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ABSTRACT: The molecular dynamics (MD) simulation technique is ) Molecular Dynamics _
among the most broadly used computational methods to investigate ( Simulations :
atomistic phenomena in a variety of chemical and biological systems. One \Q\N\C CoeH
of the most common (and most uncertain) parametrization steps in MD ""/m ot (2"°ge' o

- 192, Um. &
simulations of soft materials is the assignment of partial charges to atoms. : E
Here, we apply uncertainty quantification and sensitivity analysis . Machine Learning i I] ll
calculations to assess the uncertainty associated with partial charge MR VA i, Ij|_| .

assignment in the context of MD simulations of an organic solvent. Our  Atomic partial charges | Macroscopic properties
results indicate that the effect of partial charge variance on bulk

properties, such as solubility parameters, diffusivity, dipole moment, and density, measured from MD simulations is significant;
however, measured properties are observed to be less sensitive to partial charges of less accessible (or buried) atoms. Diffusivity, for
example, exhibits a global sensitivity of up to 22 X 10™° cm?/s per electron charge on some acetonitrile atoms. We then demonstrate
that machine learning techniques, such as Gaussian process regression (GPR), can be effective and rapid tools for uncertainty
quantification of MD simulations. We show that the formulation and application of an efficient GPR surrogate model for the
prediction of responses effectively reduces the computational time of additional sample points from hours to milliseconds. This study
provides a much-needed context for the effect that partial charge uncertainty has on MD-derived material properties to illustrate the
benefit of considering partial charges as distributions rather than point-values. To aid in this treatment, this work then demonstrates
methods for rapid characterization of resulting sensitivity in MD simulations.

1. INTRODUCTION of force constants (e.g,, estimated by normal-mode analysis of
vibrational spectroscopic data®). As of yet, there is no one-size-
fits-all universal force field; MD users must judiciously choose
a force field (or method of developing their own) that can
reliably reproduce the structure or physicochemical property in
which they are interested.

Typically, atomistic MD force field parameters are
implemented as scalar values with no associated uncertainty.
For example, in classical AMBER/CHARMM-type force fields,
the potential interatomic energy is calculated as a sum of
bonded and nonbonded terms. Bonded terms include
parameters for equilibrium bond lengths, angles, and dihedral
angles with associated force constants. Nonbonded terms
usually include a pairwise calculation for van der Waals energy,
often represented by a Lennard-Jones function, and electro-
static energy which is dependent on the atomic partial charges.
Whereas all other parameters of a given force field typically

The molecular dynamics (MD) method is one of the most
commonly applied simulation techniques to achieve atomistic-
scale assessment of chemical and biological systems. Classical
MD allows for simulations of systems on the order of ten
million atoms and up to microsecond time scales," several
orders of magnitude beyond any quantum-mechanical
simulation technique. State-of-the-art MD software leverages
advanced graphics processing unit (GPU) architectures for
efficient parallelization of calculations making larger and longer
all-atom MD simulations less computationally daunting.”’
Moreover, MD software, both open-source and proprietary
packages alike, continues to become more well-documented
and user-friendly, opening up the possibilities of MD
simulation applications to a variety of problems by a wider
scientific audience. However, the assumptions made in the
formulation and parametrization of classical MD experiments
require considerable due diligence from the user. Indeed, the
basis for the classical MD method assumes Newtonian physical
relations are adequate for reproducing the phenomena of
interest. Further, the adoption of a chosen force field (the
function from which all interatomic forces are derived)
involves intrinsic assumptions, such as the representation of
chemical bonds as harmonic springs along with the assignment
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Figure 1. Diagram of process for uncertainty quantification and acetonitrile molecule with atom labels used in this work.

depend on the atom type alone (e.g., the same carbon—carbon
bond distance is applied to all bonded sp® carbon pairs), the
determination of partial charges is molecule-specific and is
often a considerable portion of force field parametrization
since partial charges are highly dependent on the surrounding
chemical environment of the atom in question along with other
factors such as molecular conformation and orientation.
Moreover, the use of set point charges in classical MD
introduces further uncertainty into the assignment of atomic
partial charges.

Calculations of atomic partial charges typically involve two
steps: a quantum-mechanical (QM) calculation to determine
the molecular electrostatic potential (MEP) and an algorithm
to collapse the MEP onto atomic point charges. The QM
calculation can be performed at various levels of theory, such
as Hartree—Fock (HF) or Mpller—Plesset second-order
perturbation (MP2), with a selected QM basis set. Conversion
from the high-fidelity MEP to atomic charges is usually a less
involved calculation but not without its own set of decisions.”
A common method is the restrained electrostatic potential
(RESP) fitting of atomic charges which optimizes point
charges to reproduce the MEP while restraining “buried” (i.e.,
less solvent-accessible) atoms to low charge. This is done
because the charges of such atoms (e.g, methyl carbon) are
shown to be poorly determined when fitting to the MEP;
otherwise stated, the reproduction of the MEP is less sensitive
to the charges of buried atoms.~* The RESP method is usually
employed in conjunction with the AMBER family of force
fields investigated in this study’ but is by no means the only
method in wide adoption.” However, it is known that the
choice of QM and fitting algorithm will directly affect the
macroscopic properties measured from MD simulation, such as
diffusion.”'”"'" Moreover, many software and standard
approaches provide little guidance to reasoning for careful
parametrization and fitting of partial charges to macroscopic
properties (apart from density).

With the variation of the calculation of partial charge
parameters, it is critical to understand (and ideally, quantify)
the error that this variation may impart on calculated
macroscopic properties. Uncertainty quantification (UQ) is
the mathematical discipline of characterizing the uncertainties
associated with a given model prediction.'” At the root of UQ
studies focused on a specific model, y = f(x, q), is often the
assumption that the parameters contained in the vector g are
random variables with an associated distribution. The
parameter uncertainty is then propagated through the model,
f, to quantify the uncertainty associated with the model
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response, y. Techniques for uncertainty quantification allow
not only estimates of the overall uncertainty associated with y,
but also rigorous sensitivity analysis to attribute uncertainty to
specific parameters. UQ_experiments often use this treatment
for efficient parametrization and parameter selection to
improve model accuracy as well."?

There have been significant efforts to quantify response
uncertainty within MD formalism as well as optimize
parameters in force fields dating back to the 1990s. Wong
and Rabitz performed a preliminary sensitivity analysis and
principal component analysis (PCA) for free energy calcu-
lations and identified the most sensitive parameters of the
potential energy function in amino acid simulations."” Zhu and
Wong performed sensitivity analysis and parameter optimiza-
tion on popular polarizable and nonpolarizable water models
used in MD, suggesting new force field parameters via UQ.'*"
Work by Frederiksen and co-workers presented an approach
employing Bayesian ensembles to quantify uncertainty
associated with metallic interatomic potential parameters,
ultimately producing force field parameters for molybdenum
with error estimates for simulated mechanical properties.'®
Cailliez and Pernot provided a rigorous framework for force
field parametrization and uncertainty prediction with argon
simulations.'” Similarly, Angelikopoulos et al. put forth another
method for parameter prediction and error estimation using
efficient Bayesian uncertainty quantification, also demonstrated
on argon parameters'® followed by application to nanoscale
flow simulations.'” Rizzi and co-workers performed extremely
detailed uncertainty quantification for error propagation®’ and
parameter estimation”' for the TIP4P water model, as well as
parameters in ionic flow simulations*>*® and diffusion in
metallic alloys.”* The work on parameter estimation for TIP4P
water was further improved upon by Jacobson et al. for
multiple macroscopic properties.”” Significant work has also
been performed on the uncertainty quantification of specific
measurements from MD, such as the time-dependent diffusion
coefficient,*® glass transition temperature,27 shear viscosity,28
or solvation energies.”” Additional research studies have sought
to perform UQ and optimization of force field parameters for
alkanes,*® graphene,31 and reactive™” force fields. Furthermore,
studies have applied principles of UQ and Bayesian statistics to
rapid and automated force field parametrization™ or potential
energy calculation within MD itself.>* However, there is still a
lack of UQ studies pertaining specifically to the uncertainty of
partial charge assignment despite the lack of a universal
protocol and the well-known effect that different partial
charges can have on the results of MD simulations.”' "'
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In this work, we focus only on the uncertainty associated
with partial charge assignment, as this is most often
encountered by MD users even when using well-established
force fields. By assuming an input distribution of partial
charges for a common organic solvent, we performed hundreds
of short simulations to calculate macroscopic properties. We
quantified the uncertainty associated with these properties as a
result of partial charge uncertainty and additionally provide
local and global sensitivity estimates for each atom type. We
also present the results of the formulation of a surrogate model
to predict MD responses from partial charge assignment using
Gaussian process regression (GPR).35'36 The resulting GPR
surrogate reduces the required simulation time from days to
seconds, allowing further exploration of the parameter space.
Our results highlight the need for careful assignment of partial
charges in liquid-phase MD simulations yet also provide
specific guidelines on the responses that are more likely to be
highly sensitive to charge assignment technique.

2. METHODS

The following summarizes the simulation, analysis, and
statistical methods employed in this work. Additional
information on the construction of parameter distributions
used in this study is provided as well.

2.1. Simulation Methods. In this study, the model of
interest is molecular dynamics of the common organic solvent
acetonitrile (ACN). This solvent has a few benefits that make
it advantageous for this study. First of all, ACN has only four
symmetrically independent atoms, henceforth referred to as
C1, C2, N, and H (see Figure 1). Given that all partial charges
must sum to zero (i.e., dc1 *+ 9c2 * 9 + 3qu = 0) for an
uncharged molecule, we have three degrees of freedom in the
atomic partial charges. This limits the dimensionality of the
parameter space thus reducing computational load exponen-
tially.

Additionally, the rigidity and simple geometry of the
molecule reduce the amount of variation in bulk properties
due to angle and dihedral energies. Although other force field
parameters (i.e., bonded and nonbonded parameters other
than partial charges) will undoubtedly effect responses, the
angles and dihedrals in ACN are relatively well-understood and
noncompetitive. The polarity of the molecule provides an
interesting opportunity as well, as the simple reduction of
partial charge character to the overall dipole moment provides
a directly correlated response that may test our hypotheses. A
more complicated dipole—charge relationship or a molecule
with a very weak intrinsic dipole would not allow this
straightforward calculation as a sanity check of our analysis and
statistical manipulations. The existence of a buried atom, C2,
also allows the investigation of partial charges of this type on
bulk properties. Typically, buried atomic charges carry the
highest uncertainty when point charges are fitted from ab
initio-calculated ESP data.

Finally, the ubiquity of ACN as a solvent in organic synthesis
makes it the subject of various ab initio and molecular
dynamics studies in which partial charges were calculated,
dating back to 1982.%”~* This allows for rich source data from
which to base our assumptions as to the uncertainty associated
with the partial charge parameters. Details on these sources
and how they were used to formulate parameter distributions
are discussed in section 2.3.

All simulations were performed using the AMBER 16
molecular dynamics package.*’ All simulation responses were

calculated from S0 ns constant-temperature, constant-pressure
(NPT) simulations of 693 ACN molecules at 300 K and 1 atm
with a 2 fs time step and a cutoff of 8 A. The Berendsen/weak-
coupling thermostat and Berendsen barostat (zr = 1.0 ps, 7p =
1.0 ps) were used for temperature and pressure regulation,
respectively. Periodic boundary conditions were applied in all
directions, and the particle-mesh Ewald (PME) algorithm was
applied for long-range electrostatic interactions. The SHAKE
algorithm was used to restrain bonds with hydrogen and allow
the 2 fs time step. All simulations used the general AMBER
force field (GAFF)? for all bonded and Lennard-Jones
parameters.

A simulation size of 693 molecules corresponds to 4158
atoms in a cubic box of approximately 40 A for each
dimension. The choice of 50 ns was made based on accurate
calculation of the self-diffusion coefficient (D). The calculation
of D is discussed in detail in section 2.2.2 and its effect on
simulation size is further explored in section S1 of the
Supporting Information (SI).

To serve as initial coordinates for subsequent simulations, an
initial seed simulation was constructed from 693 energy-
minimized ACN molecules in a cubic box with partial charges
calculated from the R.E.D. Server Development** restrained
electrostatic potential (RESP) method (discussed further in
section 2.3). This box was then energy minimized, heated to
300 K under constant-temperature, constant-volume (NVT)
conditions at a rate of 3 K/ps, equilibrated at 300 K under
NVT for 0.3 ns, NPT-equilibrated at 1 atm and 300 K for 0.5
ns, and NPT-equilibrated at 1 atm and 300 K with the SHAKE
algorithm applied for 1 ns. Finally, this system underwent a 50
ns production simulation as described above. For all the
simulations used thereafter, a randomly chosen frame from this
seed simulation was used as initial coordinates. The partial
charges were modified as needed, and a 1 ns equilibration run
(NPT, 1 atm, 300 K) was performed prior to the 50 ns data-
collection run from which properties are calculated.

2.2. Quantities of Interest. For quantities of interest to
serve as responses (y) in the study, six well-known macroscopic
(or bulk) solvent properties that can be readily calculated from
single-component simulations of this size were chosen: density
(p), self-diffusion coefficient (D), molecular dipole moment
(DM), enthalpy of vaporization (Hvap) , and the dispersion (5,)
and polar-plus-hydrogen-bonding (§y,,) Hansen solubility
parameters (HSPs). Reference values for these bulk properties
of ACN are shown below in Table 1 along with their symbols
and the units used in this work.

The HSPs are often used in solubility calculations and
represent the cohesive energy density due to dispersion (or van
der Waals) forces and electrostatic forces, respectively.*’

Although typically three parameters (8, &, &), the polar

Table 1. Symbols, Reference Values, and Units for the Bulk
Properties Calculated from Simulations in This Work”

y description ref value (5°) units ref
p density (20 °C) 0.786 g/cm® 45
D self-diffusion coefficient 3.38 1075 cm?/s 46
DM dipole moment 3.92 Debye 47
H,, enthalpy of vaporization 7.89 kecal/mol 48
Oy dispersion HSP 18.3 MPa'/? 49
B polar + H-bond HSP 19.0 MPal/2 49

“Unless noted otherwise, all properties measured at 25 °C and 1 atm.
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and hydrogen-bonding terms cannot be effectively separated
from simulation measurements and are thus combined (5, +p2
5,2 + 5p2). The HSPs are related to the Hildebrand solubility
parameter (57) and H,, by

H, — RT

vap

Vv

m

& 4687 +8 =87+, =6"=

where R is the molar gas constant, T is temperature, and V,, is
the molar volume. Hence, the HSPs are directly related to the
enthalpy of vaporization at a given density and temperature.

Bulk properties were derived from the all-atom molecular
dynamics simulation trajectories via an in-house computer
script that employs AmberTools17’s*® cpptraj trajectory
analysis program.’' Details of the calculation of each property
are described below.

2.2.1. Density. Density (p) was calculated as the total mass
of all molecules divided by the system volume:

1 Nmolecules MW

F=v N,

i=1

where V = volume, MW = molar mass, and N, = Avogadro’s
constant.

2.2.2. Self-Diffusion Coefficient. The self-diffusion coef-
ficient (D) was derived from the linear regression of mean-
square displacement (MSD) vs time data. If Y = MSD and X =
time, then the linear fit of Y(X) is represented by

Y=4+pX

where X is an independent variable, Y is the estimator of
MSD(t), B, is the estimator of the y-intercept, and /3, is the
estimator of the slope.”” The self-diffusion coefficient (D) is
estimated by’

D= /31/ (2n)
and the associated standard error (SE) was calculated as
SEp = SEj/(2n)

where n = number of spatial dimensions (e.g, 3, in this case),
the SE of the slope estimator (SE,;I) = Syix/(SDx+/N — 1),

- ?)27

1

of X

the root-mean-square error (SYIX) = \/ﬁ Zf\il (Y1
the

(SDy) = \/ﬁ YV (X, -X)?, and N
Furthermore, block averaging was used to average estimates
of D from multiple time blocks across the trajectory rather than
calculating a single estimate of D from the entire trajectory.
The mean estimate of D (D), mean SE of D (SE,), and SD of
D (SDp) were calculated as

sample standard deviation

)
sample size.

_ 1 Nilocks
D= D,
N, blocks ;=1
— 1
SE,, =
N, blocks

Nijocks _
Z (Di - D)2

i=1

1
Dy = |———
Nyjocks = 1
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This method of averaging values from multiple blocks of a
simulation is akin to the recommended practice of measuring
diffusivity from multiple independent simulations (MIS)
provided the relaxation time of the system is sufficiently
short.>* In these calculations, Ny 4, = 10 for each 50 ns
simulation. Details regarding why this value for Nyjoq, was
chosen for the accurate representation of self-diffusivity is
discussed in section S1 of the Supporting Information.

2.2.3. Molecular Dipole Moment. The molecular dipole
moment (DM) was calculated as the summation over all atoms
of the product of an atom’s partial charge and the atom’s
position vector shifted to the center of mass of the molecule:

N,

atoms

w=lul=1 q(i -

i=1

ol

where g; = charge of atom i, r, = position vector of atom i, . =
position vector of the molecule’s center of mass (based on eq 7
from the work of Buckingham®”).

2.2.4. Enthalpy of Vaporization. The enthalpy of vapor-
ization (H,,,) was derived from the total intermolecular
nonbonded energy as follows:

Hvap = (ELJ + ECoulombic>/Nmolecules + RT

where E;; = intermolecular Lennard-Jones energy (van der
Waals attraction + Pauli exclusion), Ecoyiombic = intermolecular
Coulombic energy, Ny jecutes = Number of molecules, R = molar
gas constant, and T = temperature (based on eq 7 from the
work of Wang and Hou"). More rigorously, this would be
symbolized as AH,,,, as it is a relative rather than an absolute
measurement, but we employ the simpler H,,, notation in this
work.

2.2.5. Hansen Solubility Parameters. Hansen solubility
parameters (HSPs) were predicted in representation of the
dispersion HSP (§,) and another HSP (8;,,) representing a
combination of the H-bond HSP (8,,) and the polar HSP (§,).

The quantities 6; and §),, were derived from the
intermolecular Lennard-Jones energy and the intermolecular
Coulombic energy, respectively, as

6 = \/EL]/(VNA)
6h+p Y ECoulombic/(VNA)

where Ejj = intermolecular Lennard-Jones energy, Ecouombic =
intermolecular Coulombic energy, V = volume, and N,
Avogadro’s constant (based on eq 4 from the work of Belmares
et al.>°). The algorithm to obtain the intermolecular energies
for the bulk solvent systems involved looping over each solvent
molecule in the system, calculating the intermolecular energy
quantities (Lennard-Jones and Coulombic) between that
solvent molecule and all other solvent molecules, summing
the intermolecular energy values obtained after looping over all
molecules, and then dividing the total energy values by two to
correct for the duplicate interactions included in the
summation.

2.3. Reference Parameters. In order to quantify the
uncertainty of measured responses associated with partial
charge parameters, it is necessary to infer the distribution of
these parameters to be treated as random variables. Although
estimates of uncertainty associated with ab initio calculations
exist,’”” it is more beneficial from an MD practitioner’s
standpoint to take into account the overall uncertainty

https://doi.org/10.1021/acs.jcim.0c01204
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Table 2. Partial Charges and Their Sources for ACN Used to Infer Parameter Distributions”

source qN
Cabaleiro-Lago (HF/6-311+G*)** —-0.532
Cabaleiro-Lago (MP2/6-311+G*)* —0.494
Grabuleda (HF/6-31G*)* —0.490
Grabuleda (HF/6-311+G*)* —0.532
Nikitin (MP2/6-311++G(3df,3p))* —-0.5126
Caleman (OPLS)*' —-0.56
Caleman (GAFF)*! —0.5168
Koverga (1)* —0.475
Koverga (2)* —0.475
RESP-Al (HF/6-31G*) —0.4936
AMI-BCC -0.3758

sampling distribution ~N(—0.4961, 0.0477%)

~N(0.4068, 0.09%)

“Details on how these charges were calculated are provided in the text.

qci dc2 qu
0.481 —0.479 0.177
0.475 —0.552 0.190
0.382 —0.2376 0.115
0.481 —0.479 0.177
0.4917 —0.5503 0.1904

0.46 —0.08 0.06
0.4484 —0.4008 0.1564
0.308 0.185 —0.005
0.305 0.182 —0.004
0.3924 —0.2543 0.1185
0.2087 —0.045 0.0707

~U(=0.6, 0.2) ~U(=0.025, 0.2)

associated with assigning partial charges. This includes not
only uncertainty associated with ab initio calculations of
electrostatic potential but also with the algorithm chosen to
reduce those calculations to point charges necessary for
classical force fields. Moreover, there are numerous approx-
imations applied to the various flavors of ab initio calculation
that may not be straightforward in application for effective
calculation. There also exist several semiempirical methods
that have been developed to eficiently calculate partial charges
from atom types and various corrections to reproduce more
rigorous ab initio results without the arduous or, for larger
compounds, intractable first-principles calculation.’*** For all
of these potential decisions, what ab initio calculation methods
to employ, the mapping of a higher-level calculation to point
charges, or the choice to use a semiempirical method, there
exists no clear standard or decision methodology that is
universally accepted in the MD community. Hence, the
parameter distributions for ACN partial charges are inferred
from verified values available in the literature, as well as those
calculated from methods typically combined with AMBER
force fields. The values on which the resulting distributions are
based thus consider the uncertainty surrounding all levels of
partial charge calculation, aside from egregious user error.
The sources and values of nine literature partial charge sets,
along with the two sets calculated for this work and the
assumed sampling distributions are shown in Table 2. The
literature sources applied a variety of methods for the
determination of atomic partial charges; yet, all were validated
by different means. In the work by Cabaleiro-Lago and Rios,
the partial charges were calculated to reproduce the MEP
calculated from MP2 and HF calculations (both with a 6-
311+G* basis set) under the constraint that the resulting
molecular dipole moment matches that of the corresponding
ab initio calculation.”® The resulting potential function using
these point charges effectively reproduced ACN dimer
interactions calculated from MP2 calculations. Grabuleda,
Jaime, and Kollman similarly compared results in reproducing
macroscopic properties by HF calculations using both the 6-
31G* and 6-311+G* basis sets for construction of the MEP
followed by RESP fitting.”” The charges from the 6-31G*
calculation produced a more accurate dipole moment, while 6-
311+G* better reproduced experimental density and enthalpy
of vaporization values. Nikitin and Lyubartsev presented a new
all-atom model of ACN in which charges were calculated from
the MP2 method with the larger basis set of 6-311+
+G(3df;3p), resulting in more accurate measurements of
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molecular dipole moment prior to further modifications of the
nonelectrostatic components of the potential model.** In work
by Caleman and co-workers, a benchmark of 146 organic
solvents (including ACN) was performed using both the
OPLS/AA and GAFF force fields."" For the OPLS/AA
molecules, partial charges were assigned based on atom types
in the OPLS/AA force field. GAFF charges, conversely, were
applied via HF calculation with the 6-311G** basis set and the
Merz—Singh—Kollman scheme,®’ thus differing slightly from
other sets employing similar basis sets for HF calculation.
Interestingly, OPLS/AA performed better at reproducing
experimental measurements for a variety of properties over
the entire set of solvents, though ACN was an outlier for both
force fields. The most recent and divergent set of partial
charges comes from work by Koverga et al. in which Car—
Parrinello ab initio MD simulations of ACN were performed
employing the B-LYP&TM/90Ry level of theory with and
without van der Waals corrections.”” The resulting model
accurately reproduced high-fidelity electronic properties of
ACN.

The two sets of partial charges performed for this work
utilize common techniques used for partial charge assignment
with AMBER-type force fields. The RESP-Al charge set
employed R.E.D. Server Development** to perform HF
calculations with the 6-31G* basis set and fit partial charges
via the RESP algorithm, originally developed by Bayly et al.’
Specifically, for RESP-A1, two stages are employed: (1) fitting
with a hyperbolic restraint penalty function for all heavy (non-
hydrogen) atoms using a restraint weight, qwt, of 0.0005 au
and (2) fitting with hyperbolic restraints only for nonpolar
heavy atoms (methyl and methylene carbon atoms) with a
stronger qwt of 0.001 au while equivalencing hydrogen atoms
and fixing charges on atoms within polar groups; this 2-stage
fitting scheme has been denoted by Bayly et al. as “wk.fr/st.eq”
referring to the weaker and then stronger restraint weight and
the absence and then presence of charge equivalencing. This
method of producing partial charges from ab initio calculations
has been widely adopted in the development of AMBER force
fields,”*"” including GAFFE.” There are plenty of other options
for the RESP charge parametrization provided by RE.D. Server
Development, and the resulting charge sets from those
calculations are discussed in the SI (see section S2). They
are not included in the general construction of parameter
distributions as not to overly weight R.E.D.-produced charge
sets, but the data in section S2 suggests negligible change to
the parameter distributions.
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Finally, the AM1-BCC charge set utilizes the Austin model
1-bond charge correction (AM1-BCC) semiempirical meth-
0d>**? of applying partial charges as implemented in
AmberTools17.°" This is a common method for applying
partial charges to large biomolecules for which ab initio
calculations may be intractable. The method employs semi-
empirical QM calculations for the efficient assignment of
partial charges that perform generally well with AMBER-type
force fields. It should be noted that this method is not typically
applied to small molecules (such as ACN) that may be easily
parametrized via a more rigorous method (e.g., RESP ﬁtting),
but AM1-BCC is included in the parameter distribution as it is
generally accepted for use in partial charge assignment in
AMBER simulations.

Figure 2 below shows histograms of the 11 charge sets
described above, along with kernel density estimates (KDEs)
and the sampling distributions described in the last row of
Table 2. From this illustration, it may be more clear why an
uninformed prior (or uniform distribution) was chosen for the
highly variable charges on C2 and H. Moreover, the
distributions lend credence to the earlier assertion that the
charges on buried atoms are generally the most variable
depending on the method of charge assignment used, as values
for C2 partial charge range from —0.6 to 0.2 e (electron units
or elementary charge).

2.4. Local Sensitivity Analysis (Finite Differences).
The local sensitivity analysis in this work follows the finite
differences algorithm described in ref 12 section 7.3.1. In short,
the method analyzes the sensitivity of a model to small
parameter perturbations around a nominal parameter vector,
q°, by constructing the sensitivity matrix, y(q°), from responses
at these perturbations:

%;(q") =

of
—@q"), q€q
Oql_ ]

Thus, if the parameter vector ¢° = [q2;, 2 g, then the
elements associated with the partial charge on N would be

of  f(lagy 4y ay + D)
0q hy

- f(la, a2, a31)

N

where hy is a small perturbation of the partial charge on N.
Thus, the sensitivity matrix ¥ is constructed for p parameters
and n observations of model f(q). The resulting ¥ matrix and
the residual vector (R) can then be used to estimate the
elemental variance, ¢,%, and the p X p covaraince matrix, V, by

o, = pRTR, R =£(q°) — E[f(¢")]

2, T \-1
V=00 x)
Additionally, the mean simulation variance, Gy, is calculated

to estimate the average variance observed from a single
simulation:

1 N
N2

where N is the total number of simulations and o; is the root-
mean-square (RMS) fluctuation of the response of interest
observed during the simulation, which is often reported as
uncertainty estimates in single-simulation calculations.

Oim
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Figure 2. Histograms, kernel density estimates (KDEs) and assumed
sampling distributions of the parameter sets shown in Table 2 for (a)
N, (b) C1, (c¢) C2, and (d) H.

2.5. Global Sensitivity Analysis (Morris Screening).
Global sensitivity estimates were calculated using the Morris
screening approach as described in section 15.2 of ref 12. In
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Figure 3. Mean responses measured from 10 simulations using initial charge sets shown in Table 2. Error bars indicate standard deviations (not
visible if a standard deviation is below 1 pixel in height). Dashed lines indicate reference values from Table 1.

short, the method estimates the global sensitivity measure-
ments, u;*, and their associated variance, 67 for each
parameter g; € g, which are defined by

) R
pt== D 1dl(q)
r “
j=1
1w, 1 v
0':2 = Z (di}(‘I) - ﬂ,—)zx K== Z dij(‘I)
r—1:3 ra
where
4/ = f(qj + Aei) _f(qj)

’ A
is the elementary effect for parameter i and sample j. A is the
predefined stepsize, and ¢, is the ith row of the identity matrix.
Note that o; is more correctly termed the Morris interaction
index, given the relatively large stepsize employed in this work,
yet it is a coarse approximation of the standard deviation.'”

The Morris sampling strategy was also employed to
efficiently explore the parameter space reducing the required
responses from 2pr to (p + 1)r samples by utilizing
neighboring measurements. The algorithm for producing
sample points is explained in more detail in ref 12, but to
produce r parameter points q*, the parameter distributions
described in section 2.3 were transformed to U(0, 1) prior to
sampling.

2.6. Surrogate Model Formulation with Gaussian
Process Regression. Gaussian process regression (GPR)***
was performed as implemented in the scikit-learn®* python
package. GPR was selected as a method of surrogate
formulation as it is efficient at interpolating relatively low-
dimensional observations while providing reliable uncertainty
estimates of prediction. During training, response RMS error
from single simulations was passed as noise (a). To quantify
the prediction performance of the GPR surrogate, two
indicators were used. First, the log marginal likelihood
(LML) of the prediction as calculated from the hyper-
parameter optimization was recorded. Also, leave one out
(LOO) cross-validation®" was performed in which the model is
retrained on all points in the training set but one. The response
for this point is predicted, the error recorded, and the process
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is repeated for all points in the training set. The resulting errors
are summarized and reported as the LOO RMS error.

3. RESULTS AND DISCUSSION

We present the results of this study in the following order.
First, we show the calculated responses from the reference
parameter sets shown in Table 2. This provides context for
experiments, yet the low sample size and sparse distribution
disallows more rigorous UQ_and sensitivity analysis. We then
performed a naive sampling of the parameter space, followed
by estimates of local and global sensitivities. Finally, we present
the results of applying a Gaussian process machine learning
model to predict responses directly from partial charges for
greatly increased sampling efficiency.

3.1. Reference Responses. In an effort to provide context
to future measurements, we first established a baseline of
responses from the initial parameter sets discussed in section
2.3. Ten simulations were performed as described in section
2.1 at each parameter set displayed in Table 2. The resulting
responses were then averaged and displayed in Figure 3 with
reference values for comparison.

From the plots in Figure 3, one can notice that no charge set
exactly reproduces the experimental reference values for all
responses. Moreover, for some responses, all charge sets
overestimate or underestimate experimental values, likely due
to the choice of force field, thermostat (especially in the case of
diffusivity), or other intrinsic biases in the implementation of
MD. It is here that we must highlight that we do not attempt
to estimate optimal charge parameters in this work; doing so
would ignore the effects of the other parameters involved in
the simulation technique. Instead, we look to quantify the
uncertainty brought about by partial charges only and focus
little on the reproduction of experimental measurements. UQ
experiments aimed at parametrization based on the repro-
duction of experiment are dependent on the associated cost
function (i.e., the relative weights of measurement variance
from reference values) and should take into account as many
sources of uncertainty (and how they covary) as feasible to
avoid cancellation of errors.

The relative variance of responses can be observed from
Figure 3 in a qualitative sense. For example, one may readily
observe that diffusivity values vary widely whereas density

https://doi.org/10.1021/acs.jcim.0c01204
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values and dispersion HSPs are more consistent between
charge sets. This result may be expected as it stands to reason
that density and dispersion HSPs are directly tied to the van
der Waals parameters kept constant through all simulations.
Further quantitative comparison, however, is reserved as we
are addressing an admittedly sparse input distribution (see
histograms in Figure 2). Instead, we perform a more
quantitative analysis on a denser sampling of the assumed
parameter space.

3.2. Naive Sampling. We more fully explored the partial
charge parameter space for ACN by naively sampling 500
parameter sets from the input distributions described in
section 2.3. However, the sampling of these parameters cannot
be done completely independently. Doing so would (a) ignore
any possible covariance between parameters and (b) violate
the condition that all charges must add up to zero. By
investigating the correlation plots between partial charge
parameters reported in Table 2 (see Figure 4), the sparse
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Figure 4. Correlation plot of reference partial charge data shown in
Table 2. Histograms of partial charges shown on the diagonal.

distributions complicate the ability to formulate well-defined
joint distributions between parameters. However, in the case of
the C2 and H charges, there is a very clear negative correlation.

Therefore, we henceforth pulled from the sampling densities
of C1, C2, and N (see Figure 2) and set the corresponding H
charges to compensate and reach a total net charge of zero.
Thus, we assume the model formulation:

¥ =f(a); 4= dcp 9cy 9]

where f(q) is our MD simulation. The partial charge on H, gy,
is then calculated after sampling from

_O_qc1_qc2_qN
qH_ 3

After sampling from the assumed distributions, the 500
simulations were performed and analyzed as described in the
methods section. The partial charge parameters and measured
responses from all 500 simulations are shown in the large
correlation plot in Figure 5. This plot provides a massive
amount of qualitative information on the parameter and
response distributions and how they relate to each other. Plots
in the top-left quadrant confirm that we have indeed sampled
independently from the parameter distributions described in
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section 2.3, as the histograms match the assumed distribution
and the off-diagonal correlation plots show no covariance
between parameters.

The plots in the lower-right quadrant show the response
histograms and how the responses correlate with each other.
Vertical lines on the histograms note the approximate location
of the experimental reference values. It is interesting to note
that the average response values from all the naive sampling
simulations come reasonably close to experimental values for
all responses other than the HSPs, though this is discussed in
more quantitative detail in the summary below.

What is also interesting is the way in which the responses are
single-valued and correlate well with each other, as displayed
by the tight distributions in the off-diagonal plots. It is helpful
in this case to observe the response correlations in the dipole
moment (DM) column as this is the most straightforward
response calculation and is most directly related to atomic
partial charges. In other words, the only controlled-variable
differences between simulations are directly encompassed by
the dipole moment response. It is expected that the other
responses would then be single-valued with respect to dipole
moment if they were to differ at all and thus single-valued with
respect to each other. In observing the DM responses with
respect to other responses in Figure S, it is notable that at low
dipole moment values, the pairwise responses exhibit less of
this single-valued nature, which indicates stochastic forces
become more dominant than the electrostatic forces
represented in the dipole moment response.

The response covariance is as one might expect; at more
extreme dipole moments, the density and intermolecular
interaction energies (represented by H,,, J; and §,.,) all
increase, while the diffusivity decreases, indicating less
molecular motion. Hence, the responses all act in a relatively
predictable fashion and can be treated similarly going forward.

Most germane to consideration of partial charge para-
metrization, however, are the correlation plots displayed in the
top-right and lower-left of Figure 5. These plots indicate how
the responses correlate with partial charge values, thus
providing a qualitative indication of sensitivity. It may be
comforting to observe, given the previous discussion on partial
charge assignment methods and the broad distribution
associated with the C2 atom, that the responses show no
clear correlation with the charge on the buried C2 atom. This
indicates that, despite the broad and uninformed prior applied
to the parameter (C2 charge), there is little effect on the
resulting measured properties. For the other two parameters
(C1 and N charges), there does appear to be a clear correlation
between responses and parameters but quantitative assessment
will require additional sensitivity analysis.

A summary of the responses from naive sampling experi-
ments over the entire parameter space is displayed in Figure 6.
Figure 6a displays the mean response and its relation to the
reference responses shown in Table 1. This data can be
thought of as the relative accuracy of the responses from a
simulation with average partial charges (as defined by the
distributions in section 2.3). The results mirror the
observations from Figure 3 above. We observe that there is a
systematic underestimation of diffusivity, which is likely due to
other factors in the simulation (e.g., thermostat®® and system-
size effects®®). The density, dipole moment, and enthalpy of
vaporization, however, are within 2—3% of the reference
values.
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Figure 5. Correlation plots of parameters and responses from 500 naive sampling simulations with histograms on the diagonal. Bold lines delineate
between parameters and responses. Vertical red lines indicate reference responses from Table 1. Note that the responses are mostly single-valued
and correlate well with each other, suggesting the reliance of these responses on dipole moment. Additionally, note that &, and J),,, are over- and
underestimated in aggregate, indicating a cancellation of errors. (Note that the complete range of &, is much smaller compared to that of &,,.)

This is not in any way to suggest that the best method of
partial charge assignment is to survey the literature for all
possible methods and partial charge values, perform
representative simulations at these values, and take the average
response. Doing so would not only be terribly inefficient and
open to bias but would also ignore interactions with other
sources of uncertainty within MD simulations. This is
exemplified by the HSP responses in Figure 6a; Jy,, is
underestimated, whereas 0, is overestimated, on average.
However, these are both components of the enthalpy of
vaporization, H,,,, which shows little difference from reference
values. This may be due to an effective cancellation of errors,
i.e, in force field parametrization (which often takes H,,, into
account), the higher van der Waals forces may be
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compensating for lower electrostatic interactions. Indeed, one
of the benefits of the RESP method, recommended for use
with GAFF, is its slight overestimation of molecular dipole
moment (over gas-phase values), which provides a dipole
moment in closer proximity to that in a condensed phase and
thus meshes well with the TIP3P water model typically used in
conjunction with AMBER-type force fields.”*

What is also likely, however, is the intrinsic error associated
with heuristics applied to the formulation of a classical MD
force field itself. In the nonbonded interaction term, the van
der Waals and electrostatic (or Coulombic) interactions are
neatly separated to aid in calculation, parametrization, and
general tractability. This, of course, is not an exact model of
interatomic interactions and thus we may be observing an

https://doi.org/10.1021/acs.jcim.0c01204
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Figure 6. Summary of naive sampling simulations. (a) Difference of
mean response (J) from reference response (y°, from Table 1) divided
by y°. (b) Standard deviation of responses (0,) divided by 5.

artifact of this necessary assumption. Yet in both cases, this
serves to reiterate the fact that partial charges and force fields
are not wholly independent of each other. Thus, if one looks to
apply partial charges, the most “accurate” (in terms of
reproducing high-fidelity ab initio calculations) may not be
the most useful in conjunction with a given force field.

Figure 6b displays the normalized standard deviation of the
responses throughout the parameter space as sampled in this
experiment. This can be interpreted as a very basic
quantification of sensitivity. Responses less associated with
Coulombic interactions such as density and dispersion HSP
show little variance, while diffusivity varies by over 40% on
average. As the density and dispersion HSP show very little
variance, it is suggested that the variance of H,,, is primarily
due to the electrostatic interactions summarized by Jy,,. This
is further supported by the very tight H,, — J),, correlation
plot seen in Figure S.

3.3. Local Sensitivity. A more quantitative measurement
of sensitivity in the vicinity of nominal parameters was
performed using the finite differences approach outlined in
section 2.4. The same q vector as that used for the naive
sampling experiment was employed, and RESP-A1 values were
used as nominal parameters:

O=1[q2, a2, a1 = [0.3924, —0.2543, —0.4936]

with stepsize h = q° X 107, Smaller values of  are often used
in local sensitivity experiments, but such small changes in
partial charge can lead to rounding errors in simulation. For
each perturbation as well as for the nominal parameters, 30
simulations were performed to resolve elemental response
variance.

The resulting sensitivity matrices, y, are illustrated in Figure
7. (The raw responses from the finite difference simulations are
provided in section S3, Figure S4, of the Supporting
Information.) Points indicate sensitivity values for each
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Figure 7. Components of sensitivity matrices (y) from finite differences experiments for (a) density, (b) self-diffusivity, (c) dipole moment, (d)
enthalpy of vaporization, (e) dispersion HSP, and (f) polar-plus-hydrogen-bonding HSP. Individual simulation sensitivity measurements plotted on
x-axes. Dashed lines represent mean sensitivity measurements for each parameter (7).
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parameter calculated from single simulations, whereas dashed
lines indicate the average parameter sensitivity (¥;) over all 30
simulations.

Many of the observations from the naive sampling
experiment results in Figure 6b are reproduced. For example,
both p and J; show little to no sensitivity to any of the
parameters, as indicated by values of 7 close to zero (Figure 7a
and e, respectively). Yet the plots of y provide additional
insight into the sensitivity of responses to specific variables.
This is most clear in the case of DM (see Figure 7c) where
there is relatively low variance in responses at each
perturbation. It can be seen that there is little to no change
to DM due to changes in the charge on C2 (ie, DM is
effectively insensitive to gc,). Comparatively, DM is most
sensitive to the charge on N, followed by the charge on CI.
Both H,,, and &y, reproduce this trend, though the elemental
variances are particularly large, as indicated by the overlapping
of points of different types on the plots in Figure 7d and f.
Average sensitivity values for D show the opposite trend, yet
the elemental variances exhibited in Figure 7b are even larger,
which further clouds the picture of parametric sensitivity of
this response.

The root of these elemental variances are shown in
comparison to the average single-simulation errors in Table
3. In all cases but D, the root of the elemental variance is

Table 3. Root of Elemental Variance (6,) and Average
Single-Simulation RMS Error (G,;,,) Calculated for Finite
Difference Experiment As Described in Section 2.4

0

y y o, Oim units
p 0.786 8.1x 107° 33 %107 g/cm?
D 3.38 3.0 X 1072 1.5x 1073 107 cm?/s
DM 3.92 7.0 X 107° 2.8 x 107 Debye
H,, 7.89 12 x 1073 6.7 X 1072 kcal/mol
8, 15.3 23 x107° 0.10 MPa'’?
Spap 19.0 23 x 1073 0.14 MPa'’?

orders of magnitude below the average RMS error of a single
simulation. This suggests that the random variance that takes
place in a single simulation is greater than the variance
imposed by the partial charge variations of this magnitude.
Hence, these local sensitivity values do not provide adequate
certainty for perturbations of this size.

Hence, a more global sensitivity study was conducted to
fully explore the parameter space and get a quantitative
measurement of sensitivity for these values with large
elemental variance. However, it is notable that this experiment
produced very little sensitivity of p and ,; to all parameters,
and sensitivity of DM being largest for N followed by C1 and
finally C2. Given the covariance between DM and the other
responses illustrated in Figure 5, it can be hypothesized that
the other responses for which elemental variances were large
would follow a similar trend. Additionally, the diagonal
elements of the covariance matrices, V, showed insignificant
values indicating no parameter covariance (see section S3,
Table S1, in the Supporting Information). Analysis of the
variance between identical simulations also suggests that ten
simulations, rather than 30, provides response estimates with
effectively the same precision (see section S4, Table S2, in the
Supporting Information). Hence, in global sensitivity analysis
going forward, ten simulations at each parameter set are
performed to estimate reliable responses.
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3.4. Global Sensitivity. To get better estimates of
parameter sensitivity, we looked to employ a global sensitivity
approach. Unlike local sensitivity metrics, which estimate
sensitivity in small step sizes about a nominal value, global
sensitivity metrics seek to quantify sensitivity throughout the
parameter space. In this way, elemental variances in small
parameter perturbations can be overcome.

We performed a detailed global sensitivity analysis using the
Morris screening approach as described in section 2.5. The
same parameter vector g was used as in the naive sampling and
local sensitivity experiments, and the same prior distributions
as those discussed in section 2.3 were used. We employed a
sample size of r = 10 and a stepsize of A = 2/3. This is a
relatively large stepsize in order to maintain efficiency, yet we
confirm later that the results of this study are reproducible at a
smaller stepsize. The variance between simulations at n = 10
suggests a sample size of r = 10 to be sufficient to capture
sensitivity. Note that this step is applied after transformation of
parameter distributions to U(0, 1) and thus represents
stepping over 2/3 of the entire parameter space. Based on
our variance calculations from the local sensitivity calculations
(see section S4, Table S2, in the Supporting Information), we
performed n 10 simulations at each sample point and
calculated the mean response. Thus, a total of (p + 1)rn = 400
simulations were necessary for this analysis.

The resulting global sensitivity measurements, y*, are shown
graphically in Figure 8. By normalizing the global sensitivity
values by the reference responses, y°, a comparison of relative
sensitivity between responses can be more easily made (see
Figure 8b).

In many ways, the results in Figure 8b reiterate with much
greater certainty the observations from previous estimates of
sensitivity. As hypothesized above, the parametric sensitivities
follow the same trend as was observed for DM, as the
sensitivity is greatest to the N partial charge, followed by CI,
and then by C2, for all responses. Responses of p and &, are
largely insensitive to changes in partial charges, which may be
attributed to their association with van der Waals parameters.

However, the global sensitivity measurement allows for a
more detailed description of parameter variance effects on
responses that were clouded by elemental variance in previous
experiments. Diffusivity, for example, is clearly shown as the
most sensitive response to partial charge parameters, though
the measurement variance belies the Morris interaction index
(0;) associated with D calculation. Similarly, sensitivity
measurements for H,,, and Jj,, show significant associated
variance as represented by the Morris interaction index.
Conversely, DM sensitivity measurements show relatively low
Morris interaction indices, owing to the direct and
straightforward dependence of dipole moment on partial
charges. Yet even for responses that show significant Morris
interaction indices, they are low enough to provide direct
comparison of sensitivity values.

3.5. Sampling Method. After the estimation of sensitivity
measurements associated with the partial charges on CI1, C2,
and N, there were still some questions remaining in regard to
the formulation of the experiment itself. As described in
section 3.2, the input partial charge data was too sparse to
reliably formulate joint distributions, so charge compensation
on the hydrogen atoms was employed to maintain a net neutral
charge based on the strong correlation between C2 and H in
the reference data (see Figure 4). However, there is a concern
that the insensitivity to the C2 atom observed in all responses
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Figure 8. Global sensitivity measurements (¢*) displayed as both (a)
absolute values (in typical response units/e) and (b) normalized by
reference responses (3°) from Table 1 for comparison between
responses (¢7'). Error bars indicate the Morris interaction index, o, as
calculated in section 2.5.

(see Figure 8) could be an artifact of the sampling method.
Given that all changes to net molecular charge are
compensated by the charge on H atoms, it is trivial to observe
that changes to the charge on C2 with C1 and N charges held
constant will not significantly affect the overall dipole moment
(see Figure 1). As strong correlation was observed between
responses and DM (see Figure S), this artifact could
conceivably be carried over to other responses.

To address this possibility, the same global sensitivity
strategy employed in section 3.4 was repeated with the three
other possible charge schemes, i.e., ¢ = [qy, 9c 9n), 9 = (91
dcu ), and g = [gu gcu gca)- For g, we employed the
uniform sampling density shown in the last row of Table 2 and
Figure 2d. All other constants in the global sensitivity
calculation were retained (r = 10, A = 2/3, n = 10 simulations
per sample point). The resulting normalized global sensitivity
measurements are displayed in Figure 9.

The first observation from the sensitivity measurements is
the extremely large Morris interaction index observed for
sensitivity measurements where H and C2 charges were
sampled independently in the same experiment (see Figure 9a
and c). Hence, it appears that our choice of compensation on
the hydrogen atoms is a useful method of reducing the
sensitivity measurement uncertainty by effectively decoupling
phenomena caused by H charges and C2 charges. Indeed, the
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Figure 9. Normalized global sensitivity measurements (u*) from
other sampling methods, g = (a) [gu, 4co dnJs (b) (9w 9cn ands (©)
(9w 9c1 9ca)- Error bars indicate the associated Morris interaction
index, o, calculated as in section 2.5.

independent sampling from C2 and H distributions simulta-
neously confuses the parametric global sensitivity calculation.

In the second case, where g = [qy, gc, gn], the charge on
C2 is now used for compensation and the H charge is sampled
from the associated parameter distribution. With this sampling
method, we observe a similar trend in response sensitivity of
parameters in that the sensitivity is greatest to the N charge,
followed by C1, and then H. In comparison to the initial global
sensitivity results in section 3.4, however, the responses are
more sensitive to changes in the H charge than changes in the
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C2 charge. Indeed, sensitivities of responses to the charge on
H approach and are sometimes within error of those to the
charge on N. This is a result of the multiplicity of H atoms; a
change of 0.1 ¢ to the charge on a single H atom effects all
three H atoms equally, thus corresponding to a 0.3 e total
charge modification. Hence, we observe the sensitivity to H
charges being approximately three times that of C2 charges in
the original global sensitivity scheme.

The results observed for the third case, where g = [qy, ¢y,
qca], can again be explained by considering the balance atom,
N. The increased sensitivity observed for C2 relative to C1 can
be attributed to the effect that charge redistribution has on the
overall dipole. By transferring charge from the closer C1 to N,
the overall effect on the dipole moment of the molecule is less
extreme than the transfer from C2 to N on the other side of
the molecule. Hence, even the buried atom C2 has an effect on
ultimate properties, yet those are dwarfed by the sensitivity
attributed to H.

3.6. Surrogate Model Formulation via Gaussian
Process Regression. As can be gleaned from our discussion
of global sensitivity analysis procedures, uncertainty quantifi-
cation and sensitivity analysis of MD simulations can involve
large numbers of simulations and potentially massive
simulation times. In our case, the 400 simulations necessary
for global sensitivity analysis involve approximately 5.5 h per
simulation and correspond to over 90 days of total, sequential
computational time on a modern GPU. Depending on
available resources, the total computational time can be
reduced to some degree by executing multiple simulations
simultaneously; however, the computational time will increase
exponentially as one adds more parameters or degrees of
freedom, not to mention additional resources necessary to
explore more complex materials that require longer or larger
simulations.

In cases where models are computationally expensive, it is
often useful to develop an efficient surrogate model that
estimates the responses from the high-fidelity model. Gaussian
process regression (GPR) is an attractive method for
developing surrogate models as they are extremely efficient
at interpolating low-dimensional models (p < 100) with
continuous response surfaces and can provide Bayesian
estimates of uncertainties associated with predictions.”” In
our case, we have only three parameters (p = 3), and previous
sampling experiences suggest that responses continuously
change with parameter changes (i.e. there are no second-
order jumps in responses at specific parameter sets).

Thus, we trained a GPR surrogate model on random subsets
of the data from the naive sampling experiment described in
section 3.2. It should be noted that this training set is ideal for
GPR, as it fully explores the parameter space of interest. GPR
is not recommended for extrapolation to predict responses
outside the parameter training set.'>*> In training the GPR
surrogate model, a primary decision is the choice of kernel
function or the basis covariance function for training points. In
the optimization of our GPR surrogate model, we explored
relatively simple kernels to avoid overfitting. Additionally, we
have some knowledge that the underlying function is neither
periodic nor exponential in nature. Thus, we explored the
radial basis function (RBF), Matern, and the rational quadratic
(RQ) kernels. More information on these kernels and their
implementation can be found in chapter 4 of ref 35.

For all responses, these three kernels were tested, along with
the software default (a nonoptimized RBF kernel) and the
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kernels with an optimized constant kernel multiplier to add
offsets. The kernels were trained on random subsets of
simulation responses from the naive sampling experiment in
section 3.2 of sample size n = 10, 20, 50, 100, 250, and 500.
Representative plots of the GPR effectiveness, as quantified by
the LOO prediction error and the log marginal likelihood, are
shown in Figure 10 for the H,,, response. Similar plots are
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Figure 10. (a) Leave one out (LOO) RMS error and (b) log marginal
likelihood (LML) from Gaussian process regression models to predict
enthalpy of vaporization (H,,,) with various kernels as a function of
the number of random simulations from the naive sampling
experiment used as a training set. Similar plots for all other responses
are provided in section S5 of the SI (Figures SS and S6).

shown in section S5 of the Supporting Information for all other
responses. From this data, the rational quadratic kernel with a
constant kernel multiplier (k¥*RQ) was employed for the GPR
surrogate model as it performed the best at both minimizing
LOO prediction error and maximizing log marginal likelihood.

In the following experiments, the GPR was trained on all
500 parameter and response points from the naive sampling
experiment in section 3.2 with the k*RQ kernel. After training,
the surrogate model was validated by performing the same
global sensitivity analysis experiment as in section 3.4 but using
the GPR surrogate to predict responses in lieu of running
actual simulations. Hence, the experiment could be conducted
in a matter of seconds rather than the days of computational
time necessary for running actual simulations. The resulting
sensitivity measurements, shown in Figure 1la, are nearly
identical to those presented in the high-fidelity experiment (see
Figure 8b) with only slightly larger measurement uncertainties
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Figure 11. Results from Morris screening experiments performed with
GPR surrogate model for property prediction. (a) Reproduction of
original global sensitivity analysis with GPR-predicted responses. (b)
Results of global sensitivity with a smaller stepsize, A = 1/50.

due to the increased uncertainty associated with GPR
predictions.

This ability to predict MD responses in seconds rather than
hours allows us to make changes to our sensitivity analysis
methodology and rapidly observe results. For example, we
looked to explore the effect of stepsize (A) on the global
sensitivity approach applied above. We observed in section 3.3
that partial charge changes on the order of 107> were too small
to effectively calculate sensitivity, yet the previous stepsize of A
= 2/3 employed in global sensitivity may be contributing to
some of the uncertainty observed in sensitivity measurements.
The global sensitivity experiment was repeated with a smaller
stepsize of A = 1/50, yet the results were not significantly
different (see Figure 11b) from the larger stepsize experiment.

4. CONCLUSION

In this work, we present the results of a rigorous uncertainty
quantification and sensitivity analysis of the effect of atomic
partial charges on MD simulations for organic solvent
properties. By surveying the literature and performing popular
methods of partial charge calculation, we discovered a range of
potential atomic partial charges for the relatively simple case of
ACN. From this distribution of partial charge parameters, we
were able to observe a range of macroscopic solvent properties
calculated from MD. We conducted a local sensitivity analysis
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experiment but found the elemental variance of some bulk
properties to be too large to rigorously determine parametric
sensitivity. A global sensitivity analysis, however, utilizing a
Morris screening approach allowed us to effectively estimate
sensitivity measurements for each atomic charge in the
molecule. We also developed a predictive surrogate model
using Gaussian process regression (GPR) for further
exploration of global sensitivity parametrization, allowing us
to validate our results with exponentially faster computation
speed.

The results provide significant insight into the nature of
partial charges and their potential effect on MD calculations.
First, we see that some bulk properties (p, §;) are relatively
insensitive to partial charges. This result is somewhat intuitive,
as these properties are directly related to nonelectrostatic
parameters, yet it sheds further light on the necessity of
observing multiple quantities of interest during force field
parametrization or validation. Simply reproducing the exper-
imental density in experiment does not provide validation of
electrostatic parametrization.

We also observe that the differences in partial charge
calculation methods can create uncertainty in the para-
metrization procedure. It can be difficult for MD practitioners
to determine a priori which method of charge assignment is the
most useful for their experiment. Yet, we note in our
calculations that QM accuracy may not be the most effective
metric for partial charge quality—rather, users should consider
the entire parameter set and employ the partial charge set that
is compatible with the force field of their choosing. There may
be a cancellation of errors or other forms of compensation
occurring. As with force fields and interatomic potentials in
general, there is no universal technique that will apply to all
MD experiments. Hence, one must determine a validation
procedure that provides sufficient evidence that the phenom-
enon of interest is reproduced to an acceptable level of
certainty.

We also illustrate that machine learning can be an effective
tool for uncertainty quantification of MD simulations. Often
computationally expensive calculations eschew rigorous UQ
analysis. Yet, we observe that the application of surrogate
model formulation via GPR can provide rapid interpolation of
simulation results, provided effective training. The recent
explosion in interest in machine learning application to
computational simulation®”~’® has given rise to many
fascinating debates on how these advanced algorithms may
enhance simulation methodology while maintaining scientific
rigor. As these algorithms become more and more well
recognized, their careful use as rapid interpolators for surrogate
model calculations to better define parametric sensitivities and
validation is certainly a promising partnership between
machine learning and traditional chemical calculations.”"

Finally, we note the overall sensitivity of bulk properties
calculated from MD simulations is not to be ignored. Our
analysis shows that partial charge variance introduced by
various popular calculation methods can result in significant
changes to macroscopic properties such as enthalpy of
vaporization and self-diffusivity. However, it is important to
note that low-accessibility (or buried) atoms, typically
associated with the most partial charge uncertainty, fortunately
had the lowest effect on macroscopic properties. We believe
these results are likely to be found in other systems where
Coulombic interactions are important to the quantities of
interest (i.e., less so in low-polarity environments).
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Moving forward, we believe that the techniques and
principles reported here are of great importance to the MD
community. Partial charge assignment is one of the most often
applied parametrization steps in MD calculations and is critical
to ultimate results. It is thus crucial to understand the
associated uncertainties and how they may affect the quantities
of interest. It is the view of the authors that partial charge
derivation methods would provide estimates of their
uncertainty such that MD practitioners are more aware of
the potential effect. Of course, these parameters do not exist
independently of the remainder of the interatomic potential;
the compatibility of the charge method and broader force field
must be considered.

Further, the application of machine learning-based surrogate
models can be a boon to more rigorous experiments going
forward. Validation has been an important but difficult step in
MD simulation since its invention, and the ability of readily
available algorithms to streamline this process is indeed
promising. While the generalization of the specific results to
MD simulations more broadly may be somewhat speculative as
applications of MD vary so widely, the procedure of sensitivity
analysis via trained surrogate can be reapplied to specific cases
as part of the validation step of MD simulations where
valuable, e.g.,, when parameter distributions may be assumed,
partial charge uncertainty is high (especially on exposed
atoms), and polarity is likely important to the quantity of
interest.
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