motor failure, the UAV drops approximately 0.4m since the total
thrust has been significantly reduced. However, the adaptive controller has adjusted to the new dy-
namics of the system, and quickly drives the UAV back to the reference altitude while carrying the
payload.

Referring to the the top row, second column of Figure 6, the y-position overshoots the desired
trajectory consistently. This is due to the behavior of the slung payload making it difficult to track
the desired roll angle (bottom row, first column), and the wind disturbance. This can be improved
by tuning the outer loop gains to provide better roll and pitch references that will guide the UAV to
the desired position. The position tracking can also be improved by tuning the inner loop adaptive
rates to compensate more aggressively to disturbances. Referring to the figure in the bottom row,
third column, the measurement of the UAV’s heading angle includes some systematic error, hence
there is an offset.

15



20 40 60 80 100
-4

-3

-2

-1

0

1

M
o

to
r 

F
a

ilu
reT
a

ke
o

ff

L
a

n
d

e
d

P
a

yl
o

a
d

 R
e

le
a

se

20 40 60 80 100
-2

-1

0

1

2

T
a

ke
o

ff

L
a

n
d

e
d

20 40 60 80 100
0.5

1

1.5

2

M
o

to
r 

F
a

ilu
re

T
a

ke
o

ff

L
a

n
d

e
d

P
a

yl
o

a
d

 R
e

le
a

se

20 40 60 80 100
-40

-20

0

20

40

M
o
to

r 
F

a
ilu

re

T
a

ke
o

ff

L
a

n
d

e
d

P
a
yl

o
a
d
 R

e
le

a
se

20 40 60 80 100

-20

0

20

40

M
o

to
r 

F
a

ilu
re

T
a

ke
o

ff

L
a

n
d

e
d

P
a

yl
o

a
d

 R
e

le
a

se

20 40 60 80 100
0

10

20

30

T
a

ke
o

ff

L
a

n
d

e
d

Figure 6. (Top row) Quadrotor position in meters; (Bottom row) Quadrotor attitude
in degrees. The reference trajectories are represented by the red line, while the actual
flight trajectories are shown in black.

Figure 7 illustrates the L2-norm of the trajectory tracking error over time from the experiment. At
times t = 20s, t = 38.25s, t = 55s, t ⇡ 71s, t ⇡ 79s, there are increases in the position and attitude
error due to the takeoff command, circle tracking command, motor failure disturbance, payload
release, ship tracking command, and land command, respectively. The e-modification of MRAC
law drives the error to a neighborhood of zero rapidly after each event. Notice that, shortly after
t = 55s when the motor failure occurs, the attitude tracking error’s L2-norm increases to ⇡ 63�.
This exemplifies how the 20% significantly impacts the system’s performance, and simultaneously,
how the adaptive controller is able to quickly compensate for this failure, and prevent a crash.
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Figure 7. (Black line) Norm of the position error in meters; (Red line) Norm of the
altitude tracking error in degrees.

Figure 8 shows the adaptive gains evolution over time. As can be seen in the figure in the first row,
first column, the gains corresponding to the altitude control adjust rapidly after takeoff to account
for the mass uncertainty and added payload. Between large disturbances, many of the adaptive
gains are constant, except for the ⇥̂(·) gain, which is used to reject matched uncertainties. To
enable rejection of large disturbances such as the sudden 20% reduction in thrust of one actuator,
the adaptive rates corresponding to ⇥̂(·) are an order of magnitude larger than the adaptive rates
corresponding to K̂x, K̂r. The adaptive gains for the roll and pitch channels change very rapidly,
especially ⇥̂(·), in response to the slung payload, wind, and motor failure. The roll channel adaptive
gain even changes sign to compensate for the motor failure, implying the existence of a persistent
disturbance in the roll dynamics, hence, the change in sign of the adaptive gain. The magnitude
of the motor failure masks this unknown disturbance. This disturbance is the slung payload, wind,
and a truly malfunctioning motor (discovered after-wards). The adaptive gains corresponding to the
heading dynamics evolve slowly since their adaptive rates are significantly lower than those of the
other channels. Large yaw motions have not been included as a part of our experiments, hence,
tuning the adaptive rates for heading control was not necessary.
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Figure 8. Adaptive gains computed using e-modification adaptive laws. (top left)
shows the evolution of the adaptive altitude gains: K̂x,z(t), K̂x,ż(t), K̂r,z(t), ⇥̂x,z(t).
Similarly, the evolution of adaptive gains are shown for the roll channel (top right),
pitch channel (bottom left), and yaw channel (bottom right).

Figure 9 shows the control inputs over time. Over the time interval t 2 [20, 50], the total thrust
u1(t) indicates that approximately 63% of the UAV’s total thrust capability is required to stay aloft
with the added 85g payload. In the same time interval, the UAV requires a constant roll moment to
be applied to stay level. This is due to the slung payload being mounted slightly off of the x-axis of
the body’s reference frame. Similarly, a constant yawing moment is applied to keep the UAV facing
forward. This is a result of the wind disturbance and a malfunctioning motor.

At time t = 55s, the control inputs rapidly respond to the changing behavior of the UAV as a
result of the induced motor failure and slung payload. The total thrust u1(t) increases significantly
to improve the altitude tracking despite the loss of available thrust. The roll, pitch, and yaw moments
u2(t), u3(t), and u4(t) increase in magnitude following the motor failure as well. At time t ⇡ 71s,
the payload is released, and the total thrust u1(t) decreases accordingly. At the same time, the
pitching moment u3(t) increases slightly since the payload, once mounted on the nose of the aircraft,
has been released, and a pitching moment needs to be applied to keep the trajectory tracking error
small.

Interestingly, the adaptive controller is only able to ensure mission completeness in the face of
large disturbances if there is enough excess thrust to maintain good levels of control authority.
If there was not enough excess thrust, the motor failure would result in aborting the flight rather
than continue the mission. This is still better than the performance provided by the common PID
controller, which is unable to recover from this large disturbance.
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Figure 9. Total thrust u1(t), roll moment u2(t), pitch moment u3(t), and yaw moment
u4(t) generated by e-modification MRAC law.

ANS Output

Figures 10 and 11 are the measured relative position and attitude, respectively, from ANS com-
pared with the truth data from the motion capture system (MoCAP). Due to processing limitations,
a measurement solution was produced at a rate of 4-8Hz which was too slow for the UAS flight
computer to use as a relative pose solution for navigation purposes. As such, the flight computer
used the motion capture data for the duration of the experiment.

The position estimate in Figure 10 shows the relative position of the sensor, but coordinitized in
the inertial frame of the motion capture system. Thus, for instance, the negative value of relative Z
shows that the UAS must decrease its altitude to land on the target platform. Note there is an altitude
bias between the motion capture data and the ANS data. That is due to a roughly 10cm difference
in location ANS frame and the body frame of the quadcopter as viewed by the MoCAP system.

Often, the ANS solution is able to accurately measure the relative pose, especially for the Y
and Z channels. However, is a significant amount of noise present in the ANS solution. These
errors highlight how the LIDAR/vision-based system is susceptible to factors such as motion blur,
mechanical vibration, and image latency. These factors affect the precision of the feature detection
algorithm of the camera, which cascades to the computation of the relative pose solution.
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Figure 10. Relative position measurement from ANS (blue line) compared to cortex
motion capture data(orange line).

Figure 11. Relative attitude measurement from ANS (blue line) compared to cortex
motion capture data(orange line).
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CONCLUSION

This objective of this paper was to present a fully developed and capable integration of LIDAR-
based navigation to a Class 1, autonomous UAS. The UAS is controlled using a state-of-the-art
robust adaptive control law and demonstrates rejection of flight disturbances. Successful demon-
stration of these flight capabilities supports ongoing validation of adaptive control techniques for
field use. The new sensor package offers a lightweight, and low cost navigation solution for GPS-
denied e.g. extraterrestrial environments. In light of the noise and errors in the navigation solution,
the flight tests were considered a success due to the successful implementation of the adaptive con-
trol law in response to flight disturbances, and relative pose measurement solution achieved through
an on-board LIDAR/vision device. This data will be used to identify key areas of improvement with
the overall flight package.
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