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Dynamic soaring phenomenon, exhibited by soaring birds, has long been a biological

inspiration for the aerospace and control engineering communities. If this fascinating phe-

nomenon, which allows soaring birds to perform almost un-powered flights using wind

shear, can be mimicked by Unmanned-Aerial-Vehicles (UAVs), then UAVs performance

have a substantial potential to enhance technologically and economically as well. Even

though there have been considerable amount of research covering the modeling, optimiza-

tion, control and simulation aspects of different UAVs performing dynamic soaring, there is

little to non conclusive work analyzing the stability of such UAVs about the soaring orbits.

In this paper, we present a comprehensive framework for determining the stability of soar-

ing UAVs utilizing both linear (Floquet-based) and nonlinear (Contraction-theory-based)

techniques. Stability analysis under Floquet remained inconclusive , which provoked non-

linear Contraction formulation in order to reach a conclusive stability assessment for the

actual nonlinear fixed-wing UAV performing dynamic soaring. Furthermore, parametric
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variation along with numerical simulations were conducted to ascertain the response of the

actual nonlinear system when perturbed from its nominal motion studied in this paper.

The analysis and simulations revealed that the system posses instability as the UAV motion

diverges from its nominal trajectory and follow an undesirable path. By this result, we

conclude, for the first time in literature, that UAVs performing dynamic soaring in an op-

timal way to reduce wind shear requirements, are inherently unstable. The results of this

paper suggests that mimicking dynamic soaring by UAVs, require careful investigations of

tracking and regulatory controls that should be implemented.

Keywords. Bio-Inspired Flight, Contraction Analysis, Dynamic Soaring, Flight Dynamics, Floquet

Analysis, Optimal control, Unmanned Aerial Vehicles.

Nomenclature

Abbreviations

AR Aspect ratio of the wing

b Wing span (m)

c Wing chord (m)

C Monodromy matrix

CL Lift coefficient

CLα Lift coefficient variation wrt angle of attack

CD Drag coefficient

CD0 Zero lift drag coefficient

D Aerodynamic Drag force (N)

e Oswald efficiency factor

F Generalized Jacobian

f(x, t) Nonlinear function Virtual velocity between flow fields

g Acceleration due to gravity (m/s2)

GPOPS General Purpose OPtimization Software

h Altitude (m)

h0 Surface correctness factor

href Reference altitude (m)

ḣ Rate of change of altitude (m/s)

I Identity matrix

IPOPT Interior Point OPTimizer
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J Performance Index

JS Symmetric Jacobian

K Induced drag coefficient

L Aerodynamic Lift force (N )

LTIS Linear Time Invariant System

LTV S Linear Time Varying System

M Continuously differentiable symmetric matrix

m Mass of the vehicle (kg)

n Load factor

NTV S NonLinear Time Varying System

P T-periodic matrix

q∞ Dynamic pressure (Pa)

R Constant matrix

S Wing planform area (m2)

SNOPT Sparse Nonlinear OPTimizer

t0 Initial time (s)

tf Final time (s)

UAV Unmanned Aerial Vehicle

V UAV flight speed (m/s)

Vwref Reference wind velocity (m/s)

Vw Wind shear velocity (m/s)

V̇W Rate of change of wind velocity (m/s2)

x Position vector along east direction (m)

y Position vector along north direction (m)

y(t) Time varying solution

z Transformed state variable

Greek Symbols

α Angle of attack (°)

β Positive real number

γ Flight path angle (°)

θ Pitch angle (°)
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Θ Square matrix

ρ Density of the air (Kg/m3)

φ Bank angle (°)

ψ Azimuth angle (°)

ΦAt Fundamental solution matrix

λmax Largest Eigenvalue

δ Partial derivative
˙δx Virtual velocity between flow fields

I. Introduction

Dynamic soaring is a fascinating flight strategy that utilizes wind gradients to perform long duration

flights by harvesting atmospheric energy [1]. The energy needed to perform such a long duration of flight

is gained from the wind in the proximity of the surface. In a region of about 20 m above the sea surface,

the speed of the horizontal wind changes considerably with the altitude to yield what is known as ’wind

shear’ [2–4]. By flying across the wind gradient region periodically, energy is harvested from the spatial

wind speed distribution. This has been observed amongst birds (albatrosses, eagles, etc.) and offers promise

for use in the flight of Unmanned Aerial Vehicles (UAVs) [5]. What is fascinating about this maneuver (see

figure 1), is that it enables the soaring birds to travel large distances almost without flapping its wings [6].

The dynamic soaring cycle can be considered to have four characteristic flight phases, namely (a) windward

climb, (b) high altitude turn, (c) tailwind descent, and (d) low altitude turn. To start with the maneuver,

the UAV mimicking soaring birds goes into the head wind gaining height, trading off kinetic energy with

potential energy, and at the highest point takes a steep turn and dives down with tail wind. It continues

to descend until it reaches the lowest point trading potential energy for kinetic energy (gain in the velocity)

until it reaches the minimum possible height. At that point, it takes the low altitude turn and returns to

the original orientation to culminate the energy neutral maneuver cycle.

Nature-inspired flight [2, 4, 5, 7–12], understandingly, attracted many engineering communities because

nature could provide inspiring and already proved to function ideas, techniques and designs for man-made

technologies [13]. The aeronautical and control engineering communities have been researching if the very

powerful dynamic soaring phenomenon can be applied effectively to advance UAVs technology, simply by

mimicking the flight of the soaring birds and fly for free in areas where the wind shear is present [14, 15]. It

is well established that due to the limitation on the size and weight of UAVs, adding on-board energy sources

is very technically-challenging, which limits the range and endurance of these platforms [16] . Therefore,
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Figure 1: Dynamic soaring maneuver

dynamic soaring application can serve a great deal by reducing the need for having larger on-board engines

since the wind shear provides most, if not all, of the power needed for flight.

Not surprising, these potentials of advancing the performance/technology of UAVs by dynamic soaring,

attracted researchers to study all kind of technical aspects of dynamic soaring and its application to UAVs.

Wharington [17] formulated dynamic soaring trajectories for a UAV utilizing heuristic approach (pitch and

bank control) and proposed different approaches for closed-loop design. The heuristics however did not

present the methodology to predict speed gain per loop of maneuver [18]. Later, the heuristic control was

also found ineffective [19]. Zhao [20] studied the optimal dynamic soaring trajectories for loiter, basic, and

travel modes. Dynamic soaring maneuver can be represented by several parameters: maximum altitude,

upper and lower speed, and the maneuver duration (cycle period). Several authors studied the effect of

these parameters on the energy gain and the minimum required wind shear [10, 17, 21–23]. Sachs and Da

Costa [24] performed studies to extend dynamic soaring to full-scale sailplanes. Based upon the values of

wind shear conventionally found near mountain ridges, it was considered possible. Gordan [25] carried out

detailed search in this regard with an aim to prove or disprove the viability of dynamic soaring for full size

aircraft. He showed that full size sailplanes could extract energy from horizontal wind shears, although the

utility of the energy extraction could be marginal depending on the flight conditions and type of sailplane

used. Recently, koessler [26] configured dynamic soaring trajectory optimization into an optimal control

problem, and then presented an online reinforcement learning controller that can execute the DS maneuver

to a steady state. The learning controller was taught by a tracking controller that has been shown to achieve

steady state dynamic soaring control in simulation under stable and known (to the UAV) environmental

conditions. Additionally, the studies [15, 20, 27–30] focused on the flight dynamics, modeling, control, real

time simulations involved in the process of UAVs performing dynamic soaring. It is worth mentioning that
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actually gliders tried taking advantage from the dynamic soaring phenomenon. RC glider utilizing dynamic

soaring that involves performance of oval flight pattern over ridges have succeeded to achieve flight speeds in

excess of 545 mph [31]. The rapid growth in the UAVs and motorized gliders market have further boosted the

requirement to perform long duration autonomous flights utilizing dynamic soaring apart from conventional

energy harvesting techniques such as solar/thermal batteries and static soaring.

In our recent review-work [32], we have discussed the history of biological inspiration by soaring birds

and how this inspiration led to the current studies of UAVs performing dynamic soaring. In the same work,

we documented how nonlinear modeling of the flight dynamics of UAVs have developed to adopt dynamic

soaring. Similarly, numerical optimization/simulation techniques have evolved to provide the tools necessary

for studying UAVs performing dynamic soaring in real time. Moreover, we have shown how one can develop

an optimal control problem to generate a dynamic soaring trajectory in which energy from wind shear

is minimized as well. At the end of our review-work, we identified some challenges to advance dynamic

soaring, namely through two tracks of research: 1) Allowing morphologies to the body of the UAV, so it

reflects similar behaviors to soaring birds which may provide significant enhancements (addressed in [27]),

and 2) Investigating the possibility of nonlinear controllability studies since the fixed-wing UAV problem

is highly nonlinear and that the linear control literature of that problem seems incomplete and immature

(addressed in [28]). In [28], the entire controllability problem was studied and characterized for fixed-wing

UAV performing dynamic soaring. In that paper, it was found that pitch and roll control signals are enough

to guarantee controllability along the dynamic soaring, optimal and non-optimal, trajectories. An interesting

observation in our study of controllability [28] revealed, that geometric nonlinear controllability analysis is

needed for studying the system, not just linear control theory. This is because the UAV with pitch and

roll controls (under-actuated system) was shown nonlinearly controllable even though the system is linearly

uncontrollable. Thus, it became apparent that the system has to be always studied from nonlinear theory

perspective.

Could it be the case that linear analysis fails to conclude stability as it did with controllability? The

literature, to the best of our knowledge, did not have answer to these questions. The only relevant stability

work found is by Swaminathan [33, 34], who performed linear stability analysis (based on eigenvalues). The

problem of augmenting the stability as 6-DOF and 3-DOF dynamic soaring model was treated from the

context of a periodic coefficient system. The eigenvalues and eigenvectors were compared to a 3-DOF system

and the mode shapes to level flight and banked turn. A linear time periodic system about this orbit was

determined and its stability was studied using only linearized analysis techniques. However, the work did not

consider evaluating stability aspects along the trajectory and did not include any nonlinear analysis to verify

the reported lower stability margins. There has been no consolidated work reported on determining the
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stability of the dynamic soaring periodic orbits and its dependence on system parameters. It is exceptionally

important to find out about the stability of the UAV performing dynamic soaring. The trajectories can

get disturbed by gusts or crosswinds causing the UAV to veer off-course. Although a dedicated control

system can be designed to overcome the perturbations, but an inherently stable orbit can greatly reduce

the control effort and power. This is why assessing the stability is of great importance to the control design

advancements as well. It is worth emphasizing that the optimized dynamic soaring trajectories, as presented

in [32], are time varying. This means that traditional equilibrium-based techniques, such as eigenvalues

for linear/linearized systems, simply, cannot be used; This could explain why the dynamic soaring stability

problem has been rarely researched in-depth. One now can see that other stability analysis techniques that

are mathematically defined for time varying systems, should be investigated to determine if they can be

useful to the dynamic soaring problem.

The contribution of this paper is to perform a comprehensive stability analysis along the optimal dynamic

soaring trajectory (x∗,u∗), where x is the state space vector and u is the control input vector. Not only

that these analyses are the first in literature for the concerned problem under study, they are also utilizing

mathematical techniques that can be useful in many other flight dynamics and control studies dealing with

nonlinear time varying systems. Moreover, this paper draws a parallelism in its results with the original

controllability results we published recently [28]. This should enrich and complete the picture for scholars

working on the flight dynamics and control design to enhance/innovate/advance UAV aiming to perform

dynamic soaring in an optimal way.

In this paper, we use the well-defined numerical optimization process and flight dynamic modeling we

recommended in our review-work [32] to find the dynamic soaring optimal trajectory. Since dynamic soaring

loiter maneuver is periodic in nature, the problem of analyzing stability along the trajectory is treated

from the context of a periodic coefficient system. To access the stability aspect along the periodic time

varying soaring trajectory, both linear (Floquet theory) and nonlinear (Contraction theory) techniques are

utilized for the first time in literature for this system. These methods are chosen as they determine stability

characteristics of the system along the optimal trajectory (time-variant) instead of evaluating stability of

equilibrium point(s) on the trajectory. The authors of this paper believe that the provided formulation

process along with the conducted analysis methodology, are generic strategies for evaluating UAV stability

characteristics along optimal soaring trajectories. In other words, the provided framework is extendable to

cover different span of flight scenarios, parameter variations and situations that different classes of UAVs can

be studied under. Additionally, the proposed methodology is computationally-relevant and independent of

particular platform(s). The conclusions and results of the paper have been verified by parametric variations

and numerical simulations, all of which support our results.
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The structure of this paper is as following: Section II introduces the modeling work used in this paper,

along with generating the optimal soaring trajectories that are used in the stability analysis, Sections III and

IV represent the major contribution and stability results of this paper, and Section V concludes the paper.

II. Problem Formulation and Generation of Optimal Trajectories

A. UAV model

The UAV utilized in this research has a nominal wingspan of 1.75 m, fuselage length of 1.5 m and 2.1 kg

mass (Refer Figure 2). The aerodynamic surfaces are constructed utilizing NACA 2412 aerofoil. Complete

details of the UAV model parameters are adopted from [32] and elaborated in table. 1.

Figure 2: UAV model

No Parameter Value No Parameter Value
1 Nominal mass (m) 2.1 Kg 5 Wing chord (c) 0.6 m
2 Fuselage length 1.5 m 6 Fuselage diameter 0.1 m

3 Nominal Wing span
(b) 1.55 m 7 Aspect ratio (AR) 2.9

4 Wing area (S) 1.05m2 8 Oswald’s efficiency
factor (e) 0.8

Table 1: UAV model parameters.

B. Wind Shear Modeling

Dynamic soaring is dependent on wind shear which occurs in the boundary layer over any surface. Wind

shear involves changes in wind speed and/or direction over a short distance height in the atmosphere, and
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can be segregated into different categories, as explained by wharington [17]. The wind shear considered in

this research is the vertical variation of the horizontal wind shear, in which the magnitude of the horizontal

wind increases with altitude. The strength of wind velocity is virtually zero at sea level and increases with

the altitude till its magnitude becomes equal to the boundary layer free stream wind. Majority of the

research on UAV energy extraction from wind shear, has been done with strong assumptions on the wind

shear models, often as it is the case here, conducted and determined empirically. The logic usually is that

given certain geographical and meteorological conditions, the wind shear can be approximated with a wind

model of a certain profile after collecting too many data points that can be satisfactory to construct such

models/profiles. The mean velocity profile of actual wind gradients can be approximated using empirical

models [30, 35–37] utilizing linear or nonlinear wind models (Power or Logarithmic law based).

To approximate wind shear, various empirical models [32] have been used to predict wind profiles over

flat terrains (with varying topographies) including linear [25, 30, 35], exponential [37, 38] or logarithmic

[23, 27, 28, 39, 40] models. Based on the available models in literature and as we cited properly in the paper,

this logarithmic profile is commonly used in meteorological studies and is the most applicable/reliable to

measurements near the surface of the earth and over sea [23, 39, 40]. Due to this reason, the logarithmic

wind shear profile (refer Figure 3) as represented by Eq. (1) is utilized [23, 27, 40].

VW = Vwref
ln h

h0

ln href
h0

, (1)

where Vw is the wind velocity at altitude h, Vwref is the wind velocity at reference altitude href and

h0 is the surface correctness factor.Rate of change of wind velocity with varying altitude is mathematically

represented by Eq. (2):

˙VW =dVW
dt

= dVW
dh

.dh
dt

, (2)

where dVW
dh is the wind shear parameter. It is the parameter whose value is required to be minimized,

such that it is enough to permit sustainable dynamic soaring. Wind shear is the rate of change of wind speed

w.r.t altitude (representing the slope of the wind velocity Vs altitude) and has the units (1/sec). This is the

least amount of wind shear which is required to exist at sea level condition beyond which UAV would not

be able to perform dynamic soaring. This minimum required wind shear is mathematically ascertained by

configuring the problem as Optimal control problem and solved numerically utilizing Optimal Control solver

GPOPS-II (refer section II C)

From Eq. (1), the wind shear ie dVW
dh can be computed as
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Figure 3: Logarithmic wind profile (Vwref=5m/s,href=5m,h0=0.03)
,

dVW
dh

= Vwref 1

h ln
href
h0

. (3)

Also ḣ = dh
dt is given as

ḣ = V sin γ. (4)

Eq. (2) can be written as

˙VW = Vwref 1

h ln
href
h0

V sin γ . (5)

Also Vwref is the minimum required wind shear that is required to perform sustainable dynamic soaring.

Wind shear is the rate of change of wind spped w.r.t altitude (representing the slope of the wind velocity Vs

altitude) and has the units (1/sec). This is the least amount of wind shear which is required to exist at sea

level condition beyond which UAV would not be able to perform dynamic soaring. This minimum required

wind shear is mathematically ascertained by configuring the problem as Optimal control problem and solved

numerically utilizing Optimal Control solver GPOPS-II (refer section II C).
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C. Flight Dynamics Modeling & Optimization Framework

The optimization framework utilized in this research to generate optimal soaring trajectories is based upon

GPOPS-II [41]. This is Matlab® based framework which utilizes variable-order Gaussian quadrature tech-

nique to convert the original continuous-time infinite dimensional optimal control problem into a finite dimen-

sional Nonlinear Programming (NLP) problem. The NLP is then solved utilizing Interior Point OPTimizer

(IPOPT) or Sparse Nonlinear OPTimizer (SNOPT).

In this research, UAV dynamics are modeled utilizing a 3D point-mass model [17, 20, 30, 32] which is

mathematically represented by Eq. (6). It is worth mentioning that the reader may refer to [32] for more

detailed explanation about the modeling process , derivation and assumptions.

V̇ = 1
m

[
−D −mg sin γ −mV̇W cos γ sinψ

]
ψ̇ = 1

mV cos γ [L sinφ−mV̇W cosψ]

γ̇ = 1
mV

[L cosφ−mg cos γ +mV̇W sinψ sin γ]

ẋ = V cos γ sinψ + VW

ẏ = V cos γ cosψ

ḣ = V sin γ

(6)

The state x(t) and the control u(t) vectors are defined in Eq. (7) and Eq. (8) respectively.

x (t) = [V , ψ γ, x, y, h]T , x(t) ∈ R6. (7)

u(t) = [CL, φ],u ∈ R2. (8)

To implement the loiter maneuver, trajectory optimization problem is transformed to an optimal control

problem, that minimizes the performance index (refer Eq. (9), subject to the boundary constraints (refer

Eq. (10)) and path constraints (refer Eqs. (11)).

J = min [Vw,ref ] (9)

x(t)tf = x(t)t0 (10)
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Vmin < V < Vmax,ψmin < ψ < ψmax, γmin < γ < γmax

xmin < x < xmax, ymin < y < ymax,h ≥ 0;φmin < φ < φmax

(11)

where Vw,ref is the minimum required wind shear that still permits dynamic soaring. , tf and to denotes

the final and initial times respectively.

The permissible variations for the state and control variables (in defined units) during the maneuver are

listed in table. 2.

S No Parameter Value S No Parameter Value

1 NonLinear logarithmic
wind model parameter

href = 10m ,
h0= 0.03 6 Max load factor (n) < 6

2 Cycle time 1 to 40s 7 Permissible variation
along east direction −500m to 500m

3 Permissible azimuth
variations -450° to 450° 8 Permissible variation

in north direction −500m to 500m

4 Permissible velocity
variations 5 to 60m/s 9 Permissible altitude

range 0 to 500m

5 Permissible fight path
angle variation −70° to 70° 10 Terminal constraints Final state= Ini-

tial state

Table 2: Permissible state and control variations

D. Impact of UAV model Parameter on Soaring Process

The optimal soaring trajectories for UAVs are usually formulated with the objective to determine the min-

imum wind shear beyond which dynamic soaring will not be possible. This minimum required wind shear

is associated with fixed parameters of the system. Finding the required minimum wind shear to perform

dynamic soaring posed a challenging numerical problem, because of the coupled nonlinear nature of the

equations of motion. The wind shear determined numerically for soaring should be realize-able, i.e. it should

be of a magnitude, which normally and practically exists over conventional environments (such as over sea,

over hills, rural areas and so on), making dynamic soaring possible over these areas.

A parametric sweep of the parameters of the UAV model used in this paper, namely mass and wing span,

was performed to determine the impact of model/parametric variation on soaring process. This was per-

formed to determine the relative impact which these parameters might create on the soaring process and the

determination of the minimum wind shear required to perform dynamic soaring. Evaluating these variations

of the mass and wing span is quite significant as it also tests which classes of UAVs can actually/practically

perform dynamic soaring.

This evaluation is also of another fundamental importance to the context of this research, as stability
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perspectives of these soaring orbits will be subsequently analyzed utilizing linear/nonlinear techniques. The

numerical optimization process was performed initially for the nominal UAV parameters defined in table. 1

and state/control variables bounds as listed in table. 2. The optimization was then extended to a range of

conditions in which certain UAV model parameters such as mass and wing span were varied while the other

process variables as listed in table. 1 and table. 2 were kept the same. Table. 3 depicts the results of the

different cases evaluated in this sweep.

S
No Mass (Kg) Span(m)

Minimum re-
quired wind
shear at sea
level (1/s)

S
No

UAV Mass
(Kg)

Span Value
(m)

Minimum re-
quired wind
shear at sea
level (1/s)

1 1.2 1.25 0.1431 13 1.5 1.25 0.1288
2 1.2 1.55 0.1499 14 1.5 1.55 0.1341
3 1.2 1.75 0.1511 15 1.5 1.75 0.1376
4 1.2 1.95 0.1531 16 1.5 1.95 0.1410
5 2.1 1.25 0.1020 17 3.5 1.25 0.0900
6 2.1 1.55 0.1039 18 3.5 1.55 0.0907
7 2.1 1.75 0.1066 19 3.5 1.75 0.0910
8 2.1 1.95 0.1099 20 3.5 1.95 0.0924
9 4.5 1.25 0.0810 21 5.5 1.25 0.0718
10 4.5 1.55 0.0828 22 5.5 1.55 0.0737
11 4.5 1.75 0.0833 23 5.5 1.75 0.0771
12 4.5 1. 95 0.0847 24 5.5 1.95 0.0799

Table 3: Impact of model parameters on optimization process

The impact of UAV mass variation on the system dynamics is catered in 3-DOF modal as elaborated in

Eq. (6).The variation of span has an direct impact on both the aerodynamic coefficient (CL , CD) as well as

the aerodynamic force (Lift and drag). The aerodynamic modal utilized in this research are in accordance

with [42, 43] and are represented as follows:-

S = b ∗ cnominal;AR = b/cnominal

e = 1.78 ∗ (1− 0.045 ∗AR0.68)− 0.64

CL = CL0+CLαα;CD = CD0+ 1
π∗e∗AR∗CL2

L = 1/2 ∗ ρ ∗ V 2 ∗ S ∗ CL;D = 1/2 ∗ ρ ∗ V 2 ∗ S ∗ CD

(12)

It can be evidently seen that for a given mass, the minimum required wind shear value increases as

the span increases (see figure 4). Similarly, for a given span, the wind shear requirement increases as the

mass decreases. This is understandable from physical sense as well. During the low altitude phase of the

the dynamic soaring cycle, the velocity is high and the angle of attack requirement is low. Lower span
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helps in improving aerodynamic performance (i.e, low induced drag) and therefore lower required minimum

wind shear. Similarly, if the span increases, the induced drag increases and more wind shear is required to

overcome that drag and perform energy neutral soaring process. Likewise, the Dynamic Soaring Force (DSF)

which acts as propulsive source during the soaring process, is directly dependant upon the mass of the UAV.

The magnitude of the force decreases as the mass decreases, stretching the minimum required wind shear to

higher values for sustained soaring.

It can be noticed from the results of the mass and the span parametric variation (as shown in table. 3

and figure 4) that the soaring process and framework used in this paper, to obtain the minimum required

wind shear and therefore the optimal soaring trajectory associated with it, are in fact extendable to other

classes of UAVs.

Figure 4: Variation in minimum required wind-shear: Mass and span variations

E. Generation of Optimal Soaring Trajectories for nominal UAV model

The optimal soaring trajectory, for dynamic soaring loiter maneuver for the nominal UAV parameters defined

in table. 1 and state/control variables bounds as listed in table. 2, is presented in Fig. 5. The optimized

trajectory ensures that energy is being extracted from the wind shear during both wind ward climb and

downwind descent phases. This increase in energy is utilized to overcome the energy consumed during the

high and low altitude turns (in specific the low altitude turn associated with high flight velocities). It is

worth mentioning that the reader may refer to [32] for more detailed explanation and step-by-step process
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to generate the optimal soaring trajectory.

Figure 5: Optimal Loiter trajectory

Similarly, the optimal trajectories for the individual states and the associated optimal control are depicted

in Fig. 6. The angle of attack variation allows the provisioning of excess lift in higher altitude regions

associated with lower velocities. Similarly the bank angle control ensures that the desired flight path angle

and azimuth conditions are met to conform to the energy neutral soaring cycle.

III. Stability Analysis Utilizing Floquet Technique

Having introduced the basics of dynamic soaring and the generation of optimal soaring trajectory for the

loiter maneuver (section II), now we perform the stability analysis. In this section, stability analysis along the

optimal trajectory (x∗,u∗) (as depicted in Figs. 5 and 6), is performed utilizing Floquet theory. Realizing

that the system under study (UAV performing dynamic soaring Eq. (6)), operating with a given u(t), is in

the form of Nonlinear-Time-Varying-System (NTVS), it is clear that traditional spectral analyses, such as

eigenvalue analysis, will not conclude stability about any point or even a periodic orbit. As a mater of fact,

this is true even if all the eigenvalues are with strict negative real part for all t. This has been established by a

counter example provided by Markus and Yamabe [44]. Therefore, we turn our attention to Floquet method.
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Figure 6: Optimal trajectories for state space and control signals

Floquet analysis is applicable to evaluate the stability of a periodic Linear-Time-Varying-System (LTVS)

[45–51] by transforming the periodic-LTVS into that of a Linear-Time-Invariant-System (LTIS). Stability of

the system is then determined through spectral/eigenvalue analysis. Loiter maneuver being periodic allows

the applicability of Floquet theory for evaluating the stability characteristics of the linearized system along

the optimal soaring trajectory. Figure 7 shows the steps followed in our analysis. Also, the reader can

refer the recent papers [51–54] that have applied Floquet as part of their stability analysis for applications

involving NTVS for bio/bio-inspired systems.

Figure 7: Stability assessment utilizing Floquet
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A. Mathematical Framework

Consider the periodic-LTVS,

ẋ = A (t) x, (13)

where x ∈ Rn with A ∈ Rn×n and T -periodic in t. The flow associated with Eq.(13) can be represented by

the so-called fundamental solution matrix, written as Eq.(14)

ΦA
t = →exp

(ˆ t

0
A(τ)dτ

)
∈ Rn×n. (14)

The fundamental solution matrix of the system Eq.(13), computed after one period T , is known as the

monodromy matrix C = ΦA
T .

Theorem 1 Linear Floquet Theorem([55], pg. 11 and [51]). Every fundamental matrix solution ΦA
t

of the periodic-LTVS (13) can be represented as the product ΦA
t = P(t)eRt of a T -periodic matrix (i.e.,

P(t) = P(t+ T )) and R is a constant matrix given by R = 1
T ln C.

Theorem 2 The system (13) is uniformly stable if and only if all Floquet multipliers (eigenvalues of C)

have moduli less than 1.

Based on Theorem 1, one can use the transformation x = Py to transform the periodic-LTVS (13) to the

LTIS,

ẏ = Ry (15)

whose flow after one period is exactly equivalent to the flow of the original periodic-LTVS (13) after one

period: eRT = ΦA
T . Then, with P(t) bounded and R being a constant matrix, one can compute the

eigenvalues to determine stability.

Consider a periodic-NTVS,

ẋ(t) = F (x, t), (16)

where x ∈ Rn is the state vector. We can linearize the system (16), so we get a system in the form of (13)

in which we can use the results of Theorems 1 and 2 (Floquet method). This can be achieved and applied

to the system under study in this paper as shown in figure. 7.

B. Results and Discussion

The nominal UAV model in (6), along with the controls in (8) and its parameters given in table. 1 and

table. 2, is used in our stability analysis. This system is periodic-NTVS in nature and we are studying the
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stability along the optimal dynamic soaring trajectory (x∗,u∗) characterized in Section II (see Fig. 5). The

system under study was numerically integrated to compute the state transition matrix

Φ(t) =
[
y1(t), . . . ,y6(t)

] [
y1

0 , . . . ,y6
0
]−1 (17)

where y1(t), . . . ,y6(t) are the time varying solutions to the independent initial conditions y1
0 , . . . ,y6

0 .

The Monodromy matrix was ascertained utilizing Eq. (18)

C = Φ(T ) =
[
y1(T ) y2(T ) . . . y6(T )

]
(18)

Having the Monodromy matrix constructed, the Floquet multipliers of the Monodromy matrix were deter-

mined. The analysis revealed that the periodic solution is Non-hyperbolic in nature, as three of the Floquet

multipliers lie exactly on the unit disc and three inside the unit circle, as shown in Fig. 8.
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Figure 8: Eigenvalues of the Monodromy matrix

The stability analysis of the system is inconclusive since multiple of Floquet multipliers are on the unit

circle. It is also worth mentioning that, since none of the Floquet multipliers lies outside the unit circle,

the system could not be considered as unstable with assurance [45]. This result emphasizes the necessity

of performing further studies which utilizes nonlinear analysis tools to evaluate stability. It is remarkably

interesting that linear analysis for the UAV under study is inconclusive under the powerful Floquet method.
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This, in a way, draws a parallelism to our controllability results in [28], where the Lie algebraic structure of

the system makes nonlinear analysis a must!

C. Expanding the Stability Analysis

Now that the stability analysis along the soaring orbit was performed for the nominal UAV model parameters,

it remains to test if the stability assessment would change with different scenarios. In another word, we should

test if the inconclusive assessment of stability through linear analysis still hold with different scenarios other

than the case we used in our analysis for the nominal UAV parameters. This is significantly important for

showing that our stability results can be extended to a range of parameters other than the nominal values.

As we have shown in table. 3, the process to generate the dynamic soaring optimal trajectory holds with

different combinations of the mass and span, and hence, one can determine the minimum required wind

shear that is the main characteristic associated with such optimized trajectories. As one would expect, the

stability analysis conducted with the nominal UAV parameters holds with different variations similar to

those of table. 3.

Since the minimum wind shear is the most important characteristic/parameter of a given soaring orbit,

we decided to expand our stability analysis in that direction. In order to furnish the applicability of the

process formulated in this section, a different scenario was simulated to asses stability or otherwise of the

UAV. The minimum required wind shear parameter as determined during the optimization process was

utilized to reflect the available wind shear. We simulated different scenarios in which the strength of the

wind shear available is greater than what is actually needed to perform energy neutral soaring cycles. It is

evident from Fig. 9, that the stability results ascertained earlier are still valid. Three of the Eigenvalues of

the Monodromy Matrix still remaining on the unit circle, however, the location of the other three eigenvalues

which are within the unit circle shifts a bit. They move closer to the unit circle. The stability results and,

more importantly, the methodology formulated in this paper are still valid for diversions from the actual

conditions for different variations/scenarios.

IV. Stability Analysis Utilizing Contraction Theory

Having analyzed the stability perspectives utilizing linear analysis tools, next we extend the analysis to

nonlinear domain. In this section, we perform the stability analysis utilizing nonlinear Contraction analysis

technique [56–58]. The use of contraction analysis in this study is motivated by the fact that this technique

can be applied directly to the original nonlinear system unlike majority of the other techniques (such as

nonlinear Lypnov and linear eigenvalue analysis) which utilize linearized approximations and assess stability

of equilibrium point(s). Also it does not require the information of what the nominal motion of the system
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Figure 9: Eigenvalues migration of the perturbed Monodromy matrix

is. The system is stable in the contraction region, where the final behavior of the system is independent of

initial perturbations, employing convergence of all perturbed trajectories to the nominal trajectory. Realizing

that the fixed-wing UAV problem under study possessed a Lie algebraic structure which required differential

geometrical analysis [28] and that linear analysis fails to give information regarding stability (see section

III), one finds it tempting to pursue/investigate nonlinear stability analysis; there is a possibility of some

parallelism between the present stability analysis and the conducted controllability one [28] in the sense that

linear analyses seem to fail and nonlinear analyses seem to be necessary. An advantage of Contraction theory

is that it concludes a kind of stability that is associated with trajectories independent on initial conditions,

which is useful given the application of the system under study.

A. Mathematical Framework

Consider a general nonlinear system

ẋ = f(x, t), (19)

where f ∈ Rn×1 is the nonlinear function and x ∈ Rn×1 represents the state. The dynamical system

represented by (19) can be imagined as a fluid flow with ẋ and x as velocity and position vectors respectively
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at time t. The exact differential relation is given by (20)

˙δx = δf(x, t)
δx

δx, (20)

where δx is a virtual displacement.

Next consider two neighboring trajectories in the flow field defined by Eq.(20). with δx being the virtual

displacement between them (Fig. 10). The associated quadratic tangent form [59] is defined by Eq. (21)

Figure 10: Path flow of two nearby perturbed trajectories

d

dt

(
δxT δx

)
= 2

(
δxT

)
(δẋ) = 2δxT ∂f

∂x
δx. (21)

Let us assume λmax(x, t) to be the largest eigenvalue of the symmetric Jacobian Js defined by

Js = 1
2

(
∂f

∂x
+ ∂f

∂x

T
)

. (22)

Convergence of virtual displacement vector δx to 0 is associated with regions having uniformly negative

definite Jacobian. This is defined [58] by

∃β > 0, ∀x, ∀t ≥ 0 such that λmax(x, t) ≤ −βI < 0, (23)

where I is the identity matrix. Then, by using (21) we have

d

dt

(
δxT δx

)
≤ 2λmaxδxT δx, (24)
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and hence

‖δx‖ ≤ ‖δx0‖ e
´ t

0 λmax(x,t)dt. (25)

Now if λmax(x, t) is uniformly strictly negative, then from (25), ‖δx‖ converges exponentially to zero irre-

spective of the initial condition δx0. This motivates the following definition.

Definition 1 [58]: Given system dynamics (19), a contraction region exist in the state space manifold if

the associated Jacobian defined by (23) is uniformly negative definite in that region.

The displacement vector δx can alternatively be expressed by a transformation defined by

δz = Θδx, (26)

where Θ(x, t) is a square matrix. The associated quadratic norm is represented by

δzT δz = δxTΘTΘδx

δzT δz = δxTMδx,
(27)

where M is a continuously differentiable symmetric matrix [60]. In general Eq. (26) is not integrable which

employees that new coordinates z(x, t) may not be found but δz and δzT δz can always be defined. This

requires M to be uniformly positive definite, so that the exponential convergence of

δz → 0 =⇒ δx→ 0 (28)

Using (26), time-derivative of δz = Θδx and δx = Θ−1δz, is given as

d

dt
(δz) = F δz, (29)

where F =
(
Θ̇Θ−1 + Θ δf

δxΘ−1
)

is the generalized Jacobian in δz coordinates [60]. The associated quadratic

norm is
d

dt
(δzT δz) = 2δzT d

dt
(δz) = 2δzTF δz (30)

Exponential convergence of δz (equivalently δx) to 0 is associated in regions with uniformly negative

definite F .

In terms of δx, Eq. (29) can be written as

ΘT d

dt
(δz) = Mδẋ+ ΘT Θ̇δx =

(
M∂f

∂x
+ ΘT Θ̇

)
δx, (31)
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with M = ΘTΘ being a symmetric positive definite matrix, exponential convergence of δz to 0 implies

exponential convergence of δx to 0. Time rate of change is represented by

d

dt

(
δxTMδx

)
= δxT

(
∂f

∂x

T

M + Ṁ + M ∂f

∂x
.
)
δx. (32)

Exponential convergence of perturbed nearby trajectories to the nominal trajectory can therefore be

concluded in regions having uniformly negative
(
∂f
∂x

TM + Ṁ + M ∂f
∂x

)
.

B. Results and Discussion

The UAV periodic-NTVS model in (6), along with the controls in (8), is used in our stability analysis.

Stability along the optimal soaring trajectory (x∗,u∗) characterized in Section II (see Fig. 5), requires the

system under study to satisfy the trigonometric equality defined in Eq. (32), which will ensure

‖x‖ ≤ ‖x0‖ e
´ t

0 λmax(x,t)dt. (33)

Stability required λmax(x, t) of
(
∂f
∂x

TM + Ṁ + M ∂f
∂x

)
to be uniformly strictly negative as defined in

Eq. (23). The contraction formulation was invoked for the nonlinear system in terms of virtual dynamics

relationships, i.e. ∂z = Θ∂x. Using Θ = M = I6×6. The eigenvalues of
(
∂f
∂x

TM + Ṁ + M ∂f
∂x

)
along

the optimal trajectory were then determined. The functions of the eigenvalues of the nonlinear system are

plotted in Fig. 11.

Figure 11: ”Symmetric jacobian eigenvalue evolution”
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It can be observed in Fig. 11 that eigenvalues λ4,λ5 and λ6 associated with the
(
∂f
∂x

TM + Ṁ + M ∂f
∂x

)
were not strictly negative due which the nonlinear system during the dynamic soaring maneuver exhibits an

unstable response. Numerical simulations performed to ascertain the response of the actual nonlinear system

when perturbed from its nominal motion (ψ perterbation) reflects an unstable response. This is evident from

Fig. 12, where the UAV motion diverges from its nominal trajectory and follow an undesirable path. The

individual response of the individual states of the nonlinear system are depicted in Fig. 13. This unstable

phenomena verifies the conclusion drawn from the contraction analysis.

Figure 12: Numerical simulation for perturbed trajectory

By this result, we conclude, for the first time in literature to the best of our knowledge, that similar

configuration UAV dynamic soaring optimally to reduce wind shear requirements, are inherently unstable.

This provokes that dynamic soaring requires a control strategy that can overcome the instability possessed

by the system. One direction of developing such controllers can be by trying to construct a stable closed-loop

type one, which should not only provide stabilizability to the system, but can be tuned to perform tracking

and regulatory functions as well. The controllability results we provided in [28] conclude that the pitch and

roll angles (signals) are enough to guarantee full controllability over the UAV performing dynamic soaring.

However, nonlinear controllability as defined in [28] does not imply stabilizability. Building on that and

adding the results of this paper, it is suggested that the closed-loop controller will be handling the pitch

and roll angles based on tracking the optimal soaring trajectory. It is also possible to consider providing the

pitch and roll signals, generated in this paper when we constructed the optimal control problem, as reference

signals to the controller. Additionally, as a future work, we can study both the stability derivative of the

system analyzed in this paper along with the lie brackets provided controllability in [28] to have a more
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Figure 13: Numerical simulation results for perturbed states

rigorous determination for the specifics/parameters of designing a stable closed-loop type controller, or even

other types of tracking and regulatory controllers, to make sure the UAV stays consistently on track and can

practically perform the soaring process.
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C. Expanding the Stability Analysis

Similar to the analysis performed in sectionIIIC, the stability analysis utilizing contraction analysis along the

soaring orbit is tested under a different scenario. This is performed with an aim to see if the stability analysis

results vary in case the environmental conditions change. In order to furnish the applicability of the process,

another scenario in which the wind shear parameter was different than the minimum required wind shear

ascertained through optimization process was utilized. The contraction analysis results as depicted in Figure.

14, clearly demonstrates that that eigenvalues λ4,λ5 and λ6 associated with the
(
∂f
∂x

TM + Ṁ + M ∂f
∂x

)
were

still not strictly negative due which the nonlinear system during the dynamic soaring maneuver exhibits an

unstable response. Numerical simulations performed to ascertain the response of the actual nonlinear system

when perturbed from its nominal motion (ψ perturbation) still reflects an unstable response. This unstable

phenomena verifies the conclusion drawn from the contraction analysis. This clearly demonstrates that the

stability results and, more importantly, the methodology formulated in this paper are still valid for diversions

from the actual conditions in a spectrum of variations/scenarios.

Figure 14: ”Symmetric jacobian eigenvalue evolution of system with different wind shear parameter”
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V. Conclusion

In this paper, we provided a problem formulation for an UAV set to perform dynamic soaring. Then, we

introduced an optimal control problem in which an optimal trajectory was found to minimize the wind shear

requirement for the soaring maneuver. The soaring process provided in this paper has also been shown to be

valid for different classes of UAVs with a range of masses and wing spans. For a nominal UAV performing

optimized dynamic soaring, we provided a stability analysis, that we think is the first of its kind in literature,

to asses stability about the optimal trajectory. The analysis revealed a parallelism with our controllability

work [28] as we needed to use nonlinear stability theory (Contraction theory) because the linear stability

theory (Floquet) is inconclusive. The system is unstable according to contraction theory, even though the

system is nonlinearly controllable according to our previous work [28]. Having the system controllable but

inherently unstable, as also demonstrated by simulations, means that any proposed control design has to

have great deal of trajectory tracking and correction to sustain the flight. The stability results given in this

paper has been tested for different wind shear conditions to expand the range of conditions and parametric

variations, under which the stability assessment still holds.
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43 Niţă, M. and Scholz, D., Estimating the Oswald factor from basic aircraft geometrical parameters,

Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV, 2012.

44 Markus, L. and Yamabe, H., “Global stability criteria for differential systems,” Osaka Mathematical

Journal, Vol. 12, No. 2, 1960, pp. 305–317.

45 Nayfeh, A. H. and Balachandran, B., Applied nonlinear dynamics: analytical, computational, and exper-

imental methods, John Wiley & Sons, 2008.

46 Brockett, R. W. et al., “Asymptotic stability and feedback stabilization,” Differential geometric control

theory, Vol. 27, No. 1, 1983, pp. 181–191.

47 Sussmann, H. J. et al., “Subanalytic sets and feedback control,” J. Differential Equations, Vol. 31, No. 1,

1979, pp. 31–52.

48 Coron, J.-M., “A necessary condition for feedback stabilization,” Systems & Control Letters, Vol. 14,

No. 3, 1990, pp. 227–232.

49 Kawski, M., “Stabilization of nonlinear systems in the plane,” Systems & Control Letters, Vol. 12, No. 2,

1989, pp. 169–175.

30

Page 30 of 31AUTHOR SUBMITTED MANUSCRIPT - BB-102639.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



50 Orsi, R., Praly, L., and Mareels, I., “Necessary conditions for stability and attractivity of continuous

systems,” International Journal of Control , Vol. 76, No. 11, 2003, pp. 1070–1077.

51 Maggia, M., Eisa, S. A., and Taha, H. E., “On higher-order averaging of time-periodic systems: reconcil-

iation of two averaging techniques,” Nonlinear Dynamics, 2019, pp. 1–24.

52 Hassan, A. M. and Taha, H. E., “Higher-order averaging analysis of the nonlinear time-periodic dynam-

ics of hovering insects/flapping-wing micro-air-vehicles,” 2016 IEEE 55th Conference on Decision and

Control (CDC), IEEE, 2016, pp. 7477–7482.

53 Hassan, A. M. and Taha, H. E., “A combined averaging-shooting approach for the trim analysis of hovering

insects/flapping-wing micro-air-vehicles,” AIAA Guidance, Navigation, and Control Conference, 2017, p.

1734.

54 Taha, H. E., Tahmasian, S., Woolsey, C. A., Nayfeh, A. H., and Hajj, M. R., “The need for higher-

order averaging in the stability analysis of hovering, flapping-wing flight,” Bioinspiration & biomimetics,

Vol. 10, No. 1, 2015, pp. 016002.

55 Hale, J., “Ordinary Differential Equations,” 1969.

56 Lohmiller, W. and Slotine, J.-J., “Control system design for mechanical systems using contraction theory,”

IEEE Transactions on Automatic Control , Vol. 45, No. 5, 2000, pp. 984–989.

57 Lohmiller, W. and Slotine, J.-J. E., “Nonlinear process control using contraction theory,” AIChE journal ,

Vol. 46, No. 3, 2000, pp. 588–596.

58 Lohmiller, W. and Slotine, J.-J. E., “On contraction analysis for non-linear systems,” Automatica, Vol. 34,

No. 6, 1998, pp. 683–696.

59 Arnold, V., “Mathematical methods of classical physics,” Graduate Texts in Mathematics, Vol. 60, 1978.

60 Lovelock, D. and Rund, H., Tensors, differential forms, and variational principles, Courier Corporation,

1989.

31

Page 31 of 31 AUTHOR SUBMITTED MANUSCRIPT - BB-102639.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt


