
Optimizing Flow Idle Timer in Reactive SDN
Gopinath Panda

Electrical & Computer Engineering
University of Central Florida, USA

Gopinath.Panda@ucf.edu

Shafaq Chaudhry
Office of Research

University of Central Florida, USA
Shafaq.Chaudhry@ucf.edu

Murat Yuksel
Electrical & Computer Engineering
University of Central Florida, USA

Murat.Yuksel@ucf.edu

Abstract—Reactive Software-Defined Networking (SDN) gives
us more flexibility than traditional SDN by adding dynamic path
definitions on top of data layer programmability driven by SDN
controllers. This flexibility is necessary as it allows us to better
utilize the limited capacity of flow tables that switches use to
house the logic for handling traffic flows. However, it comes
with a cost of control packets generated and exchanged between
the controller and switch, processing time at the controller for
the several types of control packets vying for its attention, and
the waiting time at the switch as it awaits instructions by the
controller. This may occur several times for a single traffic flow
as the rules periodically expire due to each rule’s idle timer
and may need to be reinstalled into the flow table. This paper
analyzes the delay incoming packets encounter in such a reactive
SDN setup; presents a delay formulation based on modeling the
system as M/M/1 queues at the controller and the switch; and
studies the relationship between the idle timer, average delay,
and flow arrival rate.

Index Terms—Software-Defined Networking, reactive SDN,
optimal idle timer, delay modeling.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] allows pro-
grammability of the control plane of the network that orches-
trates the function of the data plane comprised of network
devices like switches. Despite its origins from data center net-
working, SDN is now being considered as a mainstream net-
working paradigm with deployments spanning wide-area net-
works. One such protocol that enables SDN is OpenFlow [2],
which allows information exchange between switches and
controllers; as well as among controllers when multiple exist
in the network. The controller can orchestrate globally optimal
routes by installing these routes in various switches in response
to the network state which it gathers by requesting various
traffic statistics and network state information from network
devices through OpenFlow. Thus, the network devices forward
packets, but the logic of when these packets are forwarded
and where to, or when they are dropped are directed by the
controller. When this logic is pre-programmed, this is referred
to as the proactive SDN approach; when the logic occurs in
real-time, triggered by packet arrival events at the switch, this
is referred to as a reactive SDN. Specifically, a switch learns
the logic of packet handling by maintaining rules for different
types of traffic flows in a structure known as the flow table.
This flow table’s entries, i.e., flow rules, are composed of
header fields for matching the rule against incoming packets;
an actions’ list for handling the matching packet such as
dropping it or forwarding it to a specific port; and a list of

counters that keep track of various statistics such as how many
packets have been matched against that flow rule.

In proactive SDN, flow rules are pre-configured into the
switch flow table before any packets of flows are seen by the
switch. These rules do not expire until explicitly removed.
Packets arriving at a switch can be transmitted through at line
rate, resulting in a predictable delay. Furthermore, if the switch
loses its connection to the controller, it can continue to handle
incoming traffic based on the rules. However, the switch has
a limited memory resource. The flow table is typically im-
plemented as a TCAM (ternary content-addressable memory)
which has limited capacity as it is expensive, but it is very fast
as it can search all its entries in a single clock cycle and can
perform exact matches and pattern matches. According to [3],
a 2-Mbit TCAM can hold around 6, 200 15-tuple flow rules,
each 356 bits in size. So, network administrators define broad-
scoped rules using wildcards that match several different types
of flows to one flow rule.

On the contrary, a reactive design enables efficient use
of flow tables as rules can be installed for the duration
needed. The rules are ephemeral and can expire due to
inactivity, or maximum/hard timeout, or by an explicit flow
rule removal command by the controller, or by the overflow
policy configured at the switch. The first packet of a flow
triggers flow setup delay due to interactivity between the
controller and the switch. These include the time for the
switch to look up a matching flow rule in its flow table.
In case no flow rule is found, the switch needs to send
an inquiry to the controller by means of a control message
known as Packet In. This message may include part or all of
the packet depending upon whether the switch has a buffer
to store the packet while waiting on the response from the
controller. The controller processes Packet In messages from
various network devices in the order they are received. This
is where the programmability aspect of SDN comes into play,
where the controller centrally determines the optimal routes
for this packet with a global view of the network. It will then
generate a series of control messages to send to the switch
that will result in installing a flow rule in the switch. This
means there is a delay in processing Packet In messages at
the switch impacted by how busy the controller is. There is
also a network propagation delay experienced by the messages
exchanged between the controller and the switch. Once the
switch receives the controller messages to install flow rules, it
may spend some time making space in the flow table to install

2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

35

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 N

et
w

or
k

Fu
nc

tio
n

V
irt

ua
liz

at
io

n
an

d
So

ftw
ar

e
D

ef
in

ed
 N

et
w

or
ks

 (N
FV

-S
D

N
) |

 9
78

-1
-6

65
4-

39
83

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

FV
-S

D
N

53
03

1.
20

21
.9

66
51

24

978-1-6654-3983-1/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

the new rule(s) and then act upon the packet that was waiting
in its buffer according to the action list of the installed rule.

The switch’s reliance on the controller for instructions on
handling incoming traffic flows opens the reactive setup to
Denial-of-Service (DoS) attacks if the controller becomes
overwhelmed [4]. This can happen if the controller is unable to
process incoming messages in a timely fashion. If the flow rule
idle timer value is set to expire prematurely, this may cause
incoming packets of a flow to frequently generate Packet In
messages to the controller – faster than the controller can
process. If the number of control messages passed between
the controller and the switch saturates the bandwidth between
the controller and the switch, this can also choke the network
leaving the switch in a waiting state for instructions. On the
other hand, setting the idle timer too long loses the leverage a
reactive SDN setup has over a proactive SDN in using a limited
capacity flow table. Thus, setting the idle timer optimally is
key to the proper function of a reactive SDN setup.

We dive deep into the mechanics of a switch and controller
communication and derive the correlation of idle timer with
the packet arrival rate, switch’s packet processing time, and the
controller’s processing time of Packet In messages. Pointing
out the limits of SDN will enable better handling of DoS
attacks on an SDN setup. This study can further help network
administrators in adjusting the idle timer values for different
types of traffic flows, with different rates and Quality of Ser-
vice requirements. Our contributions are summarized below:
• Delay analysis to show end-to-end latency an arbitrary

packet experiences in a reactive SDN network that has a
switch and a controller modeled as M/M/1 queues.

• The idea of a switch-controller interaction cycle to con-
centrate on the delay introduced as a result of flow
management messages generated in a reactive SDN.

• For a single flow, we derive the delay formulation assum-
ing an unbounded flow table, unbounded waiting queue
at the switch and Poisson packet arrivals; and zoom in on
the handling of packets at the switch leading up to flow
rule installation and following after it as it processes any
pending packets at its queue.

The rest of the paper is organized as follows: Section II
describes the related work and inspiration for this work. Sec-
tion III formulates the problem in light of some assumptions.
Section IV presents delay analysis of the reactive SDN setup
considering processing queues at both the controller and the
switch; followed by the results presented in Section V. The
concluding remarks and discussions follow in Section VI.

II. RELATED WORK

Existing efforts are mostly empirical and do not provide
insights into the limits of SDN. There are a few recent existing
analytical models but they do not capture switch-controller
interaction in detail and how this interaction impacts the end-
to-end latency through a reactive SDN setup. It is important
to understand this latency and the subsequent factors that
play a role here in order to incur reduced packet delay while
minimizing the cost of messages to the controller.

Several recent studies use queueing models to capture the
behavior of an SDN setup by modeling the packet delay. In [5],
the authors derive performance of the network by using an
analytical model based on queueing theory. The packet sojourn
time and packet loss were formulated by modeling a single
SDN switch with unlimited queue space and a single SDN
controller was modeled with limited buffer as an M/M/1-S
queue. Poisson arrivals and departures were assumed with
a single flow. In a similar vein, the work in [6] provided
expressions for packet sojourn time and network throughput
by modeling a single SDN node and single SDN controller
as a Jackson Network, later extended to multiple switches
attached to a single SDN controller and including the Flow
Modification messages sent by the controller to the switch in
the model [7]. Xiong et al. [8] derive a closed-form expression
of the average packet sojourn time by modeling the controller
and switch as M/G/1 and MX /M/1. The authors in [9] model
SDN-based edge cloud and present delay analysis of a packet
passing through a switch at the edge cloud considering two 5G
services: Enhanced mobile broadband and mobile Internet-of-
Things. Graph-based models have been proposed to provide
delay estimates such as those in [10]. Even though these
studies are also using queueing models, they do not focus on
optimizing the idle timer.

To reduce delay, several papers focus on improving switch
flow table utilization, for example by setting flow rule idle
timers intelligently. A dynamic idle timer and hard timeout
adjustment algorithm is presented in [11] where the timer
value is adjusted based on different traffic flows observing
a 35% reduction of Packet In messages to the controller. The
scheme presented in [3] adjusts the idle timer based on packet
arrival intervals using two criteria, counting the number of
mismatched flows, and the number of flows dropped by the
controller. Intelligent eviction mechanisms can also be used
to improve flow table utilization, such as the use of Machine
Learning for classifying unused rules [12]. Although these
studies focus on optimizing the idle timer like our work, they
do not provide closed-form models and, hence, do not provide
analytical insights to the performance limits emerging from
idle timer configurations.

Studying delay and monitoring the flow table capacity is
also necessary for the timely detection of DoS attacks where
the flow table might get overwhelmed by unique packets being
sent by an attacker to the switch generating a large number
of rules that cannot fit into the limited TCAM [13]. Similarly,
an attacker can generate packets at a rate that is just shy of
the statically configured idle timer value, forcing the switch to
react by sending messages to the controller causing controller
to install rules for this fake traffic, thus starving legitimate
traffic as well as causing delays in response time for legitimate
packets [4]. Machine Learning approaches have been proposed
in literature to detect such malicious attempts in SDN [14].

Our work presents a detailed analysis of the relationship
between idle timer and average delay experienced by a packet
taking into account the controller and switch communication
signals. We show different cases of studying packet delay at

36

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

the switch: when a new packet first arrives; when additional
packets arrive while switch is awaiting controller’s instruc-
tions; and when switch encounters packets that match existing
flow rules, but also has packets waiting to be processed in
its queue. This work differs from the queueing model-based
performance evaluation of SDN in [8] which focuses on
modeling the controller, as our work dives deeper into what is
going on within the switch. To the best of our knowledge, this
is a unique attempt to derive a delay model that encompasses
these various cases. We believe this foundational work can
help network administrators define optimal idle timers for
improving switch flow table utilization and can be used in
the further study of improving security of SDNs.

III. MODEL DESCRIPTION

We start with modeling the simplest reactive SDN model
with a single switch and single controller and a single flow
from source to destination with packet inter-arrival times
exponentially distributed. We use a queueing theory-based
approach to model the reactive SDN and model both the switch
and the controller as M/M/1 queues as illustrated in Figure
1. Packets are processed one by one at the switch. Packets
that find no match in the flow table wait in the switch queue
while the switch sends a Packet In message to the controller
for further action. The controller processes incoming Packet In
messages and forwards the flow installation or packet handling
rules to the switch. Future Packet In messages from the switch
wait in the controller queue for their turn.

Each flow table entry has two expiration timers correspond-
ing to an idle timeout and a hard timeout, which are configured
by the controller and govern when the rule is purged from the
flow table. The idle timeout is the amount of inactivity time
after which the flow rule is removed from the table. Here,
inactivity refers to no incoming packets being matched against
the flow rule which causes the idle timer to increment with
each unit of time until it reaches the configured idle timeout
value. When a packet is matched against a flow rule, its idle
timeout is reset to 0. The hard timeout is the maximum time
after which the flow rule is removed from the table regardless
of activity. Both of these range from 0 through 65535 seconds.

µc

∞
µs

λ

Pmiss

Phit

Flow table

∞

Controller

Switch

Fig. 1. Queueing model of a reactive SDN setup with a single flow.

We make the following simplifying assumptions:
• The switch queue has infinite capacity.
• Switch processes packets with Exponential rate µs.
• The flow table at the switch has infinite capacity.

• Controller processes Packet In messages at Exponential
rate µc.

• Each flow rule is configured with an idle timeout, ∆.
• There is no hard timeout for the flow rules.

IV. DELAY ANALYSIS

We consider the case of a single flow arriving at the switch.
Even though we assume infinite flow table capacity, derivation
of the expected wait time of a packet requires careful attention
due to multiple dynamic interactions in the system.

A. Miss Probability

Let A be the random variable that represents the generic
inter-arrival times between packets of the flow. Here, A is
Exponentially distributed with rate λ. A packet will match
the entry in the flow table if A ≤ ∆; otherwise, it will miss
if it arrives when the flow rule has expired and has been
removed from the flow table. The packets that match a flow
rule, i.e, hit the flow table, are processed according to the
“action” field of the flow rule. Each missed packet waits in
the switch queue and triggers the switch to send a Packet In
message to the controller. Based on this switch behavior, we
compute the steady-state probability of a miss (Pmiss) as the
joint probability that A is greater than ∆:

Pmiss = Pr(A > ∆) =

∫ ∞
∆

λe−λxdx = e−λ∆. (1)

Hence, the probability of a hit is:

Phit = 1− Pmiss = 1− e−λ∆. (2)

B. Missed Packets Before a Hit

For a new incoming flow, the first packet is always going
to miss the flow table as there are no prior flow rules in the
flow table. This causes a Packet In message to be sent to the
controller to be processed with rate µc. While waiting for the
flow rule to be installed, there will be an additional k missed
packets. Let the delay in the installation of a new flow rule in
the flow table be τ , which is the sum of the processing delay
at the controller and the transmission delay from controller to
the switch and the delay in installing flow rules received from
the controller. Assuming the transmission delay, tcs, to be a
constant time unit, we have:

τ =
1

µc
+ tcs. (3)

C. Switch-Controller Interaction (SCI) Cycle

Consider a time interval [t1, t2] that consists of a Miss Phase
(M) and a Hit Phase (H) as shown in Fig. 2. Specifically, the
Miss Phase starts at time t1 when the first packet of the flow
arrives that does not find a match in the flow table. The Hit
Phase starts when the flow rule is installed in the flow table
until it is removed and ends by the next missed packet for
this flow. This pattern emerges for a flow in a reactive SDN
setup: First packet of a flow is a miss, then a sequence of
misses occurs until the flow rule is installed by the controller,
and a sequence of hits will follow. We define this combination

37

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

of Miss and Hit Phases as the Switch-Controller Interaction
(SCI) cycle and base the rest of our analysis on this notion.
The length of an SCI cycle depends on the idle timer and the
packet inter-arrival times; it can be short (e.g., inter-arrival
time of the packets is larger than the ∆) or infinitely long
(e.g., ∆ is longer than the longest possible packet inter-arrival
time). Our model captures all the possibilities.

If we assume n packets in an SCI cycle, then there are k+1
misses and rest n−k−1 hits. Probability distribution of k+1
misses and n−k−1 hits also gives us the probability of having
n packets in an SCI cycle [t1, t2], which can be written as:

πn =
n−1∑
k=0

P k+1
missP

n−k−1
hit . (4)

The expected number of packets in an SCI cycle in the steady-
state is:

n̄ =
∞∑
j=1

jπj =
∞∑
j=1

j

j−1∑
k=0

P k+1
missP

j−k−1
hit . (5)

t1

M

Flow rule installation

H

t2

M H

t3

M H

t4

n

k + 1 n− k − 1

Fig. 2. Partition of time interval into SCI cycles with Miss and Hit phases.

t1
M

Flow rule installation

H t2

1
packet

arrival
2 3 . . . k + 1k + 2 . . . n− 1 n

1 2 3
. . .

k + 1 k + 2
. . . n

packet

departure

Fig. 3. Realization of packet arrivals and departures in an SCI cycle.

D. Expected Delay of a Packet

We now calculate the expected delay a packet experiences.
Assume that packet i arrived; let’s consider it the tagged
packet. The tagged packet i can be any of the packets from 1
through n, and its delay can be computed under the following
cases given that there are k+1 miss packets in the SCI cycle:
Case I: Tagged Packet Arrives During the Miss Phase. If i ≤
k+1, the waiting packets are in a Miss Phase of the SCI cycle
and the delay of the tagged packet is:

W1(i) = τ +
i

µs
. (6)

Case II: Tagged packet arrives during the Hit Phase. If i >
k+ 1, the tagged packet must have arrived after the flow rule
gets installed at the switch. This means the Hit Phase has
started. There are two possibilities in this case:
Case II-A: Some of the Miss Packets are waiting to be
processed. If i > k + 1 and some waiting packets are in the

Miss Phase of the SCI cycle and the rest in the Hit Phase,
the delay of the tagged packet is going to be dependent on
how many miss and hit packets are in the queue. If the tagged
packet finds that j < k + 1 of the miss packets are already
processed, then k+1−j miss packets are waiting in the switch
queue of which i− (k+ 1− j) are from the Hit Phase. Given
that j < k+ 1 miss packets were served by the switch queue,
the delay of the tagged packet is:

W2(i, j) =
i− j
µs

, i = 1, . . . , n, j = 1, . . . , k. (7)

Case II-B: All of the Miss Packets have been processed; and
some of the Hit Packets may be waiting to be processed. If i >
k+1 and all the waiting packets are from the Hit Phase of the
SCI cycle, the delay of the tagged packet will be determined
by M/M/1 delay expression:

W3(i) =
λ

µs − λ
. (8)

The conditional delay of the tagged packet given that there
are k + 1 miss packets out of n packets in an SCI cycle is
the sum of the delays in the three cases with their probability
of occurrence. For Case-I, there must be i contiguous misses,
with probability P imiss. For Case-II, there must be k+1 misses
followed by i − k − 1 hits where i can be from k + 2 to n.
This probability is expressed by P k+1

missP
i−k−1
hit . In Case II, two

different delay expressions emerge depending on how many
miss packets were processed before the arrival of the tagged
packet. We can express the probability that j miss packets are
processed before the arrival of the tagged packet as:

Pr{A > Sj} =

∫ ∞
0

µjsx
j−1

(j − 1)!
e−µsxe−λxdx =

(
µs

λ+ µs

)j
,

(9)
where A is the inter-arrival time, and Sj is the processing time
of j miss packets with probability density function:

f(x) =
µjsx

j−1

(j − 1)!
e−µsx. j = 1, 2, . . . (10)

Bringing all the cases together, we express the average condi-
tional delay of the tagged packet as:

W (n|(k + 1)) =
k+1∑
i=1

P imissW1(i) +
n∑

i=k+2

P k+1
missP

i−k−1
hit k∑

j=1

(
µs

λ+ µs

)j
W2(i, j) +

(
µs

λ+ µs

)k+1

W3(i)

 . (11)

Given that there are n packets in an SCI cycle, the total
expected delay of a packet arriving during the SCI cycle is:

W (n) =
n−1∑
k=0

P{n|(k + 1)}W (n|(k + 1)), n ≥ 2, (12)

where P{n|(k + 1)} = P k+1
missP

n−k−1
hit is the probability that

there are k + 1 misses given n packets in the SCI cycle.

38

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

Finally, the total expected delay of a packet will be:

W̄ =
∞∑
n=2

n−1∑
k=0

P k+1
missP

n−k−1
hit W (n). (13)

V. NUMERICAL RESULTS

In this section, we discuss the effects of system parameters
on the average delay, W̄ , of a packet and explore the optimum
settings of the idle timer, ∆. We consider the following
parameters in the numerical experiment carried with Maple
software: transmission delay between controller and switch,
tcs = 0.5s, 1s, 1.5s; idle timer, ∆ = [5, 180]s; packet arrival
rate, λ = [10, 300) packets/s; controller service time, µc = 200
packets/s; and switch service time, µs = 300 packets/s.

Fig. 4 depicts the effect of λ on W̄ for different idle timers
∆. The average delay is a convex function of λ, with optimal
values attained when λ ∈ (200, 300). As expected, when
idle timer values are larger, average delay decreases due to
increased hit rate of incoming packets and subsequent reduced
switch-to-controller communications. However, after a certain
point, the average delay increases as packet arrival rates get
close to the processing capacity of the system. This is observed
in Fig. 4 when the packet rate is close to 300 packets/s.

For a given processing power of switch and controller, and
transmission delay between switch and controller, there seems
to exist an optimal packet arrival rate and idle timer value for
which the average delay is minimized. The optimum arrival
rates, λ∗, shown in Fig. 5, are essentially the minimum points
of the delay curves in Fig. 4. Fig. 5 shows that the optimum
traffic rate first decreases and then increases as the idle timer
increases. When ∆ is below 50s, the delay due to the need
for the controller to re-install expired flow entry dominates
the average delay the packets experience. So, the best arrival
rate increases as ∆ decreases. However, when the idle timer is
long enough (i.e., ∆ is above 50s), there is less need to worry
about the controller’s flow re-installation delay.

Fig. 5 also shows the effect of varying controller processing
time on the optimum packet arrival rate. When ∆ < 100s, as
controller processing rate is increased, a lower traffic rate is
better for a faster controller processing rate. Even though a
faster controller can reduce queueing delay at the controller,
the main delay in the ∆ < 100s window is caused by the
number of switch-controller interactions. Lower packet rates
reduce the frequency of these interactions, so the combination
of faster controller with slower traffic reduces both controller
queueing delay as well as switch-controller interactions.

Fig. 6 shows that, in general, for a given packet arrival rate,
λ, there is a value of idle timer, ∆, that is optimum, and
corresponds to the minimum average delay. After this value,
the average delay remains the same. This point reflects the
case when every packet of flow finds a match in the flow table
without requiring an installation of the flow rule. Specifically,
• Lower traffic rates (λ ≤ 250) observe a reduction in

delay as idle timer value increases but does not see
as much reduction in delay as the higher traffic rates.
This is because lower rates cause flow table misses

50 100 150 200 250 300

10−8

10−6

10−4

10−2

100

102

λ (packets/s)

A
ve
ra
ge

D
el
ay

(s
)

∆=5s ∆=10s

∆=15s ∆=30s

∆=45s ∆=50s

∆=60s ∆=75s

∆=90s ∆=120s

∆=150s ∆=180s

Fig. 4. Average packet delay vs. packet arrival rate for different idle timers
(µs = 300, µc = 200, tcs = 1s).

0 50 100 150
200

220

240

260

280

300

∆ (s)

λ
∗
(p
ac
ke
ts
/s
)

λ∗(µc = 100)

λ∗(µc = 200)

λ∗(µc = 300)

λ∗(µc = 500)

10−8

10−6

10−4

10−2

100

W̄
∗
(s
)

W̄∗(µc = 100)

W̄∗(µc = 200)

W̄∗(µc = 300)

W̄∗(µc = 500)

Fig. 5. Optimal packet arrival rate and optimal average packet delay for
different idle timers (µs = 300, tcs = 1s).

and corresponding controller-switch overhead even with
higher idle timer values.

• High traffic rates (λ > 250) reduce delay as idle timer
value increases until it reaches the optimum minimum av-
erage delay after which an increase in the idle timer does
not further decrease the delay as controller involvement
is no longer needed (flow rule does not expire).

• At lower values of idle timer (∆ ≤ 100s), higher traffic
rates (λ > 250) observe a higher delay than lower traffic
rates (λ ≤ 250). This is because of the queueing effect at
the switch as more packets arrive and get queued after the
first miss at faster traffic rates than slower traffic rates,
while the switch awaits controller’s instruction.

VI. DISCUSSION AND CONCLUDING REMARKS

In conclusion, this paper presented a detailed analytical
study of the average delay encountered by a packet that arrives

39

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 300
10−10

10−7

10−4

10−1

102

∆(s)

A
ve
ra
g
e
D
el
ay

(s
)

λ=100 λ=150
λ=200 λ=250
λ=280 λ=290
λ=297 λ=299
λ=299.5 λ=299.9

𝜆 increases, but delay
reduces due to less
frequent switch-
controller delay

𝜆 increases, and
delay increases due
to more switch
queue delay

Fig. 6. Average packet delay vs. idle timer for different packet arrival rates
(µs = 300, µc = 200, tcs = 1s)

at a switch in a network with an SDN controller and switch.
We show that the average delay decreases as the packet arrival
rate increases before it increases again as the arrival rate
exceeds system processing times. For different values of arrival
rates, we also show the optimal values of idle timers that yield
the minimum average delay.

In practicality, setting the idle timer must take into consider-
ation other factors such as limited capacity of the switch’s flow
table which result in flow rule evictions regardless of matched
activity. If flow rules expire too early, this incurs an overall cost
in terms of the increased communication overhead between the
switch and controller. If flow rules stick around too long, the
flow table gets filled resulting in eviction overhead to make
room for incoming flow rule logic by the controller. Thus, in
addition to the rate of packet arrivals, the idle timer should
be set based on flow table capacity as well as the eviction
mechanism in place. The authors in [15] show that sometimes
it may be beneficial to remove a flow rule before the flow ends
to reduce average flow table occupancy.

In addition to the idle timer, Open Flow specification defines
a hard timer that expires the flow rule regardless of matches.
This ensures that flow rules get purged from the flow table
periodically to continue making room for new rules. These two
timers work together to govern when rules get removed from
the flow table. The work in [16] shows that for a given eviction
policy such as Least Recently Used, dynamically setting the
hard timer performs better than a fixed hard timer.

Idle timer should also take into consideration the duration
of flows and quality of service guarantees for different flow
types, e.g., shorter flows with more real-time needs may need
a larger idle timer to reduce the controller-switch communi-
cation overhead of re-installing the rule soon after expiration.
This is usually accomplished by means of adaptive algorithms
to set and adjust the idle timer values [17], [18].

In future work, we want to expand our analysis to consider

flow table size, finite switch queue size, flow rule hard timer
and multiple traffic flows with different traffic distributions.
Additionally, we plan to study how well the analytics model
compares using an emulation in Mininet.

ACKNOWLEDGMENT

This work was supported in part by U.S. National Science
Foundation awards 1814086 and 1647189.

REFERENCES

[1] P. Goransson, C. Black, and T. Culver, Software Defined Networks,
Second Edition: A Comprehensive Approach, 2nd ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[2] “OpenFlow Protocol,” https://www.opennetworking.org/
technical-communities/areas/specification/open-datapath/.

[3] M. Lu, W. Deng, and Y. Shi, “TF-IdleTimeout: Improving efficiency
of TCAM in SDN by dynamically adjusting flow entry lifecycle,” in
2016 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), 2016, pp. 002 681–002 686.

[4] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and
F. A. Ghaleb, “Software Defined Networking Flow Table Management of
OpenFlow Switches Performance and Security Challenges: A Survey,”
Future Internet, vol. 12, no. 9, 2020.

[5] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and Performance Evaluation of an OpenFlow Architecture,”
in 2011 23rd International Teletraffic Congress (ITC), 01 2011, pp. 1–7.

[6] A. Chilwan, K. Mahmood, O. N. sterb, and M. Jarschel, “On Modeling
Controller-Switch Interaction in Openflow Based SDNs,” Int’l. Journal
of Computer Networks & Communications, vol. 6, pp. 137–150, 2014.

[7] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel, “Modelling
of OpenFlow-based software-defined networks: the multiple node case,”
IET Networks, vol. 4, no. 5, pp. 278–284, 2015.

[8] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation of
OpenFlow-based software-defined networks based on queueing model,”
Computer Networks, vol. 102, pp. 172–185, 2016.

[9] A. Chilwan and Y. Jiang, “Modeling and Delay Analysis for SDN-
based 5G Edge Clouds,” in 2020 IEEE Wireless Communications and
Networking Conference (WCNC), 2020, pp. 1–7.

[10] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the Potential of Graph Neural Networks for Net-
work Modeling and Optimization in SDN,” in Proceedings of ACM
Symposium on SDN Research, 2019, p. 140–151.

[11] B. Isyaku, M. B. Kamat, K. b. Abu Bakar, M. S. Mohd Zahid, and
F. A. Ghaleb, “IHTA: Dynamic Idle-Hard Timeout Allocation Algorithm
based OpenFlow Switch,” in 2020 IEEE 10th Symposium on Computer
Applications Industrial Electronics (ISCAIE), 2020, pp. 170–175.

[12] H. Yang, G. F. Riley, and D. M. Blough, “STEREOS: Smart Table EntRy
Eviction for OpenFlow Switches,” IEEE Journal on Selected Areas in
Communications, vol. 38, no. 2, pp. 377–388, 2020.

[13] T. A. Pascoal, Y. G. Dantas, I. E. Fonseca, and V. Nigam, “Slow
TCAM Exhaustion DDoS Attack,” in ICT Systems Security and Privacy
Protection, S. De Capitani di Vimercati and F. Martinelli, Eds. Cham:
Springer International Publishing, 2017, pp. 17–31.

[14] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in SDN using machine learning approach,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2016, pp. 167–172.

[15] S. Shirali-Shahreza and Y. Ganjali, “Delayed Installation and Expedited
Eviction: An Alternative Approach to Reduce Flow Table Occupancy in
SDN Switches,” IEEE/ACM Transactions on Networking, vol. 26, no. 4,
pp. 1547–1561, 2018.

[16] A. Panda, S. S. Samal, A. K. Turuk, A. Panda, and V. C. Venkatesh,
“Dynamic Hard Timeout based Flow Table Management in Openflow
enabled SDN,” in International Conference on Vision Towards Emerging
Trends in Communication and Networking (ViTECoN), 2019, pp. 1–6.

[17] X. Xu, L. Hu, H. Lin, and Z. Fan, “An Adaptive Flow Table Adjustment
Algorithm for SDN,” in Proceedings of IEEE HPCC/SmartCity/DSS,
2019, pp. 1779–1784.

[18] Y. Liu, B. Tang, D. Yuan, J. Ran, and H. Hu, “A dynamic adaptive
timeout approach for SDN switch,” in IEEE International Conference
on Computer and Communications (ICCC), 2016, pp. 2577–2582.

40

Authorized licensed use limited to: University of Central Florida. Downloaded on March 14,2022 at 23:32:59 UTC from IEEE Xplore. Restrictions apply.

