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Dip-coating consists in withdrawing a substrate from a bath to coat it with a thin liquid
layer. This process is well-understood for homogeneous fluids, but heterogeneities such
as particles dispersed in the liquid lead to more complex situations. Indeed, particles
introduce a new length scale, their size, in addition to the thickness of the coating
film. Recent studies have shown that at first order, the thickness of the coating film for
monodisperse particles can be captured by an effective capillary number based on the
viscosity of the suspension, providing that the film is thicker than the particle diameter.
However, suspensions involved in most practical applications are polydisperse, charac-
terized by a wide range of particle sizes, introducing additional length scales. In this
study, we investigate the dip coating of suspensions having a bimodal size distribution of
particles. We show that the effective viscosity approach is still valid in the regime where
the coating film is thicker than the diameter of the largest particles, although bidisperse
suspensions are less viscous than monodisperse suspensions of the same solid fraction.
We also characterize the intermediate regime that consists of a heterogeneous coating
layer and where the composition of the film is different from the composition of the bath.
A model to predict the probability of entraining the particles in the liquid film depending
on their sizes is proposed and captures our measurements. In this regime, corresponding
to a specific range of withdrawal velocities, capillarity filters the large particles out of the
film.
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1. Introduction

Dip-coating is a common industrial coating method that consists in withdrawing a
substrate from a liquid bath at a constant speed (Scriven 1988; Ruschak 1985; Quéré
1999; Grosso 2011). This method has been studied since 1942 by Levich & Landau
(1942) and Derjaguin (1943) in the configuration of a plate withdrawn at a constant
velocity U from a Newtonian liquid of viscosity η , density ρ, and surface tension γ. Far
from the liquid bath, the thickness h of the liquid film coating the plate is uniform and
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set by the balance of viscous stresses, which enable the plate to pull the liquid out of
the bath, and capillary stresses at the meniscus, which pull the fluid back to the bath
(Rio & Boulogne 2017). The relative magnitude of viscous stresses to capillary stresses
at the meniscus is measured by the capillary number, Ca = η U/γ. In the limit of small
capillary number Ca ≪ 1 and small Reynolds number Re = ρ U h/η ≪ 1, the thickness of
the coating film is given by the Landau-Levich-Derjaguin law:

h = 0.94ℓc Ca2/3, (1.1)

where ℓc =
√︁

γ/(ρ g) is the capillary length. At larger capillary numbers, typically of the
order of Ca ≳ 10−2, gravity dominates capillary forces (Maleki et al. 2011). The balance
between viscosity and gravity leads to a new scaling law for the thickness of the liquid
film coating a plate, h ∝ ℓc Ca1/2.

Owing to the complexity of the fluids used in industrial processes, various studies have
considered the dip-coating process for homogeneous fluids with complex rheology, such
as shear-thinning fluids (Gutfinger & Tallmadge 1965; Hewson et al. 2009), yield-stress
fluids (Maillard et al. 2014, 2015; Smit et al. 2019), viscoelastic fluids (Ro & Homsy
1995; De Ryck & Quéré 1998; Ruckenstein 2002), as well as the influence of surfactants
(Shen et al. 2002; Krechetnikov & Homsy 2006; Delacotte et al. 2012), roughness
(Krechetnikov & Homsy 2005; Seiwert et al. 2011), and the geometry of the substrate
(White & Tallmadge 1965; Zhang et al. 2021). Suspensions, in which solid particles
are dispersed in a liquid phase, are of particular interest to manufacturing applications.
The particles can give specific properties to a surface after coating. Thus, dip-coating, in
particular combined with evaporation, has been considered for optical applications, self-
assembling of particles, and wettability treatments (Ghosh et al. 2007; Mechiakh et al.
2010; Berteloot et al. 2013; Mahadik et al. 2013). More recently, several studies have
considered the dip-coating of monodisperse suspensions (single particle size), of non-
Brownian particles (diameter d larger than a few tens of microns), in non-volatile liquids
(Kao & Hosoi 2012; Gans et al. 2019; Palma & Lhuissier 2019). These studies revealed
that depending on the withdrawal velocity U , the fluid properties, and the size of the
particles, three different coating regimes are observed: (i) at small withdrawal velocity,
a thin film is deposited without any particles in it; (ii) at large withdrawal velocity (i.e.,
large capillary numbers), the entrained film contains particles, and its thickness follows
the Landau-Levich law using at first order the effective viscosity of the suspension; finally
(iii) at intermediate withdrawal velocities, the coating is heterogeneous, with an average
film thickness that corresponds to a monolayer of particles and remains roughly constant
over a range of capillary numbers. For a monodisperse suspension, the transition between
the different regimes is governed by the thickness of the coating film relative to the
particle diameter h/d (Gans et al. 2019; Palma & Lhuissier 2019).

The transition between the no-particle and heterogeneous coating regime also depends
on the accumulation of particles at the meniscus. This transition is therefore complex to
predict quantitatively for non-dilute suspensions, typically as soon as the volume fraction,
defined as φ = Vp/(Vp +Vl), where Vp and Vl are the volume of particles and liquid,
respectively, is larger than a few percent. The configuration of isolated particles is simpler
to describe because the particles do not interact with each other. This configuration was
considered for flat plates (Colosqui et al. 2013; Sauret et al. 2019) and fibers (Dincau
et al. 2020). The 2D numerical study of Colosqui et al. (2013) has shown that an isolated
particle can be entrained in the coating film if the particle diameter d is smaller than the
thickness at the stagnation point h∗. Indeed, the stagnation point defines the boundary
between a shear flow where the fluid continues into the coating film and a recirculation
flow where the fluid returns into the liquid bath. Thus, the thickness h∗ controls the
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FIGURE 1. Typical coating films observed on a flat plate for increasing withdrawal velocities for a
bidisperse suspension of particles of diameters dS = 250 µm and dL = 80 µm (size ratio δ = 3.125),
at a volume fraction of φ = 0.2 and a volume ratio of large particles ζ = 0.6. The withdrawal
velocity U increases from left to right: U = 0.01,0.1,1, and 10mm.s−1. The size of the scale bars is
500 µm.

entrainment of particles in the coating film. The value of h∗ is related to the thickness
of the coating film through h∗/ℓc = 3h/ℓc − (h/ℓc)

3 (Levich & Landau 1942), which in
the limit of small capillary numbers becomes h∗ = 3h. Experiments with monodisperse
spherical particles, have demonstrated that the entrainment of isolated particles occur
when the particle radius is roughly smaller than the thickness of the stagnation point
(Sauret et al. 2019):

h∗ = 3h ≳ d/2. (1.2)

The ability to control the film thickness, and thus the thickness at the stagnation
point, by simply tuning the withdrawal velocity U has led to a method for sorting
particles by size through dip-coating (Dincau et al. 2019). This study has considered
dilute suspension and has shown that, since smaller particles can be entrained for smaller
coating thickness, isolated particles can be separated by size via selecting an appropriate
withdrawal velocity.

This entrainment process is not specific to dip-coating. The translation of an air
bubble in a tube, as well as the withdrawal of the fluid leading to the deposition of a
thin film on the wall of a capillary tube, share many common features with the dip-
coating configuration, in particular, the presence of a stagnation point (Bretherton 1961;
Krechetnikov 2010). Therefore, similar observations on the entrainment of particles
(Jeong et al. 2020; Wu et al. 2021) and the filtering of particles (Yu et al. 2018) have been
reported. We should also emphasize that the influence of particles on different interfacial
phenomena, such as the formation of droplets (Furbank & Morris 2004; Bonnoit et al.
2012; Château et al. 2018; Thiévenaz & Sauret 2021), jets (Château & Lhuissier 2019),
and liquid sheets (Raux et al. 2020), have also reported that the critical length scale
at which the particles start to modify significantly the dynamics is comparable to the
diameter of the particles.

Whereas most of these studies have considered the ideal situation of a suspension
made of monodisperse particles, many industrial and environmental processes involve
polydisperse particles with a wide range of sizes. It is known that for a given solid volume
fraction, a polydisperse suspension will be less viscous than its monodisperse counterpart
(Shapiro & Probstein 1992). For dip-coating, the size distribution of the particles also
needs to be compared to the thickness of the coating film. It remains unclear how the
three regimes reported previously for monodisperse suspensions will need to be modified
to account for the polydispersity of the suspension.

Figure 1 shows four examples of coating films on a plate withdrawn from a bidisperse
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suspension when increasing the withdrawal velocities U . The suspension contains parti-
cles of diameter dS = 250 µm and dL = 80 µm, at a volume fraction of φ = 0.2. The volume
ratio of large particles is ζ = VL/(VL +VS) = 0.6, where VL and VS are the volume of
large and small particles in the suspension, respectively. The main features observed for
monodisperse suspensions are also observed with bidisperse suspensions. In particular,
at very low withdrawal velocity (U = 0.01mm.s−1), the particles remain in the liquid
bath as they are much larger than the coating film. As a result, the meniscus filters
them out, and the thin film is only made of liquid. At large withdrawal velocities (U =
10mm.s−1) we observe an effective viscosity regime. Both populations of particles are
present, in proportions similar to the suspension in the bath. At intermediate withdrawal
velocities, a behavior specific of bidisperse suspensions is observed. Initially, at low
withdrawal velocity (U = 0.1mm.s−1), only small particles are present in the coating
film. By increasing the withdrawal velocity (U = 1mm.s−1), the thickness of the coating
film also increases, resulting in more and more large particles being entrained in the
film. As a result, the composition of the coating film differs from that of the bath in
this regime, with varying proportions of small and large particles depending on the
withdrawal velocity.

In this study, we aim to describe the evolution of the thickness and the composition
of the coating film when varying the capillary number and the composition of the sus-
pension. As a first step towards polydisperse systems, we consider bidisperse suspensions
made of small and large particles of diameter dS and dL, respectively. The volume ratio
of large to small particles is varied to probe the influence of the size distribution of
particles on the formation and composition of the coating film. This paper is organized
as follows: The experimental methods and the suspensions used are first presented
in section 2. The dip-coating with monodisperse suspensions is recalled in section 3,
notably to refine the measurements of the thickness of the coating film. Indeed, in the
effective viscosity regime, we show that the volume fraction in the film is slightly smaller
than in the suspension bath. Section 4 is devoted to the experimental characterization
with bidisperse suspension. We describe and rationalize the different regimes observed
and show that in the thick-film regime, rheological models developed for bidisperse
suspensions enable us to model the thickness of the coating film, while the heterogeneous
regime is more complex for bidisperse suspension. We show that the composition of the
coating film evolves with the withdrawal velocity, and we propose a model that captures
the evolution of the composition of the coating film, in particular, the filtration of large
particles at intermediate velocities.

2. Experimental methods

Our experiments consist in withdrawing a glass plate (w= 75mm wide and e= 3.25mm
thick) from a rectangular container (width 108 mm and thickness 35 mm) filled with a
particulate suspension. Figure 2(a) shows a schematic of the experimental setup. The
suspensions are prepared by dispersing the non-Brownian particles in a silicone oil
having a density close to the density of the particles. The particles used are spherical
polystyrene particles (Dynoseeds TS from Microbeads) of diameter d = 22, 81, 145 and
249 µm (later referred as d = 20, 80, 140 and 250 µm) and densities between 1046kg ·m−3

and 1062kg ·m−3 depending on the batch (see the physical characterization in Appendix).
The silicone oil (AP100, Sigma-Aldrich) has a viscosity of η0 = 112mPa · s, density ρ =
1058kg ·m−3 and a surface tension of γ = 25± 2mN ·m−1 at 20oC. Silicone oil perfectly
wets the plate and the particles and is used for dip-coating experiments to avoid any
potential effects from surfactants, which are known to increase the thickness of the
coating film even at low concentrations (Krechetnikov & Homsy 2005, 2006; Rio &
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(a)

(b)

FIGURE 2. (a) Schematic of the experimental setup. Front (left) and side view (right). (b) Relative
effective shear viscosity ηr = η/η0 of monodisperse suspensions for particles of diameter d = 20 µm
(blue circles) and d = 80 µm (yellow squares). The solid line indicates the Maron–Pierce correlation
[equation (2.4) with φm = 0.58], and the dashed line is the Zarraga correlation [equation (2.5) with
φ Z

m = 0.62].

Boulogne 2017). The surface tension of the suspension is equal to that of the suspending
liquid, i.e., it is not affected by the volume fraction or by the size of the suspended
particles (Couturier et al. 2011; Château et al. 2018; Zhao et al. 2020). The particles
are first dispersed using a paint mixer. Then, the suspension is left in a vacuum chamber
for a few minutes to remove any entrapped bubble in the suspension. Between each
experiment, the suspension is re-homogenized to ensure that the settling of the particles
is negligible at the time scale of one experiment (typically a few minutes).

The liquid bath is placed on a stage that is translated vertically using a stepper motor
(Thorlabs NRT150) at a given velocity 0.01mm.s−1 < U < 15mm.s−1. Such an approach
avoids mechanical perturbations that could influence the thickness of the coating film
(Maleki et al. 2011). After the plate has been withdrawn from the liquid bath, pictures
of the coating film are taken using a DSLR camera (Nikon D5600) equipped with a
macro lens (Nikkor 200 mm). A microscopic lens (Mitutoyo M Plan Apo 5X) is also
used for suspensions of d = 20 µm particles. Between each experiment, the glass plate is
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thoroughly cleaned with isopropyl alcohol, rinsed multiple times with deionized water,
and then dried with compressed air.

In addition to directly observing the coating film, its thickness is estimated by a
gravimetric method, chosen for its excellent accuracy (Krechetnikov & Homsy 2005).
The liquid bath is placed on an analytical weighing scale (Ohaus SPX622 Scout, with
an accuracy of 0.01g) during the experiments. The translating stage is moved up until
the plate is dipped in the suspension bath by the desired dipping length L1, and then
withdrawn, holding a mass of entrained fluid m1. The plate is then dipped again by a
larger length L2, and then withdrawn while holding an increased fluid mass m2 on the
plate. The resulting average thickness of the deposited liquid film is then given by

h =
m2 −m1

(L2 −L1)ρ P
, (2.3)

where P = 2(w+e) is the perimeter of the plate, w is the width and e the thickness of the
plate, and ρ is the density of the suspension. Subscripts 1 and 2 denote the two dipping
lengths such that L2 > L1. This approach prevents a lower edge effect that interferes with
the estimation of the film thickness (Krechetnikov & Homsy 2005). For the width of the
plate, the dipping lengths, and the scale used here, the uncertainty on the film thickness
is of order ±3 µm. More details on this method have been provided by Krechetnikov &
Homsy (2005), and has previously been used with suspensions (Gans et al. 2019).

The shear viscosity of the suspensions is measured using a dynamic shear rheometer
(Anton Paar MCR92) with a 25 mm diameter plate-plate rough geometry and a gap of 1
mm between the plates. In the range of volume fraction considered here, the suspension
has a Newtonian behavior and is characterized by its shear viscosity η . Figure 2(b)
reports the evolution of the relative shear viscosity, ηr(φ) = η(φ)/η0 for a volume fraction
in the range 10% < φ < 40% and two particles sizes (20 µm and 80 µm, monodisperse
suspensions). Many empirical correlation between ηr and φ can be found in the literature
(Quemada 1977; Stickel & Powell 2005; Dörr et al. 2013; Guazzelli & Pouliquen 2018).
In the following, we use the Maron-Pierce correlation:

ηr =
η(φ)

η0
= (1−φ/φm)

−2, (2.4)

where φm corresponds to the volume fraction of particles at which the viscosity diverges.
Fitting equation (2.4) to our measurements leads to φm ≈ 0.58, in agreement with other
measurements performed in the literature with the same particles (Guazzelli & Pouliquen
2018; Château et al. 2018). Note that other correlations can be used. For instance, the
Zarraga correlation (Zarraga et al. 2000) has been used to describe the dip-coating
of monodisperse suspensions (Gans et al. 2019), the pinch-off of suspension droplets
(Bonnoit et al. 2012), and the flow of suspension on an inclined plane (Bonnoit et al.
2010). The Zarraga correlation is given by

ηr =
η(φ)

η0
=

exp(−2.34φ)

(1−φ/φ Z
m)

3 , (2.5)

which leads with our measurements to φ Z
m = 0.62, also in agreement with the values

reported in other studies (Bonnoit et al. 2012). The Zarraga correlation slightly underes-
timates the effective shear viscosity for φ ≳ 0.25 but better captures it at moderate volume
fraction (φ ∼ 0.1−0.2). The Eilers correlation is also an option (Stickel & Powell 2005),
and has been used recently for the spreading of suspension droplets (Zhao et al. 2020).
Our decision to choose the Maron-Pierce correlation here is motivated by previous studies
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showing that the viscosity diverges as (1−φ/φc)
−2, stressing the exponent −2 (Guazzelli

& Pouliquen 2018).
For a given φ , the effective shear viscosity of a bidisperse suspension is lower than

that of a monodisperse suspension (Shapiro & Probstein 1992; Probstein et al. 1994;
Gamonpilas et al. 2016; Guy et al. 2020). This effect is linked to the higher compacity
of polydisperse sphere packings (Ouchiyama & Tanaka 1984). Indeed, in a packing of
polydisperse spheres, small particles can fill the interstices between the larger ones,
which leads to a higher maximum packing fraction φm. Compared to the monodisperse
case where η is only a function of φ , the viscosity of bidisperse suspensions depends
on two additional parameters: the ratio of large to small particle diameters δ = dL/dS,
and the fraction of the solid volume occupied by the larger particles ζ = VL/(VL +VS)
(Shapiro & Probstein 1992). Experimental measurements have shown that the viscosity
of bidisperse suspensions follows the Maron-Pierce correlation, provided that φm takes
the polydispersity into account (Thiévenaz et al. 2021).

3. Dip-coating of monodisperse suspension

Monodisperse suspensions, i.e., composed of particles of a single size, are first con-
sidered for volume fractions ranging from φ = 10% to φ = 40% and different particle
diameters. The goal here is to verify whether the Maron-Pierce correlation [equation
(2.4)] can predict the thickness of the coating films. Gans et al. (2019) and Palma
& Lhuissier (2019) have previously shown that if the film is approximately thicker
than the particle diameter (h ≳ d), its thickness follows the same law as a viscous
liquid [equation (1.1)], where the viscosity corresponds to the effective viscosity of the
suspension. However, despite a good agreement, this approach slightly overestimates the
thickness of the coating film (see figure 5 and figure 8 for large volume fraction in Gans
et al. (2019)).

Figures 3(a) and 3(b) show the thickness of the coating film h when varying the
withdrawal velocity of the plate U for particles of diameter 20 µm and 80 µm, respectively.
As expected, the faster the withdrawal, the thicker the coating film. Besides, increasing
the volume fraction of particles, and thus the viscosity of the suspension in the bath, also
leads to thicker films. When h ≳ d, we observe the transition to the effective viscosity
regime, in which h ∝ U2/3 according to the LLD law [equation (1.1)], in agreement with
previous works (Gans et al. 2019; Palma & Lhuissier 2019).

To begin with, no assumption regarding the effective viscosity of the suspension is
made. Instead, it is treated as a fitting parameter that we can estimate through the
Landau-Levich-Derjaguin law:

h = 0.94ℓc Caφ
2/3 = 0.94ℓc

(︃
η(φ)U

γ

)︃2/3

, (3.6)

The capillary number is based on the effective viscosity of the suspension: Caφ =
η(φ)U/γ. In this expression, the capillary length ℓc and the surface tension γ are physical
properties of the liquid which are not modified by the particles, U is the withdrawal
velocity, and η(φ) is the effective viscosity of the suspension. For each experiment, η(φ)
is considered as a fitting parameter so that the thickness of the film in the LLD regime is
captured quantitatively by the equation (3.6).

We observe that for both particle diameters (20 µm and 80 µm), the experimental data
collapse onto the LLD law when h ≳ d (figures 3(c)-(d)). A similar observation can also
be done for other sizes of particles used in this study. Figure 4(a) reports the relative
effective viscosity of the suspension, ηr = η(φ)/η0 obtained through this approach. The
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(a) (b)

(c) (d)

FIGURE 3. Thickness of the coating film as a function of (a)-(b) the withdrawal velocity U , and of
(c)-(d) the effective capillary number Caφ , for varying volume fractions φ of particles of diameter
(a)-(c) d = 20 µm, and (b)-(d) d = 80 µm. The thick continuous line is the LLD law [equation 1.1]
where the viscosity is considered as a fitting parameter. The horizontal dashed line in figures (c)
and (d) corresponds to a coating film as thickness equals to the particle diameter (h = d). The
colored area in (c) and (d) corresponds to the effective viscosity regime.

evolution is similar for both particle sizes: at small enough volume fractions (φ ≲ 0.2),
the viscosity follows the Mason-Pierce correlation [equation (2.4)] although it is slightly
smaller than the viscosity of the suspension in the bath.

At larger volume fractions, the viscosity η(φ) obtained by fitting the experimental
data with the LLD law is systematically lower than the viscosity of the suspension in
the bath. The larger difference in viscosity observed for larger volume fractions is due
to the nonlinearity of the evolution of ηr with φ . The estimated value of η(φ) then
allows us to calculate the corresponding volume fraction φ by using equation (2.4). The
difference between the actual volume fraction of the suspension in the bath and the
estimated volume fraction of the coating film is reported in figure 4(b). The difference is
approximatively equal to ∆φ = 0.008,0.012,0.056,0.049 for φ = 0.1,0.2,0.3,0.4, and thus
shows a relative variation of ∆φ/φ = 8%, 6%,18% and 12%. The decrease in particle
volume fraction in the coating film has been previously reported, yet it was of smaller
magnitude (Palma & Lhuissier 2019). This small variation in volume fraction could be
an effect of self-filtration due to the abrupt change in the flow at the stagnation point.
This effect has been investigated by Kulkarni et al. (2010) for a gravity-driven flow of
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(a) (b)

FIGURE 4. (a) Relative shear viscosity ηr of suspensions of particle diameter d = 20 µm and
d = 80 µm as a function of the particle volume fraction in the bath φ (circles). ηr is estimated
from the thickness of the coating film using equation (3.6). The shear viscosity measured with the
rheometer is also reported (squares). The dashed line is the Maron-Pierce correlation [equation
(2.4)]. (b) Comparison between the particle volume fraction of the suspensions in the bath, φ ,
and the value obtained from the viscosity φmeas, measured either by dip-coating or rheometer. The
dashed line has a slope 1.

dense suspensions (φ > 0.5) through a wide aperture. Here, the stagnation point and the
dynamic meniscus also play the role of an aperture, with one solid boundary and one
deformable boundary imposed by the air-liquid interface, so that a similar self-filtration
effect can be expected. Note that the resulting difference between the coating thickness
and the predicted value by the LLD law and the Maron-Pierce correlation is small (about
10%) and was already visible in previous measurements (Gans et al. 2019). We insist on
this point to stress the difference between the viscosity decrease due to the self-filtration
and the viscosity decrease to polydispersity, which can be of similar magnitude. We
should also emphasize that confinement effects are also known to influence the viscosity
of suspension due to a change in the packing structure (Peyla & Verdier 2011; Fornari
et al. 2016). Nevertheless, since a constant viscosity was measured for a range of coating
thicknesses, as shown in figure 3, the influence of confinement effects on the decrease
in viscosity is negligible here. In the following section, we consider the role of a bimodal
distribution of particle size on the coating film.

4. Coating of bidisperse suspensions

4.1. General observations

In this section, we consider suspensions of particles having a bimodal size distribution:
small particles of diameter dS and large particles of diameter dL. The composition of the
solid phase is defined by the volume ratio of large particles: ζ = VL/(VL +VS), where VL
and VS are the volume of large and small particles in the suspension, respectively. Figure
5 shows examples of typical coating patterns observed for different withdrawal velocity
U and for different compositions of the solid phase, with dS = 20 µm and dL = 80 µm.
The solid volume fraction is kept constant and equal to φ = 0.2. We observe that the
composition of the coating film changes drastically in terms of particle size distribution
and depends both on U and ζ . For instance, for a balanced composition (ζ = 0.4) and
a low withdrawal velocity, only the small particles are entrained in the coating film. For
a given value of ζ , the number of large particles increases with the withdrawal velocity,
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FIGURE 5. Examples of coating films observed for bidisperse suspensions of particles diameters
dS = 20 µm and dL = 80 µm (size ratio δ = 4), at a volume fraction φ = 0.2 and different volume
ratios of large particles (ζ = 0.2, 0.4, 0.6, and 0.8) for increasing withdrawal velocities U . The size
of the scale bars is 250 µm.

and thus the thickness h of the film. We observe the same behavior for all compositions
of ζ considered here.

A deficit of large particles in the coating film is observed for low or moderate with-
drawal velocity. Indeed, when the thickness at the stagnation point h∗ is smaller than the
particle radius, the particles are filtered out of the film (Sauret et al. 2019). It remains
unclear if the three regimes, which reported for monodisperse suspensions ("liquid only",
"heterogeneous films", and "effective viscosity"), still hold for polydisperse suspensions.

The experiments reported in Figure 1 and Figure 5 suggest that at low velocity and
small enough volume fraction, a first coating regime is observed. Within this regime,
the coating film does not include any particles and corresponds to the "liquid-only"
regime observed for monodisperse suspensions (Gans et al. 2019). At large withdrawal
velocities, multiple layers of particles are visible, and the composition of the coating film
is comparable to the composition of the suspension bath. This regime, which corresponds
to an effective viscosity regime, is studied in detail in section 4.2. The regime in-
between those two regimes, the heterogeneous regime, is more complex for bidisperse
suspensions. At low withdrawal velocity, the volume ratio of large particles ζ in the
coating film is smaller than that in the bath, i.e. the film mostly contains small particles,
and only a few large particles can be seen. Here, the small particles reach their effective
viscosity regime while the large particles only start to be entrained in the film. Increasing
the withdrawal velocity leads to an increase in the number of large particles in the
coating film. We discuss this heterogeneous regime in Section 4.3.
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(a) (b)

(c) (d)

FIGURE 6. Thickness of the coating film versus (a)-(b) the withdrawal velocity U and (c)-(d)
the effective capillary number Caφ for bidisperse suspensions with particles of diameter (a)-(c)
dS = 20 µm and dL = 80 µm (δ = 4); (b)-(d) dS = 20 µm and dL = 140 µm (δ = 7). The volume
fraction is φ = 20%. On each figure, we vary the volume ratio of large particles ζ from 0 to 1. In
(c) and (d) the two horizontal dashed line respectively corresponds to a coating film thickness
equals to the particle diameter, h = dS and h = dL. The continuous thick line is the LLD law, where
the viscosity is considered as a fitting parameter. We observe three regimes: (I) is the regime
where the film thickness is more or less constant and similar to dS. (II) is the regime where the
film is primarily composed of small particles, and the number of large particles depends on the
withdrawal velocity. (III) is the thick-film regime where the coating film is thicker than the diameter
of the large particles, and the composition of the coating film is similar to that of the bath. Inset
pictures show the coating film in these three regimes. The size of the scale bars is 250µm.

4.2. Effective viscosity regime

4.2.1. Experimental observations

We measure the thickness of the coating film for the bidisperse suspension shown
in figure 5 varying the withdrawal velocity and the volume ratio of large particles ζ .
Figure 6(a) shows the thickness of the coating film as a function of the withdrawal
velocity. In the regime of fast withdrawal (U ≳ 2mm/s), monodisperse and bidisperse
suspensions follows a common power-law h ∝ U2/3. This observation suggests that an
effective viscosity can also be extracted for a thick enough film of bidisperse suspension.
We perform an analysis similar to the one used for the monodisperse suspensions in
section 3 and fit the thickness h to the LLD law [equation (3.6)], where the effective



12 D.-H. Jeong, M. Ka Ho Lee, V. Thiévenaz, M. Z. Bazant and A. Sauret

(a) (b)

(c) (d)

FIGURE 7. Thickness of the coating film versus (a)-(b) the withdrawal velocity U , and (c)-(d)
the effective capillary number Caφ for bidisperse suspensions with particles of diameter (a)-(c)
dS = 140 µm and dL = 250 µm (δ = 1.786); (b)-(d) dS = 80 µm and dL = 250 µm (δ = 3.125). The
volume fraction is φ = 40%. In figures (c) and (d) the two horizontal dashed line corresponds
to a coating film thickness equals to the particle diameters, respectively h = dS and h = dL. The
continuous thick line is the LLD law, where the viscosity is considered as a fitting parameter.

viscosity η(φ) is considered as a fitting parameter. The rescaling is shown in figure 6(c).
It demonstrates that the coating film is in the effective viscosity regime, provided that
the film is thicker than the diameter of the large particles, h ⩾ dL.

The situation is nevertheless more complex than for monodisperse suspensions. In-
deed, the threshold to the effective viscosity regime seems to depend on the volume
ratio of large particles ζ . For small ζ (for instance ζ = 0.2 in figure 6(c)) the thickness
of the film follows fairly well the LLD law as soon as h ⩾ dS. Indeed, small values of
ζ mean that the volume of large particles is small compared to the volume of small
particles. Therefore, the large particles do not contribute significantly to the viscosity
of the suspension. Note that although the prediction of the LLD law is reasonably good
when dS < h < dL, the composition of the coating film is different from the composition
of the suspension bath with a deficit in large particles as we shall see in section 4.3. For
large values of ζ (for instance, ζ = 0.8 or 0.9 in figure 6(c)), the LLD law is recovered
only for h ⩾ dL. In this case, the large particles are the main contributor to the viscosity
of the suspension. Thus, recovering the LLD law requires the coating film to be thick
enough (h ⩾ dL) so that it can allow most of the particles to be entrained in the film.
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(a) (b)

FIGURE 8. Relative shear viscosity ηr versus the volume fraction of large particles ζ for a suspension
containing (a) φ = 20% for particle size ratio δ = 4 (blue) and 7 (red) and using φfilm = 17% in the
coating film; (b) φ = 40% for particle size ratio δ = 1.786 (blue) 3.125 (red) and using φfilm = 35.5%
in the coating film,. The symbols show data obtained by the best fit to the LLD law. The lines show
to the viscosity predicted by the Maron-Pierce correlation [equation (2.4)] using the maximum
packing fraction given by equation(4.9).

The same observation can be made with another combination of particle sizes: Figure
6(b) shows the case of a suspension with dL = 140 µm and dS = 20 µm particles. In this
case, the effective viscosity regime following the LLD law is also recovered for h ⩾ dL =
140 µm [figure 6(d)]. Here, a similar evolution than the one reported in figures 6(a) and
6(c) is observed.

We also considered a larger volume fraction: φ = 40% of dL = 250 µm/dS = 140 µm
[figure 7(a)] and dL = 250 µm/dS = 80 µm [figure 7(b)]. Again, the coating thickness h
follows the LLD law with an effective capillary number Caφ , where the viscosity of the
bidisperse suspension is still considered as a fitting parameter. A similar behavior than
the one reported for suspensions at φ = 20% is observed: the effective viscosity regime
starts at h ⩾ dL, and the transition from the heterogeneous film to the effective viscosity
regime is smoother for small fraction of large particles ζ [figures 7(c)-(d)]. Besides, since
the particles used here are larger than the ones used in the φ = 20% case, we are also
able to see the liquid-only regime, where barely any particles are entrained. This regime
is observed at small values of Caφ , and thus small h (data on the bottom left corner
indicated as (I) in figures 7(c)-(d)).

4.2.2. Effective viscosity of bidisperse suspensions

Although the LLD law is recovered for bidisperse suspensions when h ⩾ dL, figures
6(a)-(b) and 7(a)-(b) show that for a given value of U and φ , a change in the volume
ratio of large particles ζ leads to a change in the film thickness. This observation is
consistent with the influence of the composition of the solid phase on the viscosity: a
change in δ or ζ causes a change in viscosity, hence a change in film thickness (Shapiro
& Probstein 1992; Gamonpilas et al. 2016; Thiévenaz et al. 2021).

The effective viscosity η(φ , δ , ζ ) is derived by fitting the experimental data to the LLD
law in the effective viscosity regime. Figure 8(a) (resp. 8(b)) reports the relative viscosity
ηr = η/η0 as a function of the volume ratio of large particles ζ for the experiments
presented in figures 6(c)-(d) (resp. figures 7(c)-(d)). In figure 8(a), the volume fraction
in the bath is φ = 20% and the size of the particles are 20 µm/80 µm and 20 µm/140 µm.
In figure 8(b), the volume fraction in the bath is φ = 40% and the size of the particles
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are 140 µm/250 µm and 80 µm/250 µm. Between the two monodisperse cases, the relative
viscosity ηr as a function of ζ shows a parabolic curve, reaching its minimum around ζ ≃
0.4−0.6. This canonical behavior of bidisperse suspensions is due to the higher compacity
of bidisperse packings (see e.g. Pednekar et al. 2018). The difference in viscosity observed
between the two monodisperse cases, at ζ = 0 and ζ = 1, arises from the size variance
of the particles. Although the suspensions used are monodisperse down to a certain level
(see the size measurement in Appendix), a small amount of polydispersity is unavoidable
and therefore, the maximum packing fraction for these two distributions of particles is
slightly different, about 5−10% here.

For a bidisperse suspension in the effective viscosity regime (h > dL), the proportions
of small and large particles are expected to be similar in the film and in the bath.
The evolution of the viscosity can be modeled by calculating the maximal packing
fraction φm(δ , ζ ) of a bidisperse sphere packing of the same composition and then
substituting it in the Maron-Pierce correlation [equation (2.4)]. To compute the maximal
packing fraction, we adapt the model of Ouchiyama & Tanaka (1984). It consists in
computing the local compacity around each size of particles and averaging it over the
size distribution. The model is simplified to consider here a bimodal size distribution.
The number fractions of small NS and large NL particles are defined as

NS =
(1−ζ )δ 3

(1−ζ )δ 3 +ζ
and NL =

ζ

(1−ζ )δ 3 NS, (4.7)

respectively, and d̃S = dS/δ and d̃L = dL/δ are the reduced sizes given by

d̃S =
(1−ζ )δ 3 +ζ

(1−ζ )δ 3 +ζ δ
and d̃L = δ d̃S. (4.8)

The maximum packing fraction of the bidisperse packing is then given by

φm(δ ,ζ ) =
NS d̃S

3
+NLd̃L

3

(NS/Γ )(d̃S +1)3 +NL
(︁
(d̃L −1)3 +

[︁
(d̃L +1)3 − (d̃L −1)3

]︁
/Γ

)︁ , (4.9)

where Γ denotes the average number of particles in the vicinity of a given particle and is
equal to

Γ = 1+
4

13
(8φm,0 −1)

NS (d̃S +1)2
(︂

1− 3
8

1
d̃S+1

)︂
+NL(d̃L +1)2

(︂
1− 3

8
1

d̃L+1

)︂
NS d̃S

3
+NL

[︂
d̃L

3 − (d̃L −1)3
]︂ (4.10)

Here, φm,0 is the maximum solid fraction in a monodisperse packing, which we esti-
mated through our rheometer measurements at φm,0 ≃ 58%. We then compute φm using
equation (4.9) and obtain the viscosity through the Maron-Pierce correlation given by
equation (2.4). This approach has been previously used to describe the viscosity of a
bidisperse suspension in an oscillating plane Couette flow (Gondret & Petit 1997), or the
detachment of drops of bidisperse suspensions (Thiévenaz et al. 2021).

Figures 8(a)-(b) report the viscosity measured by fitting the dip-coating results to the
LLD law, and compare it to the predictions of equations (2.4) and (4.9). These predictions
match our experiments well, proving that the bidisperse suspensions behave like an
effective viscous fluid. Here, the volume fraction φ is also determined by the best fit of the
evolution of the viscosity with the composition of the bidisperse suspension. Achieving
this good match requires that we use a volume fraction φfilm slightly smaller than the
volume fraction in the suspension bath φ as φfilm ≃ 17% for φ = 20% and φfilm ≃ 35.5%
for φ = 40%. This discrepancy is consistent with the self-filtration effect (Kulkarni et al.
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2010) and the observations made in the previous section for monodisperse suspensions
as there are fewer particles in the film than in the bath, regardless of their sizes.

The comparisons between the viscosity obtained from the LLD law and the model
show that at small size ratios (δ = dL/dS), the viscosity is well predicted over the whole
range of ζ . However, at larger values of δ , the model usually fails for ζ > 60%, i.e.,
when large particles dominates. This is explicit in figure 8(a). The same failure of the
model has been observed in other configurations (Gondret & Petit 1997; Thiévenaz &
Sauret 2021). Therefore, the mismatch between experimental results and the prediction
roots from the limitation of the model for the viscosity (equation 2.4 and 4.9) and not a
problem specific to dip-coating.

In summary, for a bidisperse suspension, the effective viscosity regime is observed for
a coating thickness larger than the diameter of the largest particles h > dL. This condition
can be expressed in terms of capillary number associated with the interstitial fluid:

Ca0
∗ ⩾ 1.09

η0

η(φ)

(︃
dL

ℓc

)︃3/2

, with Ca0 = η0 U/γ (4.11)

or associated to the capillary number based on the effective viscosity of the bidisperse
suspension

Caφ
∗ ⩾ 1.09

(︃
dL

ℓc

)︃3/2

, with Caφ =
η(φ ,δ ,ζ )U

γ
(4.12)

This threshold is similar to the case of monodisperse suspension (Gans et al. 2019; Palma
& Lhuissier 2019) but only depends on the diameter of the large particle. In the effective
viscosity regime, the thickness of the coating film can be estimated using the LLD law
with a capillary number based on the effective viscosity of the bidisperse suspension:

h = 0.94ℓc Caφ
2/3 (4.13)

For a given solid volume fraction, bidisperse suspensions are less viscous than monodis-
perse suspensions. This decrease in viscosity is more pronounced for a large difference
in the particle size ratio, that is, when δ is high (see figure 8(a)-(b)). Therefore, in
the effective film regime, bidisperse suspensions yield thinner films than monodisperse
suspensions for a given volume fraction φ .

4.3. Heterogeneous regime

4.3.1. Experimental observations

For withdrawal velocities U leading to coating films thinner than the diameter of
the large particles (h ≲ dL), the coating thickness does not follow the Landau-Levich-
Derjaguin law anymore. This situation is observed in regions (I) and (II) in figures 6(c)-
(d) and figures 7(c)-(d). This heterogeneous regime, which was already observed for
monodisperse suspensions, is different depending on the range of sizes of the particles.
The heterogeneous regime can be split into two regimes for bidisperse suspensions.

The first regime corresponds to the lowest capillary numbers, where the film is then
mainly composed of small particles. Its thickness remains more or less constant and equal
to h ∼ dS over a range of capillary number (region (I) in figures 6(c)-(d) and 7(c)-(d)). A
similar regime is observed for monodisperse suspensions and corresponds to a monolayer
of small particles (Gans et al. 2019; Palma & Lhuissier 2019). If the suspension is dilute
enough and the particles are large enough, we can observe an extreme case where only
the liquid is present in the coating film, without any particles entrained. This situation
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occurs at very small withdrawal velocities [left panel in figure 1]. It can also be seen when
the suspension is primarily composed of large particles (ζ = 0.8 in figures 7(c)-(d)).

The second heterogeneous regime occurs at moderate capillary numbers, between the
first heterogeneous regime and the effective viscosity regime. In this regime, correspond-
ing to the region (II) in figures 6(c)-(d) and 7(c)-(d), the coating film is primarily
composed of small particles but also contains some large particles. The number of
entrained large particles increases continuously with the capillary number up to the
effective viscosity regime when h ⩾ dL. For a small volume ratio of large particles, typi-
cally ζ = 0.2 or 0.4, the LLD regime is reached earlier than for large ζ . This observation
can be rationalized by considering that the number of large particles remains small.
Therefore the large particles do not contribute significantly to the effective viscosity of
the suspension. The main challenge in predicting the threshold between the regimes lies
in estimating the number of entrained particles. In the following subsection, we propose
a filtration model that accounts, at first order, for the variation of composition in the
coating film.

4.3.2. Discussion: Entrained Particle Distribution

When h < dL, the interplay between the different length scales (different sizes of
particles and film thickness) selects the particles entrained in the coating film. We present
here a model that accounts for the variation in the composition of the coating film
compared to the composition of the bath. We rely on the thickness of the coating film
and the flow rate based on the Landau-Levich-Derjaguin theory of dip coating (Levich &
Landau 1942) at which we add the criterion given by equation (1.2), to set the minimum
film thickness required for the entrainment of particles of diameter d in the coating film.
For a given particle size distribution in the bath, varying the withdrawal velocity and
hence the thickness of the coating film will lead to a different particle size distribution in
the coating film, as long as h < dL.

Consider the passage of particles from the bath to the film. We introduce z as the
coordinate parallel to the solid surface, x as the coordinate perpendicular to the surface,
and s is the curvilinear coordinate that follows the meniscus (see figure 2(a)). The
lubrication flow in the film reduces to the axial flow profile: u∗z (x,s). Then, the probability
for a particle of diameter d and position (x,s) to be captured in the film is defined
as p∗c(x,s,d). In addition, the particle-surface pair correlation function for a particle of
diameter d following a streamline passing through the point (x,s) in the meniscus is
defined as g∗s (x,s,d). This function describes the interaction between the surface and the
particles. The equilibrium pair correlation may be needed to account for non-equilibrium
effects for particles passing through the meniscus, for instance, the clustering of particles
or interactions between them. From there, the flow rate of particles of diameter d that
enters the film, Qc(d), is computed. The local flux is first integrated over a cross-section
of the meniscus, perpendicular to the plate and passing through the stagnation curve
defined as x = h∗(s). Qc(d) can be expressed as:

Qc(d) = φ(d)
∮︂ ∫︂ h∗(s)

0
u∗z (x,s)p∗c(x,s,d)g

∗
s (x,s,d)dxds, (4.14)

The general expression for the particle flow rate given by equation (4.14) allows to
account for complex solid surface geometries, such as fibers or textured plates (Dincau
et al. 2020; Seiwert et al. 2011), and general particle-surface correlations. Here, we can
make some assumptions for the sake of simplification by considering the cross-section
of a thin plate so that the s dependence can be neglected during integration over the
perimeter P = 2(w+e), where w and e are the width and the thickness of the glass plate,
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respectively. A thin film assumption is also made in Cartesian coordinates (x, z):

Qc(d) = φ(d)P
∫︂ h∗

0
u∗z (x) p∗c(x,d)g∗s (x,d)dx. (4.15)

We further assume that a particle entering the meniscus is entrained if and only if its
radius is smaller than the meniscus at the stagnation point (Sauret et al. 2019), so that a
capture probability function can be approximated as

p∗c(x,d) = H
(︃

h∗− d
2
− x

)︃
, (4.16)

where H(x) is the Heaviside step function. Note that other ansatz for p∗c(x,d) could
be used to describe the entrainment of more complex particles (emulsion droplets,
deformable capsules, or anisotropic particles). We also assume the following expression
for the particle-surface pair correlation function:

g∗s (x,d)≈ ḡ∗s (d)H(x−d/2), (4.17)

where the Heaviside function takes into account excluded volume near the surface (x <
d/2), and the constant meniscus surface correlation ḡ∗s (d) reflects long-range particle-
surface forces or dynamical effects, such as boundary layer depletion, that rescales the
particle density arriving within the meniscus region relative to the well-mixed bulk
fluid. In this approximation, the volume fraction of particles of diameter d entering the
meniscus region (outside the excluded volume near the wall) is φ ∗(d) = ḡ∗s (d)φ(d), which
could be considered similar to the bulk volume fraction for a well-mixed suspension
with ḡ∗s (d) ≃ 1. Besides neglecting variations in particle mass transfer to the meniscus
region, the following analysis also neglects interactions between particles that may lead
to cooperative entrainment phenomena. For instance, a large particle can briefly deform
the interface at the meniscus so that nearby smaller particles are more easily entrained. In
particular, clusters of particles have been shown to be able to be collectively entrained at
small film thickness (Colosqui et al. 2013; Sauret et al. 2019) and could, in principle, be
accounted for through this function. In the following, we consider its simplest expression.

With these assumptions, Equation (4.15) reduces to the integral over part of the
velocity profile in the meniscus,

Qc(d) = φ
∗(d)P

∫︂ h∗−d/2

d/2
u∗z (x)dx (4.18)

We further assume an approximately parabolic velocity profile vanishing at the stag-
nation point,

u∗z (x) =U
(︂

1− x
h∗

)︂2
. (4.19)

This expression for the velocity field ensures the mass conservation for the case of a
pure liquid going into the film,

∫︁ h∗
0 u∗z (x)dx = U h. We substitute the flow profile given

by equation (4.19) in equation (4.18) and perform the integral to obtain the probability
distribution of particles in the coating φc(d), defined as the volume fraction of particles
of diameter d:

φc(d) =
Qc(d)

Qf
= φ(d) f (d̃)H(1− d̃), (4.20)

where φ(d) is the probability distribution of particles in the suspension bath, Qf is the
flow rate of liquid in the coating film, and the Heaviside function H(1− d̃) indicates a
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sharp size cutoff given by entrainment criterion d̃ = d/2h∗ < 1. In equation (4.20), the
filtration function defining the ratio of final to initial probability distribution of particles
is given by

f (d̃) = (1− d̃)3 − d̃3 (4.21)

where we have introduced a dimensionless particle radius as

d̃ =
d

2h∗
=

d

5.64ℓc Caφ
2/3 . (4.22)

Note that we have used here a thickness at the stagnation point calculated with the
effective viscosity of the suspension. However, because of the similar size between the
particles and the stagnation point, the local thickness may be modified by the volume
fraction, and the size of the particles as described recently in the wetting dynamics by
Zhao et al. (2020). Further experiments focusing on the exact structure and local compo-
sition of the suspension at the meniscus would be needed to refine this assumption. The
thickness in this region will be set by the deformation of the meniscus, the viscosity in
the bath, and the ratio of particle size to the typical lengthscale. This assumption could
lead to small discrepancies in quantitative estimating the number density of entrained
particles. As expected, f (0) = 1 so that all particles that are small compared to the film
thickness will be entrained if they arrive at the meniscus. The number of entrained
particles of diameter d per unit area in the coating is thus given by

np(d) =
Qc(d)

U PVp(d)
=

φc(d)h
Vp(d)

=
φ(d) f (d̃)H(1− d̃)h

Vp(d)
(4.23)

where Vp(d) = πd3/6 is the volume of the spherical particle, and h is the film thickness.
The total entrained solid volume fraction and total solid flow rate (entrained volume per
time) in the coating are expressed as

φp =
∫︂

∞

0
φc(d)dd and Qs =

∫︂
∞

0
Qc(d)dd = φpQ f . (4.24)

We apply these equations to the particular case of the bidisperse suspensions used
in this study. We can express the probability distribution of small and large particles as
φS = (1− ζ )φ and φL = ζ φ , respectively. As a result, the number of small particles of
radius dS entrained per unit area is

np(dS) =
(1−ζ )φ f (d̃S)H(1− d̃S)h

Vp(dS)
, (4.25)

and for the large particles of diameter dL

np(dL) =
ζ φ f (d̃L)H(1− d̃L)h

Vp(dS)
. (4.26)

These expressions are plotted in figures 8(a)-(d) and show a fair agreement with the
experimental data. The model yields quantitative results as it gives a reasonable estimate
of the number of entrained particles when varying the volume ratio of large particles ζ

from 0.6 [figure 8(a)] to 0.8 [figure 8(b)]. In both cases, the main limit occurs near the
threshold velocity, where the model underpredicts the number of particles entrained.
Indeed, the threshold for entrainment is based on the criterion for individual particles
(Colosqui et al. 2013; Sauret et al. 2019), and does not account for the clustering of
particles that deform the meniscus and allows particles at sufficient volume fraction
to be entrained earlier. It was previously reported that the onset of the monolayer
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(a) (b)

(c) (d)

FIGURE 9. Number of particles deposited on a unit area of the plate. The composition of the
suspension is (a) φ = 0.2, ζ = 0.6, δ = 7 (dS = 20 µm and dL = 140 µm); (b) φ = 0.2, ζ = 0.8, δ = 7
(dS = 20 µm and dL = 140 µm); (c) φ = 0.2, ζ = 0.9, δ = 1.75 (dS = 80 µm and dL = 140 µm); (d)
φ = 0.2, ζ = 0.9, δ = 12.5 (dS = 20 µm and dL = 250 µm). The blue and red symbols correspond to
the experimental measurements for the large and small particles, respectively. The open squares
represent the cases where the number of particles is underestimated because of limitations in
the camera’s depth-of-field and multi-layer deposition. The solid blue and red lines correspond to
the theoretical prediction of the number of large [equation (4.25)] and small [equation (4.26)]
particles per unit area on the plate, respectively. Insets: Zoomed-in view on low withdrawal velocity
region highlighting the ability of filtering by size the particles in the suspension.

regime depends significantly on the volume fraction and so far remains empirically
measured (Palma & Lhuissier 2019). Adding this component to the model presented
above could lead to a better quantitative prediction of the density of entrained particles
in this region. Nevertheless, the number density of particles is significantly filtered in this
heterogeneous regime.

We have also performed similar measurements with smaller size differences (δ = 1.75
in figure 8(c)). The experiments show that the velocity range in which particles could be
separated by size is significantly reduced. In addition, figure 8(c) shows that for similar
particle sizes, an heterogeneous regime for both particle sizes is quickly reached and the
prediction does not capture well the number of particles entrained per unit area. On the
other hand, for large size difference (δ = 12.5 in figure 8(d)), there is a clear range below
U = 2mm/s in which the film is free of large particles while entraining the small particles.
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These results illustrate that during the coating of a plate with a polydisperse sus-
pension, the composition of the coating film may be very different compared to the
composition of the bath. In the heterogeneous regime, the resulting coating will contain
more small particles and fewer large particles than the original composition of the
suspension, possibly compromising the quality of the coating.

We should emphasize that we have considered in our model a Heaviside step function
in the capture probability function [equation (4.16)] and for the particle-surface pair
correlation function [equation (4.17)]. However the transition between entrainment and
no entrainment could be smoother. Considering the possible modification in our model,
since u∗z (x) =U (1− x/h∗)2, smoothing the particle-surface interaction g∗s (x,d) will sample
lower velocities (since d/2 is a hard sphere limit) and thus will lower the predicted
entrainment fraction. Smoothing the capture function p∗c(x,d) could have either trend:
(i) more probability weight at larger positions x + d/2 > h∗, e.g. from particles that
cooperatively "lift" the meniscus to allow others to get into the film (Sauret et al. 2019),
will increase entrained volume fraction, and (ii) less weight at smaller sizes x+d/2 < h∗

will lower it, e.g., from smaller particles that fluctuate across the stagnation point and are
not entrained. If we assume that smoothing generally increases the effective diameter d
that can be entrained, then the present theory from equation (4.20) would predict more
of the larger part of the initial distribution φ(d) gets past the cutoff function, i.e. more
entrainment than predicted by a Heaviside function, as observed experimentally.

4.4. Using dip-coating as a filtration method

The separation of small particles in the micron-size range (up to 1000 microns) from
a liquid dispersion is a source of challenge. When decreasing the particle size and
increasing the batch volume, most filtering methods are neither very efficient nor suitable
for a large throughput and/or are not highly selective. For example, the use of mechanical
filters of specific pore size can quickly lead to clogging of the filter pores that slow down
the filtering process (Urfer et al. 1997; Wyss et al. 2006; Dressaire & Sauret 2017; Sauret
et al. 2018). Centrifugation is also a standard filtering method but cannot separate the
particles with a high selectivity (Svarovsky 2000). Besides, centrifugation relies on the
difference of density between the particles, and if the densities are comparable, the
process loses in efficiency (Ninfa et al. 2009). However, a filtration method through a
dip-coating process, as demonstrated in the insets of figure 9(a)-(d), depends on whether
or not a particle enters in the coating film, which is mainly governed by the diameters
of the particles and could therefore be used to sort particles by size, regardless of the
particle volume fraction as reported previously (Dincau et al. 2019). The main limitation
to this method is that it is desirable to have particles with a significant size difference.

The results demonstrated here with solid particles and a bimodal distribution could be
extended to particles with a polydisperse size distribution and different material types.
In addition, whereas the size of the entrained particles is limited here by the thickness of
the liquid film, which is directly correlated to the capillary length, this filtration method
could also be used with fibers (Dincau et al. 2020). In this case, the thickness of the film,
and thus the thickness at the stagnation point, is directly proportional to the radius of
the fiber and therefore allows a larger range of size of particles that could be filtered.

In summary, the present methods offer various potential applications: in medicine
where it may be used to separate blood plasma components and cells (in a range of
size from 5 to 50 µm) and for grains and powders, such as ceramic abrasives, where the
standard methods of sedimentation or centrifugation are relatively slow, inaccurate and
costly. Here, the possibility of scaling up the capillary filtering mechanisms with arrays
of wires could open the opportunity for high throughput and good efficiency.



Dip coating of bidisperse suspensions 21

5. Conclusions

In this paper, we have investigated the dip-coating of a plate withdrawn from a bath
containing a suspension of particles with a bimodal size distribution. Previous studies
have reported that different regimes are observed for monodisperse suspensions (Sauret
et al. 2019; Palma & Lhuissier 2019): no entrainment at low velocities; a heterogeneous
regime with a monolayer of particles at intermediate velocity; and an effective viscosity
regime when the film is thicker than the particle diameter. For bidisperse suspensions,
the difference in diameter of the particles dispersed in the suspensions introduced a new
complexity as additional length scales need to be compared to the film thickness. We have
described the boundaries between the different coating regimes and shown that those
transitions are dependent on withdrawal velocity (i.e.capillary number), volume fraction,
and composition of the suspensions. In particular, the bidispersity of the particulate
suspensions led to a new regime at intermediate withdrawal velocity.

The behavior observed for bidisperse suspensions is summarized in figure 1. At low
velocity and moderate volume fraction, barely any particles are entrained. Increasing
the withdrawal velocity leads to a peculiar behavior: initially, only the small particles
are entrained on the plate, and the coating exhibits a heterogeneous regime with a
monolayer of small particles. Increasing the withdrawal velocity further leads to a second
velocity threshold where the large particles start to be entrained. The number of en-
trained large particles gradually increases with the withdrawal velocity. Finally, at large
enough withdrawal velocities, the composition of the suspension in the coating film is
mostly similar to the composition of the suspension in the bath. A model that accounts for
the probability of entraining particles based on their size has been developed. The model
qualitatively reproduces the experimental measurements, although the heterogeneous
regime where particles are entrained collectively is not captured in this model.

Our experiments have also revealed that the size of the largest particles in the sus-
pension controls the onset of the effective viscosity regime. When the thickness of
the coating film becomes larger than the diameter of the large particles, h ⩾ dL, the
thickness can be predicted at first order by the Landau-Levich-Derjaguin (LLD) law
by considering the effective viscosity of the bidisperse suspension. The presence of
the different particle sizes, however, lowers the viscosity of the suspension for a given
volume fraction φ , and the evolution of the viscosity is well-predicted by a model that
considers the polydispersity and its influence on the maximum packing fraction. We
should emphasize that both in the monodisperse and bidisperse regimes, the volume
fraction of particles in the coating film always exhibits a slight decrease compared to the
volume fraction in the liquid bath, likely due to a self-filtering mechanism that deserves
further investigations.

As illustrated in this paper, the dip coating process is not only an efficient tool to
passively control the coating by tuning the thickness of the coating film, but also can be
utilized as a method to sort particles by size in polydisperse suspensions. In particular,
we have developed a model that predicts the resulting composition in particles of the
coating film, knowing the probability distribution function of particles in the liquid bath
and the withdrawal velocity of the substrate. The experiments reported here could also
be used backwards in order to infer the capture function from the data using the theory,
by solving an integral equation inverse problem. Such an approach would be particularly
interesting to quantify different effects such as the shape, concentration, or surface
chemistry of the particles. We have also identified when an effective viscosity model for
a polydisperse suspension could be used to predict the resulting coating thickness. The
present contribution is a new step towards a predictive model to describe the formation
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TS 20 TS 80 TS 140 TS 250
Mean diameter d (µm) 22 81 145 249

Standard deviation σ (µm) 1.7 4.6 8.5 13
Density ρ (kg.m−3) 1.046 1.048 1.060 1.062

TABLE 1. Mean diameter and density of the polystyrene particles used in this study

of thin films with solid particulate suspensions. Nevertheless, further work is needed
to capture the coating films formed with other types of suspensions, such as fibers or
emulsions droplets.
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Appendix A. Physical properties of the polystyrene particles
The particulate suspensions used in this study consist of spherical polystyrene particles
(Dynoseeds TS, Microbeads) dispersed in silicone oil (AP100, Sigma Aldrich.) Particles
with four different sizes have been used. We have measured the size distribution of each
batch of the particles. Pictures of a large number of particles are taken and processed
through ImageJ to obtain the projected area A of each particle. The diameter of the
particles d was then obtained from the project area, d = 2

√︁
A/π, considering that the

circularity of the particles is close to 1. The measured size and standard deviation of
each batch of particles are reported in table 1. The probability density function of the
size distribution is plotted and fitted with a Gaussian distribution curve in Figure 10.

The density of the particles was measured by mixing a batch of particles into salt
waters with known densities. The density of each batch of particles is also reported in
Table 1.
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