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Dynamic soaring phénomenon, exhibited by soaring birds, has long been a biological
inspiration for the aerospace and control engineering communities. If this fascinating phe-
nomenon, which allows soaring birds to perform almost un-powered flights using wind
shear, can be mimicked by Unmanned-Aerial-Vehicles (UAVs), then UAVs performance
have a substantial potential to enhance technologically and economically as well. Even
though there have been considerable amount of research covering the modeling, optimiza-
tion, contrel and simulation aspects of different UAVs performing dynamic soaring, there is
little"to non conclusive work analyzing the stability of such UAVs about the soaring orbits.
In this paper, we present a comprehensive framework for determining the stability of soar-
ing UAVs utilizing both linear (Floquet-based) and nonlinear (Contraction-theory-based)
techniques. Stability analysis under Floquet remained inconclusive , which provoked non-
linear Contraction formulation in order to reach a conclusive stability assessment for the

actual nonlinear fixed-wing UAV performing dynamic soaring. Furthermore, parametric
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variation along with numerical simulations were conducted to ascertain the response of the
actual nonlinear system when perturbed from its nominal motion studied in this paper.
The analysis and simulations revealed that the system posses instability as the UAV motion
diverges from its nominal trajectory and follow an undesirable path. By this result, we
conclude, for the first time in literature, that UAVs performing dynamic soaring in an op-
timal way to reduce wind shear requirements, are inherently unstable. The results ofthis
paper suggests that mimicking dynamic soaring by UAVs, require careful/investigations of

tracking and regulatory controls that should be implemented.

Keywords. Bio-Inspired Flight, Contraction Analysis, Dynamic Soaring, Flight Dynamics, Floquet

Analysis, Optimal control, Unmanned Aerial Vehicles.

Nomenclature
Abbreviations
AR Aspect ratio of the wing
b Wing span (m)
c Wing chord (m)
C Monodromy matrix
()7 Lift coefficient
Cr,, Lift coefficient variation wrt angle of attack
Ch Drag coeflicient
Chp, Zero lift drag coefficient
D Aerodynamic Draggorce (V)
e Oswald efficiency factor
F Generalized Jacobian
flz,t) Nonlinearfunction Virtual velocity between flow fields
g Acceleration due to gravity (m/s?)

GPOPS General Purpose, OPtimization Software

h Altitude (m)

ho Surface correctness factor

hreg Reference altitude (m)

h Rate of change of altitude (m/s)
I Identity matrix

IPOPT Interior Point OPTimizer
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1

2 J Performance Index

3

4 Jg Symmetric Jacobian

Z K Induced drag coefficient

7 L Aerodynamic Lift force (N)

8

9 LTIS Linear Time Invariant System
1(1) LTvS Linear Time Varying System
12 M Continuously differentiable symmetric matrix
13

14 m Mass of the vehicle (kg)

15 n Load factor

16

17 NTVS NonLinear Time Varying System
18

19 P T-periodic matrix

;? Joo Dynamic pressure (Pa)

22 R Constant matrix

23

24 S Wing planform area (m?)

;2 SNOPT  Sparse Nonlinear OPTimizer
27 to Initial time (s)

28

29 ty Final time (s)

g (1) UAV Unmanned Aerial Vehicle

32 Vv UAV flight speed (m/s)

33

34 Viores Reference wind velocity (m/s)
g 2 Vi Wind shear velocity (m/s)

37 Viv Rate of change of wind veloecity' (m/s?)
38

39 x Position vector along’east direction (m)
2(1) Yy Position vector,along north direction (m)
42 y(t) Time varyingpsolution

43

44 z Transformed state variable

45

46

47

48 Greek Symbols

49

?1) ! Angle of attack (°)

52 153 Positive real number

53 _ .

54 v Flight path angle (°)

35 0 Pitch angle (°)

56

57

58

59
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® Square matrix
Density of the air (Kg/m?)
0] Bank angle (°)

Azimuth angle (°)

o Fundamental solution matrix

Amaz Largest Eigenvalue

1) Partial derivative

oz Virtual velocity between flow fields

I. Introduction

Dynamic soaring is a fascinating flight strategy that utilizés wind gradients to perform long duration
flights by harvesting atmospheric energy [1]. The energy needed,to perform such a long duration of flight
is gained from the wind in the proximity of the surface./In asregion of about 20 m above the sea surface,
the speed of the horizontal wind changes considerably with the altitude to yield what is known as 'wind
shear’ [2—1]. By flying across the wind gradient regiomiperiodically, energy is harvested from the spatial
wind speed distribution. This has been observed amongst birds (albatrosses, eagles, etc.) and offers promise
for use in the flight of Unmanned Aerial Vehieles (UAVSs) [5]. What is fascinating about this maneuver (see
figure 1), is that it enables the soaring birds to travel large distances almost without flapping its wings [6].
The dynamic soaring cycle can be considered to have four characteristic flight phases, namely (a) windward
climb, (b) high altitude turn, (c) tailwind deseent, and (d) low altitude turn. To start with the maneuver,
the UAV mimicking soaring birds goes into the head wind gaining height, trading off kinetic energy with
potential energy, and at,the highest point takes a steep turn and dives down with tail wind. It continues
to descend until it reaches thelowest point trading potential energy for kinetic energy (gain in the velocity)
until it reaches the minimum possible height. At that point, it takes the low altitude turn and returns to
the original orientation to culminate the energy neutral maneuver cycle.

Nature-inspired flight [2,43.5; 7-12], understandingly, attracted many engineering communities because
nature could provide. nspiring and already proved to function ideas, techniques and designs for man-made
technologies [13]. [The aeronautical and control engineering communities have been researching if the very
powerful) dynamie soaring phenomenon can be applied effectively to advance UAVs technology, simply by
mimicking the flight of the soaring birds and fly for free in areas where the wind shear is present [14, 15]. It
is well established that due to the limitation on the size and weight of UAVs, adding on-board energy sources

ig’ very, technically-challenging, which limits the range and endurance of these platforms [16] . Therefore,
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Figure 1: Dynamic soaring maneuver

dynamic soaring application can serve a great deal by reducing the need forthaving larger on-board engines
since the wind shear provides most, if not all, of the power needed for flight.

Not surprising, these potentials of advancing the performance/teclinology of UAVs by dynamic soaring,
attracted researchers to study all kind of technical aspects of dynamic soaring and its application to UAVs.
Wharington [17] formulated dynamic soaring trajectories for @ UAV utilizing heuristic approach (pitch and
bank control) and proposed different approaches for closed”loop design. The heuristics however did not
present the methodology to predict speed gain perloop of maneuver [18]. Later, the heuristic control was
also found ineffective [19]. Zhao [20] studied the‘optimal dynamic soaring trajectories for loiter, basic, and
travel modes. Dynamic soaring maneuver can be represented by several parameters: maximum altitude,
upper and lower speed, and the maneuver dutration (cycle period). Several authors studied the effect of
these parameters on the energy gain and.thé minimum required wind shear [10, 17, 21-23]. Sachs and Da
Costa [24] performed studies to extend dynamic soaring to full-scale sailplanes. Based upon the values of
wind shear conventionally found near mountain ridges, it was considered possible. Gordan [25] carried out
detailed search in this regard with'an aim to prove or disprove the viability of dynamic soaring for full size
aircraft. He showed fthat full size sailplanes could extract energy from horizontal wind shears, although the
utility of the energypextraction could be marginal depending on the flight conditions and type of sailplane
used. Recently, Koessler [26] configured dynamic soaring trajectory optimization into an optimal control
problem, and‘then presented an online reinforcement learning controller that can execute the DS maneuver
to a steady state. The learning controller was taught by a tracking controller that has been shown to achieve
steady state\dynamic soaring control in simulation under stable and known (to the UAV) environmental
conditionsz‘Additionally, the studies [15, 20, 27-30] focused on the flight dynamics, modeling, control, real

time,simulations involved in the process of UAVs performing dynamic soaring. It is worth mentioning that
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actually gliders tried taking advantage from the dynamic soaring phenomenon. RC glider utilizing dynamic
soaring that involves performance of oval flight pattern over ridges have succeeded to achieve flight speeds in
excess of 545 mph [31]. The rapid growth in the UAVs and motorized gliders market have furthet boosted the
requirement to perform long duration autonomous flights utilizing dynamic soaring apart from econventional
energy harvesting techniques such as solar/thermal batteries and static soaring.

In our recent review-work [32], we have discussed the history of biological inspiration by sparing birds
and how this inspiration led to the current studies of UAVs performing dynamic searing. Imythe same work,
we documented how nonlinear modeling of the flight dynamics of UAVs have developed to adopt dynamic
soaring. Similarly, numerical optimization/simulation techniques have evolyéd to provide the tools necessary
for studying UAVs performing dynamic soaring in real time. Moreover, we have shown how one can develop
an optimal control problem to generate a dynamic soaring trajectory in which energy from wind shear
is minimized as well. At the end of our review-work, we identified seme_challenges to advance dynamic
soaring, namely through two tracks of research: 1) Allowing, morpholegies to the body of the UAV, so it
reflects similar behaviors to soaring birds which may provide significant enhancements (addressed in [27]),
and 2) Investigating the possibility of nonlinear ¢ontrollability studies since the fixed-wing UAV problem
is highly nonlinear and that the linear control literature of ‘that problem seems incomplete and immature
(addressed in [28]). In [28], the entire controllability, problem was studied and characterized for fixed-wing
UAV performing dynamic soaring. In that paper;iitswas found that pitch and roll control signals are enough
to guarantee controllability along the dynamic soaring, optimal and non-optimal, trajectories. An interesting
observation in our study of controllability [28] revealed, that geometric nonlinear controllability analysis is
needed for studying the system, not justlinear control theory. This is because the UAV with pitch and
roll controls (under-actuated system) was shown nonlinearly controllable even though the system is linearly
uncontrollable. Thus, it became apparent that the system has to be always studied from nonlinear theory
perspective.

Could it be the case that linear analysis fails to conclude stability as it did with controllability? The
literature, to the best of our knowledge, did not have answer to these questions. The only relevant stability
work found is by Swaminathan [33, 34], who performed linear stability analysis (based on eigenvalues). The
problem of augmenting/the stability as 6-DOF and 3-DOF dynamic soaring model was treated from the
context of a'periodie eoefficient system. The eigenvalues and eigenvectors were compared to a 3-DOF system
and the mode shapes to level flight and banked turn. A linear time periodic system about this orbit was
determined and its stability was studied using only linearized analysis techniques. However, the work did not
consider, evaluating stability aspects along the trajectory and did not include any nonlinear analysis to verify

the reported lower stability margins. There has been no consolidated work reported on determining the
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stability of the dynamic soaring periodic orbits and its dependence on system parameters. It is exceptionally
important to find out about the stability of the UAV performing dynamic soaring. The trajectories can
get disturbed by gusts or crosswinds causing the UAV to veer off-course. Although a dedicated»control
system can be designed to overcome the perturbations, but an inherently stable orbit can greatly reduce
the control effort and power. This is why assessing the stability is of great importance to the control design
advancements as well. It is worth emphasizing that the optimized dynamic soaring trajectories, as presented
in [32], are time varying. This means that traditional equilibrium-based techniques, suchsas eigenvalues
for linear /linearized systems, simply, cannot be used; This could explain why the dynamic soaring stability
problem has been rarely researched in-depth. One now can see that other stability analysis techniques that
are mathematically defined for time varying systems, should be investigated to determine if they can be
useful to the dynamic soaring problem.

The contribution of this paper is to perform a comprehensive stability analysis along the optimal dynamic
soaring trajectory (x*,u*), where @ is the state space vector and wis,the control input vector. Not only
that these analyses are the first in literature for the concerned problem under study, they are also utilizing
mathematical techniques that can be useful in many other flightsdynamics and control studies dealing with
nonlinear time varying systems. Moreover, this'paper drawssa parallelism in its results with the original
controllability results we published recently [28]. This should enrich and complete the picture for scholars
working on the flight dynamics and conftrol designsto enhance/innovate/advance UAV aiming to perform
dynamic soaring in an optimal way.

In this paper, we use the well;defined numerical optimization process and flight dynamic modeling we
recommended in our review-work [32] to find,the dynamic soaring optimal trajectory. Since dynamic soaring
loiter maneuver is periodic in nature,the problem of analyzing stability along the trajectory is treated
from the context of a periodi¢ coefficient system. To access the stability aspect along the periodic time
varying soaring trajectoryydboth linear ( Floquet theory) and nonlinear (Contraction theory) techniques are
utilized for the first time in literature for this system. These methods are chosen as they determine stability
characteristics of the system along the optimal trajectory (time-variant) instead of evaluating stability of
equilibrium point(s). on the-trajectory. The authors of this paper believe that the provided formulation
process along with' the conducted analysis methodology, are generic strategies for evaluating UAV stability
characteristics' along optimal soaring trajectories. In other words, the provided framework is extendable to
cover different span of flight scenarios, parameter variations and situations that different classes of UAVs can
be studied under. Additionally, the proposed methodology is computationally-relevant and independent of
particular platform(s). The conclusions and results of the paper have been verified by parametric variations

and numerical simulations, all of which support our results.
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The structure of this paper is as following: Section II introduces the modeling work used in this paper,
along with generating the optimal soaring trajectories that are used in the stability analysis, Sections LI and

IV represent the major contribution and stability results of this paper, and Section V concludés thespaper.

II. Problem Formulation and Generation of Optimal Trajectories

A. UAYV model

The UAV utilized in this research has a nominal wingspan of 1.75 m, fuselage/length of 15 m and 2.1 kg
mass (Refer Figure 2). The aerodynamic surfaces are constructed utilizing NACA 2412 aerofoil. Complete

details of the UAV model parameters are adopted from [32] and elaboratedyin table. 1.

I

Figure 2: UAV model

No Parameter Value No Parameter Value

1 Nominalymass (m) 2.1 Kg 5 Wing chord (c) 0.6 m
Fuselage length 1.5m 6 Fuselage diameter 0.1m

3 lg)(;mmal Wingspan 1.55 m 7 Aspect ratio (AR) 2.9

4 Wing atea, (S) 1.05m?2 8 Oswald's efficiency ¢

factor (e)

Table 1: UAV model parameters.

B. [Wind'‘Shear Modeling

Dynamie soaring is dependent on wind shear which occurs in the boundary layer over any surface. Wind

shear involves changes in wind speed and/or direction over a short distance height in the atmosphere, and
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can be segregated into different categories, as explained by wharington [17]. The wind shear considered in
this research is the vertical variation of the horizontal wind shear, in which the magnitude of the horizontal
wind increases with altitude. The strength of wind velocity is virtually zero at sea level and inereases with
the altitude till its magnitude becomes equal to the boundary layer free stream wind. Majority of the
research on UAV energy extraction from wind shear, has been done with strong assumptions on the,wind
shear models, often as it is the case here, conducted and determined empirically. The logic usually is' that
given certain geographical and meteorological conditions, the wind shear can be approximated with a wind
model of a certain profile after collecting too many data points that can be satisfactory to construct such

models/profiles. The mean velocity profile of actual wind gradients can bé approximated using empirical

models [30, 35-37] utilizing linear or nonlinear wind models (Power or Logarithmic law based).
To approximate wind shear, various empirical models [32] have been used to predict wind profiles over
flat terrains (with varying topographies) including linear [25, 30, 35], expenential [37, 38] or logarithmic

[23, 27, 28, 39, 40] models. Based on the available models in literature and-as we cited properly in the paper,
this logarithmic profile is commonly used in meteorological studies,and is the most applicable/reliable to
measurements near the surface of the earth and over sea [23,°39;40]. Due to this reason, the logarithmic

wind shear profile (refer Figure 3) as represented by Eq. (1)ismutilized [23, 27, 10].

h

lnhio
VW = Vwreflnhj, (1)
ho

where V,, is the wind velocity @t altitude h, Vi, , is the wind velocity at reference altitude h,.r and

ref

ho is the surface correctness factor.Rate of change of wind velocity with varying altitude is mathematically

represented by Eq. (2):

: A% dVw dh
Viy =20W _ &YW

- 2w = 2
dt dh " dt’ @

where % is the wind shearsparameter. It is the parameter whose value is required to be minimized,

such that it is enough to permit sustainable dynamic soaring. Wind shear is the rate of change of wind speed
w.r.t altitude (representingsthe slope of the wind velocity Vs altitude) and has the units (1/sec). This is the
least amount of wind shear which is required to exist at sea level condition beyond which UAV would not
be able tosperform dynamic soaring. This minimum required wind shear is mathematically ascertained by
configuringithe problem as Optimal control problem and solved numerically utilizing Optimal Control solver

GPQPS-II (xefer section II C)

dVy

From Eq. (1), the wind shear ie =}

can be computed as
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Figure 3: Logarithmic wind profile (¥,

Wref

=bm/s,hre r=5m,ho=0.03)

A
=y L (3)
dh ref hln h’7~ef
ho
Also h = % is given as
h =V siny. (4)
Eq. (2) can be written as
Vi = Vwmf #ﬁv sin~y* (5)
hln hd
Also V., isfhe minimum required wind shear that is required to perform sustainable dynamic soaring.

Wind shear is the'rate of change of wind spped w.r.t altitude (representing the slope of the wind velocity Vs
altitude) and hasthe units (1/sec). This is the least amount of wind shear which is required to exist at sea
level condition beyond which UAV would not be able to perform dynamic soaring. This minimum required
wind shear is mathematically ascertained by configuring the problem as Optimal control problem and solved

numerically utilizing Optimal Control solver GPOPS-II (refer section IT C).

10
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C. Flight Dynamics Modeling & Optimization Framework

The optimization framework utilized in this research to generate optimal soaring trajectories is based upon
GPOPS-II [11]. This is MATLAB® based framework which utilizes variable-order Gaussian quadrature, tech-
nique to convert the original continuous-time infinite dimensional optimal control problem into afinite dimen-
sional Nonlinear Programming (NLP) problem. The NLP is then solved utilizing Interier Point, OP Timizer
(IPOPT) or Sparse Nonlinear OPTimizer (SNOPT).

In this research, UAV dynamics are modeled utilizing a 3D point-mass model {17, 20,30, 32] which is
mathematically represented by Eq. (6). It is worth mentioning that the reader may refer to [32] for more

detailed explanation about the modeling process , derivation and assumptions.

V=— [fomgsinfymeWcos'ysinzb]
m
. 1 .
) = ————[Lsin ¢ — mVyy cosap]
mV cos~y
1 |
A mV[ cos ¢ — mg cosy + mViy.sin ¢sin 7] ()

z =V cosysiny + Vi
1y =V cosvycosv
h= Vsiny

The state (t) and the control u(t) vectors are defined in Eq. (7) and Eq. (8) respectively.

z(B)=[V, ¥, z, y, h)T, z(t) € RE. (7)

u(t) = [CL, ¢],u € R%. (8)

To implement the loiter maneuver, trajectory optimization problem is transformed to an optimal control
problem, that minimizes the performance index (refer Eq. (9), subject to the boundary constraints (refer

Eq. (10)) and path constraints (refer Egs. (11)).

J = min Vi reg] (9)
x(t)e, = x(t)t, (10)
11



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - BB-102639.R2

Vmin <V< Vmama 7vzjmin < l/} < wmazaf}/min < Y < Ymaz (11)

Tmin < T < Tmazs Ymin < Y < Ymaz, h 2 07 ¢min < ¢ < ¢ma;v

where Vi, rer is the minimum required wind shear that still permits dynamic soaring, , ¢ty and t, denotes
the final and initial times respectively.
The permissible variations for the state and control variables (in defined units) dgring the maneuver are

listed in table. 2.

S No  Parameter Value S No  Parameter Value

NonLinear logarithmic  h,.y = 10m ,

1 wind model parameter ho= 0.03

6 Max load factor (n) <6

2 Cydle time 1 to 40 7 Permissible variation 50 o 500
along east direction

3 Per@1§s1b1e azimuth A50° to 450° 8 Perm1831bl§ v'arlatlon —500m to 500m
variations in north direction

4 Per@1§31ble velocity 5 to 60m /s 9 Permissible  altitude 0 to 500m
variations range

5 Perrmss,lb'le 'ﬁght path —70° to 70° 10 Terminal constraints F}n&l state=Ini-
angle variation tial state

Table 2: Permissible state.and control variations

D. Impact of UAV model Parameter onySoaring Process

The optimal soaring trajectories for UAVs are usually formulated with the objective to determine the min-
imum wind shear beyond which dynamic searing will not be possible. This minimum required wind shear
is associated with fixed parameters of the.system. Finding the required minimum wind shear to perform
dynamic soaring posed a challenging numerical problem, because of the coupled nonlinear nature of the
equations of motion. The wind shear determined numerically for soaring should be realize-able, i.e. it should
be of a magnitude, which.normally and practically exists over conventional environments (such as over sea,
over hills, rural areag,and so on), making dynamic soaring possible over these areas.

A parametricsweep of the parameters of the UAV model used in this paper, namely mass and wing span,
was performed to/determine the impact of model/parametric variation on soaring process. This was per-
formed to determine the relative impact which these parameters might create on the soaring process and the
determination of the minimum wind shear required to perform dynamic soaring. Evaluating these variations
of the mass and wing span is quite significant as it also tests which classes of UAVs can actually/practically
performpdynamic soaring.

This_evaluation is also of another fundamental importance to the context of this research, as stability

12
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perspectives of these soaring orbits will be subsequently analyzed utilizing linear /nonlinear techniques. The
numerical optimization process was performed initially for the nominal UAV parameters defined in table. 1
and state/control variables bounds as listed in table. 2. The optimization was then extended/fo a range of
conditions in which certain UAV model parameters such as mass and wing span weresvaried/while the other
process variables as listed in table. 1 and table. 2 were kept the same. Table. 3 depicts the resultsiof the

different cases evaluated in this sweep.

Minimum  re- Minimum  re-

S uired wind S UAV Mass Span Value’ quired wind

No Mass (Kg) ~ Span(m) ghear at sea No (Kg) (11;)1) ghear at sea
level (1/s) level (1/s)

1 1.2 1.25 0.1431 13 1.5 1.25 0.1288

2 1.2 1.55 0.1499 14 1.5 1.55 0.1341

3 1.2 1.75 0.1511 15 1.5 1475 0.1376

4 1.2 1.95 0.1531 16 1.5 1.95 0.1410

5} 2.1 1.25 0.1020 17 3.5 1.25 0.0900

6 2.1 1.55 0.1039 18 3.5 1.55 0.0907

7 2.1 1.75 0.1066 19 3.5 1.75 0.0910

8 2.1 1.95 0.1099 20 3.5 1.95 0.0924

9 4.5 1.25 0.0810 21 5.5 1.25 0.0718

10 4.5 1.55 0.0828 22 5.5 1.55 0.0737

11 4.5 1.75 0.0833 23 5.5 1.75 0.0771

12 4.5 1. 95 0.0847 24 5.5 1.95 0.0799

Table 3: Impact of modelyparameters on optimization process

The impact of UAV mass variation”enithe system dynamics is catered in 3-DOF modal as elaborated in
Eq. (6).The variation of span has an'direct impact on both the aerodynamic coefficient (Cr, , Cp) as well as
the aerodynamic force (Lift and drag)., The aerodynamic modal utilized in this research are in accordance

with [12, 43] and are represented.as follows:-

S =0bx Cnominal AR = b/cnominal
e=1.78 % (1 — 0.045 x* AR%%®) —0.64

Cr= CLoJrCLaa;CD = CDO'*‘m*Cf

L=1/2%pxV?*xS+C;D=1/2%p*xV?%SxCp
It can'be evidently seen that for a given mass, the minimum required wind shear value increases as
the span increases (see figure 4). Similarly, for a given span, the wind shear requirement increases as the
mass decteases. This is understandable from physical sense as well. During the low altitude phase of the

the,dynamic soaring cycle, the velocity is high and the angle of attack requirement is low. Lower span

13
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helps in improving aerodynamic performance (i.e, low induced drag) and therefore lower required minimum
wind shear. Similarly, if the span increases, the induced drag increases and more wind shear is required to
overcome that drag and perform energy neutral soaring process. Likewise, the Dynamic Soaring Force,(DSF)
which acts as propulsive source during the soaring process, is directly dependant upomthe massiof the UAV.
The magnitude of the force decreases as the mass decreases, stretching the minimum required wind shear,to
higher values for sustained soaring.

It can be noticed from the results of the mass and the span parametric variation (as'shewn in table. 3
and figure 4) that the soaring process and framework used in this paper, to obtain the/minimum required
wind shear and therefore the optimal soaring trajectory associated with it are in fact extendable to other

classes of UAVs.

0.16 . : : . : :
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0151 ' ]
0141 .
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—~0.13F - ——m=1.5kg |
= m=2.5kg
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£ - A\l
= 017 ' ]
0.09r T
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1.2 1.3 14 15 1.6 1.7 1.8 1.9 2
span (m)

Figure 4: Variation in minimum required wind-shear: Mass and span variations

E. Generation of Optimal Soaring Trajectories for nominal UAV model

The optimal soaring trajectory, for dynamic soaring loiter maneuver for the nominal UAV parameters defined
in table. Ifand state/control variables bounds as listed in table. 2, is presented in Fig. 5. The optimized
trajectory ‘emsures that energy is being extracted from the wind shear during both wind ward climb and
downwind descent phases. This increase in energy is utilized to overcome the energy consumed during the
high andslow altitude turns (in specific the low altitude turn associated with high flight velocities). It is

worth-mentioning that the reader may refer to [32] for more detailed explanation and step-by-step process
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to generate the optimal soaring trajectory.
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33 Similarly, the optimal trajectories.for the individual states and the associated optimal control are depicted
35 in Fig. 6. The angle of attack variatiomrallows the provisioning of excess lift in higher altitude regions
associated with lower velocities. Similarly the bank angle control ensures that the desired flight path angle

38 and azimuth conditions are met to conform to the energy neutral soaring cycle.

41 III. "Stability Analysis Utilizing Floquet Technique

44 Having introduced the basics of dynamic soaring and the generation of optimal soaring trajectory for the
loiter maneuver (séétion IT); now we perform the stability analysis. In this section, stability analysis along the
47 optimal trajectory (x*,u*) (as depicted in Figs. 5 and 6), is performed utilizing Floquet theory. Realizing
49 that the system under study (UAV performing dynamic soaring Eq. (6)), operating with a given wu(t), is in
50 the form oftNonlinear-Time-Varying-System (NTVS), it is clear that traditional spectral analyses, such as
52 eigenvalue analysis, will not conclude stability about any point or even a periodic orbit. As a mater of fact,
54 this istrueeven if all the eigenvalues are with strict negative real part for all ¢. This has been established by a

55 counter-example provided by Markus and Yamabe [11]. Therefore, we turn our attention to Floquet method.
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the applicability of Floquet theory for evalua the stability characteristics of the linearized system along

the optimal soaring trajectory. Figure 7 shows the steps followed in our analysis. Also, the reader can

applied Floquet as part of their stability analysis for applications

-

refer the recent papers [51-54] that

involving NTVS for bio/bio-inspired

Spectral Analysis

Nonlinear Tim Linear Time
Varying System Varying System
(LTVS)

Linear Time Stability
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Invariant System
(LTIS)

Figure 7: Stability assessment utilizing Floquet
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A. Mathematical Framework

Consider the periodic-LTVS,
X = A (t)x, (13)

where € R™ with A € R™*" and T-periodic in ¢. The flow associated with Eq.(13) can be represented by

the so-called fundamental solution matriz, written as Eq.(14)

®2 = exp (/Ot A(T)dT) e R™™, (14)

The fundamental solution matrix of the system Eq.(13), computed after one'period T, is known as the

monodromy matriz C = ®4.

Theorem 1 Linear Floquet Theorem([55], pg. 11 and [71]). Everyfundamental matriz solution
of the periodic-LTVS (13) can be represented as the product, ®2 ="P(t)eR! of a T-periodic matriz (i.e.,

P(t) =P(t+T)) and R is a constant matriz given by R = 7 In C

Theorem 2 The system (13) is uniformly stable.if and only if all Floquet multipliers (eigenvalues of C)

have moduli less than 1.

Based on Theorem 1, one can use the transformation x = Py to transform the periodic-LTVS (13) to the

LTIS,

y’=Ry (15)

whose flow after one period is exactly equivalent to the flow of the original periodic-LTVS (13) after one
period: eRT = ®%. Then, with P () bounded and R being a constant matrix, one can compute the
eigenvalues to determine stability.
Consider a periodic-NTVS,
z(t) = F(x,t), (16)

where € R is the statewector. We can linearize the system (16), so we get a system in the form of (13)
in which we can uSe the results of Theorems 1 and 2 (Floquet method). This can be achieved and applied
to the system under study in this paper as shown in figure. 7.

B. Results and Discussion

The nominal UAV model in (6), along with the controls in (8) and its parameters given in table. 1 and

table. 2. is used in our stability analysis. This system is periodic-NTVS in nature and we are studying the

17
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stability along the optimal dynamic soaring trajectory (x*,u*) characterized in Section II (see Fig. 5). The

system under study was numerically integrated to compute the state transition matrix

®(t) = [y (6)--,y°(®)] [w6s - 98] (17)

where y(t),...,y%(t) are the time varying solutions to the independent initial conditions 3, 2s¢yS.

The Monodromy matriz was ascertained utilizing Eq. (18)

C=2(T)=|y}(T) y¥T) ... y*(T) (18)

Having the Monodromy matriz constructed, the Floquet multipliers efithe Monedromy matriz were deter-
mined. The analysis revealed that the periodic solution is Non-hyperbolic in nature, as three of the Floquet

multipliers lie exactly on the unit disc and three inside the unit circle, as'shown in Fig. 8.

1.5

0.5 1

-05 1

_1 5 Il Il Il Il Il
-1.5 -1 -0.5 0 0.5 1 1.5

Real part of eigen-values of Monodromy matrix

Imaginary part of eigen-values of Monodromy matrix

Figure 8: Eigenvalues of the Monodromy matrix

The stability analysis of the system is inconclusive since multiple of Floquet multipliers are on the unit
circle. Tt is also worth mentioning that, since none of the Floquet multipliers lies outside the unit circle,
the system c¢ould not be considered as unstable with assurance [45]. This result emphasizes the necessity
of performing further studies which utilizes nonlinear analysis tools to evaluate stability. It is remarkably

interesting that linear analysis for the UAV under study is inconclusive under the powerful Floquet method.
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This, in a way, draws a parallelism to our controllability results in [28], where the Lie algebraic structure of

the system makes nonlinear analysis a must!

C. Expanding the Stability Analysis

Now that the stability analysis along the soaring orbit was performed for the nominal UAV/model parameters,
it remains to test if the stability assessment would change with different scenarios. In another word, we should
test if the inconclusive assessment of stability through linear analysis still hold withrdifferent-scenarios other
than the case we used in our analysis for the nominal UAV parameters. This is\significantly important for
showing that our stability results can be extended to a range of parameters other than the nominal values.
As we have shown in table. 3, the process to generate the dynamic soaring optimal trajectory holds with
different combinations of the mass and span, and hence, one can determine the minimum required wind
shear that is the main characteristic associated with such optimized trajecteries. As one would expect, the
stability analysis conducted with the nominal UAV parameters holds,with different variations similar to
those of table. 3.

Since the minimum wind shear is the most important, characteristic/parameter of a given soaring orbit,
we decided to expand our stability analysis in that directionsIn order to furnish the applicability of the
process formulated in this section, a different scenario wasisimulated to asses stability or otherwise of the
UAV. The minimum required wind shear parameéter. as determined during the optimization process was
utilized to reflect the available wind shear. We'simulated different scenarios in which the strength of the
wind shear available is greater than what is actually needed to perform energy neutral soaring cycles. It is
evident from Fig. 9, that the stability results ascertained earlier are still valid. Three of the Eigenvalues of
the Monodromy Matrix still remaining on the unit circle, however, the location of the other three eigenvalues
which are within the unit circle shifts a bit. They move closer to the unit circle. The stability results and,
more importantly, the methodology formulated in this paper are still valid for diversions from the actual

conditions for different variations/scenarios.

1V. Stability Analysis Utilizing Contraction Theory

Having analyzed the stability perspectives utilizing linear analysis tools, next we extend the analysis to
nonlinear [domain, In this section, we perform the stability analysis utilizing nonlinear Contraction analysis
technigue [56=58]. The use of contraction analysis in this study is motivated by the fact that this technique
can (be applied directly to the original nonlinear system unlike majority of the other techniques (such as
nonlinear Lypnov and linear eigenvalue analysis) which utilize linearized approximations and assess stability

of equilibrium point(s). Also it does not require the information of what the nominal motion of the system
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unit circle

® npominal windshear value= 0.1039 1/s
higher windshear value= 0.1239 1/s

® highest windshear value= 0.1439 1/s

Figure 9: Eigenvalues migration of the,perturbed Monodromy matrix

is. The system is stable in the contraction region, where the final behavior of the system is independent of
initial perturbations, employing convergence of all perturbed trajectories to the nominal trajectory. Realizing
that the fixed-wing UAV problem under study possessed a Lie algebraic structure which required differential
geometrical analysis [28] and that linear analysis fails to give information regarding stability (see section
III), one finds it tempting to parsue/investigate nonlinear stability analysis; there is a possibility of some
parallelism between the presentistability analysis and the conducted controllability one [28] in the sense that
linear analyses seem to fail and.nonlinear analyses seem to be necessary. An advantage of Contraction theory
is that it concludes a kind of\stability that is associated with trajectories independent on initial conditions,

which is useful given the application of the system under study.

A. Mathematical Eramework

Consider a general nonlinear system

& = f(x,t), (19)

where fue/R"*! is the nonlinear function and x € R™*! represents the state. The dynamical system

represented by (19) can be imagined as a fluid flow with & and @ as velocity and position vectors respectively
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at time t. The exact differential relation is given by (20)

ox = %am, (20)

where dx is a virtual displacement.
Next consider two neighboring trajectories in the flow field defined by Eq.(20). with dx beingthe virtual

displacement between them (Fig. 10). The associated quadratic tangent form [59] is defined by Eq. (21)

Virtuabwelocity & x
Virtual displacement dx

T~

Two neighbouring trajectories

Figure 10: Path flowsof two nearby perturbed trajectories

% (6a’oz) =2 (6z") (62) = 26wT%5w. (21)

Let us assume Apqz (2, t) to be the largest eigenvalue of the symmetric Jacobian Js defined by

1 fof  of"

Convergence of virtual displacement vector dx to 0 is associated with regions having uniformly negative

definite Jacobian. Thisis defined [58] by
38> 0, Va, ¥t > 0 such that Apeq(z,t) < —pI <0, (23)
where Lis theridentity matrix. Then, by using (21) we have

% (éwT&c) < 2mazdz! o, (24)
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and hence

|6z| < ||6zol| olo Amas (@ t)dt 5)

Now if A\ppee(,t) is uniformly strictly negative, then from (25), ||[6x| converges exponentially to zero, irre-

spective of the initial condition dxg. This motivates the following definition.

Definition 1 [58]: Given system dynamics (19), a contraction region exist in the jstate spaceymanifold if

the associated Jacobian defined by (23) is uniformly negative definite in that regiom:

The displacement vector dx can alternatively be expressed by a transformationydefined by

dz = Odx, (26)

where ©(x, t) is a square matrix. The associated quadratic norm is represented by

6276z = 62" ©TAdx
(27)
6276z = sx"Méz,

where M is a continuously differentiable symmetric matrix [60]. In general Eq. (26) is not integrable which
employees that new coordinates z(z,t) may not befound bt 6z and 62702z can always be defined. This

requires M to be uniformly positive definite, so that'the exponential convergence of

0z =0 = dz—0 (28)
Using (26), time-derivative of 6z'= @dx and dx = @ 14z, is given as

4

o (0z) = Féz, (29)
where F' = ((;)@*1 + @g—ﬁ@)’l) is the generalized Jacobian in dz coordinates [60]. The associated quadratic
norm is

d . r rd T
%(6,2 0z) = 20z % (0z) = 202 Foz (30)

Exponential convergence of dz (equivalently dx) to 0 is associated in regions with uniformly negative
definite F.

In‘terms of dx, Eq. (29) can be written as

(6z) = Mézx + ©T Oz = (Mgf + e%) ox, (31)
€T

4

@T
dt
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with M = ©7O being a symmetric positive definite matrix, exponential convergence of §z to 0 implies
exponential convergence of dx to 0. Time rate of change is represented by
of"

(62" Méz) = o™ (w M+ M + Mﬁi.) . (32)

4
dt

Exponential convergence of perturbed nearby trajectories to the nominal trajectory can therefore be

T .
concluded in regions having uniformly negative (% M+ M+ M%).

B. Results and Discussion

The UAV periodic-NTVS model in (6), along with the controls in (8), is uséd in our stability analysis.
Stability along the optimal soaring trajectory (x*,u*) characterized in Section<il”(see Fig. 5), requires the

system under study to satisfy the trigonometric equality defined in/Egq. (32), which will ensure

||| < [l efo Ame= (0L, (33)

T .

Stability required Apqq(z,t) of (% M + M 4+ M%E) to be,uniformly strictly negative as defined in

Eq. (23). The contraction formulation was invoked for the ‘monlinear system in terms of virtual dynamics
T .

relationships, i.e. 0z = @Jdx. Using ® = M = Igys. The eigenvalues of (g—i M—|—M—|—M%) along

the optimal trajectory were then determined. The functions of the eigenvalues of the nonlinear system are

plotted in Fig. 11.
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Figure 11: ”Symmetric jacobian eigenvalue evolution”
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It can be observed in Fig. 11 that eigenvalues A4, A5 and Ag associated with the (%TM +M + M%)
were not strictly negative due which the nonlinear system during the dynamic soaring maneuver exhibits an
unstable response. Numerical simulations performed to ascertain the response of the actual nonlinear'system
when perturbed from its nominal motion (¢ perterbation) reflects an unstable responge: This is evident from
Fig. 12, where the UAV motion diverges from its nominal trajectory and follow an undesirable paths, The
individual response of the individual states of the nonlinear system are depicted in Fig. 13. This unstable

phenomena verifies the conclusion drawn from the contraction analysis.

Wind
300 —
=—Optimal trajectory
7/'7 ==Perturbed trajectory
250 —|

200 —

150 —

Attitude (ft)

100 —

50 —

Start point /\
g /( 1000
0 P
| \ ! I @
-450 -400 -350 -300 -250. . -20_0 -150 -100 -50 0 501000
Eastidirection x(t)(ft) North direction y(t)(ft)

Figure 12:sNumerical simulation for perturbed trajectory

By this result, we conclude, for the first time in literature to the best of our knowledge, that similar
configuration UAV dynamic soaringroptimally to reduce wind shear requirements, are inherently unstable.
This provokes that dynamic soaring requires a control strategy that can overcome the instability possessed
by the system. One directionief developing such controllers can be by trying to construct a stable closed-loop
type one, which should not only provide stabilizability to the system, but can be tuned to perform tracking
and regulatory functions as well. The controllability results we provided in [28] conclude that the pitch and
roll angles (signals) are enough to guarantee full controllability over the UAV performing dynamic soaring.
However, nonlinéar_controllability as defined in [28] does not imply stabilizability. Building on that and
adding the results, of this paper, it is suggested that the closed-loop controller will be handling the pitch
and roll.anglesrbased on tracking the optimal soaring trajectory. It is also possible to consider providing the
pitch and roll signals, generated in this paper when we constructed the optimal control problem, as reference
signals to the controller. Additionally, as a future work, we can study both the stability derivative of the

system analyzed in this paper along with the lie brackets provided controllability in [28] to have a more
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Figure 13: Numerical simulation results for perturbed states

practically perform the soaring process.

rigorous determination for the specifics/parameters of designing a stable closed-loop type controller, or even

other typesiof tracking and regulatory controllers, to make sure the UAV stays consistently on track and can
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C. Expanding the Stability Analysis

Similar to the analysis performed in sectionIIIC, the stability analysis utilizing contraction analysis along,thé
soaring orbit is tested under a different scenario. This is performed with an aim to see if the stability analysis
results vary in case the environmental conditions change. In order to furnish the applieability of the process,
another scenario in which the wind shear parameter was different than the minimum.required wind shear
ascertained through optimization process was utilized. The contraction analysis results as depicted in Figure.
14, clearly demonstrates that that eigenvalues Ay, A5 and A\g associated with the (%’;TM + M+ Mg—’;) were
still not strictly negative due which the nonlinear system during the dynamic soaring maneuver exhibits an
unstable response. Numerical simulations performed to ascertain the response ofthe actual nonlinear system
when perturbed from its nominal motion () perturbation) still reflects@n unstable response. This unstable
phenomena verifies the conclusion drawn from the contraction analysis. This ¢learly demonstrates that the
stability results and, more importantly, the methodology formulated.in thispaper are still valid for diversions

from the actual conditions in a spectrum of variations/scenarios.
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Figure 14:,”Symmetric jacobian eigenvalue evolution of system with different wind shear parameter”
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V. Conclusion

In this paper, we provided a problem formulation for an UAV set to perform dynamic soaring. Thenjwe
introduced an optimal control problem in which an optimal trajectory was found to minimize,the wind shear
requirement for the soaring maneuver. The soaring process provided in this paper has also been shown to be
valid for different classes of UAVs with a range of masses and wing spans. For a nominal UAV, performing
optimized dynamic soaring, we provided a stability analysis, that we think is the first/ofits kind in literature,
to asses stability about the optimal trajectory. The analysis revealed a parallelism with our controllability
work [28] as we needed to use nonlinear stability theory (Contraction theory) beecause the linear stability
theory (Floquet) is inconclusive. The system is unstable according to contraetionitheory, even though the
system is nonlinearly controllable according to our previous work [28]/ Having<thé system controllable but
inherently unstable, as also demonstrated by simulations, means that, any proposed control design has to
have great deal of trajectory tracking and correction to sustain theflight. The stability results given in this
paper has been tested for different wind shear conditions to expand the range of conditions and parametric

variations, under which the stability assessment still holds.
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