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Abstract It has been observed in both natural and man-

made materials that volume sometimes decreases with

increasing temperature. Though mechanistic understanding

has been gained for some individual materials, a general

answer to the question ‘‘Why does volume sometimes

decrease with the increase of temperature?’’ remains

lacking. Based on the thermodynamic relation that the

derivative of volume with respect to temperature, i.e.,

thermal expansion, is equal to the negative derivative of

entropy with respect to pressure, we developed a general

theory in terms of multiscale entropy to understand and

predict the change of volume as a function of temperature,

which is termed as zentropy theory in the present work. It

is shown that a phase at high temperatures is a statistical

representation of the ground-state stable and multiple

nonground-state metastable configurations. It is demon-

strated that when the volumes of the nonground-state

configurations with high probabilities are smaller than that

of the ground-state configuration, the volume of the phase

may decrease with the increase of temperature in certain

ranges of temperature-pressure combinations, depicting the

negative divergency of thermal expansion at the critical

point. As examples, positive and negative divergencies of

thermal expansion are predicted at the critical points of Ce

and Fe3Pt, respectively, along with the temperature and

pressure ranges for abnormally positive and negative

thermal expansions. The authors believe that the zentropy

theory is applicable to predict anomalies of other physical

properties of phases because the change of entropy drives

the responses of a system to external stimuli.

Keywords entropy � negative thermal expansion � partition

function � thermal expansion � thermal contraction �
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1 Introduction

In solid state physics, thermal expansion is understood by

considering the effect of anharmonic terms in the potential

energy for a classical oscillator and is thus always positive

in the classical region.[1] On the other hand, there are

ubiquitous experimental observations of negative thermal

expansion (NTE) in both natural materials and human-

made materials which have been extensively investigated

and reviewed in the literature.[2-9] A range of mechanisms

has been developed to explain the NTE characteristics in

various materials with their roots tied to lattice vibrational

dynamics one way or another, such as the Grüneisen theory

of thermal expansion via the tension effect,[10,11] particu-

larly at low temperatures. However, those important

mechanistic understandings are at the level of interpreta-

tion of observations, such as the sign change of Grüneisen

parameter,[12] and qualitative in nature. Consequently, the

fundamental question remains ‘‘Why does it happen?’’, and

the lack of fundamental understanding has prevented the

development of quantitative predictive approaches.
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Nowadays, the lattice vibrational dynamics of a given

configuration can be accurately computed by the first-princi-

ples calculations based on density functional theory

(DFT)[13,14] using advanced computational tools.[15-19] It is

even possible to predict the NTE at low temperatures through

first-principles phonon calculations of ground-state configu-

rations, such as those of ice and silicon[20] though they cannot

be directly applied to phases with their NTE observed at high

temperatures. On the other hand, from thermodynamic point

of view, the lattice vibrational dynamics is related to

entropy,[11] and the derivative of volume with respect to

temperature, i.e., thermal expansion, is equal to the negative

derivative of entropy with respect to pressure,[21-23] as follows

oV

oT

� �
P

¼ o2G

oToP
¼ � oS

oP

� �
T

ðEq 1Þ

where G, V , T , P, and S are Gibbs energy, volume, tem-

perature, pressure, and entropy of the phase, respectively. It

is also known thermodynamically that thermal expansion

along with all other physical properties in terms of the

second derivatives of free energy diverges at a critical

point, i.e., the limit of stability of a macroscopically

homogeneous phase. [12,21,23] The key challenge is thus to

predict the entropy of a phase as a function of temperature

and pressure and its divergency at a critical point.

Recently, we discussed the fundamentals of thermal

expansion and thermal contraction including a predictive

approach in terms of DFT-based first-principles calcula-

tions[24] and demonstrated its applicability in predicting

both positive and negative infinite thermal expansions at

the critical points of Ce and Fe3Pt, respectively, with

inputs solely from first-principles calculations and without

fitting parameters,[20] but did not clearly address the above

question. The present work aims to examine the volume

and thermal expansion from the thermodynamic perspec-

tives as shown by Eq 1 in terms of intrinsic multiscale

characteristics of entropy based on statistical mechan-

ics.[23,25] The authors hope that the combination of mech-

anistic and thermodynamic perspectives[26] can present a

general theory for a more comprehensive answer to the

question presented above. In the present paper, ‘‘configu-

rations’’ and ‘‘states’’ are used interchangeably to denote

possible stable or nonstable configurations of a system with

all its internal variables specified.

2 Fundamentals of Entropy and the Zentropy
Theory

Entropy is a thermodynamic quantity representing the

possible configurations in a system, and the second law of

thermodynamics stipulates that when a system is disturbed

from its equilibrium state, one or more irreversible internal

processes will take place in the system and must result in

an increase of entropy, i.e., the positive entropy produc-

tion.[21,22] The volume change of a system with respect to

the injection of heat from its surroundings is an irreversible

internal process and must thus result in a positive entropy

production, which will be further discussed in a separate

paper on cross phenomena involving multiple internal

processes.

Discussion of entropy usually starts with the configu-

rational entropy at a specific scale of interest as follows

Sconf ¼ �kB

X
k
pklnpk ðEq 2Þ

where pk is the probability of configuration k at the scale of

the observation, and kB the Boltzmann constant. It is evi-

dent that the total entropy of the system needs to include

the entropy of each configuration and the configurational

entropy among them as follows[25]

S ¼
X

k
pkSk þ Sconf ¼

X
k
pk Sk � kBlnpkð Þ ðEq 3Þ

where Sk is the entropy of configuration k which can be

further decomposed into configurations in the lower scales

with the same formula as Eq 3. The scale higher than the

observation is usually considered as the surroundings of the

system,[21,22] which dictates the statistical ensemble to be

used to study the system with some typical ones as follows

(i) The microcanonical ensemble under constant

mass (N), volume (V), and the total energy in

the system (E) without any exchanges between the

system and the surrounding (NVE ensemble, with

entropy as the characteristic state function)[21];

(ii) The canonical ensemble under constant mass (N),

volume (V), and temperature (T) with only heat

exchange between the system and the surrounding

(NVT ensemble, with Helmholtz energy, F, as the

characteristic state function)[21];

(iii) The grand canonical ensemble under constant

chemical potential (l), volume (V), and temper-

ature (T) with both mass and heat exchanges

between the system and the surrounding (l VT

ensemble, with H ¼ F �
P

liNi as the charac-

teristic state function)[21];

(iv) The isothermal-isobaric (Gibbs) ensemble under

constant mass (N), pressure (P), and temperature

(T) with both volume and heat exchanges between

the system and the surrounding (NPT ensemble,

with Gibbs energy, G, as the characteristic state

function)[21];

(v) The isoenthalpic-isobaric ensemble under constant

mass (N), pressure (P), and enthalpy (H) with

exchange of volume but without heat exchange

between the system and the surrounding (NPH
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ensemble, also with entropy as the characteristic

state function);[21] and

(vi) The partial grand isothermal-isobaric ensemble

under constant chemical potentials for some

components (li), constant mass for other compo-

nents (Nj), and constant pressure (P) and temper-

ature (T) (liNjPT ensemble, with

U ¼ G�
P

i\jliNi as the characteristic state

function).

Ensemble (vi) is useful when mass exchanges between

the system and the surroundings occur only for some, but

not all components such as systems under consideration of

carburization or oxidation. As common experiments are

conducted under the NPT ensemble, i.e., ensemble (iv)

above, Gibbs energy is the characteristic state function to

describe the property of the system and can be written as

follows

G ¼ E � TS þ PV

¼
X

k
pkEk � T

X
k
pk Sk � kBlnpkð Þ þ P

X
k
pkVk

¼
X

k
pkGk þ kBT

X
k
pklnpk

ðEq 4Þ

where E, V , Gk, Ek, and Vk are the internal energy and

volume of the system and the configuration k, respectively.

The Gibbs energy of the system consists of weighted linear

combination of the Gibbs energies of its individual con-

figurations, Gk, and their nonlinear statistical interactions

through the configurational entropy at the observation

scale. It is noted that the last term in Eq 4 is usually missing

in the literature, which is the key feature of the present

theory.

From the definition of partition function, the following

equation can be obtained

Z ¼ e
� G

kBT ¼
X

k
e
� Gk

kBT ¼
X

k
Zk ðEq 5Þ

where Z and Zk are the partition functions of the system

and the configuration k in the NPT ensemble, respectively.

It is noted that when our approach was originally devel-

oped,[20,27-29] we started with the postulation of Eq 5 and

used the Helmholtz energy by considering the NVT

ensemble. While in the present work as shown above, Eq 5

can be rigorously derived from Eq 3 as originally presented

in Ref.[25]

The partition function for the NVT ensemble commonly

uses Ek instead of Helmholtz energy of each configuration

(Fk) in our previous works.[20,27-29] This reflects the

important difference in terms of entropy, i.e., when Ek is

used, the entropy is represented by Eq 2; while when Fk or

Gk is used, the entropy is represented by Eq 3. As men-

tioned above, the entropy by Eq 2 is for configurations at

one scale only, while the entropy by Eq 3 is for the total

entropy of the system, containing contributions from this

scale and all lower scales, i.e., multiscale. Since our mul-

tiscale formulism is closely related to the partition function

denoted by Z in Eq 5, we were suggested to term our

approach as the zentropy theory during a seminar[30] with

z representing the partition function (i.e., the Zus-

tandssumme in German coined by Max Planck) with its

meaning of ‘‘sum over states’’).

One significance of the zentropy theory is the expression

for the probability of each configuration at the scale of

observation as follows

pk ¼ Zk

Z
¼ e

�Gk�G

kBT ðEq 6Þ

which shows that the probability of a configuration is

related to the free energy difference between those of the

configuration and the system. While conventionally, the

difference would be between the internal energy of the

configuration and the free energy of the system, which

omits the entropy of individual configurations and is thus

less accurate.

The entropy of a given configuration can be routinely

predicted by DFT-based first-principles calculations,[18]

which can be performed using the recently developed high

throughput DFT Tool Kit (DFTTK),[19,31] as follows

Sk ¼ Sk;el þ Sk;vib ðEq 7Þ

where Sk;el and Sk;vib are the entropies of configuration k

due to thermal electrons and lattice vibrations or phonons,

respectively. The Gibbs energy of configuration k can then

be obtained as

Gk ¼ Ek;c þ Fk;el þ Fk;vib þ PVk ðEq 8Þ

where Ek;c is the 0 K static total energy, Fk;el the thermal

electronic contribution, and Fk;vib the vibrational contri-

bution, all as a function of Vk with Fk;el and Fk;vib also as a

function of T .

3 Volume of a System

The volume of a system can be obtained as follows

V ¼ oG

oP
¼ �kBT

olnZ

oP
¼ � kBT

Z

X
k

oZk

oP
¼

X
k
pkVk

ðEq 9Þ

which was already used in Eq 4. With the ground-state

stable configuration denoted by g, Eq 9 can be re-organized

as

V ¼ Vg þ
X

k
pk Vk � Vg

� �
ðEq 10Þ

One can immediately observe from Eq 10 that the

negative values of Vk � Vg could result in the decrease of

J. Phase Equilib. Diffus.

123



the system volume with the increase of temperature if the

decrease due to
P

pk Vk � Vg

� �
is more than the increase

of Vg with respect to temperature. It is thus self-evident

that the necessary condition for the volume of the system to

decrease with temperature is that the major nonground-

state configurations with Vk\Vg have relatively high

probabilities with increasing temperature, as determined by

Eq 6.

While the entropy of the ground-state stable configura-

tion can be accurately predicted by the quasiharmonic

approximations (QHA) through DFT-based first-principles

calculations (see Eq 8),[18] the anharmonicity of the system

is unavoidable at high temperatures due to the interference

of other nonground-state metastable configurations through

the nonlinear configurational entropy among them (see Eq

3) as their probability is significantly increased with respect

to temperature (see Eq 6). From thermodynamics,[21-23] it is

known that the limit of anharmonicity is at a critical point

where the system reaches its limit of stability with all its

properties diverged,[21-23] i.e.,

oS

oT
¼ oV

o �Pð Þ ¼ þ1 ðEq 11Þ

The positive sign is because S and T are conjugate

variables in the combined law of thermodynamics, and so

are V and �P:[21-23]

It is evident that the derivative of volume with respect to

temperature, i.e. oV
oT, also diverges at the critical point, but

the thermodynamic stability criterion does not require oV
oT to

be positive.[21-23] From Eq 10 and discussion above, one

can thus conclude the following at the critical point.

oV

oT
¼ þ1 when Vk [Vg

oV

oT
¼ �1 when Vk\Vg

ðEq 12Þ

The answer to the question ‘‘Why does volume some-

times decrease with the increase of temperature?’’ is thus

that the nonground-state metastable configurations with

high statistical probability at high temperatures have their

volumes smaller than that of the ground-state stable con-

figuration, and the volume of the system is the weighted

sum of volumes of individual configurations as shown by

Eq 10.

4 Examples: Ce and Fe3Pt

In our previous works, the temperature and pressure phase

diagrams of Ce[27,28] and Fe3Pt
[29] were predicted by the

zentropy theory including their critical points. In Ce, three

configurations were considered, i.e., the nonmagnetic

(NM), antiferromagnetic (AFM), and ferromagnetic

(FM);[28] while in Fe3Pt, 29 ¼ 512 magnetic spin config-

urations were considered with nine Fe atoms in the

supercell for DFT-based calculations, resulting in 37

unique spin-flip configurations (SFC).[29] Their 0 K static

energies, i.e., the Ek;c in Eq 8, are plotted in Fig. 1(a) and

(b), respectively. In Ce, the volume of the ground-state

stable NM configuration (a-Ce) is smaller than those of the

nonground-state metastable AFM and FM (c-Ce) configu-

rations, while in Fe3Pt, the volume of the ground-state

stable FM configuration is larger than all other nonground-

state metastable SFCs. Their Helmholtz energies as a

function of temperature under ambient pressure, equal to

their Gibbs energies, are shown in Fig. 2.

The predicted temperature-pressure phase diagrams of

Ce[28] and Fe3Pt
[29] are shown in Fig. 3. The lines represent

the conventionally defined two-phase equilibrium regions

which are one-dimensional based on the Gibbs phase

rule,[21,22] i.e., the low temperature NM and high temper-

ature FM phases for Ce, and low temperature FM and high

temperature paramagnetic (PM) phases for Fe3Pt, respec-

tively, though each of them is a statistical mixture of all

configurations with different statistical probabilities. The

probabilities of various configurations as a function of

temperature are plotted in Fig. 4 for Ce and Fe3Pt,

respectively. The second-order transition temperature is

defined when the probability of the ground-state

stable configuration equals to the sum of nonground-state

Fig. 1 0 K static energies of (a) Ce[28] and (b) Fe3Pt[29] from DFT-

based first-principles calculations. The symbols in figure (a) are the

DFT-based predictions and in (b) correspond to equilibrium energy

and equilibrium volume for each configuration.
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metastable configurations; similar results are obtained if

the maximum heat capacities are used. The slopes of the

two-phase equilibrium region shown in Fig. 3 are positive

for Ce and negative for Fe3Pt and are related to the volume

and entropy differences of the ground-state stable configu-

ration and nonground-state metastable configurations in

terms of the Clausius-Clapeyron equation as follows

oT

oP
¼ DV

DS
ðEq 13Þ

where DV and DS are the volume and entropy differences

between the ground-state stable configuration and non-

ground-state metastable configurations. Since the entropy

increases with temperature, the sign of Eq 13 for the slope

of the two-phase region is determined by the volume dif-

ference between the ground-state stable configuration and

nonground-state metastable configurations in accordance

with Eq 12 as follows

oT

oP
[ 0 when VK [Vg

oT

oP
\0 when VK\Vg

ðEq 14Þ

Therefore, the negative slope of the two-phase equilib-

rium line in the temperature-pressure potential phase dia-

gram provides a useful indication for volume to decrease

Fig. 2 Helmholtz energy as a function of temperature under ambient

pressure for (a) Ce[28] and (b) Relative Gibbs energy (DG/kBT) under

ambient pressure for Fe3Pt[32] from DFT-based first-principles

calculations. In figure (a), the red and blue symbols at 300 K are

on the common tangent to determine phase boundary, while the green

symbol corresponds to the critical point.

Fig. 3 Predicted temperature-pressure phase diagrams of (a) Ce[28]

and (b) Fe3Pt[29] in terms of the zentropy approach. In figure (a) the

symbols are experimental data and the red circle in (b) corresponds to

the critical point.

Fig. 4 Predicted probabilities of various configurations as a function

of temperature for (a) Ce[28] at 2.05 GPa near the critical point and

(b) Fe3Pt[29] at ambient pressure far away from its critical point. Here,

NM represents nonmagnetic configuration, AFM antiferromagnetic

configuration, FM (or FMC) ferromagnetic configuration, and

SFC(s) spin-slip configuration(s).
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with temperature in the system. This criterion was used to

predict the potency of negative thermal expansion based on

available temperature-pressure phase diagrams with

remarkable agreement with available experimental obser-

vations.[32] Since there are many two-phase equilibrium

lines with negative slope in temperature-pressure phase

diagrams, the negative thermal expansion phenomenon is

much more common than one typically thinks.

This is further demonstrated by replacing the pressure in

the temperature-pressure potential phase diagram by its

conjugate molar quantity, volume, which resulted in the

temperature-volume mixed potential-molar quantity phase

diagrams shown in Fig. 5 for Ce and Fe3Pt, respectively.

The two-phase equilibrium line in the temperature-pressure

potential phase diagram now becomes a two-dimensional

area as a miscibility gap between two phases, i.e., from one

degree of freedom (number of independent potentials) in a

potential phase diagram to two dimensions in a phase

diagram (number of independent variables) with one

potential and one molar quantity. As Hillert discussed in

detail,[21] Gibbs phase rule concerns the number of

potentials that can change independently without changing

the number of phases in equilibrium and needs to be

modified when it is applied to phase diagrams with molar

quantities as axis variables. These two phases are domi-

nated by the ground-state stable configuration (low tem-

perature phase) and nonground-state

metastable configurations (high temperature phase),

respectively and merge into a single phase at the critical

point.

Figure 5 also includes curves of isobaric volume as a

function of temperature. The divergency in accordance

with Eq 12 at the critical point is clearly shown. Further-

more, the decrease of volume with respect to temperature

in Fe3Pt under various pressures is marked by the purple

diamond symbols. While for Ce, the purple diamond

symbols denote the abnormally large increase of volume

with respect to temperature.

As mentioned in the introduction, at low temperatures,

the nonground-state metastable configurations may be

accessed by phonon vibrations of the ground-state

stable configuration. Consequently, the phonon calcula-

tions of the ground-state stable configuration will include

the contributions from the nonground-state

metastable configurations and can thus predict the decrease

of volume with respect to temperature at temperature close

to 0 K by phonon calculations alone, which were demon-

strated for ice (H2O) and Si as shown in Fig. 6[20].

5 Summary

The zentropy theory is discussed in the present work in the

framework of Boltzmann-Gibbs entropy formalism by

considering multiscale entropic contributions to a phase at

finite temperatures in terms of thermal electronic, vibra-

tional, and spin configurations. It demonstrates that a phase

at finite temperatures is composed of multiple configura-

tions including both the ground-state stable configuration

and nonground-state metastable configurations. The answer

to the question ‘‘Why does volume sometimes decrease

with the increase of temperature?’’ is that when the vol-

umes of major nonground-state metastable configurations

are smaller than that of the ground-state stable configura-

tion, the volume of the phase may decrease with the

increase of temperature in a range of temperature and

pressure combination. This occurs when the decrease of

volume due to the replacement of the ground-state

Fig. 5 Predicted T-V phase diagrams of (a) Ce and (b) Fe3Pt with

isobaric volume curves with the volume, V, normalized to VN at 298

K and 1 atm. The purple diamonds mark the anomalous regions of

colossal positive or negative thermal expansions (CP/NTEs) in Ce and

Fe3Pt, respectively, including the divergences at the critical point by

green circle.[20] The other symbols are experimental data points.
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stable configuration by the nonground-state

metastable configurations is more than the increase of

volume of the ground-state stable configuration. The

change of volume diverges at the limit of stability of the

phase based on thermodynamics is confirmed by the pre-

dictions of the zentropy theory for both Ce and Fe3Pt at

their critical points where the divergence is positive for Ce

and negative for Fe3Pt, respectively. The present zentropy

theory provides a thermodynamic framework for mecha-

nistic understanding of thermal expansion and has the

potential to predict anomalies of other physical properties

such as bulk modulus, heat capacity, and the order-disorder

transition temperature in terms of the second derivatives of

free energy for discovering materials with emergent

behaviors. We are also actively working on using the

zentropy theory to predict ferroelectric and superconduct-

ing transitions.
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