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Identification and quantitative understanding of factors that influence occupant energy

behavior and thermal state during the design phase are critical in supporting effective

energy-efficient design. To achieve this, immersive virtual environments (IVEs) have

recently shown potential as a tool to simulate occupant energy behaviors and collect

context-dependent behavior data for buildings under design. On the other hand,

prior models of occupant energy behaviors and thermal states used correlation-based

approaches, which failed to capture the underlying causal interactions between the

influencing factors and hence were unable to uncover the true causing factors. Therefore,

in this study, the authors investigate the applicability of causal inference for identifying

the causing factors of occupant/participant energy behavioral intentions and their

thermal states in IVE condition and compare those results with the baseline in-situ

condition. The energy behavioral intentions here are a proximal antecedent of actual

energy behaviors. A set of experiments involving 72 human subjects were performed

through the use of a head-mounted device (HMD) in a climate chamber. The subjects

were exposed to three different step temperatures (cool, neutral, warm) under an IVE

and a baseline in-situ condition. Participants’ individual factors, behavioral factors,

skin temperatures, virtual experience factors, thermal states (sensation, acceptability,

comfort), and energy behavioral intentions were collected during the experiments.

Structural causal models were learnt from data using the elicitation method in conjunction

with the PC-Stable algorithm. The findings show that the causal inference framework

is a potentially effective method for identifying causing factors of thermal states and

energy behavioral intentions as well as quantifying their causal effects. In addition,

the study shows that in IVE experiments, the participants’ virtual experience factors

such as their immersion, presence, and cybersickness were not the causing factors

of thermal states and energy behavioral intentions. Furthermore, the study suggests

that participants’ behavioral factors such as their attitudes toward energy conservation

and perceived behavioral control to conserve energy were the causing factors of their

energy behavioral intentions. Also, the indoor temperature was a causing factor of general

thermal sensation and overall skin temperature. The paper also discusses other findings,

including discrepancies, limitations of the study, and recommendations for future studies.

Keywords: immersive virtual environments, thermal states, correlation, causal inference, occupant energy
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INTRODUCTION

Occupants interact with the components of building systems
in a variety of ways to achieve their desired comfort level,
thereby influencing the indoor environment and overall energy
use of the buildings. These interactions differ greatly between
individuals, resulting in wide variations in the conditions
of indoor environments and building energy use (Clevenger
et al., 2014; Delzendeh et al., 2017). State-of-the-art studies
and extensive literature reviews confirm that accurate occupant
energy behavior analysis during design is critical to closing
the gap between expected and real building energy efficiency
(Maier et al., 2009; Fabi et al., 2013b; Martinaitis et al.,
2015; Schakib-Ekbatan et al., 2015; Calì et al., 2016; Yang
et al., 2016). This energy behavior is influenced by many
factors. Some are objective factors such as temperature
and climate (Nisiforou et al., 2012); others are subjective
factors such as occupant thermal states (e.g., sensation,
comfort, and acceptability) (Nisiforou et al., 2012; Hong et al.,
2015). Determining the influential factors in occupant energy
behavior analysis is essential for achieving better sustainable
building designs.

Many studies have developed methods and tools for analyzing
occupant energy behavior and thermal states by considering
various influencing factors (Frontczak and Wargocki, 2011; Yan
et al., 2015). Multivariable models such as logistic regression,
principal component analysis, and probit analysis have been
applied to estimate the occupant’s energy behavior using
factors such as indoor and outdoor temperature, time of day,
occupancy patterns, and occupants’ individual characteristics
(Rijal et al., 2008; Yun and Steemers, 2008; Zhang and Barrett,
2012; Fabi et al., 2013a; Van Der Lans et al., 2013; D’Oca
et al., 2014; Ren et al., 2014; Gunay et al., 2018; Vogiatzi
et al., 2018; Belazi et al., 2019; Bruce-Konuah et al., 2019).
Whereas for analyzing the occupant thermal states, a non-
linear multiple regression model was developed with influential
factors such as mean skin temperature and time differences
(Takada et al., 2013), and a logistic regression model was
developed with influential factors such as indoor temperatures,
air quality, and noise levels (Alm et al., 1999; Wong et al.,
2008; Lai et al., 2009). Probit and linear regression analysis
were also used to evaluate participants’ comfort in a climate
chamber as a function of operative temperatures, perceived
air quality, and noise decibel level (Clausen et al., 1993).
Furthermore, existing predictive approaches such as deep
learning (Goodfellow et al., 2016; Chokwitthaya et al., 2019,
2021; Liu et al., 2019) only captured associations. Also, statistical
tests such as t-tests and correlation coefficients allowed the
comparison of thermal sensation between real and virtual
environments using indoor air and skin temperatures (Yeom
et al., 2019a). Overall, the conventional modeling methods of
occupant energy behavior and thermal states discussed above
are based on the existing paradigm focusing on associations
between influential factors and outcome (such as behavior or
thermal states).

Associations such as correlations are typically made up
of a mix of causal relationships and non-causal relationships

(Aldrich, 1995). A causal relationship exists between two factors
if the occurrence of the first causes the occurrence of the
second. The first event is referred to as the cause, while
the second event is referred to as the effect (Pearl, 2009a;
Morgan and Winship, 2014). Causal inference determines true
causal relationships by blocking all non-causal relationships
in correlations under certain conditions. This is important
because correlations only record the co-occurrence of influential
factors and the outcome and rarely provide a reasonable
interpretation for predictions (Hofman et al., 2017). For example,
there may be a strong correlation between occupant gender
and thermostat set-point adjustment, making gender a useful
predictor of thermostat behavior (Andersen et al., 2009).
However, gender may not provide a reasonable interpretation
for thermostat behavior because it is not always a direct
cause (Abrahamse and Steg, 2011). In fact, the causes of
thermostat behavior, such as indoor air temperature (Gunay
et al., 2018), could provide a reasonable interpretation for the
prediction of thermostat behavior. Furthermore, the correlation-
based statistical models assume non-multicollinearity among
the influential factors implying that the influential factors
should be independent of each other. However, occupant
energy behavior and thermal states are mutually influenced by
environmental, physiological, and individual factors (Schweiker
et al., 2020). The important causal interactions between those
factors, which contribute to the behavior and thermal states,
have been overlooked in existing studies. As a result, more
integrated modeling tools are needed to enhance decision-
making by providing fresh insights into the interactions between
behavior, thermal states, environmental, physiological, and
individual factors. Causal models are appropriate for this task
because they graphically represent the dependencies between
factors using probability distributions generated from empirical
data or domain (expert) knowledge. This makes it easier
to identify the causal interactions among a diverse set of
influential factors and outcomes (Korb and Nicholson, 2010;
Nabijiang et al., 2019). Moreover, causal models permit the
updating of prior knowledge based on the new evidence
(experimental or field data) and help researchers develop study
designs by establishing specific guidelines for determining
which factors should be included/controlled for (Yao et al.,
2020).

In the last few years, the application of immersive virtual
environments (IVEs) to investigate the influence of design
decisions on occupants has emerged (Maldovan et al., 2006; Vilar
et al., 2014; Kuliga et al., 2015). In IVEs, the participants are
completely immersed in a simulated representation of the real
world, through which they can interact with and picture real
world actions and situations (Niu et al., 2016). Thus, the use
of IVE technologies could be highly advantageous to explore
human behavior in buildings under design in terms of cost/time
performance and producing context-aware data for occupant
energy behavior studies (Kuliga et al., 2015). Applications of IVEs
in building design and operation have shown to be successful,
particularly for studying occupant thermal states (Yeom et al.,
2019a,b), daylight (Heydarian et al., 2015; Chamilothori et al.,
2016, 2019), and energy simulations (Bahar et al., 2013). IVEs
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have also been used to simulate sound and acoustics levels
in new infrastructures (Ruotolo et al., 2013) and to explore
the occupant’s evacuation waiting times and exit choices using
elevators during an emergency (Andrée et al., 2016). Yet, it is
crucial to verify if the occupant/participant responses in the
IVEs are comparable to those in in-situ environments when
using IVEs for analyzing energy behaviors and thermal states.
However, the above IVE studies, specifically the thermal state
and daylight studies, used parametric/non-parametric statistical
tests and correlation analyses to validate if the participant
responses in IVEs were comparable to those in the in-situ
environments. These studies did not use causal models to
investigate the causal relationships and check if the causing
factors of occupant energy behaviors and thermal states in
IVEs were comparable to those in in-situ. Also, the existing
IVE studies failed to examine the causal relationships between
the virtual experience factors (such as presence, cybersickness,
and immersive tendencies in IVEs) and energy behaviors and
thermal states.

In this paper, the authors intend to study the application
of causal inference to identify the causing factors of occupant
energy behavioral intentions and thermal states in both
IVE and in-situ conditions and understand their effects
quantitatively. To the best of the author’s knowledge, such
a framework has not been applied before in IVE based
occupant energy behavior studies. The major contributions of
this study include:

• A causal inference framework to coherently integrate major
steps for creating, validating, and interpreting structure causal
models (SCMs). This framework is flexible and adaptive
because it is data-driven and can encompass a wide range of
factors, and

• Application of the causal inference framework to identify
the causing factors of occupant/participant thermal states
and energy behavioral intentions in both IVE and in-situ
conditions. Consequently, the application supports causal
analysis for each condition and a comparison of causal
analyses results between them.

This paper is organized as follows: in Background section,
the authors first discuss relevant factors that influence
occupant energy behaviors, thermal states, and the users’
virtual environment experience. In Overview of Causal
Inference Framework section, the authors discuss the
causal inference framework, which includes five key steps,
i.e., initial factor selection and description, causal model
specification, causal effect estimation, causal model validation,
and interpretation of results. In Data Collection Tools,
Recruitment and Experiment Procedure section, the authors
describe the data collection tools, recruitment, and experiment
procedure. In Application of Causal Inference section, the
authors discuss the implementation of the framework on the
experimental data. Finally, the authors in Results Interpretation
and Discussion, Limitations and Conclusions interpret and
discuss the results, limitations, conclusions, and future
work, respectively.

BACKGROUND

This section summarizes the key factors driving occupant
energy behaviors and thermal states along with their common
modeling approaches.

Key Factors Affecting Occupant Energy
Behavior
The most important impacts on occupant energy behaviors are
environmental factors such as indoor air temperature (Parsons,
2002; Cui et al., 2013; ANSI/ASHRAE, 2017). Several studies have
reported that indoor air temperature has a substantial impact
on occupant energy behaviors like thermostat adjustments for
heating/cooling (Bae and Chun, 2009; Lin et al., 2016), turning
on/off AC (Bae and Chun, 2009; Ren et al., 2014), window
opening/closing (Haldi and Robinson, 2008, 2009; Yun and
Steemers, 2008; Yun et al., 2008, 2009), drinking cold/hot
beverages (Haldi and Robinson, 2008, 2011), desk fan usage
(Haldi and Robinson, 2008), adjusting body posture (Schweiker
et al., 2017), and adjusting clothing (Haldi and Robinson,
2008). Occupant thermal sensations under different indoor air
temperatures also affect their energy behavior (Bonte et al., 2014).
Individual factors of occupants, which are further classified into
psychological and social factors, significantly impact occupant
energy behavior and thermal comfort, and they have been
thoroughly researched. Individual factors affecting occupant
energy behavior include users’ knowledge of energy matters,
gender, employment, family size, and ethnicity (Wei et al., 2013;
Martinaitis et al., 2015). People’s education levels and psychology,
such as their attitudes toward energy consumption, also impacted
their energy related behaviors (Janda, 2011). However, the above
studies followed conventional modeling approaches, and the
results are interpreted as correlations rather than causation.

Furthermore, to analyze the factors affecting human
behaviors, various theories such as the Theory of Planned
Behavior (TPB) (Ajzen, 1991) have been applied widely to
address individuals’ energy behavior (Vlek and Steg, 2007;
Tetlow et al., 2015). The Theory of Planned Behavior is a well-
known theory that predicts the intention of a person to engage in
a behavior. The three major elements of this theory consist of the
attitudes toward performing the behavior (i.e., the point to which
a behavior is regarded favorably or unfavorably), the social norms
or pressure to perform the behavior (i.e., social pressure coming
from people’s immediate social network), and the perceived
behavioral control (i.e., beliefs about the existence of factors that
can aid or hinder the success of the behavior). A combination
of these elements determines the behavioral intention, as well
as the final action. For example, in building energy behavior
research, TPB factors were used to explain the differences in
the intentions of employees’ to perform pro-environmental
activities like recycling, switching off electrical appliances while
leaving their desks, and using teleconference instead of traveling
(Greaves et al., 2013). Another study indicated that viewpoints
toward conserving energy together with perceived behavioral
control strongly determine the propensity to conserve energy
within low-income houses throughout the USA (Chen et al.,
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2017). Therefore, in this study, the factors of TPB will also be
applied to analyze occupant energy behavioral intentions as a
proximal antecedent of actual energy behavior in IVEs.

Key Factors Affecting Thermal States
Researchers analyzed occupant thermal states since they also
significantly affect their energy behavior (Hong et al., 2015).
The thermal states of the occupants usually include sensation,
acceptability, and comfort. Thermal sensation is defined as
the apparent sensation that people have in relation to their
surrounding environment and is usually measured using a 7-
point Likert scale (−3-cold sensation, +3-hot sensation) of
ASHRAE Standard 55 (de Dear and Brager, 1998; ASHRAE,
2013). Whereas thermal comfort refers to “the condition of
mindwhich expresses satisfaction with the thermal environment”
(ASHRAE, 2013), and thermal acceptability defines whether a
particular environmental condition is acceptable or not. Comfort
and acceptability are also measured using surveys such as 6-point
Likert scales (−3-totally unacceptable,+3-totally acceptable;−3-
very uncomfortable, +3-very comfortable) (Zhang, 2003; Goto
et al., 2006; Zhang and Zhao, 2008; Zhang et al., 2016). Similar
to the factors affecting occupant energy behavior, the occupant
thermal states are also affected by environmental, individual,
and physiological factors. Factors such as indoor air temperature
and overall quality of environment were correlated with thermal
sensation and comfort (Clausen et al., 1993; Alm et al., 1999).
Some studies have indicated that there are variations between
different groups of people, i.e., gender, age, and body mass index
(BMI) on thermal preferences (Lan et al., 2008; Schweiker and
Shukuya, 2009, 2010; Chow et al., 2010; Indraganti and Rao,
2010; Indraganti et al., 2015; Rupp et al., 2018). Furthermore,
physiological factors such as skin temperatures and heart rates
are the most important indicators of thermoregulation of the
human body (Arens and Hui, 2006; Yao et al., 2008; Choi
et al., 2012; Choi and Yeom, 2017, 2019; Nkurikiyeyezu et al.,
2018). These physiological factors will help maintain body
temperature equilibrium in different thermal environments and
play a vital role in determining thermal states, which in turn
affects occupants’ energy behaviors (Bulcao et al., 2000).

Virtual Experience Factors
The virtual experience factors are a collection of characteristics
that indicate the quality of experience in immersive virtual
environments (IVEs). These characteristics are usually grouped
into three main factors, i.e., presence, cybersickness, and
immersive tendencies. Presence is described as being the
“psychological state of ’being there’ mediated by an environment
that activates our senses, captures our attention, and promotes
our active participation” (Ijsselsteijn et al., 2000; Witmer et al.,
2005). Igroup Presence Questionnaire (IPQ) (Schubert et al.,
1999) is a frequently used questionnaire to quantify the users’
presence. This 13-item questionnaire has four factors, i.e., general
presence, spatial presence, involvement, and experienced realism.
The questions are gauged on a 5-point Likert scale that ranges
between 1-strongly disagree; 5-strongly agree. On the other hand,
cybersickness is a collection of unpleasant sensations that impair
users’ interaction with a virtual world (LaViola, 2000). The

Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993)
has been extensively utilized for determining motion sickness.
This questionnaire contains 16 items that include four factors,
i.e., nausea, oculomotor, disorientation, and total cybersickness.
The total cybersickness is the summation of the responses of
the remaining three factors. All the questions in the SSQ are
gauged on a 4-point scale that ranges between 0-none; 3-severe.
Immersive tendencies are defined as a users’ proclivity to become
absorbed in a simulated world (Slater and Wilbur, 1997). They
are thought to be one of the crucial factors affecting a users’
sensation of presence and cybersickness, with a high level of
immersion predicting a high level of presence (Lessiter et al.,
2001; Banerjee et al., 2002) and a higher level of cybersickness
(Bangay and Preston, 1998). Immersive tendencies are usually
measured using the ITQ questionnaire (Witmer and Singer,
1998). It is a questionnaire of 18 items that consists of four
factors, i.e., focus (indicates the level of focus in the virtual world),
involvement (indicates the level of involvement in the virtual
world), emotion (indicates the level of emotion during and after
exposure to the virtual world), and entertainment (indicates the
level of entertainment while in the virtual world). The responses
to these factors are on a 7-point Likert scale (1 = never; 4 =

occasionally; 7 = often). The total number of points represents
a users’ immersive tendency.

Past evidence suggests that the aforementioned virtual
experience factors will impact the users’ physiological factors. For
example, various studies have reported that presence influences
the degree of stress in a virtual world (Bouchard et al., 2008),
and cybersickness influences heart rates (Nalivaiko et al., 2015),
respiratory rates (Dennison et al., 2016), skin conductance
(Gavgani et al., 2017), and skin temperatures (Kim et al.,
2005). Individual factors like age, gender, and ethnicity also
influence presence and cybersickness (Klosterhalfen et al., 2005;
Schuemie et al., 2005; Felnhofer et al., 2012; Paillard et al., 2013).
Furthermore, the literature presented in Key Factors Affecting
Occupant Energy Behavior and Key Factors Affecting Thermal
States sections suggests that the physiological and individual
factors influence occupant energy behaviors and thermal states.
Consequently, a pathway may exist from virtual experiences to
occupant energy behaviors and thermal states through individual
and physiological factors. Therefore, when using IVEs for
occupant energy behavior and thermal state experiments, it is
necessary to investigate whether the virtual experience factors
would influence those experiments outcomes.

OVERVIEW OF CAUSAL INFERENCE
FRAMEWORK

The term “causality” is called cause and effect, where the cause is
accountable for the effect, and the effect depends on the cause
(Yao et al., 2020). Causality analysis can discover the causal
mechanisms underlying the data-generating process to explain
the relationships between the explanatory factors and outcome.
For example, would a change in indoor room temperature
causes a change in the occupant’s skin temperature? These
types of questions can be answered by applying causal inference
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methods (Rubin, 1990; Peters et al., 2017). In this section, a
causal inference framework for inferring causality from data is
presented in detail. The framework involves five main steps (1)
factor selection and description; (2) causal model specification
that accurately depicts the domain knowledge; (3) estimation of
the causal effects (i.e., magnitude of change in the distribution of
outcome for any change in the distribution of input factor); (4)
validation of the causal model; (5) interpretation of the results.

Initial Factor Selection and Description
The first step of a causal inference process is to select and describe
the factors of a study. Two types of factors are usually included
in a causality study. They are the treatment factor (or cause)
and the outcome factor (or effect) (Tsapeli and Musolesi, 2015).
A treatment factor is an influential or independent factor that
impacts the values of the outcome factor; whereas, the outcome
factor or effect is a dependent factor that can be modified
by varying the treatment factor. A series of questions can be
asked to identify an initial set of potential treatment factors,
such as (1) what circumstances lead to the occurrence of the
problem or the outcome? (2) What other problems exist in
the context of the core problem’s occurrence? On the basis of
such questions, a literature search can be performed to uncover
an initial set of treatment factors for analyzing the outcome
(Petersen and van der Laan, 2014).

Once the treatment factors are identified, typically, they are
coded in binary format, indicating whether or not a research item
is subjected to treatment. However, if various levels of treatments
are considered, a treatment factor may also be categorical.
Continuous treatment or outcome factors are often discretized
into categorical factors because the algorithms performing
approximate causal inference function well on categorical data
(Spirtes et al., 2000; Jensen et al., 2009; Nanda et al., 2016;
Tosun et al., 2017). Discretization also makes the findings easier
to interpret.

Causal Model Specification
A causal model can define a formal representation of potential
causal relationships between the key factors. A causal model is an
arithmetic concept that explains the causal relationships between
factors in quantitative terms (Guo et al., 2018). Different types
of causal models exist, such as Granger causality (Granger, 1969)
and potential outcome framework (Rubin, 1974; Maldonado and
Greenland, 2002), among which structural causal models (SCMs)
or causal graphs have demonstrated their ability to identify the
causal relationships between various factors of a study (Pearl,
1988; Judea and Dana, 2018). SCMs provide a visualization of
the interactions between the factors by representing the factors
as nodes and connecting those nodes with arcs to show the
interactions (Glymour et al., 2019). They can naturally deal with
missing data. They offer a strategy for avoiding data overfitting,
and they enable data to be combined with prior literature
knowledge to create more accurate models (Heckerman, 1995;
Scutari et al., 2017). Furthermore, SCMs can readily be coupled
with decision-making tools to assist management (Uusitalo,
2007). As such, SCMs were chosen in this study to identify the
factors causing energy behavioral intentions and thermal states.

An SCM G = (F, A) is represented by a directed acyclic
graph (DAG) (i.e., graphs with no directed paths that begin
and end at the same node) (Pearl, 2009b). An SCM (G) depicts
the causal relationships between factors, with F being a set
of nodes (or vertices) and A ⊆ F × F is the set of arcs (or
edges). Each node in an SCM represents a treatment factor,
outcome factor, and other observed or unobserved factors. The
arcs represent the causal links between them. Figure 1 shows
an example of a structural causal model representing the causal
dependencies between OUTCOME and a collection of factors
(FAC or Treatment) that may influence OUTCOME. The nodes
have a hierarchical structure which is determined by the way
the arcs are directed. For example, in Figure 1, X1 and X3 are
connected by an arc, then node X1 is the ancestor or immediate
parent of X3 and X3 is the descendant or child of X1. A directed
arc X3 → OUTCOME means that if the distribution of X3 is
altered, it will alter the distribution of the OUTCOME. However,
if there is an absence of arc between X3 and OUTCOME, it
indicates that any change in the distribution of X3 will not change
the distribution of OUTCOME.

One of the advantages of SCMs is identifying back-door paths
and confounding factors that are useful in blocking non-causal
paths during causal effect estimation. The following sub-sections
provide a brief description of confounding and learning of SCMs.

Confounding and Back-Door Paths in SCMs
In an SCM, a path between the treatment and outcome factors
can be a direct path or a back-door path (Greenland et al., 1999;
Robins, 2001). A direct path is a path in which all the arcs point
forward. For example, in Figure 1, the path X4 → OUTCOME
is a direct path representing the effect of X4 on OUTCOME. In
contrast, a back-door path is a path that flows backward out of
a treatment factor. For example, in Figure 1, the path X4 ←−

X3 → OUTCOME is a back-door path because the direction
of the arc from X4 to X3 is backward. Also, this back-door path
is confounding because, in this path, X3 is the common cause (or
confounding factor) of X4 andOUTCOME since it has direct arcs
to both X4 and OUTCOME. This confounding in the back-door
paths conceals the true causal effect of a treatment factor. Thus
it should be identified and blocked during causal analysis. This
process is known as conditioning. One can block the backdoor
paths by conditioning on the confounding factors in the path
using the back-door criterion (Yao et al., 2020). In the above
example, the back-door path X4 ←− X3 → OUTCOME can
be blocked by conditioning the confounder X3, which breaks
the association between X4 and OUTCOME. Thus, blocking the
back-door path ensures that all the paths linking the treatment
factors with the outcome are causal in nature.

Learning Structural Causal Models
There are two types of approaches to building a structural
causal model for causal inference. The first approach, dubbed
“elicitation,” comprises domain experts who use their knowledge
to structure a graph by including or excluding the relationships
between the factors (Neil et al., 2000). Multiple experts can elicit
structural causal models by considering their individual opinions
and then combine them or reach a group agreement (Martin
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FIGURE 1 | Example of a structural causal model.

et al., 2012). The elicitation method may be helpful when there is
a scarcity of data or measurements from a field survey. However,
selecting experts and elicitation techniques can be a difficult task
(Kuhnert et al., 2010).

In the second approach, causal discovery algorithms are used
to produce SCMs automatically from the available data. This
approach is useful when there is no expert information available
on the interplay of the relationships between the treatment
factors and outcome. The score-based (Magliacane et al., 2016)
and constraint-based algorithms (Zhang, 2008; Colombo et al.,
2012) are the two major algorithms that can be used to create
an SCM. The score-based algorithms use a goodness-of-fit score
to generate the best possible network graph, which might be
an NP-hard problem for high-dimensional data (Chickering
et al., 1994). On the other hand, constraint-based algorithms use
conditional independence tests to identify causal relationships
among factors. The oldest andmost widely used constraint-based
algorithm to learn an SCM is the PC algorithm (Spirtes et al.,
2000). This algorithm is highly reliable under independent and
identically distributed sampling (Glymour et al., 2019), executes
in polynomial time, and is computationally efficient in handling
high-dimensional data with up to thousands of factors (Kalisch
and Buehlmann, 2005). There are two phases to the PC algorithm.
The skeleton identification stage is the first phase: The algorithm
starts with the complete graph and tries to find a conditional
independence X ⊥⊥ Y | F for each pair of factors X and Y.
The separating set F is then cached after the corresponding arc
is removed using the results of conditional independence tests
(Spirtes et al., 2000). The orientations phase is the second phase,

where the cached conditioning sets are used to orient the arcs.
However, the performance of the PC algorithm depends on the
order as it is affected by the order in which the factors are
presented, and conditional independence tests are performed.
Therefore, a newmodified version called the PC-stable algorithm
was developed, which is order-independent and results in fewer
errors compared to the original PC algorithm (Colombo and
Maathuis, 2014). This algorithm also works in two steps. First,
the algorithm considers all triples (X, Y, F) where the pair (X, Y)
is adjacent, and the pair (Y, F) is adjacent, but the pair (X, F) is
not. The algorithm guides both edges toward Y (X→ Y←− Z)
for all such triples iff Y did not belong to the conditioning set that
caused the removal of the arc connecting X and F. The structure
X → Y ←− F is known as a collider. A set of colliders are
then extracted in the second step, and any remaining undirected
edges are oriented using a set of rules known as Meek rules
(Meek, 2013).

Additionally, the performance of the algorithmic learning
methods can be improved by including prior knowledge about
a part of the structure while learning (Mansinghka et al., 2012;
Xu et al., 2015). This ensures that the algorithm learns the
structure more efficiently by capturing the prior distribution
present in the data that would otherwise be overlooked. This can
be achieved by combining the algorithmic-based methods with
the elicitation methods where the latter helps include or exclude
the relationships between some factors based on the prior or
expert knowledge, and the former learns the structure between
the other factors from the available data. As a result of the
preceding discussion, the elicitation method, in conjunction with
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a PC-Stable algorithm, was used to learn the SCMs to identify the
factors causing energy behavioral intentions and thermal states.

Causal Effects Estimation
The causal effect exercised by a treatment factor X over an
outcome factor Y refers to the magnitude of change in the
probability distribution associated with the factor Y with respect
to change in the probability distribution associated with X. In
other words, it is a measure of how different the outcome is when
the subject received the treatment compared to that when the
subject did not receive the treatment (Rubin, 1974; Maldonado
and Greenland, 2002). For example, in Figure 1, assume X2

as indoor room temperature with two treatment levels, i.e.,
hot and cold temperature and OUTCOME as occupant’s skin
temperature. We would like to know what is the causal effect
of hot indoor temperature versus cold indoor temperature on an
occupant’s skin temperature. Since there are two treatment levels,
there will be two outcomes, i.e., the occupant’s skin temperature
under hot indoor temperature and their skin temperature
under cold indoor temperature. The causal effect of the indoor
room temperature on the occupant’s skin temperature is then
determined by taking the difference between those two outcomes.
The above definition is known as individual causal effect (ICE),
which applies to a single individual. However, the average causal
effect (ACE) is used based on ICE to find the causal effects on a
target population. ACE can be defined as the approximation of
ICE over the entire target population.

There are two types of causal effects in an SCM; direct and
indirect causal effects. Direct causal effects are those that occur
when they go directly from one factor to another. Indirect
causal effects occur when one or more factors mediate the
relationship between two factors. For example, in Figure 1, X2

affects OUTCOME both in a direct and indirect way via its
direct impact on X3. The magnitude of the direct causal effect
can be determined by computing the coefficient between X2

and OUTCOME. The indirect effects can be determined by
computing the product of the coefficients between X2 and X3 and
between X3 and OUTCOME. The combined effect is obtained
by adding the direct and indirect impacts of X2 on OUTCOME.
Regression analysis is one way of determining the coefficients
as an average causal effect estimate by training the model with
the outcome as dependent factor and treatments as independent
factors (Bellemare et al., 2017; Luo et al., 2017). The coefficients
can be either positive or negative. The positive coefficients imply
that the event is more likely to occur at a treatment factor’s group
level than at its reference level; whereas, negative coefficients
imply that the event is more likely to occur at the reference level
of the treatment factor than at its group level.

Furthermore, if there are back-door paths and confounding
factors between treatment and outcome, those back-door paths
must be blocked by conditioning on the confounding factors.
Common methods of conditioning confounding factors and
estimating causal effects for SCMs include Parametric G-
computation (Zhang et al., 2018), TargetedMaximum Likelihood
Estimation (TMLE) (van der Laan and Rubin, 2006), and Inverse
Probability Weighting (IPW) (Rosenbaum and Rubin, 1983).

Model Validation
The performance and the accuracy of the causal models can
be validated using several metrics such as receiver operating
characteristics, error rates and scoring rules, and cross-validation
(Marcot et al., 2006). In this study, cross-validation (Boyce
et al., 2002) is chosen as the method for validating the SCMs
(Barthelmes et al., 2017). Cross-validation decomposes the data
into k disjoint subsets known as folds of approximately the same
size. Each fold is considered unseen data, whereas the rest of k−1
folds are considered seen data. One trains the model on the seen
data and validates against the unseen data to find the model’s
goodness-of-fit. This method reveals the degree to which a model
is robust by preventing overfitting and how accurate the model is
at classifying new or unique data.

Results Interpretation
The final step of the causal inference framework is to interpret
the results. In a structural causal model (SCM), we can look at
the direction of network arcs that flow from one factor to another
to interpret the causal relationship between them. Furthermore,
the causal effect estimate will indicate the strength of the causal
relationships between the factors. Since the causal effects are
computed using regression, they can be interpreted the same
way the regression coefficients are interpreted. For example, an
SCM was developed to study substance abuse, and with the
help of regression coefficients, the authors found that taking
marijuana causes the odds of taking heroin to be 23 times
more than that of people who didn’t take marijuana (Lewis
and Kuerbis, 2016). In another study, an SCM was developed
to identify causes that affect the results of coronally advanced
flap procedure (Nieri et al., 2009). Factors such as patients’ age
and complete root coverage had a negative causal effect on
their root canal sensitivity. In contrast, factors such as gender
had a positive causal effect on deeper average recessions. Two
alternative SCMs were developed to estimate the causal effect of
exclusive breastfeeding (EBF) on early childhood caries (ECC)
for Ugandan kids aged 5 (Birungi et al., 2017). Based on the
regression coefficients, EBF showed considerable impact on ECC
in the first SCM, and EBF with marital status showed significant
impact on ECC in the second SCM.

DATA COLLECTION TOOLS,
RECRUITMENT AND EXPERIMENT
PROCEDURE

Data Collection Tools
Individual Factors
The participants’ individual factors such as gender, age, ethnicity,
BMI, level of education, and status of employment are collected
before the experiment.

Indoor Room Temperature
TheVernier surface temperature sensing device (range:−25◦C to
125◦C; accuracy: 0.5◦C; resolution: 0.1◦C) was used to measure
the indoor room temperature. This sensor was installed at the
height of 24′′ from the floor as recommended by ASHRAE (2013)
because of its closeness to the center of the participants’ height
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when they were seated during the experiments. Logger Pro 13
was used to record the temperature data.

Overall Skin Temperature
The skin temperatures are also measured using the Vernier
surface temperature sensors and recorded using Logger Pro 13.
The sensors are taped to the participants’ eight local skin sites, i.e.,
at forehead, neck, chest, upper back, forearm, hand, calf, and foot.

The following equation was used to compute the overall skin
temperature (OST):

OST=0.07Sfh+0.26Sn+0.175Sch+0.175Su+0.07Sfo

+0.05Sh+0.13Sca+0.07Sft (1)

where Sfh, Sn, Sch, Su, Sfo, Sh, Sca, Sft , represent the forehead,
neck, chest, upper back, forearm, hand, calf, and foot skin
temperature, respectively. The weighting factors of the local sites
reported in these studies (ISO, ISO, ISO 9886:2004, 2004; ISO,
ISO 9920:2007, 2007; Gagge and Nishi, 2011; Liu et al., 2014;
Xiong et al., 2016) were used to derive this formula.

Behavioral/TPB Factors
Behavioral factors were acquired through the use of the Theory
of Planned Behavior (TPB) questionnaire specifically developed
to predict pro-environmental behaviors (Macovei, 2015). This
questionnaire consists of 24 items, out of which 11 items
are related to the three TPB factors (attitudes, social norms,
and perceived behavioral control). The participants’ attitudes
toward energy conservation and perceived behavioral control
are measured using four items, whereas their social norms are
measured using three items. The responses to all the 11 items
are obtained using a 5-point Likert scale (1-strongly disagree;
5-strongly agree). The final scores for attitude, social norms,
and perceived behavioral control are obtained by averaging the
responses across the items corresponding to those factors. A
higher average score for each factor indicates that the participant
is highly inclined toward pro-environmental behavior.

Immersive Tendencies
Participants’ immersive tendencies such as focus, involvement,
emotion, and entertainment were collected using the modified
version of the Immersive Tendencies Questionnaire (ITQ)
(Witmer and Singer, 1998). The responses for each factor are
obtained through a 7-point Likert scale (1-never, 4-occasionally;
7-often). The final score for each factor is a percentage value, that
is, the sum of the responses multiplied by 100 and then divided
by the product of the number of items and the Likert scale points
(7 in this case), respectively. The higher the score, the more is the
level of immersion in IVEs.

Presence and Cybersickness
Presence is obtained through the use of the Igroup Presence
Questionnaire (IPQ) (Schubert et al., 1999). The responses are
obtained using a 5-point Likert scale (1- strongly disagree; 5-
strongly agree). The score for presence is computed using the
same method used to compute values for immersive tendencies.
The higher the score, the higher is the presence level in IVEs.
Cybersickness is acquired through the use of the Simulator

Sickness Questionnaire (SSQ) (Kennedy et al., 1993). It consists
of three factors (nausea, oculomotor, disorientation, and total
cybersickness) and is measured using a 4-point Likert scale (0-
none, 3-severe). The following is the methodology for computing
the score for each factor: Nausea is calculated as [A] times
9.54, Oculomotor is calculated as [B] times 7.58, Disorientation
is calculated as [C] times 13.92, and Total Cybersickness is
calculated as ([A] + [B] + [C]) times 3.74, where [A], [B], [C]
denotes the sum of the responses to nausea, oculomotor and
disorientation items respectively. A higher score indicates a high
level of cybersickness in IVEs.

Energy Behavioral Intentions
The participants’ energy behavioral intentions are one of this
study’s outcome factors and are collected using a questionnaire.
This questionnaire consists of several energy and non-energy
related behavioral intention choices. Energy related behavioral
intention choices include using a handheld fan, switching
on/off fans or heaters, blocking air diffusers, and using
HVAC controls. Non-energy related behavioral intention choices
include adjusting clothing, changing posture, changing activity,
eating hot/cold foods, consuming hot/cold drinks, relocating to
a new place within the office/building, opening/closing windows,
and opening/closing window blinds.

Thermal States
The other outcome factors are the participants’ self-reported
perceptions of their thermal states, i.e., their general
thermal sensation, acceptability, and comfort under different
environmental conditions. A 7-point Likert scale [cold (−3);
cool (−2); slightly cool (−1); neutral (0); slightly warm
(+1); warm (+2); hot (+3)] developed by ASHRAE was
used to measure general thermal sensation (de Dear and
Brager, 1998; ASHRAE, 2013); whereas, a 6-point Likert
scale was used to assess both general thermal comfort
[very uncomfortable (−3); uncomfortable (−2); slightly
uncomfortable (−1); slightly comfortable (+1); comfortable
(+2); very comfortable (+3)] (Rentala et al., 2021; Saeidi et al.,
2021) and general thermal acceptability [totally unacceptable
(−3); unacceptable (−2); slightly unacceptable (−1); slightly
acceptable (+1); acceptable (+2); totally acceptable (+3)]
(Rentala et al., 2021; Saeidi et al., 2021).

Recruitment
The study was approved by the university’s Institutional Review
Board (IRB). Seventy-two participants were enlisted using
posters and oral communication. Monetary incentives ($10/h)
were offered for their participation in the study. The participants’
demographic distributions are as follows:

• Age: 24.01 years was the mean age, and 5.83 years was the
standard deviation

• Gender: 51.3% were males (n= 37) and 48.6% were females (n
= 35)

• Ethnicity: 50% were White (n = 36), 13.8% were Asian (n =

10), 11.1% were Middle Eastern (n = 8), 9.72% were Hispanic
or Latino (n = 7), 12.5% were Others (n = 9) and 2 preferred
not to answer
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• BMI: 2.7% were underweight (n = 2), 65.2% were normal (n
= 47), 16.6% were obese (n= 12), and 22.2% were overweight
(n= 16)

• Education level: 25% were high-school graduates (n = 18),
37.5% were some college (n= 27), 25% were college graduates
(n= 18), and 12.5% were post-graduates (n= 9).

• Employment status: 15.2% had full-time employment (n =

11), 13.8% had part-time employment (n = 10), 62.5% were
students (unemployed) (n= 45), and 8.33% were unemployed
looking for work (n= 6).

Experiment Procedure
The experiments (both IVE and in-situ sessions) were performed
in a climate chamber using the experimental procedure described
in previous studies (Rentala et al., 2021; Saeidi et al., 2021). The
details of the climate chamber and its IVE model have also been
explained in those earlier studies. Following the submission of
their signed consent forms, the immersive tendencies and TPB
questionnaires were sent to the participants. After completing
these questionnaires, the participants were asked to arrive at
the climate chamber dressed in a long-sleeved shirt or T-shirt,
trousers, socks, and shoes. Then they were asked to sit in the
resting area of the chamber (temperature and humidity set at
75◦F/23.8◦C and 55% respectively), where they were screened for
cigarette or alcohol consumption and vigorous physical activity
before the experimental sessions. This session took about 10
mins, and the participants were excluded from the experiments
if any of the above were discovered. During this session, the
participants’ individual factors were also recorded. After the
screening, they entered the control area of the chamber, sat in
a chair, and got the temperature sensors taped to the surface of
their skin.

The experiments were conducted from December 2019 to
March 2020 following the experiment procedure shown in
Figure 2. Each IVE and in-situ experiment had a cooling
sequence or a heating sequence. The IVE and in-situ experiments
were conducted on the same day, but the heating and cooling
sequence experiments were conducted at least 2 weeks apart. To
offset and reduce the order effect, participants were arbitrarily
allocated to each of the experimental conditions. The IVE
experiments were conducted using an HTC Vive HMD device
where the 3D model of the chamber was displayed using Unreal
Engine 4 (for details and pictures, refer to previous studies).
During an IVE experiment, participants only view the chamber’s
virtual environment through an HMD (no interaction), while
the climate chamber controls the environmental conditions. The
heating sequence started from 65◦F/18.3◦C and then increased
to 75◦F/23.8◦C and finally to 85◦F/29.4◦C. The cooling sequence
started from 85◦F/29.4◦C and then decreased to 75◦F/23.8◦C
and finally to 65◦F/18.3◦C. The psychrometric chart of ASHRAE
(Bhattacharya and Milne, 2009) was used to select these step
temperatures. In this chart, for both summer and winter seasons,
75◦F/23.8◦C falls in the comfort zone range, while 65◦F/18.3◦C
and 85◦F/29.4◦C fall outside the comfort zone range. The
humidity and CO2 levels were maintained at 55% and 1,000 ppm
during the experiments, respectively.

The indoor room temperature around the participants and
their skin temperatures were continuously measured at the
one-second interval. After each temperature step change, the
participants’ thermal state responses (i.e., thermal sensation,
comfort, and acceptability) were recorded after the temperature
stabilized. Throughout the experiments, the participants’ were
constrained to sedentary physical activity levels. Furthermore,
the participants completed the presence and cybersickness
questionnaires inside the chamber after an IVE experimental
session. Finally, the participants’ energy behavioral intentions
(i.e., their three most preferred behavioral choices) were collected
after exposure to the cool discomfort condition, i.e., 65◦F/18.3◦C
in cooling sequence in both IVE and in-situ (referred to
as Cool/IVE and Cool/in-situ conditions). The behavioral
intentions were also collected after exposure to the warm
discomfort condition, i.e., 85◦F/29.4◦C in heating sequence in
both IVE and in-situ (referred to as Warm/IVE and Warm/in-
situ conditions). The energy behavioral intentions are collected
in discomfort conditions because the occupants usually react to
thermal discomfort situations to maintain thermal comfort.

The raw data (i.e., indoor room and skin temperatures)
collected from the sensors were averaged by taking into account
data from the precise start time when the indoor room
temperature stabilized at the target step temperature through
the end of the thermal state questionnaires. Furthermore, to
ensure that the actual range of the indoor room temperature
represents the corresponding step temperature zone, the data was
cleaned by comparing the averaged indoor room temperature
between IVE and in-situ settings and removing those data points
whose differences were more than ±3◦F/1.7◦C. This threshold
was selected based on the fact that an individual may be unaware
of a temperature increase of 4–5◦C (7.2–9◦F) when the rate of
change of temperature is <0.5◦C (0.9◦F) per min (Darian-Smith
and Johnson, 1977). In the climate chamber used in this study,
a temperature change of about 0.5◦C/1◦F frequently takes 1min
or more. At this rate, it was assumed that the participants were
unaware of at least a 3◦F/1.7◦C change in about 10 mins (10 mins
is the estimated time to rise/fall for 5.6◦C/10◦F).

APPLICATION OF CAUSAL INFERENCE

Causal inference is applied to the experimental data to learn the
SCMs and estimate the average causal effects. Figure 3 illustrates
the methodology used to generate and validate the SCMs. The
process starts with identifying initial factors, data segmentation
and factor assignment based on the in-situ and IVE settings, and
factor discretization. Next, the experimental data are randomly
divided into two parts, i.e., seen and unseen data based on a
50:50 ratio. The seen data is utilized to learn the structure of
the causal models using the elicitation method in conjunction
with the PC-Stable algorithm, identify back-door paths and
confounding factors, and estimate the average causal effects
of treatment factors on outcomes. In contrast, unseen data is
utilized for validation. In the following sub-sections, each process
is described in detail.
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FIGURE 2 | Experiment and data collection procedure.

FIGURE 3 | Overview of the methodology.
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TABLE 1 | Key treatment factors along with their abbreviations and data types.

Individual factors (Symbol) Type

Gender (Gender) Discrete

Behavioral/TPB factors

Attitude toward energy conservation (attitude) Continuous

Social norms to conserve energy (norms) Continuous

Perceived behavioral control to conserve energy (control) Continuous

Virtual experience factors

Focus (Focs) Continuous

Involvement (Invl) Continuous

Emotion (Emtn) Continuous

Entertainment (Entr) Continuous

General presence in IVE (GP) Continuous

Total cybersickness in IVE (TC) Continuous

Environmental and physiological factors

Indoor room temperature (RoomTemp) Continuous

Overall skin temperature (Msk) Continuous

Initial Factor Selection
This study selected the key treatment factors that may affect
the behavioral intentions and thermal states (Table 1) based on
the current domain knowledge and the models reviewed from
various peer-reviewed occupant energy behavior and thermal
state literature (Background section). It must be noted that the
participants’ other individual factors such as age, BMI, ethnicity,
education levels, and employment status were not included in
the model because the samples in those factor groups were not
evenly distributed.

The outcome factors of this study are the participants’ energy
behavioral intentions (EBI) and their thermal states, i.e., general
thermal sensation (GTS), general thermal acceptability (GTA),
and general thermal comfort (GTC).

Factor Assignment
As described in Experiment Procedure section, the energy
behavioral intention data were collected outside the comfort
zone range, i.e., at 65◦F/18.3◦C (cool discomfort condition)
and 85◦F/29.4◦C (warm discomfort condition). In contrast, the
thermal state data was collected under all three-step temperatures
(both inside and outside comfort zone range). Thus, for analyzing
energy behavioral intentions (EBI), the data is segmented based
on cool and warm discomfort conditions in IVE and in-situ, and
appropriate treatment factors such as gender, TPB, and virtual
experience factors are assigned (Figure 4). For analyzing thermal
states, the data is segmented based on IVE and in-situ conditions
only, and factors such as indoor room temperature (all three
levels), overall skin temperature, and virtual experience factors
are assigned as treatment factors (Figure 5).

Factor Description and Discretization
After factor assignment, the continuous data are discretized
into categories, as shown in Table 2. Data discretization was
performed because the algorithms used for structure learning
and approximate causal inference work well with the categorical

data. The entire discretization process is explained in detail in the
following sections.

Individual Factors
The participants’ individual factor gender was discretized into
two categories, i.e., male and female.

Indoor Room Temperature
Indoor room temperature was discretized into cool, neutral,
and warm temperature categories according to ASHRAE
psychrometric chart (Bhattacharya and Milne, 2009), which
shows that the comfort zone range falls between 22 and 27◦C.
Therefore, the cool category consists of temperature values
<22◦C; the neutral category consists of temperature values
between 22 and 27◦C; and the warm category consists of
temperature values >27◦C.

Overall Skin Temperature
Existing studies typically provide the mean and standard
deviation of the skin temperatures corresponding to an indoor
environmental condition (Choi and Yeom, 2017, 2019; Zuo et al.,
2020). Furthermore, the intervals of discretized bins were derived
using mean and standard deviation (Jacobsen et al., 2012; Wall
et al., 2015; Huang et al., 2017). Therefore, the overall skin
temperature (Msk) was discretized into three categories using
Mean ± 0.5∗SD. The value of 0.5 was chosen based on the
data range and to ensure that the three categories had balanced
samples. The first category consists of values less than Mean –
0.5∗SD, the second category consists of values between Mean –
0.5∗SD and Mean + 0.5∗SD and the third category consists of
values greater than Mean+ 0.5∗SD.

Behavioral/TPB Factors
Researchers often report the mean of the final scores of the TPB
factors to convey the level of intention to perform a particular
behavior (Greaves et al., 2013). Thus, the three TPB factors in
this study were discretized into two categories based on the mean
score values, i.e., all the values less than the mean score were
discretized into the low pro-environmental behavior category,
and values exceeding or equal to the mean score were discretized
into the high pro-environmental behavior category.

Immersive Tendencies Factors
Themean scores of the immersive tendencies’ factors are typically
reported in the literature (Walkowiak et al., 2015) to compare
with available mean scores in order to assess the reliability
of IVEs. As a result, the immersive tendencies factors were
discretized into two categories based on the mean score values,
i.e., all the values less than the mean score were discretized into
the low immersion category, and the values exceeding or equal to
the mean score were discretized into high immersion category.

General Presence and Total Cybersickness in IVE
Similar to the immersive tendencies’ factors, the general presence
and total cybersickness scores are also compared with available
mean scores to check the reliability of IVEs (Hartanto et al., 2014;
Kinateder et al., 2014). Therefore, the presence and cybersickness
scores were also discretized into two categories based on the
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FIGURE 4 | Data segmentation and factor assignment for analyzing behavioral intentions.

FIGURE 5 | Data segmentation and factor assignment for analyzing thermal states.

TABLE 2 | Discretization of the treatment and outcome factors.

Treatment factors

Individual factors (symbols) Coding

Gender (Gender) Male = 0; Female = 1

Behavioral/TPB factors

Attitude (Attitude) Low (< mean score) = 0; High (≥mean score) = 1

Social norms (Norms) Low (< mean score) = 0; High (≥mean score) = 1

Perceived behavioral control (Control) Low (< mean score) = 0; High (≥mean score) = 1

Virtual experience factors

Focus (Focs) Low (< mean score) = 0; High (≥mean score) = 1

Involvement (Invl) Low (< mean score) = 0; High (≥mean score) = 1

Emotion (Emtn) Low (< mean score) = 0; High (≥mean score) = 1

Entertainment (Entr) Low (< mean score) = 0; High (≥mean score) = 1

General presence (GP) Low (< mean score) = 0; High (≥ mean score) = 1

Total cybersickness (TC) Low (< mean score) = 0; High (≥ mean score) = 1

Environmental and physiological factors

Indoor room temperature (RoomTemp) Cool [< 22◦C] = 0; Neutral [≥22◦C and ≤27◦C] = 1; Warm [> 27◦C] = 2

Overall skin temperature (Msk) Low [< (Mean – 0.5*SD)] = 0; Medium [≥ (Mean – 0.5*SD) and ≤ (Mean + 0.5*SD)] = 1; High [> (Mean + 0.5*SD)] = 2

Outcome factors

Energy behavioral intentions (EBI) Energy related = 0; non-energy related = 1

Thermal states

General thermal sensation (GTS) Cold (−1, −2, −3) = 0; Neutral (0) = 1; Warm (1, 2, 3) = 2

General thermal acceptability (GTA) Unacceptable (−3, −2, −1) = 0; Acceptable (1, 2, 3) = 1

General thermal comfort (GTC) Uncomfortable (−3, −2, −1) = 0; Comfortable (1, 2, 3) = 1
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mean scores. All the values less than the mean score were
discretized into the low presence and low cybersickness category
and values exceeding or equal to the mean score were discretized
into the high presence and high cybersickness category.

Energy Behavioral Intentions
The top three energy behavioral intention choices selected by the
participants were converted into a single factor and discretized
into two categories, i.e., energy related and non-energy related
categories. If any of the two choices out of three belonged to
the energy related behaviors, then all three choices were grouped
into energy related behavior intention category. In contrast, if
any of the two choices out of three belonged to the non-energy
related behaviors, then all three choices were grouped into the
non-energy related behavior intention category. For example,
a participant selected “adjusting clothing”, “changing posture”,
and “operating HVAC controls” as the three most preferred
choices. Since two out of three choices belong to non-energy
related behaviors, all choices were grouped into this participant’s
non-energy related behaviors category.

Thermal States
The 7-point Likert scale responses for the general thermal
sensation were discretized into three categories as follows: the
votes −3, −2, and −1 are grouped into the cool category; the
vote 0 is grouped into the neutral category and the votes 1, 2, and
3 are grouped into warm category. Similarly, the 6-point Likert
scale responses for acceptability and comfort were discretized
into two categories: the votes −3, −2, and −1 are grouped into
the unacceptable and uncomfortable category, and the votes 1, 2,
and 3 are grouped into the acceptable and comfortable category.

Specification of Causal Model
Based on the discussions presented Casual Model Specification
section, the elicitation method, in conjunction with a PC-Stable
algorithm, was used to learn the SCMs from the experimental
data. First, the data were randomly divided into two datasets
assuming a 50:50 ratio. The first 50% of the data is the seen data
on which the SCMs were learnt, and the other 50% of the data
is the unseen data that was used for validating the causal models
learnt on the seen data. The following sub-sections describe the
structure learning process in detail.

Elicitation of Relationships Between Factors
In this step, the prior knowledge available from the literature
was inserted in the structure learning process by blocking the
relationships that are known to be impossible. In particular, the
following relationships were blocked:

a. Overall skin temperature to indoor room temperature and
individual factors

b. Participants individual factors to indoor room temperature
c. Participants TPB factors to indoor room temperature, overall

skin temperature, individual and virtual experience factors.
d. Participants virtual experience factors to indoor room

temperature, individual and TPB factors.

In addition, the immersive tendencies positively affect both
presence and cybersickness and not vice versa, i.e., a person
having higher levels of immersion will have a feeling of more
presence in the virtual environment and may experience more
cybersickness symptoms (Bangay and Preston, 1998; Banerjee
et al., 2002). So, the relationships from the participants’ general
presence and total cybersickness to their immersive tendencies
are also blocked.

Structure Learning With PC-Stable Algorithm
After blocking the relationships between the factors, the PC-
Stable algorithm was applied to the seen data for learning
the SCMs. The PC-Stable algorithm employs conditional
independence tests to add or remove the arcs between the
factors. The chi-square test with a level of significance of
α = 0.05 was used in the PC-Stable algorithm to test the
conditional independencies. Figures 6, 7 show the SCMs for
energy behavioral intentions, while Figure 8 shows the SCM for
thermal states in in-situ and IVE conditions.

Identifying Back-Door Paths and Confounding

Factors
After learning the SCMs, an additional step was performed to
identify the confounding factors. First, every treatment factor
was paired with the outcome factor to identify the direct and
back-door paths between them. Then, the identification of the
confounding factors was made using the back-door criterion
for only those treatment factors which have both direct and
back-door paths. After applying the back-door criterion, no
confounding factors were found for EBI, GTS, GTA, and GTC
outcome factors in all SCMs because no back-door paths led
to those four outcomes from any of the treatment factors.
For example, in both Warm/in-situ and Warm/IVE conditions
(Figure 7), there are no paths from any of the treatment factors to
EBI. Similarly, in Cool/in-situ and Cool/IVE (Figure 6), there are
only direct paths to EBI. Also, in Figure 8, there are only direct
paths to GTS and GTA.

Causal Effect Estimation
Given the causal relationships encoded in the SCMs, the average
causal effects (ACE) of only those treatment factors that have
a direct path to the outcome factors, i.e., direct average causal
effects, were estimated using logistic regression on the seen data.
The causal risk odds ratio obtained from the logistic regression
coefficients is used to represent the average causal effect. If the
causal risk odds ratio is not equal to 1, the factors have a causal
effect. The logistic regression equation is given below:

P (Oi=o|Ti)=
1

1+e−(α+βTi)
(2)

Where, P (Oi = o|Ti) is the probability of the outcome Oi given
the treatment factor Ti, α denotes the intercept, and β is the
coefficient of the treatment factor.

Since there are no confounding factors between the treatment
and outcomes, the average causal effects of treatment factors with
only direct paths to the outcome were estimated by regressing the
former directly on the latter. Since the outcome factors of EBI,

Frontiers in Sustainable Cities | www.frontiersin.org 13 November 2021 | Volume 3 | Article 730474

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Rentala et al. Causal Inference Occupant Analysis IVE

FIGURE 6 | SCM for EBI in cool/in-situ (top) and Cool/IVE (bottom) condition.

FIGURE 7 | SCM for EBI in warm/in-situ (top) and Warm/IVE (bottom) condition.

GTA, and GTC had two levels, binomial logistic regression was
used. In contrast, multinomial logistic regression (Menard, 2002)
was used for estimating the average causal effect of treatment
factors on GTS, which has three levels.

The SCM shown in Figure 6 suggests that in Cool/in-situ and
Cool/IVE, there is a causal relationship from Control to EBI
and Attitude to EBI, respectively. In contrast, SCM shown in

Figure 7 suggests that inWarm/in-situ andWarm/IVE, there are
no causal relationships from any of the treatment factors to EBI.
In Figure 8, the SCM suggests that in in-situ and IVE conditions,
there is a causal relationship from RoomTemp to GTS and from
GTC to GTA. Tables 3, 4 show the average causal effects of those
treatment factors on the outcomes. Since there are no paths
from any of the treatment factors to EBI in Warm/in-situ and
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FIGURE 8 | SCM for thermal states in in-situ (top) and IVE (bottom) conditions.

TABLE 3 | Average causal effect estimates of treatment factors influencing EBI.

Treatment factors Outcome: energy behavioral intentions (EBI)

Cool/in-situ Cool/IVE

ACE 95% CI ACE 95% CI

Attitude toward energy conservation

Low vs. High – – 9.61e+08 4.38e−113 to ∞

Perceived behavioral control to perform energy conservation

Low vs. High 12.5 1.85–250.45 – –

Warm/IVE, the average causal effects on EBI were not estimated
in those conditions.

Causal Model Structure Validation
Validation is essential for testing the strength of causal models. In
this study, a two-fold cross-validation process was applied where
the data was randomly divided based on a 50:50 ratio into seen
data (50%) and unseen data (50%). The choice of a two-fold with
a 50:50 ratio was based on the need for simplicity and consistency

in the results of the hypothesis tests, which depend on the sample
size. The relationships identified by SCMs learnt on the seen
data are cross-validated against the previously unseen data. The
SCMs provide relationships between the factors in the form of
testable implications, and these implications can be verified by
performing hypothesis tests. The following steps describe the
validation process:

1. First, the testable implications (i.e., relationships between two
factors) are identified from the SCMs learnt on the seen data.
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TABLE 4 | Average causal effect estimates of treatment factors influencing GTS and GTA.

Treatment factors Outcome: general thermal sensation

In-situ IVE

Neutral vs. Cold Neutral vs. Cold

ACE 95% CI ACE 95% CI

Indoor room temperature

Neutral vs. Cold 11.55 5.23–25.48 9.5 4.4–20.3

Warm vs. Cold Warm vs. Cold

Indoor room temperature

Warm vs. Cold 2.10e+06 4.77e−22 to 9.24e+33 1.96e+06 2.79e−25 to 1.37e+37

Outcome: general thermal acceptability

In-situ IVE

ACE 95% CI ACE 95% CI

General thermal comfort

Comfortable vs. Uncomfortable 353.39 119.86–1,349.08 98.8 39.49–304.44

2. The identified implications are a set of hypotheses that are
then tested against the previously unseen data.

Depending on the direction of the arcs, the implications test the
null hypothesis that a factor does not affect another factor. The
alternate hypothesis states that a factor affects another factor.
The null hypothesis is accepted if the p-value is larger than α =

0.05; otherwise, it is rejected. Since all the factors are categorical
and depend on the number of levels in a factor, binomial and
multinomial logistic regression with Type II tests were used to
test the hypotheses. The “Type II tests” test for the significance
of each independent factor (treatment) on the outcome, under
the assumption that there are no interactions between the factors
(Langsrud, 2003). The Type II tests will provide the Wald chi-
square statistic and its associated p-value.

A total of 22 testable implications were identified from the
causal models, and Type II tests were performed for each of
those implications. The validation results (p-values) are shown
in Tables 5, 6. Out of 22 Type II tests, 19 were significant,
i.e., the p-values were below 0.05. Thus the null hypothesis
was rejected in all those cases. However, there were only
three cases, one in Cool/In-situ, one in Warm/IVE, and one
in IVE condition, respectively, where the p-values exceeded
0.05, indicating that those relationships were inconsistent
against the unseen data. Therefore, the 2-fold cross-validation
results revealed that the SCMs have a high accuracy of
about 86.3% in identifying the causal relationships in the
unseen data.

RESULTS INTERPRETATION AND
DISCUSSION

Based on the average causal effects, the results suggest that in
both Cool/in-situ and Cool/IVE conditions, the TPB factors
have a significant average causal effect on the participants’ EBI
(Table 3). Notably, in the Cool/in-situ condition (Figure 6), the

TABLE 5 | Cross-validation results of the hypothesis tests in EBI analysis.

Testable implications p-value (α = 0.05)

Cool/In-situ Cool/IVE Warm/In-situ Warm/IVE

Control → Norms – <0.0001 0.01 0.01

Gender → Emotion – 0.03 – –

Involvement → Focus – 0.02 – –

Attitude → EBI – 0.01 – –

Control → EBI 0.01 – – –

Control → Attitude 0.71* – – –

Emotion → Involvement – – 0.6*

* p-values indicating inconsistency with seen data.

participants perceived behavioral control to conserve energy
has an average causal effect of higher magnitude on EBI.
Stated differently, when the participants have high levels of
behavioral control to conserve energy, the odds of them choosing
non-energy-related behavioral intentions is about 12.5 times
greater than that of participants who have lower behavioral
control levels. Whereas, in the Cool/IVE condition (Figure 6),
the participant’s attitude toward energy conservation has an
average causal effect of significantly higher magnitude on EBI,
i.e., when the participants have high levels of attitude toward
energy conservation, the odds of them choosing non-energy
related behavioral intentions is about 9.61e+08 times greater
than that of participants who have lower attitude levels. To
the best of our knowledge, this study provided support for a
causal effect of these TPB factors on occupants’ EBI in IVEs.
Furthermore, in both Cool/in-situ and Cool/IVE, there is an
average causal effect from Control to Attitude and Control to
Norms, respectively, which is consistent with the TPB theory
(Ajzen, 1991). However, the outcome factors from Control
were different, i.e., Attitude in in-situ and Norms in IVE. This
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TABLE 6 | Cross-validation results of the hypothesis tests in thermal state

analysis.

Testable implications p (α = 0.05)

In-situ IVE

RoomTemp → GTS <0.0001 <0.0001

RoomTemp → Msk <0.0001 <0.0001

GTC → GTA <0.0001 <0.0001

Gender → Emotion – <0.0001

Gender → Entertainment – <0.0001

Emotion → Involvement – <0.0001

Involvement → Focus – <0.0001

Focus → GP – 0.04

Focus → Entertainment – <0.0001

Entertainment → TC – 0.5*

*p-values indicating inconsistency with seen data.

difference is because there was no association between Control
and Norms in in-situ (Supplementary Table SI-1). In contrast, a
significant association was observed between those two factors in
IVE (Supplementary Table SI-2). The causal theory states that
if there is no association between two factors, there will be no
causation between them (Altman and Krzywinski, 2015). So, the
non-association between the factors explains the non-causation.
The discrepancy may be related to the data samples collected in
different conditions and at different times.

Interestingly, in the Warm/in-situ condition (Figure 7), there
were no causal effects on EBI from both TPB factors and
gender because there were no associations between those factors
and EBI (Supplementary Table SI-5). Similarly, there were
no causal effects on EBI from any treatment factors in the
Warm/IVE condition (Figure 7), despite associations between
gender, TPB factors, and EBI. However, in both Warm/in-situ
and Warm/IVE conditions, Control has both a causal effect
and an association with Norms (Supplementary Tables SI-3,
4), which is also consistent with the TPB theory. Additionally,
the participant’s gender had no causal effect on EBI in both
Cool/in-situ and Cool/IVE conditions because of no association
between those two factors (Supplementary Table SI-5). It is also
worth noting that the TPB factors that cause EBI also have
associations, which aligns with the previous findings (Abrahamse
and Steg, 2011; Chen et al., 2017). The discrepancy between
Cool and Warm conditions is likely caused by the participants’
different EBI selections. The cause of such difference is yet to
be investigated.

Furthermore, in thermal state analysis, the indoor room
temperature has an average causal effect on the participants’
general thermal sensation (GTS) (Table 4) in IVE as well as
in the in-situ condition (Figure 8). When the participants
experienced neutral indoor temperature, the odds of them
voting neutral thermal sensation is 11.5 and 9.5 times greater
than that of participants who experienced the cool indoor
temperature in in-situ and IVE conditions, respectively. This
indicates that the participants always had a neutral sensation

under neutral indoor temperature regardless of their IVE
experience. Similarly, when the participants experienced warm
indoor temperature, the odds of them voting warm thermal
sensation was significantly high than that of participants who
experienced cool indoor temperature in both IVE and in-
situ conditions indicating that the participants always felt
warm under warm indoor temperature regardless of their IVE
experience. Existing thermal state studies in IVEs reported
associations between indoor temperature and thermal sensation
(Yeom et al., 2019a,b). Thus, this study provides additional
evidence of a causal effect between those two factors in
IVE as well as in the in-situ condition. Indoor temperature
also had an average causal effect on the participants’ overall
skin temperatures in both in-situ and IVE conditions. This
finding also represents an extension of a previous study’s
results where associations were found between participants’ skin
and indoor temperatures for both IVE and in-situ conditions
(Yeom et al., 2019a). Table 4 also shows the average causal
effect of general thermal comfort (GTC) on general thermal
acceptability (GTA) in both IVE and in-situ conditions. When
the participants are comfortable under certain temperature
conditions (i.e., cold, neutral, and warm), the odds of them
accepting that temperature condition is 353.4 and 98.8 times
greater than that of participants who felt uncomfortable in those
same temperature conditions. This finding can be considered
an extension of previous studies where the authors reported
associations between thermal acceptability and comfort (Zhang
and Zhao, 2008).

In contrast to the above results, the indoor temperature
did not have a causal effect on either general thermal
acceptability and comfort in both IVE and in-situ conditions.
However, there were associations between indoor temperature,
acceptability, and comfort. The exclusion of additional
influencing factors like relative humidity, air velocity, and
heart rate (Frontczak and Wargocki, 2011; Nkurikiyeyezu
et al., 2018) in this study, which may act as mediators
between indoor temperature and acceptability/comfort,
might be a possible reason. Similarly, there was no causation
nor association (Supplementary Tables SI- 6-8) between
participant’s gender and thermal states in both IVE and
in-situ conditions. Previous findings remain inconclusive
in this regard, i.e., some studies reported no associations
between gender and thermal states (Liu et al., 2011), while
some studies reported that females are likelier than males
to be dissatisfied (Lan et al., 2008). Thus, the current result
(i.e., no causation between gender and thermal states) can
be considered a partial extension of the previous findings.
Participants’ overall skin temperature also did not have a
causal effect on their thermal states. However, associations
were observed between skin temperature and sensation, but
not between skin temperature and acceptability/comfort
(Supplementary Tables SI-6-8).

Regarding the effect of virtual experience factors, none
of them had a causal effect on EBI or thermal states. A
further examination revealed that there are also no associations
between virtual experience factors and EBI or thermal states
(Supplementary Tables SI-5-8). Therefore, it can be concluded
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that the participants’ virtual experience did not have an influence
on their energy behavioral intentions in both cool and warm
discomfort conditions as well as on their thermal states in
IVE conditions. This conclusion is conditioned on the fact that
the virtual experience is in a favorable range. Furthermore,
in thermal state analysis for the IVE condition (Figure 8),
immersive tendency factors have a causal effect on general
presence and total cybersickness, which is consistent with
a previous study (Jerome and Witmer, 2002). However, in
Cool/IVE and Warm/IVE conditions, there are no causal effects
from any immersive tendency factors to the general presence
and total cybersickness because of no associations between them
(Supplementary Tables SI-9, 10). Comparing the SCMs in all
IVE conditions, causal effects were observed between immersive
tendencies, i.e., from involvement to focus in both Cool/IVE
and IVE, and from emotion to involvement in both Warm/IVE
and IVE conditions. Finally, the SCMs in Cool/IVE (Figure 6)
and IVE (Figure 8) suggest that participants’ gender had a
causal effect on their immersive tendencies (i.e., emotion and
entertainment). However, no causal effect was found between
gender and immersive tendencies in Warm/IVE (Figure 7)
because of no associations (Supplementary Tables SI-11).

LIMITATIONS

Despite the importance of the findings, they might have been
influenced by some limitations. First, this study considered
only a limited set of influential factors with a closed-world
assumption (Keet, 2013), i.e., the factors represent complete
information necessary to cause the outcomes, but, in fact,
they are not sufficient. There could be additional factors
other than those considered in this study that may cause the
outcomes. Secondly, the results are dependent on the data
discretization process used in this study, which may result in
information loss (Dojer, 2016) and the possibility of different
results if the discretization process is changed. For example, the
participants’ TPB factors in the current data sample were mostly
leaning toward pro-environmental behavior, with a very small
number of samples having non-pro-environmental behavior.
Thus, the results are biased toward the participants having pro-
environmental behavior.

CONCLUSIONS

Several main conclusions can be made based on the results of
the analysis:

1. The causal inference framework is a potentially effective
method for analyzing occupant/participant energy behavioral
intentions and thermal states, as well as identifying
previously unknown causing factors. The SCMs developed
with elicitation method in conjunction with PC-Stable
algorithm helped identify causing factors of EBI and
thermal states.

2. Gender was not the causing factor of EBI or thermal states
in the context of this study. Furthermore, participants’ virtual
experiences such as their immersive tendencies, presence, and

cybersickness were not the causing factors of EBI or thermal
states when those factors were in a favorable range. Thus,
when a virtual model is well designed to provide adequate
presence and minimal cybersickness, the technology itself will
not become a causing factor of the outcome of experiments
using virtual reality. The analysis also reveals that gender is a
causing factor of immersive tendencies.

3. The comparisons of IVE and in-situ settings provide mixed
results. Concerning EBI, while consistency is observed in
warm discomfort conditions, discrepancies exist in cool
discomfort conditions and also between cool and warm
discomfort conditions. For example, consistency was observed
in both Warm/IVE and Warm/in-situ conditions where
control was a causing factor of norms. Whereas in Cool/IVE
and Cool/in-situ conditions, the TPB factors were the
causing factors of EBI, and in Warm/IVE and Warm/in-situ
conditions, the TPB factors were not the causing factors of EBI.
Also, in the Cool/IVE condition, control was the causing factor
of EBI, and in the Cool/in-situ condition, attitude was the
causing factor of EBI. Regarding thermal states, consistency
was observed in both IVE, and in-situ conditions where indoor
room temperature was the causing factor of general thermal
sensation and overall skin temperature and general thermal
comfort was a causing factor of general thermal acceptability.
Additionally, the indoor room temperature was not a causing
factor of general thermal acceptability or comfort in both IVE
and in-situ conditions.

Future studies should consider using an extensive set of
influential factors such as different environmental, physiological,
and psycho-social as well as time-dependent environmental and
physiological factors to build a causal model to supplement this
study. The range of the factors should also be increased, in
particular, collecting data of people with non-pro-environmental
behaviors and people with different age groups, BMI, education,
employment, and income levels. Finally, we need further
studies to analyze the impact of collecting data under various
experimental conditions and time periods and the sources of
discrepancies between different comparisons as observed in
this study.
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