
Contents lists available at ScienceDirect

ComputationalMaterials Science

journal homepage: www.elsevier.com/locate/commatsci

Graphical Abstract

Extensible Structure-Informed Prediction of Formation Energy
with improved accuracy and usability employing neural
networks

Computational Materials Science xxx (xxxx) xxx

Adam M. Krajewski∗, Jonathan W. Siegel, Jinchao Xu, Zi-Kui Liu
Graphical abstract and Research highlights will be displayed in online search result lists, the online contents
list and the online article, but will not appear in the article PDF file or print unless it is mentioned in the
journal specific style requirement. They are displayed in the proof pdf for review purpose only.

http://www.elsevier.com/locate/commatsci
http://www.elsevier.com/locate/commatsci

Contents lists available at ScienceDirect

ComputationalMaterials Science

journal homepage: www.elsevier.com/locate/commatsci

Full length article

Extensible Structure-Informed Prediction of Formation Energy with
improved accuracy and usability employing neural networks
Adam M. Krajewski a,∗, Jonathan W. Siegel b, Jinchao Xu b, Zi-Kui Liu a

a Department of Materials Science and Engineering, The Pennsylvania State University, USA
b Department of Mathematics, The Pennsylvania State University, USA

A R T I C L E I N F O

Keywords:
Machine learning
Structure-informed
Formation energy
SIPFENN

A B S T R A C T

In the present paper, we introduce a new neural network-based tool for the prediction of formation energies
of atomic structures based on elemental and structural features of Voronoi-tessellated materials. We provide a
concise overview of the connection between the machine learning and the true material–property relationship,
how to improve the generalization accuracy by reducing overfitting, how new data can be incorporated into
the model to tune it to a specific material system, and preliminary results on using models to preform local
structure relaxations.

The present work resulted in three final models optimized for (1) highest test accuracy on the Open
Quantum Materials Database (OQMD), (2) performance in the discovery of new materials, and (3) performance
at a low computational cost. On a test set of 21,800 compounds randomly selected from OQMD, they achieve
a mean absolute error (MAE) of 28, 40, and 42 meV/atom, respectively. The second model provides better
predictions in a test case of interest not present in the OQMD, while the third reduces the computational cost
by a factor of 8.

We collect our results in a new open-source tool called SIPFENN (Structure-Informed Prediction of
Formation Energy using Neural Networks). SIPFENN not only improves the accuracy beyond existing models
but also ships in a ready-to-use form with pre-trained neural networks and a GUI interface. By virtue of this,
it can be included in DFT calculations routines at nearly no cost.
1. Introduction

In recent years the field of material data informatics has been grow-
ing in importance thanks to the proliferation of open-access
databases [1–7] and new methods being implemented to predict a wide
variety of material properties [8–17]. Within these methods, machine
learning (ML) and, more broadly, artificial intelligence (AI) is becoming
dominant, as noted in two recent reviews [18,19], which listed a total
of around 100 recent studies that attempted to solve material science
problems using ML and AI techniques. These studies report benefits
such as a 30-fold increase in material discovery rate when guided by an
ML-model [15], or the ability to create new state-of-the-art materials in
highly complex design spaces like 6-component alloys [16]. They also
dive into new paradigms of materials science by handling previously
unthinkable amounts of data, allowing the creation and analysis of an
energy convex-hull calculated for all elements [20,21], or a concurrent
analysis of all available literature texts to find paths for material
synthesis [22]. In addition, some studies promise to solve significant
industrial challenges such as detection of additive manufacturing flaws

∗ Corresponding author.
E-mail address: ak@psu.edu (A.M. Krajewski).

with relatively simple and accessible data, but above-human pattern
recognition quality and speed [17].

A common approach is to focus on the discovery of candidate ma-
terials promising a new state-of-the-art performance, which must then
be validated by experiment. The mismatch between the predictions and
experiment measures the quality of the model, and reducing this gap is
a major challenge due to the newly designed materials often being far
from known materials, combined with attention placed on regions with
extraordinary predictions. However, even if design models were per-
fectly accurate, many predicted materials cannot be physically made in
the lab. An increasing number of studies attempt to solve this challenge
by focusing not only on predicting how the material will perform but
also on whether it can be manufactured [23]. Generally, these include
predicting materials’ stability [21,24–27] and synthesizability [20,22,
28] with the stability being the more constraining parameter, as it
determines whether the material could be stable or metastable in the
use conditions, and therefore whether it can be synthesizable. Thus,
https://doi.org/10.1016/j.commatsci.2022.111254
Received 14 July 2021; Received in revised form 29 December 2021; Accepted 29
 January 2022

http://www.elsevier.com/locate/commatsci
http://www.elsevier.com/locate/commatsci
mailto:ak@psu.edu
https://doi.org/10.1016/j.commatsci.2022.111254

A.M. Krajewski et al.

v
k
i
c
t
t
b

d
k
a
m
c
s
o
r
n
a

b
p
c
t
o
e
c
d
c
o
o
s
l
p
p
s
s
w
p
s

i
u
t
p
r
m
s

o
s
c
s
l
u
W
d
a
t
I
c
d
n

predicting stability through prediction of fundamental thermodynamic
properties such as formation energy is of special importance.

In the present work, new ML models and a tool to quickly use
them are developed to improve the process of materials discovery by
efficient prediction the formation energy and streamlined incorporation
into materials discovery frameworks that aim to screen billions rather
than hundreds of candidates available with cost-intensive calculations
like first-principles calculations based on the density functional theory
(DFT).

In simple terms, every ML model is composed of three essential
elements: a database, a descriptor, and an ML technique (also known as
ML algorithm). The first element, databases, contain prior knowledge
and are becoming increasingly shared between many studies, thanks
to being open-access and often containing orders of magnitude more
experimental or computational data than could be feasibly collected
for a single study [1–7]. Databases used within the present paper are
detailed in Section 2.4.

The second element of an ML model is the descriptor (i.e., feature
ector describing the material) which determines a representation of
nowledge (data from the database) in a way relevant to the problem. It
s typically built from many features, also known as attributes or vector
omponents, which usually are determined through domain knowledge
o be relevant or selected through correlation analysis. All combined,
hese features are a representation of some state whose meaning will
e problem-specific.
When treating materials on the single atomic configuration level,

escriptors can be generally divided into composition-based (also
nown as stoichiometric, structure-invariant, or elemental) [9,29,30]
nd structure-informed [31–33]. The first type usually provides a
ore compact representation at a much lower computational cost, as
alculating a composition-based descriptor often needs to involve only
imple linear algebra operations such as matrix multiplication [30],
r prior-knowledge-incorporating attention-based analysis of a graph
epresentation of the composition [34]. In cases where deep neural
etworks (DNNs) are employed, descriptor calculation can be skipped
ltogether by passing a composition vector directly [29].
It is important to recognize that the descriptor choice impacts

oth the performance and applicability of the model. In the case of
rediction of material properties, such as formation energy, selecting a
omposition-based descriptor, no matter how complex, limits the model
o either a specific arrangement of atoms, such as BCC or amorphous,
r some defined pattern of structures, such as the convex hull of lowest-
nergy structures. Such limitation of the problem domain, given a
omparable amount of data, allows to quickly achieve much lower pre-
iction error at a cost of fundamentally changing the problem, making a
omparison between methods impossible. Furthermore, a composition-
nly representation is inherently unsuitable for the direct prediction
f most material properties that depend on the atomic structure. The
tructure-informed descriptors can include much more information re-
ated to interatomic interactions, making them more robust and more
hysics-relevant. They also, implicitly or explicitly, include symmetries
resent in the material, which can be used to predict certain properties,
uch as zero piezoelectric response, with high confidence. Furthermore,
uch descriptors often include extensive composition-based arguments
ithin them [31], making it possible to both recognize patterns in the
roperty coming from different chemical species occupying the same
tructure and structural effects in the case of a single composition.
At the same time, it is important to consider that physically ex-

sting materials are rarely described by a single atomic configuration,
sually requiring considerations for defects and coexisting configura-
ions. Thus, like a traditional DFT-based modeling, in order to re-
roduce real material behavior, a structure-informed model will often
equire utilization of a method such as CALPHAD [35,36]. One of such
ethods, recently developed by authors and named ‘‘zentropy theory’’
hows the potential to connect individual configurations to predict
macroscopic properties, such as colossal positive and negative thermal
expansions [37].

In some cases however, investigating all configurations can be a
very challenging task (e.g., for high entropy alloys), necessitating the
use of an elemental-only model trained to give predictions assuming
future observations to be consistent with the past ones [38].

The structure-informed representation which was the ground for the
present work has been developed by Ward et al. based on information
from the Voronoi tesselation of a crystal structure [31]. Ward’s de-
scriptor contains 271 features that combine information from elemental
properties of atoms, such as shell occurrences, with information about
the their local environments, such as coordination number or bond
lengths to neighbors. This approach was demonstrated to work excel-
lently when comprehensively compared to two previous approaches
based on the Coulomb matrix (CM) [33] and on the partial radial
distribution function (PRDF) [32], when trained on the same data from
the Open Quantum Materials Database (OQMD) and with the same
machine learning algorithm. A more detailed overview is given in 2.1.

Ward et al. used an automated Random Forest ML algorithm [31]
set to a fully automatic parameter selection. While fairly common, that
approach without complexity limit for the model, and when trained on
over 400,000 materials, resulted in a forest composed of 100 trees with
approximately 700,000 nodes each. Such model requires over 27 GB of
RAM memory to run, making it unusable on a typical personal or lab
computer. Such size also results in a relatively low efficiency, requiring
over 100 ms to run on a high-performance lab computer [31].

In the present work, aforementioned issues are resolved through
a targeted design of the ML algorithm to fully utilize the data and
its representation. This is done by consideration of the problem for-
mulation and the deep neural network technique (see 2.2), combined
with iterative model design (see 2.5), and by designing and testing
over 50 neural networks belonging to around 30 designed architectures.
Notably, in the time between Ward’s work and the present paper, neural
networks have been used in this application, e.g., [39], which uses
residual neural networks. However, as we show in Section 3.2, the
present paper provides more accurate predictions than both Ward’s
model and the state-of-the-art neural network model [39].

Additionally, the present work brings two further improvements.
The first one is good transfer learning ability, described in 3.5 allowing
ther researchers, at a relatively small cost, to adjust the model to
mall problem-specific databases, typically consisting of tens of DFT
alculations or less. This method substantially improves predictions for
imilar materials while retaining the general knowledge learnt from the
arge dataset and demonstrates that the model learns features related to
nderlying physics. The second improvement is the end-user usability.
hile most of the materials-related ML model are reported in a repro-
ucible way with an evaluation of the performance [31–33,40], only
fraction goes beyond to make models accessible to the community.
he present work has been focused on creating a Findable, Accessible,
nteroperable, and Reusable tool, inspired by FAIR principles [41],
reated open-source with common and convertible data formats as is
escribed in more detail in 2.3. This lead to many standalone compo-
ents combined into an end-user tool, described in 3.7, that is ready to
use without any costly computation to create the model and can be run
on any modern computer, as low-power as smartphones.

2. Methodology

2.1. Descriptor used

A descriptor of a material is a point in a well-defined multidi-
mensional property space that can be used to represent knowledge
associated with entries in a database in vector form. Within the present
work, the property space has 271 dimensions (corresponding to 271
features) related to elemental properties and atomic structure of an ar-
bitrary crystalline material, as designed by Ward et al. [30,31] utilizing

the voro++ code [42]. These features can be categorized as:

A.M. Krajewski et al.

c

2

i
i
r
w
g

𝑅

Table 1
List of features with descriptions.
Site statistics Difference statistics Name Description

1–4 – Effective coordination number Mean, mean abs error, min, max
5–7 – Mean bond length Mean abs error, min, max
8–11 – Bond length variation Mean, mean abs error, min, max
12 – Cell volume variation Variation in the voronoi cell volume

no statistics
13–15 – Mean WC magnitude shells 1–3, global non-backtracking
16 – Packing efficiency no statistics
133–138 17–21 Atomic number
139–144 22–26 Mendeleev number
145–150 27–31 Atomic weight
151–156 32–36 Melting temperature
157–162 37–41 Column Group in periodic table
163–168 42–46 Row Period in periodic table
169–174 47–51 Covalent radius
175–180 52–56 Electronegativity
181–210 57–81 Valence electron count Listed for s, p, d, f orbitals and total
211–240 82–106 Unfilled count Number of unfilled orbitals

Listed for s, p, d, f orbitals and total
241–246 107–111 Ground state volume
247–252 112–116 Ground state band gap
253–258 117–121 Ground state magnetic moment
259–264 122–126 Space group number Index of space group
127 – Number of components No statistics
128–132 – 𝓁𝑝-norms of component fractions 𝑝 ∈ {2, 3, 5, 7, 10}
265–268 – Fraction of valence electrons

in s, p, d, f orbitals No statistics
269 – Can form ionic compound Boolean, no statistics
270–271 – Ionic character Max, mean over pairs of species

Site Statistics refers the mean, range, mean absolute error, maximum, minimum, and mode unless otherwise stated in the description. Difference
Statistics refers to the mean, mean absolute error, minimum, maximum and range of the differences between neighboring sites in a structure,
weighted by the size of the face between them in the Voronoi tessellation.
H

|

t

o
d
o
i
d
n
m
i

2

p

• Elemental Attributes (145 total): Attributes which only depend
upon the elements present and their stoichiometry.

– Stoichiometric Attributes (6): Describe the components
fractions.

– Elemental Properties Attributes (132): Contain statistics
taken over the various elemental properties, weighted by
the stoichiometry of the structure.

– Attributes based on Valence Orbital Occupation (4): De-
pend upon the distribution of valence electrons across dif-
ferent orbitals, i.e. on the total number of valence electrons
in each orbital across the structure.

– Ionic Character Attributes (3): Attributes which encode
whether the material is ionically bonded.

• Structural Attributes (126 total): Attributes which depend on
the precise structural configuration, i.e. exactly how the atoms
are arranged in space.

– Geometry Attributes (16): Attributes which depend upon
the spatial configuration of atoms only.

– Physical Property Differences Attributes (110): Contain
statistics taken over the differences between elemental prop-
erties of neighboring sites in the structure, weighted by the
size of the Voronoi cell face between the neighbors.

A complete table list of features is given in Table 1. Further details
an be found in [30,31].

.2. Machine learning techniques overview

This section gives a brief overview of the employed machine learn-
ng techniques and terminology, described in more detail
n Appendix A. The interest is placed on the statistical problem of
egression, whose goal is to learn a functional relationship 𝑓 ∶ 𝑋 → 𝑌
hich minimizes the risk (also known as loss or expected error) [43]
iven by
(𝑓) = E𝑥,𝑦∼ 𝑙(𝑦, 𝑓 (𝑥)). (1)
ere 𝑋 denotes a space of input features, 𝑌 denotes an output space,
the expectation above is taken over an unknown distribution  on 𝑋×𝑌
(representing the true relationship between inputs and outputs), and 𝑙
is a given loss function.

In the specific application considered here, the function 𝑓 which is
to be learned, maps input material structures (arrangements of atoms) 𝑥
to the predicted formation energy 𝑦. The distribution  is unknown, but
samples (𝑥𝑖, 𝑦𝑖) are given, consisting of structures 𝑥𝑖 and corresponding
predictions 𝑦𝑖 which are used to learning 𝑓 . In the present case, this
data comes from the OQMD and other smaller materials databases.

In order to learn the relationship 𝑓 from the data, the empirical risk

𝐿(𝑓) = 1
𝑛

𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝑓 (𝑥𝑖)), (2)

is minimized over a class of functions defined by a neural network
architecture. A neural network architecture consists of a sequence of
alternating linear functions and point-wise non-linear functions defined
by an activation function (see [44] for more information about neural
networks). As the loss function 𝑙 in (2) the 𝓁1-loss function 𝑙(𝑦, 𝑥) =
𝑥 − 𝑦| is used. The neural networks are trained on this loss (2) using
he common ADAM optimizer [45].
An important issue when training complex statistical models is the

verfitting, which occurs when a model accurately fits the training
ata but fails to generalize well to new examples. In order to detect
verfitting, the standard practice of dividing the data into training, val-
dation, and test datasets [46] is used. In order to mitigate overfitting,
ropout [47] and weight decay, two standard methods for regularizing
eural networks, are used. In Section 3.1, Fig. 3 illustrates overfitting
itigation effects on the training process of neural networks designed
n the present paper.

.3. Software used

The choice of software for the machine learning portion of this
roject was Apache MXNet [48] due to its open source nature, model

A.M. Krajewski et al.

m
(
2
e
O
i
t
f
Q
a
S
V
m
i
a

t
a
t
o
t
t
t
f

portability, and state-of-the-art scalability, allowing the same code to
run on a laptop with a low-power CPU/GPU and a supercomputer
(e.g., ORNL Summit) with hundreds of powerful GPU’s. Its portability
allows trained networks to be converted and used with other popular
frameworks such as Google Tensorflow, PyTorch, or even Apple Core
ML, making results of the present paper highly accessible.

MXNet framework was used through Wolfram and Python lan-
guages. Wolfram Language was used primarily for the network architec-
ture design, training, and testing, as it provides an excellent interface
with detailed training results shown in real-time during the training
process. It also provides good out-of-the-box performance due to its
well-optimized memory handling when training on a single GPU setup.

Python, on the other hand, was used when writing the end-user tool
for running previously trained networks. This choice was made so that
the software is completely open-source and can be easily reused for
specific purposes or incorporated within other packages. Furthermore,
Python allowed quick implementation of a Graphical User Interface
(GUI) through the wxpython package.

2.4. Data acquisition and curation

Four sets of data were used within the present work. The largest
by volume and significance was the Open Quantum Materials Database
(OQMD) [1,2], which contains the results of DFT calculations per-
formed by the Vienna Ab Initio Simulation Package (VASP) [49] for
a broad spectrum of materials. The snapshot used here was extracted
from the database by Ward et al. in 2017 and contained 435,792 unique
compounds [31]. The choice of 2017 snapshot rather than the current
one was made to ensure direct performance comparison between new
and previously reported methods. The second database was a part of
the Inorganic Crystal Structure Database (ICSD), a subset of the OQMD
with only experimentally obtained structures containing around 30,000
entries. ICSD was primarily used for the quick design of simple neural
network architectures at the beginning, and OQMD used for more
complex models designed later.

Two smaller datasets were used, in addition to these large
databases. The first small dataset contained DFT-calculated formation
energies of Fe–Cr–Ni ternary 𝜎-phase endmembers in the 5-sublattice
odel [50]. As this model contains 5 chemically distinct positions
Wyckoff positions), populated by one of 3 elements, in total it included
43 (35) structures with 30-atom basis each. This data served as an
xample of a relatively complex structure that was not included in the
QMD. Furthermore, it was a test case of a material that is highly
ndustry-relevant, as it causes steel embrittelment [51] and is costly
o investigate using traditional methods due to compositional and con-
igurational complexity. The second small dataset included 13 Special
uasirandom Structures (SQS), which are the best periodic supercell
pproximations to the true disordered state of metal alloys [52–54].
QS structures in this set were binary alloys containing Fe, Ni, Co, and
, laying on deformed FCC (A1), BCC (A2), or HCP (A3) lattices. The
ain purpose of these smaller datasets was to test the performance
n extrapolation from OQMD, in a particular case of interest for the
uthor’s.
During the network design process described in 2.5, it was found

hat a small fraction of the OQMD dataset (under 0.03%) contains
nomalous values of formation energy above 10 eV/atom. In the ex-
reme case of CuO2 (OQMD ID: 647358) this value was 1123 eV/atom
r 108350 kJ/mole. Since the source database contains hundreds of
housands of data points reported by many scientists, it can be expected
hat a small fraction of the data may contain some sort of errors and
ypos. In the present work, they were removed from all datasets used

or training and evaluation.
Fig. 1. The model design process schematic.

2.5. Neural network design process

This section conceptually outlines the network design process lead-
ing to the final models. All essential details regarding the design and
performance of intermediate models, useful for better understanding
changes and for applying the similar approach in different problems,
can be found in Appendix B.

The design started with the simplest single-layer neural network
(perceptron) with the Sigmoid activation function, trained on the ICSD
and its smaller subset, to provide a baseline for the design. Then, the
process was conducted in the following steps:

1. The network size has been increased step-wise while training on
the ICSD dataset (30k+ entries). Results were extrapolated to estimate
network size suitable for larger OQMD (400k+) to be 4 hidden layers
in a (10000, 10000, 1000, 100) configuration.

2. To improve convergence during the training, descriptor features
values were normalized to their maximum values present in the OQMD
dataset.

3. Performance and time to convergence were improved by moving
from Sigmoid activation function to a mix of Soft Sign, Exponential
Linear Unit, and Sigmoid. This relatively simple model has improved
performance over the existing Random Forest model [31], achieving
MAE of 42 meV/atom on the same dataset.

A.M. Krajewski et al.

d
e
t
a
b
e
d

t
c

p
o
f
e
i
a
(
t
s

m
b
s
f
1
s

3

3

t
d
m
t
f
p
c

c
o
d
T
i
m

p

4. At this step, it was noticed that a small fraction (around 0.03%) of
data points exhibits extreme errors, as high as over
1,000,000 meV/atom causing some instability during the training
process, despite the large batch size of 2048. They also caused a high
deviation in test MAE values across repeated model training rounds.
As describes in 2.4, these were identified to be a few rare errors in the
dataset and removed during later model design.

5. The network size was increased to around 1 GB limit (maximum
size target) by the addition of two more 10,000-width layers. This
OQMD-optimized network has achieved the best performance on the
OQMD out of all designed in the present paper, with an MAE of
28 meV/atom. Performance analysis can be found in 3.2 and in Fig. 5.

6. After the good performance on the OQMD was achieved, the
esign goals shifted to (1) reducing the training-set-to-validation-set
rror mismatch during the network training, while (2) keeping the
est MAE on the OQMD on a suitable level (below 50 meV/atom),
nd (3) improving performance on datasets not presented to network
efore (see 2.4). The first step was the introduction of Dropout lay-
rs [47], described in more detail in Appendix A, which allow for better
istribution of knowledge across the network.
7. The introduction of strong Dropout [47] made the network prone

o falling in local minima, which was solved by the introduction of a
hanging learning rate schedule.
8. With optimized network architecture, lastly, the descriptor inter-

retation by the network has been modified through the introduction
f L2 regularization [55], a technique which assigns an error penalty
or ‘‘attention’’ (input layer weights) to each of the descriptor features,
ffectively refining features in the descriptor to only the most signif-
cant ones. Fig. 4 ranks them. The resulting Novel Materials model
chieved a much lower training-set-to-validation-set error mismatch
1.15 vs 1.57 after 240 rounds), presented in Fig. 3 as a function of
raining progress. On the OQMD test set, it achieved a higher, yet
uitable 49 meV/atom.
9. To cater to applications requiring very high throughput or low
emory consumption, an additional Small Size network was designed
y adding Dropout to one of the earlier networks, designed before the
ize increase step, and then reducing its size to the desired level. It was
ound that after reduction of total size from around 400 MB to around
00 MB, the network retained MAE of 42 meV/atom on an OQMD test
et and further reduction was possible if needed for the application.
. Results

.1. Final predictive models

Throughout the architecture design process described in 2.5, de-
ailed in Appendix B, and depicted in Fig. 1, new networks were
esigned and tested in various ways, leading to about 50 predictive
odels (trained neural networks) with varying training parameters and
raining data. The majority of the intermediate networks were stored
or the record, and are available upon request. Details regarding hyper-
arameters and training routines used to obtain three resulting models
an be found in Appendix A.
Out of all trained neural networks, three were selected and can be

onsidered final outcomes of the design process, optimized for different
bjectives. Their architectures are presented in Fig. 2. The first one,
enoted NN9, was created specifically for the OQMD performance.
his was the same objective as in the study by Ward et al. [31] and
ts performance serves as a direct comparison to the Random Forest
ethod employed in that paper [31] and other works [32,33].

Fig. 3. Training Loss to Validation Loss in a model that does without (NN9) and with
overfitting mitigation (NN20), plotted versus training progress.
Fig. 2. Three selected architectures designed within the present work. Optimized for: (Left) OQMD performance, (Middle) predicting new materials, (Right) small size at good
erformance. Internally in the code, they are designated as NN9, NN20, and NN24.

A.M. Krajewski et al.

m
a
g
o
i
t
a
a
b
f

f
s
t
o

p
O
r

s

Fig. 4. Distribution of sums of squared input weights. High values correspond to
attributes that were not lowered due to their contribution to pattern recognition of
the model. 15 attributes with the highest values are labeled. The labels are taken from
the descriptor definition in [30].

The second network was optimized for improved pattern recogni-
tion on OQMD and improved performance on non-OQMD datasets used
in the present work (i.e. SQS/𝜎-phase datasets). This was achieved pri-
arily through extensive overfitting mitigation, applied during design
nd training (see Fig. 3), which leads to a network with improved
eneralization/materials-discovery capability. Furthermore, one of the
verfitting mitigation methods, namely the regularization described
n 2.2, have allowed identification of descriptor attributes that con-
ributed the most to the predictive capability and the ones that were
lmost completely discarded once the penalty for considering them was
ssigned. Fig. 4 presents the distribution of sums of squared weights
etween each neuron in the input layer (each of the 273 descriptor
eatures) and all 10,000 neurons in the first hidden layer.
Feature rankings, such as presented in Fig. 4, allow a more ef-

icient selection of input features in future studies looking into the
ame problem; thus both reducing the number of features that need
o be computed for each atomic configuration and the total number
f weights in the network. Furthermore, it can be used to gain an
insight into the model interpretability. Looking at the specific rank-
ing for NN20, the high-impact features present a mix of elemental
features, likely allowing the model to establish some formation en-
ergy baseline for a given composition, and structure-informed features
allowing to distinguish between polymorphic configurations. High im-
pact elemental features include different statistics on elemental melting
temperatures and ground-state structure volume per atom. The struc-
tural features extend them by considering how they differ between
neighboring atoms and also include purely structural features such
as packing efficiency and variance in Wigner–Seitz cells volumes. A
complete ranking of features is included in Appendix C.

The third network, denoted NN24, was created for memory/power-
constrained applications requiring a balance between OQMD perfor-
mance and memory intensity and processing power required. Model
parameters contained in this architecture occupy only 145 MB, over 8
times less than two other models and around 200 times less than the
model reported by Ward et al. [31].

3.2. OQMD data performance

As described in 2.5, all three final networks were evaluated on a
randomly selected subset of the OQMD to give a comparison between
the state-of-the-art model presented by Ward et al. [31] and the present
ML method. This random subset consisted of 21,800 OQMD entries,
constituting approximately 5%, which were not presented to the net-
work, nor used for evaluation at any stage of the training process.
This sample size was considered to be representative of the whole
dataset once the small fraction (0.026%) of likely incorrect entries were
removed from the dataset as described in 2.4. The random selection
itself was initially performed separately for each training process and
recorded after completion. Later, when networks were modified to
mitigate overfitting, a single random subset was used for all of them to
allow more careful design and more accurate comparative analysis of
results. Fig. 5 gives (1) prediction vs OQMD values of formation energy
lot, (2) statistics related to the error in predictions relative to the
QMD values, and (3) a histogram of the absolute error in predictions
elative to the OQMD values.
Fig. 5. Performance of 3 selected neural networks on a random subset of 21,800 entries from OQMD. (Left) OQMD performance, (Middle) predicting new materials, (Right) small
ize at good performance. Internally in the code, they are designated as NN9, NN20, and NN24.

A.M. Krajewski et al.
Table 2
Comparison of our method with existing state-of-the-art methods.
Method Formation energy MAE Convex hull MAE

SIPFENN (This work) 28.0 meV/atom (OQMD Opt.) 32 meV/atom (Novel. Mat.)
Ward2017 [30,31] 80 meV/at N/M
ElemNet [29] N/A 50 meV/at
IRNet [39] 38 meV N/M
Roost [34] N/A 29 meV/at – 24 meV/at

N/A and N/M respectively stand for not applicable and not measured.

3.3. Existing methods comparison

In this section, the performance of the models is compared with
a few similar existing approaches based on the OQMD dataset, when
formation energy of a structure is predicted [30,31,39], or its subset of
the convex-hull structures, when formation energy of the most stable
structure is predicted [29,34]. This division is made based on the
reasoning presented in 1. While the latter type cannot be used to predict
the formation energy of any arbitrary structure, the structure-informed
models like SIPFENN (the present work) can be tested on the convex
hull structures.

The results are shown in Table 2. The SIPFENN convex hull MAE
has been reported based on using the Novel Materials Model limiting
the original test set to structures laying within 50 meV/atom from the
convex hull. From these results, we can see that the SIPFENN neural
networks approach outperforms existing state-of-the-art methods for
predicting the formation energy of any material. At the same time,
while not being the best, it is capable of reaching performance levels
of specialized models in predicting the formation energies of structures
laying on the convex hull.

3.4. Non-OQMD data performance

Models created in the present work, specifically the ones optimized
for predicting the formation energy of new materials, were designed
and implemented to serve as tools for materials discovery. Evaluating
their performance on data from the same source as the training set
done in 3.2 is inherently biased towards favoring models that provide
the best fit to the prior (training) knowledge. This is amplified by the
fact that many entries in the database are reported in groups that come
from common studies and span similar materials, causing high domain
clustering, which in some cases effectively makes such evaluation more
akin to interpolation than extrapolation of knowledge.

To partially mitigate the described issue, the performance of the
models was also evaluated on two smaller non-OQMD databases, de-
scribed in 2.4, representing an example of chemistries and structures
that were of interest to the authors project on Ni-based superalloys. At
the same time, they were not directly presented to the network in any
capacity during the training process.

In all cases, models created in the present paper were able to achieve
approximately the same performance as on a random selection from the
OQMD. To give a more in-depth analysis of the results, Fig. 6 shows a
magnified view of the predictions and basic statistics on the agreement
between predictions and the database for the three models developed
in the present work.

While all three models performed at around the same MAE level
as for the OQMD, network optimized for new materials, the NN20
and NN24, performed better in the non-OQMD test cases of interest,
providing major increases in correlations, significant for ranking of
end-member configurations, except for 4 SQS configurations which
were underestimated. The Pearson correlation slightly decreased in
the first case and slightly increased in the second case. In both cases,
the mean absolute error decreased by about 20% compared to the
OQMD-optimized model.

3.5. Transfer learning capability

In this section, the technique of transfer learning is considered.
It has been observed among deep learning models across a variety
of domains [56–59] and refers the to the ability of properly trained
deep learning models to ‘transfer’ their knowledge to related tasks. In
the least complex approach, one does this by simply ‘fine-tuning’ the
parameters of the model using new training data (from the new task).
This methodology has shown in practice that deep neural networks are
often able to transfer knowledge between different but related tasks.
Such a problem is analogous to many others in materials science, where
general knowledge is used to make meaningful statements without
statistically significant patterns in locally available data.

It is shown that a network trained on the OQMD database, which
covers a broad yet limited spectrum of materials, can be quickly ad-
justed to materials outside of this spectrum with very little additional
cost relative to the initial training. Specifically, the transfer learning
capability of a network trained in this way on the set of all (243)
Fe–Ni–Cr 𝜎-phase 5-sublattice model endmembers, described in 2.4,
was tested. The ML model was first trained on a broad and general
material dataset (OQMD) and then further trained (i.e., re-trained) for
a given number of rounds on the new data (Fe–Ni–Cr 𝜎-phase dataset)
to adapt to the new system, while still conserving its broad knowledge,
and can be thought of as fine-tuning a model to improve extrapolation
outside of a prior knowledge space.

In order to achieve good performance, both the number of rounds
and the learning rate have to be optimized. This can be accomplished

by investigating the dependence of error on the fraction of available
Fig. 6. Performance of 3 selected neural networks on non-OQMD data described in 2.4. Evaluated on (red) Fe–Cr–Ni 𝜎-phase and (blue) SQS dataset. Networks organized by
columns; optimized for (left) OQMD performance, (middle) predicting new materials, (right) size-constrained applications. Internally in the code, they are designated as NN9,
NN20, and NN24 respectively.

A.M. Krajewski et al.

i
t
d

d
d
e
a

b
t

p
f
p

m
o
m
b
c
s
c
t
c

u

Fig. 7. MAE evolution of NN20 model re-trained for 25 additional rounds on an
ncreasing fraction of data from Fe–Cr–Ni 𝜎−dataset. Presents the dependence of
ransfer learning from new data for different learning rates expressed as fractions of
efault ADAM learning rate (0.001).

ata while one of these parameters is fixed. Fig. 7 presents the depen-
ence of transfer learning from new data for different learning rates
xpressed as fractions of default ADAM learning rate (0.001 shared
cross a vast majority of software).
As shown, in this case, the default learning rate (100%) cannot

e used for the transfer learning as it will adjust network parame-
ers in both an unreliable and detrimental fashion, resulting in poor
 f
performance on the whole system of interest (both training and test
sets) as shown in Fig. 7. The same behavior would be observed if the
process were conducted using an automated model design available
in software such as MATLAB or Mathematica. The 10% learning rate
provided reliable enough outcomes and allowed a better performance
improvement given little data, relative to using a 1% learning rate
(relative to the default). The second parameter to be optimized was
the number of re-training rounds, as presented in Fig. 8.

Fig. 8 shows that use of too few retraining rounds causes unreliable
outcomes, while too many causes overfitting for low amounts of new
data. In the case of Fe–Cr–Ni 𝜎−dataset, retraining for 10 or 25 rounds
rovides balanced results across the whole dataset. With parameters
or the process set to 10% learning rate and 25 additional rounds, the
erformance can be evaluated graphically, as presented in Fig. 9.
As depicted, adding just 10% of DFT-calculated data (24/243 end-
embers) provided a significant improvement in the prediction quality
ver the system, including the other 90% was never shown to the
odel. This result indicates that the models in the present paper can
e combined with partial data obtained through DFT calculations to
reate accurate predictive tools for a specific closed material system,
uch as sublattice endmembers, and potentially limit the number of
alculations required within the study. This can then provide the ability
o investigate broader material search spaces at a given computational
ost.
Furthermore, the presented transfer learning capability could be

sed for a more broad materials exploration without a well-defined
inite search space like the ternary Fe–Cr–Ni 𝜎−phase. In such a case,
Fig. 8. MAE and Person correlation (R) evolution of NN20 model re-trained at 10% learning rate on an increasing fraction of data from Fe–Cr–Ni 𝜎−dataset. Presents the
dependence of transfer learning from new data for different re-training rounds numbers.
Fig. 9. Performance of a new-materials-optimized network (NN20) on 𝜎-phase data. Left-to-right: as trained on the OQMD, with additional training on 10%, 40%, and 100% of
the Fe–Cr–Ni 𝜎−phase end-member data. The points on the figure correspond to all end-members (both training and testing data). Corresponding MAE and R are presented in
Fig. 8 (gray rhombus points).

A.M. Krajewski et al.

3

l
m
t
s
a
s
d
l
c
u
c
i
e
f
f
(

u
r
w
a
m
s

b
s
e
A
c
i
t
a
i

m

Fig. 10. MAE of predictions evaluated on test set data vs number of newly available training datapoints. 1180 blue points correspond to single transfer learning processes. Red
plot gives mean MAE and standard deviation. Both plots contain the same data.
it is better to evaluate and report the performance of the model on
a test set that was not presented during the training and report, as a
function of the number of added data points (new DFT calculations).
With such a problem statement, the transfer learning process has been
repeated 1180 for the statistical significance of the outcomes, which
are presented in Fig. 10.

As presented in Fig. 10, adding just a small number of new data
points allows to nearly half the MAE (around 20 datapoints). Further-
more, evident from the right plot, the mean performance increase is on
average linear in log-lin scale and highly predictable (𝑅2 = 0.98).

.6. Model limitations

As with any modeling tool, this modeling effort has some inherent
imitations, coning from both data and methods used to create it. The
ost significant one comes from the type of data used for training of
he model, where all data points correspond to DFT-relaxed structures,
itting in local minima in the configuration energy landscape. Thus,
ll energy predictions are given under an assumption that the input
tructure is fully relaxed with DFT settings inherited from the OQMD
atabase [1]. At the same time, since the model was trained on many
ocal energy minima configurations analyzed on the level of single-atom
hemical environments, it should be able to approximate values for
nrelaxed structures based on substitution from prototypes or similar
ompounds. Testing of this is performed by Ward 2017 [31], where it
s shown that (a) in most of the test cases, the before–after relaxation
nergy difference is negligible in comparison to the DFT-ML difference
or Ward 2017 model and usually much lower than the test MAE
or models discussed in this work, and (b) in some particular cases
Li6CaCeO6) can be very high.
When faced with a new configuration, the model can thus either be

sed to (1) give an accurate prediction if the configuration is already
elaxed or (2) give an approximate result that needs to be validated
ith DFT if confidence in the result is needed. This is inherent to
ll structure-informed ML models. One possible solution to partially
itigate this limitation is to perform relaxation using the model, which
hould work reasonably well for most materials.
Discussion of such relaxation procedure in detail is extensive and

eyond the scope of this work, yet a preliminary approach was con-
tructed using the Novel Material Model (NN2) and deployed on all 16
nd-members of Pd–Zn 𝛾-brass crystal structure in an iterative fashion.
t each iteration, first, the local energy gradient for each atom was
alculated by comparing the starting configuration with perturbations
n 𝑥, 𝑦, 𝑧 directions. Then, all atoms were displaced proportionally to
he gradient in 100 discrete steps, reaching some local minimum, which
cted as a starting point for the next iteration. An example for Pd8Zn5
s presented in Fig. 11.
As shown in 11, the resulting relaxation reduced predicted for-
ation energy by 4 meV/atom for this particular end-member. In
Fig. 11. Local energy landscape relaxation of Pd8Zn5 𝛾-brass crystal structure guided
by Novel Material Model (NN20).

the other 15 cases, results were similar, ranging between near 0 and
15 meV/atom, converging into fine local minima, expected to corre-
spond with true local relaxations; however, extensive research into the
problem is needed before conclusions can be drawn.

3.7. End-user implementation - SIPFENN

One of the main objectives of the present paper was to create a
tool that is transparent, easy to use by the research community, and
easily modifiable. This lead to the creation of SIPFENN (Structure-
Informed Prediction of Formation Energy using Neural Networks) soft-
ware. SIPFENN provides the user with near-instant access to the models
presented in 3.1. In the future, this selection will likely be further ex-
panded. On the user side, the use of the software is as easy as selecting
one of the models, specifying a folder containing structure information
files like POSCARs [60] or CIFs [61], running the predictions, and
saving results.

SIPFENN was written entirely in Python to allow other researchers
to easily modify it and adjust it to specific needs. Its schematic of
operation is presented in Fig. 12. In broad scope, it first performs
the structure analysis and modifications using the Python Materials
Genomics library (pymatgen) [62]. In the current implementation, it
imports all structure files, analyzes the stoichiometry, creates unique
names based on that, and exports them as POSCAR files. This is a
rather simple task, however pymatgen is a powerful tool with a suit
of more complex analytical tools that can be quickly implemented
into SIPFENN by the user with even basic Python skills. Following

A.M. Krajewski et al.
Fig. 12. SIPFENN schematic description of operation.

Fig. 13. A snapshot of the graphical user interface of SIPFENN.

the analysis, SIPFENN runs java-based Magpie [30] which calculates
a descriptor for every imported structure and exports the result as a
CSV file. This file is a descriptor table, where each row corresponds
to a single material, and which can be stored and re-used later to run
multiple predictive models at a fraction of the original computation
time. It can also be used to create datasets for training procedures by
replacing the last column with calculated or experimental values of
formation energy.

Finally, the descriptor table is imported into the MXNet library
framework, allocated into the CPU or GPU memory based on user
selection, and evaluated using the selected predictive model. Once
results are obtained, they are exported in CSV format and can be
analyzed by any spreadsheet software such as Microsoft Excel.

SIPFENN was planned as a command-line tool, however, it was
recognized that some users, especially those with little computational
background, may find that difficult. Therefore, a simple graphical user
interface (GUI) was created using wxPython library. It incorporates
all the capabilities of the command line version. Furthermore, it lets
the user download the predictive models from a repository in a single
click. A sample snapshot of the GUI before performing calculations is
presented in Fig. 13.

4. Conclusions

In the present paper new machine learning models and a ready-
to-use tool were created, based on the dataset and descriptor de-
sign by Ward et al. [31]. Models reported in this work significantly
improve upon existing methods, both in terms of performance and
accessibility. For the most direct comparison, one of the designed
models has been optimized for performing well on a random subset
of the OQMD database and achieved an MAE of 28 meV/atom, com-
pared to 80 meV/atom in the original Ward et al. paper [31], and to
38 meV/atom in the most recent model called IRNet [39]. Furthermore,
it was shown that the error of the model is lowered when applied to the
problem of finding the convex hull energy, achieving levels comparable
with the current state-of-the-art approaches [29,34].

In addition, using appropriate overfitting mitigation efforts, such
as Dropout and L2 regularization, models tuned for generalization
to other types of materials datasets were developed. To test this,
the models were evaluated on two datasets not contained within the
OQMD, namely all end-members (243) of 5-sublattice topologically-
close-packed Fe–Cr–Ni Sigma-phase [50,51] and a few selected
random-solution-approximating SQS [52–54]. The MAE values for
these two test sets were found to be close to the values obtained on
a test set from the OQMD. This exemplifies that the models are able to
generalize to new datasets.

Furthermore, it was shown that models created within the present
paper can be used for transfer learning, where vast knowledge of a
broad spectrum of materials is combined with as little as a few DFT-
datapoints from a specific materials system to provide excellent results
within that specific system. Such at least partially process mitigates the
issue of low data availability, present in numerous materials science
problems, and consequently allows users to investigate a broader scope
of materials at the same computational cost.

Finally, the three neural network models designed within the
present paper were used, in conjunction with additional software,
to create an end-user tool called SIPFENN. SIPFENN’s capabilities
extend far beyond allowing validation of the presented results. It
is implemented to work without any intensive computations on the
user side, using models accessible from a repository, requiring only
a quick one-click model download to run. It is very fast thanks to
using one of the industry’s leading ML frameworks capable of well-
optimized computations on GPUs. Furthermore, it is an open-source
tool written in Python, which can be easily modified to specific needs
in a straightforward way without extensive changes in the code.

CRediT authorship contribution statement

Adam M. Krajewski: Conceptualization, Methodology, Software,
Validation, Visualization, Data curation, Writing – original draft.
Jonathan W. Siegel: Conceptualization, Methodology, Software,
Validation, Writing – original draft. Jinchao Xu: Funding
acquisition, Writing – review & editing. Zi-Kui Liu: Supervision,
Funding acquisition, Project administration, Writing – review &

editing.

A.M. Krajewski et al.

(
i
M
s
F

f
a
s
a
L

s
o

A

i
l
A
a
m
i
F
s
n
p
f
a
m
r
d
p
o

A

c
r

𝑅

H

a

c
e
l
e
t
r
C
d
p
𝑙

t
a

d
l
o
f
t
a
o

o
e
𝑏
n

𝑓

w
e
a
t
i
i
r

v
t

a

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The present work was financially supported by the ICDS Seed
Grant from the Pennsylvania State University, the Office of Naval Re-
search (ONR) via Contract No. N00014-21-1-2608, the National Science
Foundation (NSF) via Grants No. CMMI-1825538 and CMMI-2050069,
and the Department of Energy (DOE) via Award Nos. DE-FE0031553,
DE-EE0008456, DE-NE0008945, and DE-AR0001435.

We would like to thank Zhengqi Liu for his help implementing the
graphical user interface, Dr. ShunLi Shang for providing the Fe–Cr–Ni
𝜎-phase dataset, and Brandon Bocklund for providing the SQS dataset.

Software and data availability

The most recent version of SIPFENN code is available through Penn
State’s Phases Research Lab website at www.phaseslab.com/sipfenn in
1) a minimal version that can be run on pre-computed descriptors
n CSV format as well as (2) ready-to-use version with pre-compiled
agpie [30]. SIPFENN contains hard-coded links to neural networks
tored in the cloud that can be downloaded at a single-click (see
ig. 13).
All neural networks are stored in both (1) open-source MXNet

ormat maintained by Apache Foundation and used within SIPFENN,
nd in (2) closed-source WLNet format maintained by Wolfram Re-
earch and having the advantage of even easier deployment, as well
s guaranteed forward compatibility with future versions of Wolfram
anguage.
For ensured longevity of results, SIPFENN neural networks are

tored through the courtesy of Zenodo.org service under https://doi.
rg/10.5281/zenodo.6133037 at the CERN’s Data Centre.

ppendix A. Machine learning overview

The class of deep learning methods has been remarkably successful
n recent years in applications ranging from computer vision to natural
anguage processing and simulations of quantum systems [63–66].
lthough deep neural networks have existed for a long time [67],
nd had been successfully applied to computer vision tasks [68–70], a
ajor breakthrough was the AlexNet network [71], which dramatically
mproved the accuracy achievable on large-scale image classification.
ollowing this success, deep neural networks have been very inten-
ively studied and applied to a variety of problems [63–65]. Deep
eural networks are particularly effective when applied to regression
roblems, where one is learning a functional relationship between a
eature and a prediction. For many problems, deep neural networks
re able to achieve significantly better performance than competing
achine learning methods, due to their ability to learn more complex
elationships. With materials science being a field where many complex
ependencies are intertwined, it is to be expected that this superior
attern recognition can carry over to the improvement in the prediction
f material properties.

.1. Regression problem formulation and artificial neural networks

The general formulation of a regression problem in statistical ma-
hine learning is to find a function 𝑓 ∶ 𝑋 → 𝑌 which minimizes the
isk [43], also known as loss or expected error.

(𝑓) = E 𝑙(𝑦, 𝑓 (𝑥)). (3)
𝑥,𝑦∼
ere 𝑋 denotes a space of input features, 𝑌 denotes an output space,
the expectation above is taken over an unknown distribution  on 𝑋×𝑌
(representing the true relationship between inputs and outputs), and 𝑙 is
given loss function. The goal is to find a function 𝑓 which accurately

predicts the (potentially random) output 𝑦 given an input 𝑥.
In the present work, 𝑥 ∈ 𝑋 represents the input features (descriptor)

haracteristic of the material, and 𝑦 ∈ 𝑌 represents the formation
nergy. The distribution  represents the true material–property re-
ationship between given descriptor 𝑥 and corresponding formation
nergy. This relation may not be as simple as mapping a given structure
o an energy since different DFT methodologies may give different
esults, based on many variables, such as employed functionals. [72,73]
onsequently it is useful to describe this relationship via a probability
istribution. Furthermore, the loss function considered in the present
aper is the commonly used 𝓁1 or absolute error (AE) loss function
(𝑦1, 𝑦2) = |𝑦1 − 𝑦2|.
In practice, the distribution  is not known. Indeed it is this rela-

ionship that one is trying to learn in the first place. Instead, what is
vailable is data {(𝑦𝑖, 𝑥𝑖)}𝑛𝑖=1, which is sampled from  . From this one
forms the empirical risk [46,74]

𝐿(𝑓) = 1
𝑛

𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝑓 (𝑥𝑖)), (4)

and seeks a function 𝑓 which minimizes the empirical risk, also known
as the training error.

In addition, one must specify the type of relationship that is ex-
pected to be found between the inputs 𝑥𝑖 ∈ 𝑋 and the predictions
𝑦𝑖 ∈ 𝑌 . This is done by restricting the function 𝑓 to a specific class. For
instance, by restricting 𝑓 to be linear, which corresponds to looking for
a linear relationship between 𝑥𝑖 and 𝑦𝑖, one obtains a linear regression.
On the other hand, choosing  to be a reproducing kernel Hilbert space
of functions on 𝑋 with the same loss 𝑙 one obtains the kernel ridge
regression method. Thus in order to fit the model, the training error
is minimized over a specific class of function  , i.e. one solves the
optimization problem

𝑓 ∗ = argmin
𝑓∈

𝐿(𝑓) = argmin
𝑓∈

1
𝑛

𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝑓 (𝑥𝑖)). (5)

In this the class of functions  is chosen as the set of functions
efined by a neural network architecture (schematic in Fig. 14), which
eads to a deep learning method. A neural network architecture consists
f a sequence of alternating linear functions and point-wise non-linear
unctions [44]. In the Fig. 14 the nodes, or neurons, represent applica-
ions of a point-wise non-linear function, called an activation function,
nd the connections between nodes represent linear functions from the
utput of the nodes in one layer to the input of the next layer.
The class of functions represented by the neural network consists

f the functions obtained by substituting different linear maps between
ach layer. Specifically, given weight matrices 𝑊1,… ,𝑊𝑛 and biases
1,… , 𝑏𝑛, which are parameters of the network, the corresponding
eural network function is given by the composition

𝑊1 ,…,𝑊𝑛 ,𝑏1 ,…,𝑏𝑛 (𝑥) = 𝑊𝑛 ⋯ 𝜎(𝑊3𝜎(𝑊2𝜎(𝑊1𝑥 + 𝑏1) + 𝑏2) + 𝑏3)⋯ + 𝑏𝑛 (6)

here 𝜎, called the activation function, is applied pointwise to each
ntry of the vector input (previous layer output). The neural network
rchitecture is determined by the type, dimensionality, activation func-
ion 𝜎, and arrangement of intermediate layers. This can potentially
ntroduce some additional restrictions on the linear maps 𝑊𝑖, see for
nstance convolutional neural networks, where the linear maps 𝑊𝑖 are
estricted to be convolutions with small kernels [68,70,71].
Once the neural network architecture has been set, one must fit the

alues of the parameters 𝑊1,… ,𝑊𝑛 and 𝑏1,… , 𝑏𝑛 by optimizing the
raining loss 𝐿,

rg min 𝐿(𝑓𝑊 ,…,𝑊 ,𝑏 ,…,𝑏). (7)

𝑊1 ,…,𝑊𝑛 ,𝑏1 ,…,𝑏𝑛 1 𝑛 1 𝑛

http://www.phaseslab.com/sipfenn
https://doi.org/10.5281/zenodo.6133037
https://doi.org/10.5281/zenodo.6133037
https://doi.org/10.5281/zenodo.6133037

A.M. Krajewski et al.

m
p
p

d
w
t
m
a
o
b
c

p
t
c
n
a
m
p
w
s
f
p
u
d
d
n
a

A

w
d
a

Fig. 14. Simplified artificial neural network schematic.
Fig. 15. A schematic of overfitting. The overfit model (yellow) is too complex and
emorizes the training data. This results in very low training error, but also very
oor performance when predicting hidden data (test error) that follows the underlying
henomena (red).

This optimization problem is typically solved using stochastic gra-
ient descent [70], or a more robust method such as ADAM [45],
hich was used in the present work. To solve the problem faster and
o mitigate overfitting, which is discussed in the next sections, these
ethods form an estimate of the loss function gradient by considering
small subset of the data, called a batch. Each training step is done
ver all of the data in the batch, so parameters (𝑤 and 𝑏) are updated
ased on many data points, rather than a single one. Most of the models
reated in the present work used a batch size of 2048 data points.
This methodology has been successfully applied to a variety of

ractical machine learning problems [71,75,76]. Specifically relevant
o the present work, neural networks have been applied to problems in
omputational materials science [77,78]. For example, in [77] neural
etworks are used to classify the phases of high-entropy alloys. For this
pplication, their neural network models compare favorably to other
achine learning algorithms such as 𝑘-nearest neighbor (KNN) and sup-
ort vector machines (SVM). Furthermore, in [78] it is shown that even
hen training on small datasets which are typical of certain materials
cience problems, specifically in the prediction of solidification defects
rom optical microscopy data, deep neural networks can achieve better
erformance than other machine learning models. This is enabled by
sing a stacked auto-encoder (shallow neural network) to pre-train the
eep neural network, whose weights are then fine-tuned on the small
ataset. The present work complements these studies by applying deep
eural networks to the prediction of thermodynamic quantities from
tomic structure descriptors.

.2. Overfitting and its mitigation

A major problem in statistical learning is avoiding overfitting [46],
hich, in simple terms, signifies that the model memorizes the training
ata instead of learning the true relationship between descriptors 𝑥
nd predictions 𝑦. This occurs when the class of functions  is too
large, and at the optimal function 𝑓 ∗ in (5) the empirical (4) and true
risk (1) diverge sharply. This results in very low training error, but
poor performance on data that was not presented to the network. (See
Fig. 15.) Overfitting is typically detected by separating the training data
into two sets, the data used in (5) to learn the function 𝑓 ∗, called
the training data, and a separate set of data used to evaluate the
performance of 𝑓 ∗, called the validation set. Consequently, in addition
to the training loss in (5), the validation error

𝐿𝑣𝑎𝑙 =
1
𝑚

𝑚
∑

𝑖=1
𝑙(𝑦̃𝑖, 𝑓 (𝑥̃𝑖)), (8)

where (𝑦̃𝑖, 𝑥̃𝑖) for 𝑖 = 1,… , 𝑚 is the validation set, which was not
presented to the network when adjusting its parameters, is used to
detect overfitting. The fraction of the dataset aside for validation set
should be large enough to be representative of the whole dataset to
provide statistically significant conclusions, yet small enough so that
knowledge loss in the process is minimized. In the present work, a
randomly selected 15% of every dataset has been used as validation
sets for all training. This corresponded to 65,300 data points in the
case of the OQDM dataset described in 2.4.

Typically, the validation loss will be greater than the training loss,
as the validation set is not available for training. This is illustrated in
Fig. 16, where the ratio between the validation loss (8) and test loss
(5) during the course of two trainings of similar NN architectures on
the same data with the same learning rate schedule has been plotted.
This figure indicates that as the training proceeds, the gap between the
training and validation errors widens and then increases. The size of
this gap is an estimated measure of how much the model has overfitted
to the data. In one of the models in this figure, extensive techniques
to mitigate overfitting have been used, and for this model, the figure
shows that the rate at which the model overfits to the data is much
lower. At the same time both models exhibit similar performance on
the test set.

There are numerous techniques used to prevent the issue of over-
fitting [46,79]. These include utilization of a regularization term 𝜆𝑅(𝜃)
added to the training error (5) to give the regularized empirical loss
function

𝑓 ∗ = argmin
𝑓∈

𝑅𝑒𝑚𝑝(𝑓) + 𝜆𝑅(𝜃). (9)

A standard regularizer typically added to the linear regression is
the 𝓁2-norm 𝑅(𝜃) = ‖𝜃‖22, which is often called Tikhonov regular-
ization [80] or ridge regression [81]. The 𝓁2-norm is also a popular
regularizer in deep learning problems, where it is referred to as weight
decay [44]. In the context of the present work, it is implemented
as a part of the training process, rather than network architecture,
and causes rejection of some features in the descriptor that are not
contributing to pattern recognition. Results of its implementation are
shown throughout Section 2.5.

A.M. Krajewski et al.

t
t
a
n
p
o
t
d
i
D
s

c
o

‘
t
v
s
t
f
m
t
a

n
t
n
h
v
o
t

Fig. 16. Training loss to validation loss in a model that does without (NN9) and with
overfitting mitigation (NN20), plotted versus training progress.

Another important method used to prevent overfitting in machine
learning is the Dropout technique [47]. The concept behind Dropout is
o prevent neurons in the network from becoming overly dependent on
he output from a specific neuron in the previous layer, often referred to
s hard-wiring neuron paths. A Dropout layer, placed within a neural
etwork, is implemented as a function operating during the training
rocess and randomly discarding a specified fraction 𝑝 of previous layer
utputs and multiplying the remaining values by 1∕(1 − 𝑝). This forces
he pattern recognition ability to be dispersed across the network, as
uring evaluation of every training step, a random part of the network
s acting as if it was not gone. Once the training is completed, all
ropout layers are deactivated and simply pass all information forward,
o that the model returns to its deterministic character.
In the experiments performed in the present work, as later dis-

ussed in 2.5, both Dropout and weight decay were used to mitigate
verfitting, with good effects shown in particular in Fig. 16.
Methods for avoiding overfitting typically come with one or more

‘hyperparameters’’ (i.e. parameters which control the training process)
hat can represent how much confidence is given to the training data
ersus prior knowledge. For instance, if a regularizer is used, the
trength of the regularizer, 𝜆, would be a hyperparameter. In the
erms of the present work, it generally corresponds to how many
eatures in the material descriptor can be considered non-essential to
aking predictions and therefore discarded systematically throughout
he training. Furthermore, when using Dropout, the probability 𝑝 is also
hyperparameter.
One typically trains the model on the training dataset using a

umber of different hyperparameters and then subsequently chooses
he best set of them using the validation error. This allows the determi-
ation of hyperparameter values that are appropriate to the problem at
and. However, in order to ensure that the determined hyperparameter
alues are not overly specific to the validation set, the final accuracy
f the model is evaluated on a test set that was not used at all during

raining [46].
Fig. 17. A conceptual drawing depicting how overfitting mitigation effort can improve
performance beyond regions with high known data density.

An additional advantage of mitigating overfitting to known data can
be increased performance during extrapolation, as depicted conceptu-
ally in Fig. 17. This is thanks to reduced model complexity, which forces
recognition of stronger and more broadly exhibited patterns rather than
small deviations present in the training data, whether real or due to
noise, that can significantly degrade the extrapolation capability of
the ML model. It is important to recognize that cost of such model
simplification is often reduced performance on previously unseen data
that lays within the known region.

A.3. Transfer learning

Finally, one should consider the technique of transfer learning,
which has been observed among deep learning models across a variety
of domains [56–59]. Transfer learning refers the to the ability of
properly trained deep learning models to ‘transfer’ their knowledge to
related tasks. In the least complex approach, one does this by simply
‘fine-tuning’ the parameters of the model using new training data (from
the new task). This has to be done using a small learning rate and
a small number of iterations on a loss function defined by the new
training data. It has been observed that this often produces accurate
results on the new task for a relatively small amount of additional data.

As an illustrative example, in [57], a network is first trained to
recognize lower case handwritten characters. It is then shown that with
minimal ‘fine-tuning,’ such a network can be made to accurately recog-
nize upper case characters. The same phenomenon was also observed
with a network that was first trained to recognize Chinese charac-
ters. Considering that this behavior has been widely observed [56,58,
59], this shows that deep neural networks are often able to transfer
knowledge between different but related tasks.

the present work adds to this evidence by showing that a network
trained on the knowledge from the OQMD database covering a broad
yet limited spectrum of material, can be easily adjusted to materials
outside this spectrum with very little cost relative to the initial training.
Specifically, the set of all (243) Fe–Ni–Cr 𝜎-phase endmembers, de-
scribed in 2.4, is shown in 3.5 to require transfer of only a few examples
from that set to dramatically improve model performance on the rest.

Appendix B. Intermediate neural network models

The neural network design process was conducted in incremental
fashion, starting from a perceptron, which is the simplest type of neural
network proposed by Frank Rosenblatt in 1957 [82]. It effectively

A.M. Krajewski et al.

d

o
𝑑
i
t
w

e
I
s
t
o
c
P
a
s
t
a
j
c
n
t
r
i
a
n
b

i
t
o
I
t
f
w
f
g

g
t
e
s
f
S
t
a
r
N
W

Fig. 18. Test of perceptron trained on the data from the first 5000 entries in the ICSD
ataset and evaluated on the test set of 230 randomly selected entries (≈ 5%).

perates as a linear function 𝑓 (𝑑) = 𝐴(𝑤1𝑑1 +𝑤2𝑑2 +⋯ +𝑤𝑛𝑑𝑛) where
𝑖 is 𝑖th element of the descriptor 𝑑, 𝑤𝑖 is the weight associated with
t, and 𝐴 is an activation function that can introduce non-linearity or
urn it into a classifier. Here, the popular Sigmoid activation function
as used.
The perceptron was first trained on the data from the first 5000

ntries in the ICSD, to check whether the training was set up correctly.
t achieved a MAE of 195 meV/atom on the test set of 230 randomly
elected entries (≈ 5% from 5000). Results are shown in Fig. 18. When
rained on the data from all entries in the ICSD, it achieved an MAE
f 364 meV/atom on the test set (≈ 5% from 32116). This error is
omparable to the performance of a random forest model based on
RDF (370 meV/atom), is slightly worse than a CM (250 meV/atom),
nd is significantly worse than a random-forest model trained on the
ame descriptor (90 meV/atom), as reported by Ward et al. [31]. Part of
he significance of these results is the evident quality of the descriptor,
s the model achieved performance that would be considered excellent
ust a few years prior to the present work while being much less
omplex and computationally costly. Furthermore, it is important to
ote the time- and space-complexity of the perceptron model. Training
he final network took less than 8 s compared to around 10,000 s
eported for the aforementioned random-forest methods, and the result-
ng model occupied less than 1 kb of memory. Following the testing of
perceptron, which allowed rough estimation of the good size of the
etwork (i.e. number of weights), the design of the actual architecture
egan. All of these steps are schematically depicted in 19.
Next, in a few steps, the size of the network was incrementally

ncreased. First, a layer of 1000 neurons was introduced. This reduced
he performance on the first 5000 entries in the ICSD, likely due to
verfitting issues, as the data was very limited. Performance on the
CSD was improved, reducing the test MAE to 305 meV/atom on the
est set, however. The introduction of the next two 1000-width layers
urther reduced the MAE to 215 meV/atom. Based on these results, it
as estimated that introducing 4 hidden layers with Sigmoid activation
unction and widths of 10000, 10000, 1000, and 100 would provide
ood results when trained on the much larger OQMD.
After switching to OQMD, the network exhibited issues with conver-

ence, often predicting a single value for all of the entries. To mitigate
his, the descriptor (i.e. network input) was normalized by dividing
very element by its maximum value across the whole dataset. This
olved the issue. Next, to improve the training behavior, the activation
unctions were changed from only the Sigmoid function to a mix of
oft Sign, Exponential Linear Unit, and Sigmoid, which was found
o work well. These steps improved both the predictive performance
nd reduced the time required to converge. The network architecture
esulting from these steps (internally designated NN8/Simple Good
etwork in 19) was the first to improve performance compared to the

ard et al. approach [31], achieving an MAE of 42 meV/atom on the
Fig. 19. The network design process schematic leading to the three final models.

test set of random subset 5% of the OQMD dataset. When testing this
network, a small fraction of around 0.03% of likely incorrect entries in
the OQMD was found, as described in 2.4, and was removed from the
dataset used later in the design process.

Once a network with desired performance was obtained, the net-
work size was increased until it either exceeded 1 GB or showed signs
of extensive overfitting. At the first step of this process, two layers
of width 10,000 were added, resulting in a network size of 1.2 GB
and reduced overfitting, as indicated by the ratio of validation-to-
training error lowered from 2.2 to 1.6, relative to NN8. The resulting
network (internally designated NN9/OQMD-Optimized Network in 19),
achieved an MAE of 28 meV/atom on the test set of random subset 5%
of OQMD, which was the best performance on OQMD out of all the
networks created in this project. If the 0.03% of abnormal data was not
removed as described in 2.4, it would correspond to, on average, 6 data
points which in one tested instance increased the MAE to 35 meV/atom.
Important to point out, the training of this network was prone to staying
in local minima at the beginning. The reported instance of the trained
network exhibited no training progress between around rounds 5 and
25, after which its performance quickly increased. Detailed analysis of
the performance is given in 3.2.

Once the main objective of the design process was obtained, i.e. the
performance on the OQMD has improved appreciably beyond existing

methods, the design process was focused on creating a tool for modeling

A.M. Krajewski et al.

l

m
c
O
s
a
O
m
S

o
r
l
l
i
r
t
d
(
s
T

a
r
p
m
H
t
n
c
a

O
t
t
u
2
s
c

o
m
C
t
a
s
r
r
s
s
a

Fig. 20. The learning rate schedule used for training of more complex networks in the
ater stage of the design process (e.g., NN18).

aterials that were not reported in the OQMD. Therefore, the objective
hanged from achieving the lowest MAE on a random subset 5% of
QMD to (1) reducing the mismatch between training and validation
ets errors (i.e. difference between training accuracy and validation
ccuracy) during the training process, (2) keeping the test MAE on the
QMD below 50 meV/atom, and (3) improving performance on two
aterial groups significantly different from the OQMD data, namely
pecial Quasirandom Structures (SQS) and Fe–Cr–Ni 𝜎-phase (see 2.4).
With these new objectives, two Dropout layers in the middle part

f the network were introduced to promote the distribution of pattern
ecognition abilities across the network. [83] This introduced a prob-
em with convergence as the network became more likely to fall into
ocal minima at the initial stages of the training, which was solved by
ntroducing custom learning rate schedules. Specifically, the learning
ate was initially set to a value orders of magnitude lower than during
he default initial training and then ramped up to the previous (ADAM
efault setting in the majority of frameworks) learning rate of 0.001
or above) after around 2 rounds of training. This type of learning rate
chedule is known as a warm-up in the deep learning literature [84].
he schedule found to perform the best is presented in Fig. 20.
The next step was the introduction of 𝓁2 regularization, which is
technique that favors simplification of the descriptor and effectively
ejects features of the descriptor that do not contribute to prediction
erformance [55]. An overview on it is given in Section 2.2. In the
odels reported in the present work an 𝓁2 value of 10−6 was used.
igher values were found to stop the training at early stages, impairing
he pattern recognition, or in extreme cases (above 10−3) force the
etwork to discard the input completely, resulting in constant or near-
onstant output (i.e. mean value from the training dataset predicted for
ny structure).
The final step was small curation of the training data based on the

QMD-reported structure stability, i.e. the energy difference between
he formation energy and the energy convex hull. The motivation for
hat was the notion that DFT results are inherently less accurate for
nstable phases. In this step, all entries with energies of more than
000 meV/atom above the convex hull were removed from the training
et. Importantly, the validation and testing sets were not modified for
onsistent performance reporting.
All of these changes resulted in a neural network that has been

ptimized for predicting new materials. In the code and Supplementary
aterials, it is designated as NN20 (Novel Materials Network in 19).
ompared to the OQMD-optimized network it was derived from, the
est MAE on the OQMD increased from 28 to 49 meV/atom. However,
t the same time, the mismatch between the training and validation
et was reduced from 1.57 to 1.38. Or, as presented earlier in Fig. 16,
educed to about 1.15 for the same training duration. Furthermore, a
elatively large portion of this error can be attributed to some unstable
tructures that were removed from the training set, but not from the test
et. Once entries with formation energies of more than 1000 meV/atom

bove the convex hull were removed, the test MAE decreased to only
38 meV/atom. Restricting the test set further to only somewhat stable
structures (stability below 250 meV/atom) resulted in an MAE of
30 meV/atom.

While the new-material-optimized network presented an increased
MAE across a random subset of the OQMD, performance has signifi-
cantly improved on the Fe–Cr–Ni 𝜎−phase described in 2.4. The MAE
has decreased from 55 to 41 meV/atom, indicating that the model
based on this neural network is more capable of making predictions
for new materials.

Once two performance-oriented models were developed, increasing
the performance-to-cost ratio has been explored with the motivation
that some studies would benefit from many times higher throughput at
minor accuracy decrease. Architecture design started from the selection
of a network with a balanced size-to-performance ratio (NN8) and the
introduction of an overfitting mitigation technique (Dropout [47]) used
for the network optimized for new materials, as depicted in Section 2.5.
Next, the network was gradually narrowed (fewer neurons in layers)
until the performance started to noticeably deteriorate (41.9 meV/atom
for 5000- and 4000-width vs 42.1 for 3000-width). This approach
allowed a significant reduction of the network size (and the computa-
tional intensity to run it) from around 1200 MB of the two other models
to around 145 MB. If an application demands even more of a reduction
in model size and computational cost, the same procedure could be
continued until some minimum required performance is retained.

Appendix C. Feature ranking

Descriptor feature Normalized
squared
weights sum

mean_NeighDiff_shell1_MeltingT 1
mean_MeltingT 0.97502
max_MeltingT 0.73512
mean_NeighDiff_shell1_NdUnfilled 0.69157
MaxPackingEfficiency 0.68889
most_MeltingT 0.67373
dev_GSvolume_pa 0.61042
var_NeighDiff_shell1_Column 0.58782
var_NeighDiff_shell1_CovalentRadius 0.57826
var_NeighDiff_shell1_MeltingT 0.57259
maxdiff_GSvolume_pa 0.55156
dev_MeltingT 0.5286
mean_SpaceGroupNumber 0.51761
min_MeltingT 0.50437
var_CellVolume 0.49467
var_NeighDiff_shell1_MendeleevNumber 0.492
min_NeighDiff_shell1_MeltingT 0.47853
mean_NeighDiff_shell1_Column 0.45566
maxdiff_CovalentRadius 0.42998
var_NeighDiff_shell1_Electronegativity 0.42642
var_EffectiveCoordination 0.40506
min_NeighDiff_shell1_Column 0.39822
dev_NdUnfilled 0.39739
dev_CovalentRadius 0.36935
range_NeighDiff_shell1_Column 0.35956
range_NeighDiff_shell1_CovalentRadius 0.34585
mean_WCMagnitude_Shell1 0.34275

A.M. Krajewski et al.
Descriptor feature Normalized
squared
weights sum

mean_NeighDiff_shell1_MendeleevNumber 0.33911
mean_EffectiveCoordination 0.33899
mean_Number 0.33769
mean_NdUnfilled 0.33408
maxdiff_MeltingT 0.33348
mean_AtomicWeight 0.33149
mean_NeighDiff_shell1_NdValence 0.33142
range_NeighDiff_shell1_MeltingT 0.33107
max_NfUnfilled 0.33041
dev_Electronegativity 0.33001
mean_NeighDiff_shell1_CovalentRadius 0.32999
var_NeighDiff_shell1_NdUnfilled 0.31973
dev_Column 0.31662
var_NeighDiff_shell1_NdValence 0.31481
mean_WCMagnitude_Shell2 0.31359
most_NfUnfilled 0.30916
MeanIonicChar 0.30732
mean_NeighDiff_shell1_Electronegativity 0.30277
min_EffectiveCoordination 0.29705
min_NeighDiff_shell1_CovalentRadius 0.29392
max_NeighDiff_shell1_GSvolume_pa 0.2875
most_SpaceGroupNumber 0.28472
max_NdUnfilled 0.28424
maxdiff_NdUnfilled 0.28405
var_NeighDiff_shell1_GSvolume_pa 0.28008
min_BondLengthVariation 0.27922
var_MeanBondLength 0.2768
dev_NdValence 0.27566
max_NeighDiff_shell1_MeltingT 0.27097
max_BondLengthVariation 0.26565
mean_NfValence 0.26558
mean_NsUnfilled 0.2612
max_NeighDiff_shell1_CovalentRadius 0.26026
max_GSvolume_pa 0.25985
min_GSvolume_pa 0.25895
mean_NdValence 0.25573
mean_NeighDiff_shell1_GSvolume_pa 0.25299
max_NValance 0.24749
range_NeighDiff_shell1_NdUnfilled 0.24643
max_CovalentRadius 0.23136
CanFormIonic 0.23135
min_NeighDiff_shell1_Electronegativity 0.22873
min_SpaceGroupNumber 0.22766
max_Electronegativity 0.22609
max_NdValence 0.22576
most_NdUnfilled 0.22198
min_NeighDiff_shell1_MendeleevNumber 0.21991
var_NeighDiff_shell1_NpValence 0.21609
min_NeighDiff_shell1_NdUnfilled 0.2114
dev_SpaceGroupNumber 0.2099
most_NfValence 0.20888
min_MeanBondLength 0.2086
mean_BondLengthVariation 0.20507
var_NeighDiff_shell1_Row 0.20454
max_NeighDiff_shell1_NdUnfilled 0.20318
min_NeighDiff_shell1_NdValence 0.20123
min_CovalentRadius 0.19974
range_NeighDiff_shell1_MendeleevNumber 0.19591
min_NeighDiff_shell1_GSvolume_pa 0.19565
most_NpUnfilled 0.19457
maxdiff_NUnfilled 0.19316
max_NeighDiff_shell1_NdValence 0.19307
Descriptor feature Normalized
squared
weights sum

max_NpValence 0.1929
range_NeighDiff_shell1_GSvolume_pa 0.19166
most_NdValence 0.1904
max_MeanBondLength 0.19021
maxdiff_NfUnfilled 0.18897
max_NeighDiff_shell1_Column 0.18518
range_NeighDiff_shell1_Electronegativity 0.18322
var_NeighDiff_shell1_SpaceGroupNumber 0.18313
dev_NpValence 0.18099
mean_NpUnfilled 0.18091
range_NeighDiff_shell1_SpaceGroupNumber 0.17858
dev_MendeleevNumber 0.17753
MaxIonicChar 0.176
mean_Column 0.17206
min_Electronegativity 0.17164
mean_WCMagnitude_Shell3 0.17077
mean_Row 0.17035
min_NeighDiff_shell1_SpaceGroupNumber 0.17031
most_NsUnfilled 0.16714
var_BondLengthVariation 0.16653
var_NeighDiff_shell1_NfUnfilled 0.16223
range_NeighDiff_shell1_NdValence 0.16094
frac_fValence 0.1609
maxdiff_Column 0.16083
max_NUnfilled 0.15916
mean_NpValence 0.15639
maxdiff_NpValence 0.15637
mean_MendeleevNumber 0.15491
most_Electronegativity 0.15469
mean_Electronegativity 0.15458
max_SpaceGroupNumber 0.15429
dev_Row 0.15382
maxdiff_MendeleevNumber 0.15373
var_NeighDiff_shell1_NpUnfilled 0.15135
max_NeighDiff_shell1_Electronegativity 0.15115
most_NUnfilled 0.14955
max_GSbandgap 0.14945
mean_NeighDiff_shell1_NUnfilled 0.14891
maxdiff_NValance 0.14819
mean_NeighDiff_shell1_NpValence 0.14768
maxdiff_NdValence 0.14735
max_NpUnfilled 0.14647
maxdiff_Electronegativity 0.14523
min_MendeleevNumber 0.14119
mean_CovalentRadius 0.14049
mean_NeighDiff_shell1_Row 0.13945
maxdiff_GSbandgap 0.13891
max_NeighDiff_shell1_MendeleevNumber 0.13858
most_Number 0.13823
most_AtomicWeight 0.13798
max_NeighDiff_shell1_NpValence 0.13757
Comp_L10Norm 0.13598
min_Row 0.13596
range_NeighDiff_shell1_NpValence 0.13524
mean_GSvolume_pa 0.1331
max_NeighDiff_shell1_NUnfilled 0.13205
mean_NeighDiff_shell1_NfValence 0.12888
min_NeighDiff_shell1_NpUnfilled 0.12778
mean_NeighDiff_shell1_SpaceGroupNumber 0.12722
mean_NsValence 0.12642
most_CovalentRadius 0.12616
var_NeighDiff_shell1_NUnfilled 0.12525

A.M. Krajewski et al.
Descriptor feature Normalized
squared
weights sum

mean_NeighDiff_shell1_Number 0.12466
Comp_L7Norm 0.12293
mean_NeighDiff_shell1_AtomicWeight 0.12229
min_NeighDiff_shell1_NpValence 0.12026
max_EffectiveCoordination 0.11995
min_NdValence 0.11984
maxdiff_NpUnfilled 0.11976
mean_NeighDiff_shell1_NsUnfilled 0.11836
max_NeighDiff_shell1_GSbandgap 0.11657
min_NUnfilled 0.11648
most_Column 0.1164
var_NeighDiff_shell1_Number 0.11483
most_MendeleevNumber 0.11312
max_NeighDiff_shell1_SpaceGroupNumber 0.11292
var_NeighDiff_shell1_AtomicWeight 0.11234
most_NpValence 0.11231
frac_dValence 0.11126
NComp 0.11097
min_Number 0.11062
range_NeighDiff_shell1_NpUnfilled 0.11002
dev_NValance 0.10868
min_Column 0.10846
max_NeighDiff_shell1_NpUnfilled 0.10837
maxdiff_Row 0.10735
Comp_L5Norm 0.10726
mean_NeighDiff_shell1_NpUnfilled 0.10682
maxdiff_SpaceGroupNumber 0.10604
dev_GSbandgap 0.10604
max_AtomicWeight 0.10495
max_GSmagmom 0.10416
maxdiff_GSmagmom 0.1039
dev_NUnfilled 0.10336
var_NeighDiff_shell1_NfValence 0.10059
dev_GSmagmom 0.10046
most_GSbandgap 0.09997
var_NeighDiff_shell1_NValance 0.09842
min_NeighDiff_shell1_Row 0.09798
min_NeighDiff_shell1_NUnfilled 0.09563
most_Row 0.09538
max_Number 0.0925
most_GSvolume_pa 0.09166
mean_GSbandgap 0.09097
range_NeighDiff_shell1_Row 0.09081
mean_NValance 0.0889
mean_NeighDiff_shell1_NsValence 0.08449
min_NsValence 0.08408
frac_pValence 0.08403
mean_NUnfilled 0.08244
mean_NfUnfilled 0.08194
dev_NpUnfilled 0.0818
dev_Number 0.08065
max_NeighDiff_shell1_GSmagmom 0.08049
max_Column 0.07989
min_AtomicWeight 0.07959
Comp_L3Norm 0.07913
max_NeighDiff_shell1_Row 0.0776
mean_NeighDiff_shell1_NValance 0.07619
mean_NeighDiff_shell1_NfUnfilled 0.07413
range_NeighDiff_shell1_NfUnfilled 0.07381
min_NValance 0.07297
max_NeighDiff_shell1_NValance 0.0726
range_NeighDiff_shell1_NfValence 0.07163
Descriptor feature Normalized
squared
weights sum

min_NdUnfilled 0.07145
most_NsValence 0.07114
mean_NeighDiff_shell1_GSbandgap 0.06709
max_NfValence 0.06661
dev_AtomicWeight 0.06581
maxdiff_Number 0.06576
max_NeighDiff_shell1_NfUnfilled 0.06523
dev_NfUnfilled 0.06477
dev_NfValence 0.06373
range_NeighDiff_shell1_GSmagmom 0.06305
var_NeighDiff_shell1_NsUnfilled 0.06288
min_NeighDiff_shell1_Number 0.0623
frac_sValence 0.06099
min_NeighDiff_shell1_NfValence 0.06033
max_Row 0.05998
min_NeighDiff_shell1_NValance 0.05844
range_NeighDiff_shell1_NUnfilled 0.05819
var_NeighDiff_shell1_GSbandgap 0.05683
range_NeighDiff_shell1_AtomicWeight 0.0568
Comp_L2Norm 0.05638
min_NeighDiff_shell1_NsUnfilled 0.05541
most_NValance 0.0553
maxdiff_NsValence 0.05459
range_NeighDiff_shell1_NValance 0.0537
min_NeighDiff_shell1_AtomicWeight 0.05369
max_NsValence 0.05329
range_NeighDiff_shell1_GSbandgap 0.05299
min_NeighDiff_shell1_NfUnfilled 0.05266
maxdiff_NfValence 0.05147
dev_NsUnfilled 0.04884
max_MendeleevNumber 0.04844
maxdiff_AtomicWeight 0.04814
max_NeighDiff_shell1_NsUnfilled 0.04675
max_NeighDiff_shell1_NsValence 0.04663
var_NeighDiff_shell1_GSmagmom 0.04635
range_NeighDiff_shell1_Number 0.04416
max_NeighDiff_shell1_NfValence 0.04376
mean_NeighDiff_shell1_GSmagmom 0.0433
most_GSmagmom 0.04239
range_NeighDiff_shell1_NsUnfilled 0.03954
min_NeighDiff_shell1_NsValence 0.03932
max_NeighDiff_shell1_AtomicWeight 0.03905
max_NeighDiff_shell1_Number 0.03815
min_NfValence 0.03794
dev_NsValence 0.0373
maxdiff_NsUnfilled 0.03558
min_NfUnfilled 0.03537
min_NeighDiff_shell1_GSmagmom 0.03353
var_NeighDiff_shell1_NsValence 0.02948
min_NpValence 0.02946
max_NsUnfilled 0.02933
min_NeighDiff_shell1_GSbandgap 0.02735
mean_GSmagmom 0.02402
min_NpUnfilled 0.02233
range_NeighDiff_shell1_NsValence 0.02171
min_NsUnfilled 0.02051
min_GSbandgap 0.01299
min_GSmagmom 0.00132

A.M. Krajewski et al.
Appendix D. Supplementary data

vervreSupplementary material related to this article can be found online
at https://doi.org/10.1016/j.commatsci.2022.111254.

References

[1] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and
discovery with high-throughput density functional theory: The open quantum
materials database (OQMD), JOM 65 (2013) 1501–1509, http://dx.doi.org/10.
1007/s11837-013-0755-4, http://link.springer.com/10.1007/s11837-013-0755-
4.

[2] S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl,
C. Wolverton, The open quantum materials database (OQMD): Assessing the
accuracy of DFT formation energies, NPJ Comput. Mater. 1 (2015) 15010, http:
//dx.doi.org/10.1038/npjcompumats.2015.10, www.oqmd.org/download, http:
//www.nature.com/articles/npjcompumats201510.

[3] A. van de Walle, C. Nataraj, Z.K. Liu, The thermodynamic database database,
CALPHAD, Comput. Coupling Phase Diagr. Thermochem. 61 (2018) 173–178,
http://dx.doi.org/10.1016/j.calphad.2018.04.003.

[4] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The materials project:
A materials genome approach to accelerating materials innovation, APL Mater.
1 (2013) 011002, http://dx.doi.org/10.1063/1.4812323, http://aip.scitation.org/
doi/10.1063/1.4812323.

[5] S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. Chepulskii, R.H.
Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O.
Demchenko, D. Morgan, AFLOW: An automatic framework for high-throughput
materials discovery, 2013, http://dx.doi.org/10.1016/j.commatsci.2012.02.005,
www.aflowlib.org, arXiv:abs/1308.5715.

[6] C. Toher, C. Oses, D. Hicks, E. Gossett, F. Rose, P. Nath, D. Usanmaz, D.C.
Ford, E. Perim, C.E. Calderon, J.J. Plata, Y. Lederer, M. Jahnátek, W. Setyawan,
S. Wang, J. Xue, K. Rasch, R.V. Chepulskii, R.H. Taylor, G. Gomez, H. Shi,
A.R. Supka, R.A.R. Al Orabi, P. Gopal, F.T. Cerasoli, L. Liyanage, H. Wang,
I. Siloi, L.A. Agapito, C. Nyshadham, G.L.W. Hart, J. Carrete, F. Legrain, N.
Mingo, E. Zurek, O. Isayev, A. Tropsha, S. Sanvito, R.M. Hanson, I. Takeuchi,
M.J. Mehl, A.N. Kolmogorov, K. Yang, P. D’Amico, A. Calzolari, M. Costa, R.D.
Gennaro, M.B. Nardelli, M. Fornari, O. Levy, S. Curtarolo, The AFLOW fleet for
materials discovery, in: Handbook of Materials Modeling, Springer International
Publishing, Cham, 2018, pp. 1–28, http://dx.doi.org/10.1007/978-3-319-42913-
7_63-1, http://link.springer.com/10.1007/978-3-319-42913-7_63-1.

[7] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, AiiDA: Automated
interactive infrastructure and database for computational science, Comput. Mater.
Sci. 111 (2016) 218–230, http://dx.doi.org/10.1016/j.commatsci.2015.09.013,
https://linkinghub.elsevier.com/retrieve/pii/S0927025615005820.

[8] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Universal
fragment descriptors for predicting properties of inorganic crystals, Nature
Commun. 8 (2017) 15679, http://dx.doi.org/10.1038/ncomms15679, http://
www.nature.com/articles/ncomms15679.

[9] F. Legrain, J. Carrete, A. Van Roekeghem, S. Curtarolo, N. Mingo, How chemical
composition alone can predict vibrational free energies and entropies of solids,
Chem. Mater. 29 (2017) 6220–6227, http://dx.doi.org/10.1021/acs.chemmater.
7b00789.

[10] G. Pilania, X.-Y. Liu, Machine learning properties of binary wurtzite superlattices,
J. Mater. Sci. 53 (1987) http://dx.doi.org/10.1007/s10853-018-1987-z.

[11] J. Jung, J.I. Yoon, H.K. Park, J.Y. Kim, H.S. Kim, BayesIan approach in predicting
mechanical properties of materials: Application to dual phase steels, Mater. Sci.
Eng. A 743 (2019) 382–390, http://dx.doi.org/10.1016/j.msea.2018.11.106.

[12] B. Ouyang, Y. Wang, Y. Sun, G. Ceder, Computational investigation of halogen-
substituted Na argyrodites as solid-state superionic conductors, Chem. Mater. 32
(2020) 1896–1903, http://dx.doi.org/10.1021/acs.chemmater.9b04541.

[13] B.J. Bucior, N.S. Bobbitt, T. Islamoglu, S. Goswami, A. Gopalan, T. Yildirim,
O.K. Farha, N. Bagheri, R.Q. Snurr, Energy-based descriptors to rapidly predict
hydrogen storage in metal-organic frameworks †, Mol. Syst. Des. Eng 4 (2019)
162, http://dx.doi.org/10.1039/c8me00050f.

[14] A. Chandrasekaran, D. Kamal, R. Batra, C. Kim, L. Chen, R. Ramprasad, Solving
the electronic structure problem with machine learning, Npj Comput. Mater. 5
(2019) http://dx.doi.org/10.1038/s41524-019-0162-7.

[15] K. Kim, L. Ward, J. He, A. Krishna, A. Agrawal, C. Wolverton, Machine-learning-
accelerated high-throughput materials screening: Discovery of novel quaternary
Heusler compounds machine learning accelerated high-throughput materials
screening: Discovery of novel quaternary Heusler compounds, Phys. Rev. Mater.
2 (2018) 123801, http://dx.doi.org/10.1103/PhysRevMaterials.2.123801.

[16] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su,
Machine learning assisted design of high entropy alloys with desired property,
Acta Mater. 170 (2019) 109–117, http://dx.doi.org/10.1016/j.actamat.2019.03.
010, https://linkinghub.elsevier.com/retrieve/pii/S1359645419301430.
[17] L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures
indicative of flaw formation in a laser powder bed fusion additive manufacturing
process, Addit. Manuf. 25 (2019) 151–165, http://dx.doi.org/10.1016/j.addma.
2018.11.010.

[18] J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and
applications of machine learning in solid-state materials science, NPJ Com-
put. Mater. 5 (2019) 83, http://dx.doi.org/10.1038/s41524-019-0221-0, http:
//www.nature.com/articles/s41524-019-0221-0.

[19] R.K. Vasudevan, K. Choudhary, A. Mehta, R. Smith, G. Kusne, F. Tavazza, L.
Vlcek, M. Ziatdinov, S.V. Kalinin, J. Hattrick-Simpers, Materials science in the
artificial intelligence age: High-throughput library generation, machine learning,
and a pathway from correlations to the underpinning physics, MRS Commun. 9
(2019) 821–838, http://dx.doi.org/10.1557/mrc.2019.95.

[20] M. Aykol, V.I. Hegde, L. Hung, S. Suram, P. Herring, C. Wolverton, J.S.
Hummelshøj, Network analysis of synthesizable materials discovery, Nature
Commun. 10 (2019) http://dx.doi.org/10.1038/s41467-019-10030-5.

[21] V. I. Hegde, M. Aykol, S. Kirklin, C. Wolverton, The phase stability network
of all inorganic materials, Sci. Adv. 6 (2020) http://dx.doi.org/10.1126/sciadv.
aay5606.

[22] O. Kononova, H. Huo, T. He, Z. Rong, T. Botari, W. Sun, V. Tshitoyan, G. Ceder,
Text-mined dataset of inorganic materials synthesis recipes, Sci. Data 6 (2019)
http://dx.doi.org/10.1038/s41597-019-0224-1.

[23] K. Alberi, M.B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain, M. Fornari,
N. Marzari, I. Takeuchi, M.L. Green, M. Kanatzidis, M.F. Toney, S. Butenko,
B. Meredig, S. Lany, U. Kattner, A. Davydov, E.S. Toberer, V. Stevanovic, A.
Walsh, N.-G. Park, A. Aspuru-Guzik, D.P. Tabor, J. Nelson, J. Murphy, A. Setlur,
J. Gregoire, H. Li, R. Xiao, A. Ludwig, L.W. Martin, A.M. Rappe, S.-H. Wei,
J. Perkins, The 2019 materials by design roadmap, J. Phys. D: Appl. Phys. 52
(2019) 013001, http://dx.doi.org/10.1088/1361-6463/AAD926.

[24] P.V. Balachandran, A.A. Emery, J.E. Gubernatis, T. Lookman, C. Wolverton,
A. Zunger, Predictions of new perovskite compounds by combining machine
learning and density functional theory, Phys. Rev. Mater. 2 (2018) 43802,
http://dx.doi.org/10.1103/PhysRevMaterials.2.043802.

[25] Z. Li, Q. Xu, Q. Sun, Z. Hou, W.-J. Yin, Thermodynamic stability landscape
of Halide double perovskites via high-throughput computing and machine
learning, Adv. Funct. Mater. 29 (2019) 1807280, http://dx.doi.org/10.1002/
adfm.201807280, http://doi.wiley.com/10.1002/adfm.201807280.

[26] S. Im, S.L. Shang, N.D. Smith, A.M. Krajewski, T. Lichtenstein, H. Sun, B.J.
Bocklund, Z.K. Liu, H. Kim, Thermodynamic properties of the Nd-Bi system via
emf measurements, DFT calculations, machine learning, and CALPHAD modeling,
Acta Mater. 223 (2022) 117448, http://dx.doi.org/10.1016/J.ACTAMAT.2021.
117448.

[27] S.-L. Shang, H. Sun, B. Pan, Y. Wang, A.M. Krajewski, M. Banu, J. Li, Z.-K. Liu,
Forming Mechanism of Equilibrium and Non-equilibrium Metallurgical Phases
in Dissimilar Materials: Illustrated With Aluminum/steel (Al-Fe) Joints, (2021).
http://dx.doi.org/10.21203/rs.3.rs-745143/v1.

[28] J.R. Hattrick-Simpers, K. Choudhary, C. Corgnale, A simple constrained machine
learning model for predicting high-pressure-hydrogen-compressor materials, Mol.
Syst. Des. Eng 3 (2018) 509, http://dx.doi.org/10.1039/c8me00005k.

[29] D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, A. Agrawal,
ElemNet: Deep learning the chemistry of materials from only elemental composi-
tion, Sci. Rep. 8 (2018) 17593, http://dx.doi.org/10.1038/s41598-018-35934-y,
http://www.nature.com/articles/s41598-018-35934-y.

[30] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine
learning framework for predicting properties of inorganic materials, NPJ Comput.
Mater. 2 (2016) http://dx.doi.org/10.1038/npjcompumats.2016.28.

[31] L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary,
C. Wolverton, Including crystal structure attributes in machine learning
models of formation energies via voronoi tessellations, Phys. Rev. B 96
(2017) 024104, http://dx.doi.org/10.1103/PhysRevB.96.024104, http://link.aps.
org/doi/10.1103/PhysRevB.96.024104.

[32] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Representation of
compounds for machine-learning prediction of physical properties, Phys. Rev. B
95 (2017) http://dx.doi.org/10.1103/PhysRevB.95.144110, https://journals.aps.
org/prb/abstract/10.1103/PhysRevB.95.144110.

[33] K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, How
to represent crystal structures for machine learning: Towards fast prediction of
electronic properties, Phys. Rev. B 89 (2014) 205118, http://dx.doi.org/10.1103/
PhysRevB.89.205118, https://link.aps.org/doi/10.1103/PhysRevB.89.205118.

[34] R.E.A. Goodall, A.A. Lee, Predicting materials properties without crystal
structure: Deep representation learning from stoichiometry, Nature Commun.
11 (2020) 6280, http://dx.doi.org/10.1038/s41467-020-19964-7, http://www.
nature.com/articles/s41467-020-19964-7.

[35] L. Kaufman, H. Bernstein, Computer calculation of phase diagrams. With special
reference to refractory metals, 1970, http://inis.iaea.org/Search/search.aspx?
orig_q=RN:2004171.

[36] Z.K. Liu, Ocean of data: Integrating first-principles calculations and CAL-
PHAD modeling with machine learning, J. Phase Equilibria Diffus. 39 (2018)
635–649, http://dx.doi.org/10.1007/S11669-018-0654-Z/FIGURES/8, https://
link.springer.com/article/10.1007/s11669-018-0654-z.

https://doi.org/10.1016/j.commatsci.2022.111254
http://dx.doi.org/10.1007/s11837-013-0755-4
http://dx.doi.org/10.1007/s11837-013-0755-4
http://dx.doi.org/10.1007/s11837-013-0755-4
http://link.springer.com/10.1007/s11837-013-0755-4
http://link.springer.com/10.1007/s11837-013-0755-4
http://link.springer.com/10.1007/s11837-013-0755-4
http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1038/npjcompumats.2015.10
http://dx.doi.org/10.1038/npjcompumats.2015.10
http://www.oqmd.org/download
http://www.nature.com/articles/npjcompumats201510
http://www.nature.com/articles/npjcompumats201510
http://www.nature.com/articles/npjcompumats201510
http://dx.doi.org/10.1016/j.calphad.2018.04.003
http://dx.doi.org/10.1063/1.4812323
http://aip.scitation.org/doi/10.1063/1.4812323
http://aip.scitation.org/doi/10.1063/1.4812323
http://aip.scitation.org/doi/10.1063/1.4812323
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
http://www.aflowlib.org
http://arxiv.org/abs/1308.5715
http://dx.doi.org/10.1007/978-3-319-42913-7_63-1
http://dx.doi.org/10.1007/978-3-319-42913-7_63-1
http://dx.doi.org/10.1007/978-3-319-42913-7_63-1
http://link.springer.com/10.1007/978-3-319-42913-7_63-1
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
https://linkinghub.elsevier.com/retrieve/pii/S0927025615005820
http://dx.doi.org/10.1038/ncomms15679
http://www.nature.com/articles/ncomms15679
http://www.nature.com/articles/ncomms15679
http://www.nature.com/articles/ncomms15679
http://dx.doi.org/10.1021/acs.chemmater.7b00789
http://dx.doi.org/10.1021/acs.chemmater.7b00789
http://dx.doi.org/10.1021/acs.chemmater.7b00789
http://dx.doi.org/10.1007/s10853-018-1987-z
http://dx.doi.org/10.1016/j.msea.2018.11.106
http://dx.doi.org/10.1021/acs.chemmater.9b04541
http://dx.doi.org/10.1039/c8me00050f
http://dx.doi.org/10.1038/s41524-019-0162-7
http://dx.doi.org/10.1103/PhysRevMaterials.2.123801
http://dx.doi.org/10.1016/j.actamat.2019.03.010
http://dx.doi.org/10.1016/j.actamat.2019.03.010
http://dx.doi.org/10.1016/j.actamat.2019.03.010
https://linkinghub.elsevier.com/retrieve/pii/S1359645419301430
http://dx.doi.org/10.1016/j.addma.2018.11.010
http://dx.doi.org/10.1016/j.addma.2018.11.010
http://dx.doi.org/10.1016/j.addma.2018.11.010
http://dx.doi.org/10.1038/s41524-019-0221-0
http://www.nature.com/articles/s41524-019-0221-0
http://www.nature.com/articles/s41524-019-0221-0
http://www.nature.com/articles/s41524-019-0221-0
http://dx.doi.org/10.1557/mrc.2019.95
http://dx.doi.org/10.1038/s41467-019-10030-5
http://dx.doi.org/10.1126/sciadv.aay5606
http://dx.doi.org/10.1126/sciadv.aay5606
http://dx.doi.org/10.1126/sciadv.aay5606
http://dx.doi.org/10.1038/s41597-019-0224-1
http://dx.doi.org/10.1088/1361-6463/AAD926
http://dx.doi.org/10.1103/PhysRevMaterials.2.043802
http://dx.doi.org/10.1002/adfm.201807280
http://dx.doi.org/10.1002/adfm.201807280
http://dx.doi.org/10.1002/adfm.201807280
http://doi.wiley.com/10.1002/adfm.201807280
http://dx.doi.org/10.1016/J.ACTAMAT.2021.117448
http://dx.doi.org/10.1016/J.ACTAMAT.2021.117448
http://dx.doi.org/10.1016/J.ACTAMAT.2021.117448
http://dx.doi.org/10.21203/rs.3.rs-745143/v1
http://dx.doi.org/10.1039/c8me00005k
http://dx.doi.org/10.1038/s41598-018-35934-y
http://www.nature.com/articles/s41598-018-35934-y
http://dx.doi.org/10.1038/npjcompumats.2016.28
http://dx.doi.org/10.1103/PhysRevB.96.024104
http://link.aps.org/doi/10.1103/PhysRevB.96.024104
http://link.aps.org/doi/10.1103/PhysRevB.96.024104
http://link.aps.org/doi/10.1103/PhysRevB.96.024104
http://dx.doi.org/10.1103/PhysRevB.95.144110
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.144110
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.144110
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.144110
http://dx.doi.org/10.1103/PhysRevB.89.205118
http://dx.doi.org/10.1103/PhysRevB.89.205118
http://dx.doi.org/10.1103/PhysRevB.89.205118
https://link.aps.org/doi/10.1103/PhysRevB.89.205118
http://dx.doi.org/10.1038/s41467-020-19964-7
http://www.nature.com/articles/s41467-020-19964-7
http://www.nature.com/articles/s41467-020-19964-7
http://www.nature.com/articles/s41467-020-19964-7
http://inis.iaea.org/Search/search.aspx?orig_q=RN:2004171
http://inis.iaea.org/Search/search.aspx?orig_q=RN:2004171
http://inis.iaea.org/Search/search.aspx?orig_q=RN:2004171
http://dx.doi.org/10.1007/S11669-018-0654-Z/FIGURES/8
https://link.springer.com/article/10.1007/s11669-018-0654-z
https://link.springer.com/article/10.1007/s11669-018-0654-z
https://link.springer.com/article/10.1007/s11669-018-0654-z

A.M. Krajewski et al.
[37] Z.-K. Liu, Y. Wang, S.-L. Shang, Zentropy theory for positive and negative thermal
expansions, 2021, arXiv:2107.06455v6.

[38] A. Debnath, A.M. Krajewski, H. Sun, S. Lin, M. Ahn, W. Li, S. Priya, J. Singh,
S. Shang, A.M. Beese, Z.-K. Liu, W.F. Reinhart, Generative deep learning as
a tool for inverse design of high entropy refractory alloys, J. Mater. Inform.
1 (2021) 3, http://dx.doi.org/10.20517/JMI.2021.05, https://jmijournal.com/
article/view/4294.

[39] D. Jha, L. Ward, Z. Yang, C. Wolverton, I. Foster, W.-K. Liao, A. Choudhary,
A. Agrawal, IRNet, in: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, New York, NY,
USA, 2019, pp. 2385–2393, http://dx.doi.org/10.1145/3292500.3330703, https:
//dl.acm.org/doi/10.1145/3292500.3330703.

[40] K.T. Schütt, H.E. Sauceda, P.-J. Kindermans, A. Tkatchenko, K.-R. Müller, SchNet
– A Deep learning architecture for molecules and materials, J. Chem. Phys.
148 (2018) 241722, http://dx.doi.org/10.1063/1.5019779, http://aip.scitation.
org/doi/10.1063/1.5019779.

[41] FAIR Principles - GO FAIR, https://www.go-fair.org/fair-principles/.
[42] C. Rycroft, Voro++: A Three-Dimensional Voronoi Cell Library In C++, Tech.

Rep., Lawrence Berkeley National Lab.(LBNL), Berkeley, CA, United States, 2009.
[43] V.N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural Netw.

10 (1999) 988–999.
[44] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[45] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv

preprint arXiv:1412.6980.
[46] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Springer Science & Business Media, 2009.
[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:

A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (2014) 1929–1958.

[48] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, U.W. Cmu, S. Nus, T. Nyu, T.
Xiao, B. Xu, C. Zhang, Z. Zhang, M.U. Alberta, MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems, Tech. Rep..

[49] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys.
Rev. B 47 (1993) 558–561, http://dx.doi.org/10.1103/PhysRevB.47.558, https:
//link.aps.org/doi/10.1103/PhysRevB.47.558.

[50] M. Feurer, B. Bocklund, S. Shang, A. Beese, Z.-K. Liu, Cr-Fe-Ni Sigma Phase Finite
Temperature Calculations, Citrine Inform., 2019, http://dx.doi.org/10.25920/
YJRC-ZJ59.

[51] C.-C. Hsieh, W. Wu, Overview of intermetallic sigma (𝜎) phase precipitation
in stainless steels, ISRN Metall. 2012 (2012) 1–16, http://dx.doi.org/10.5402/
2012/732471, https://www.hindawi.com/journals/isrn/2012/732471/.

[52] A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Special Quasirandom Structures,
Tech. Rep., 65, 1990.

[53] C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, Z.-K. Liu, First-principles study
of binary BCC alloys using special quasirandom structures, Phys. Rev. B
69 (2004) 214202, http://dx.doi.org/10.1103/PhysRevB.69.214202, https://link.
aps.org/doi/10.1103/PhysRevB.69.214202.

[54] D. Shin, R. Arróyave, Z.-K. Liu, A. Van de Walle, Thermodynamic properties of
binary HCP solution phases from special quasirandom structures, Phys. Rev. B
74 (2006) 024204, http://dx.doi.org/10.1103/PhysRevB.74.024204, https://link.
aps.org/doi/10.1103/PhysRevB.74.024204.

[55] L2 Regularization, https://www.textbook.ds100.org/ch/16/reg_ridge.html.
[56] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, A survey on deep transfer

learning, in: International Conference on Artificial Neural Networks, Springer,
2018, pp. 270–279.

[57] D.C. Cireşan, U. Meier, J. Schmidhuber, Transfer learning for latin and Chi-
nese characters with deep neural networks, in: The 2012 International Joint
Conference on Neural Networks, IJCNN, IEEE, 2012, pp. 1–6.

[58] H. Chang, J. Han, C. Zhong, A.M. Snijders, J.-H. Mao, Unsupervised transfer
learning via multi-scale convolutional sparse coding for biomedical applications,
IEEE Trans. Pattern Anal. Mach. Intell. 40 (2017) 1182–1194.

[59] D. George, E. Huerta, Deep learning for real-time gravitational wave detection
and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778
(2018) 64–70.

[60] POSCAR file, https://cms.mpi.univie.ac.at/vasp/vasp/POSCAR_file.html.
[61] S.R. Hall, F.H. Allen, I.D. Brown, The crystallographic information file (CIF): A

new standard archive file for crystallography, Acta Crystallogr. Sect. A 47 (1991)
655–685, http://dx.doi.org/10.1107/S010876739101067X, https://onlinelibrary.
wiley.com/doi/10.1107/S010876739101067X.

[62] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter,
V.L. Chevrier, K.A. Persson, G. Ceder, Python materials genomics (pymatgen):
A robust, open-source python library for materials analysis, Comput. Mater. Sci.
68 (2013) 314–319, http://dx.doi.org/10.1016/j.commatsci.2012.10.028, https:
//linkinghub.elsevier.com/retrieve/pii/S0927025612006295.

[63] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.
[64] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, Nature 529 (2016)
484.
[65] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

[66] G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial
neural networks, Science 355 (2017) 602–606.

[67] F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, Psychol. Rev. 65 (1958) 386.

[68] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I.
Guyon, U. Muller, E. Sackinger, et al., Comparison of learning algorithms for
handwritten digit recognition, in: International Conference on Artificial Neural
Networks, vol. 60, Perth, Australia, 1995, pp. 53–60.

[69] Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard,
L.D. Jackel, Handwritten digit recognition with a back-propagation network, in:
Advances in Neural Information Processing Systems, 1990, pp. 396–404.

[70] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (1998) 2278–2324.

[71] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

[72] W.B. Charles Jr., A comparison of the accuracy of different functionals, Chem.
Phys. Lett. 246 (1995) 40–44.

[73] S. Alturk, D. Avcı, O. Tamer, Y. Atalay, Comparison of different hybrid
DFT methods on structural, spectroscopic, electronic and NLO parameters
for a potential NLO material, Comput. Theor. Chem. 1100 (2017) 34–
45, http://dx.doi.org/10.1016/j.comptc.2016.12.007, https://linkinghub.elsevier.
com/retrieve/pii/S2210271X16304935.

http://arxiv.org/abs/2107.06455v6
http://dx.doi.org/10.20517/JMI.2021.05
https://jmijournal.com/article/view/4294
https://jmijournal.com/article/view/4294
https://jmijournal.com/article/view/4294
http://dx.doi.org/10.1145/3292500.3330703
https://dl.acm.org/doi/10.1145/3292500.3330703
https://dl.acm.org/doi/10.1145/3292500.3330703
https://dl.acm.org/doi/10.1145/3292500.3330703
http://dx.doi.org/10.1063/1.5019779
http://aip.scitation.org/doi/10.1063/1.5019779
http://aip.scitation.org/doi/10.1063/1.5019779
http://aip.scitation.org/doi/10.1063/1.5019779
https://www.go-fair.org/fair-principles/
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
https://link.aps.org/doi/10.1103/PhysRevB.47.558
http://dx.doi.org/10.25920/YJRC-ZJ59
http://dx.doi.org/10.25920/YJRC-ZJ59
http://dx.doi.org/10.25920/YJRC-ZJ59
http://dx.doi.org/10.5402/2012/732471
http://dx.doi.org/10.5402/2012/732471
http://dx.doi.org/10.5402/2012/732471
https://www.hindawi.com/journals/isrn/2012/732471/
http://dx.doi.org/10.1103/PhysRevB.69.214202
https://link.aps.org/doi/10.1103/PhysRevB.69.214202
https://link.aps.org/doi/10.1103/PhysRevB.69.214202
https://link.aps.org/doi/10.1103/PhysRevB.69.214202
http://dx.doi.org/10.1103/PhysRevB.74.024204
https://link.aps.org/doi/10.1103/PhysRevB.74.024204
https://link.aps.org/doi/10.1103/PhysRevB.74.024204
https://link.aps.org/doi/10.1103/PhysRevB.74.024204
https://www.textbook.ds100.org/ch/16/reg_ridge.html
https://cms.mpi.univie.ac.at/vasp/vasp/POSCAR_file.html
http://dx.doi.org/10.1107/S010876739101067X
https://onlinelibrary.wiley.com/doi/10.1107/S010876739101067X
https://onlinelibrary.wiley.com/doi/10.1107/S010876739101067X
https://onlinelibrary.wiley.com/doi/10.1107/S010876739101067X
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
https://linkinghub.elsevier.com/retrieve/pii/S0927025612006295
https://linkinghub.elsevier.com/retrieve/pii/S0927025612006295
https://linkinghub.elsevier.com/retrieve/pii/S0927025612006295
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1016/j.comptc.2016.12.007
https://linkinghub.elsevier.com/retrieve/pii/S2210271X16304935
https://linkinghub.elsevier.com/retrieve/pii/S2210271X16304935
https://linkinghub.elsevier.com/retrieve/pii/S2210271X16304935

A.M. Krajewski et al.
[74] V. Vapnik, The Nature of Statistical Learning Theory, Springer science & business
media, 2013.

[75] I.J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, V. Shet, Multi-digit number
recognition from street view imagery using deep convolutional neural networks,
2013, arXiv preprint arXiv:1312.6082.

[76] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition, IEEE/ACM Trans. Audio
Speech Lang. Process. 20 (2011) 30–42.

[77] W. Huang, P. Martin, H.L. Zhuang, Machine-learning phase prediction of
high-entropy alloys, Acta Mater. 169 (2019) 225–236, http://dx.doi.org/
10.1016/j.actamat.2019.03.012, https://linkinghub.elsevier.com/retrieve/pii/
S1359645419301454.

[78] S. Feng, H. Zhou, H. Dong, Using deep neural network with small dataset to
predict material defects, Mater. Des. 162 (2019) 300–310, http://dx.doi.org/10.
1016/j.matdes.2018.11.060.

[79] B. Everitt, A. Skrondal, The Cambridge Dictionary of Statistics, vol. 106,
Cambridge University Press Cambridge, 2002.

[80] A.N. Tikhonov, On the solution of ill-posed problems and the method of
regularization, in: Doklady Akademii Nauk, vol. 151, Russian Academy of
Sciences, 1963, pp. 501–504.

[81] A.E. Hoerl, R.W. Kennard, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12 (1970) 55–67.

[82] F. Rosenblatt, The Perceptron—A perceiving and recognizing automaton, Report
85-460-1, 1957.

[83] N. Srivastava, G. Hinton, A. Krizhevsky, R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014)
1929–1958.

[84] A. Gotmare, N.S. Keskar, C. Xiong, R. Socher, A closer look at deep learning
heuristics: Learning rate restarts, warmup and distillation, 2018, arXiv preprint
arXiv:1810.13243.

http://arxiv.org/abs/1312.6082
http://dx.doi.org/10.1016/j.actamat.2019.03.012
http://dx.doi.org/10.1016/j.actamat.2019.03.012
http://dx.doi.org/10.1016/j.actamat.2019.03.012
https://linkinghub.elsevier.com/retrieve/pii/S1359645419301454
https://linkinghub.elsevier.com/retrieve/pii/S1359645419301454
https://linkinghub.elsevier.com/retrieve/pii/S1359645419301454
http://dx.doi.org/10.1016/j.matdes.2018.11.060
http://dx.doi.org/10.1016/j.matdes.2018.11.060
http://dx.doi.org/10.1016/j.matdes.2018.11.060
http://arxiv.org/abs/1810.13243

	Extensible Structure-Informed Prediction of Formation Energy with improved accuracy and usability employing neural networks
	Introduction
	Methodology
	Descriptor used
	Machine learning techniques overview
	Software used
	Data acquisition and curation
	Neural network design process

	Results
	Final predictive models
	OQMD data performance
	Existing methods comparison
	Non-OQMD data performance
	Transfer learning capability
	Model limitations
	End-user implementation - SIPFENN

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Software and Data Availability

	Appendix A. Machine Learning Overview
	Regression problem formulation and artificial neural networks
	Overfitting and its mitigation
	Transfer learning

	Appendix B. Intermediate Neural Network Models
	Appendix C. Feature Ranking
	Appendix D. Supplementary data
	References

