
Automatica 133 (2021) 109735

t
a
a
t
a
a

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

Lie bracket approximation-based extremum seekingwith vanishing
input oscillations✩

Mahmoud Abdelgalil ∗, Haithem Taha
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92617, United States of America

a r t i c l e i n f o

Article history:
Received 16 January 2021
Received in revised form 6 April 2021
Accepted 14 April 2021
Available online 3 June 2021

Keywords:
Extremum seeking
Lie bracket approximations
Adaptive control

a b s t r a c t

In recent years, an approach to extremum seeking control made it possible to design control vector
fields that lead to asymptotic stability of the minimum point provided that the minimum value of the
function is known a priori. In this work we aim to relax that assumption. We propose an extremum
seeking control law that converges to the minimum point with vanishing control oscillations, without
access to the minimum value of the cost function. We provide a numerical example to support our
results.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Extremum seeking control is an adaptive control technique
hat drives the steady-state response of a dynamical system to
neighborhood of the minimum point of a cost function in the
bsence of direct access to gradient information. For more details,
he reader is referred to Ariyur and Krstic (2003), Oliveira, Krstić,
nd Tsubakino (2017), Suttner (2020b), Tan, Moase, Manzie, Nešić,
nd Mareels (2010) and the references therein. In this paper,

we focus on extremum seeking systems that exploit high am-
plitude, high frequency, sinusoidal signals. This type of signal
is prominently used in motion planning of nonholonomic sys-
tems (Hassan & Taha, 2020; Liu, 1997a; Murray & Sastry, 1993),
and techniques from averaging theory are typically applied for
analysis (Liu, 1997b; Maggia, Eisa, & Taha, 2020). The first con-
nection to the motion planning framework appears in the Ref.
Dürr, Stankovic, Ebenbauer, and Johansson (2013). Thenceforth,
several authors have contributed to this line of work, e.g. Dürr,
Krstić, Scheinker, and Ebenbauer (2015, 2017), Grushkovskaya
and Ebenbauer (2020), Grushkovskaya, Zuyev, and Ebenbauer
(2017), Labar, Feiling, and Ebenbauer (2018), Scheinker and Krstić
(2014a, 2014b), Suttner (2019, 2020a) and
Suttner and Dashkovskiy (2017).

Traditional extremum seeking (Dürr et al., 2013; Krstić &
Wang, 2000) suffers from persistent oscillations of the steady

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Raul
Ordonez under the direction of Editor André L. Tits.
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tate response around the minimum point. A solution was pro-
osed in Scheinker and Krstić (2014b), where the authors ex-
ended the averaging techniques in Liu (1997b) to nonsmooth
ystems, which enabled analysis for a set of nonsmooth con-
rol vector fields with useful properties such as vanishing at
inimum points. A different set of nonsmooth control func-

ions was proposed in Suttner and Dashkovskiy (2017), which
llowed asymptotic stability of the minimum point. Later, it was
hown in Grushkovskaya et al. (2017) that both sets of control
unctions proposed in Scheinker and Krstić (2014b) and Suttner
nd Dashkovskiy (2017) belong to a unifying class of generating
ector fields. Nevertheless, one of the main assumptions in all
hese efforts (Grushkovskaya & Ebenbauer, 2020; Grushkovskaya
t al., 2017; Scheinker & Krstić, 2014b; Suttner & Dashkovskiy,
017) to guarantee asymptotic convergence to the minimum is
hat the function value at the minimum point is known a priori.
his was pointed out explicitly in several locations, for instance
n Grushkovskaya and Ebenbauer (2020) and Grushkovskaya et al.
2017).

The contribution of this paper is to provide an extension of the
esults highlighted so far to the case when the minimum value
f the function is unknown. Specifically, we prove asymptotic
onvergence to the minimum point with bounded amplitude and
requency, for all initial conditions in a subset of the epigraph of
he cost function.

. Main theorem

Notations: We use bold characters to distinguish vectors and
ector valued maps from scalars. Let D ⊂ Rn be a subset. We
enote the set of k-times continuously differentiable real-valued

k
unctions on D by C (D;R). We denote by ej the jth canonical unit
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ector in Rn. The set of vector fields with regularity ν ∈ N on Rn is
denoted by Γ ν(Rn). The Lie derivative of a function g ∈ C1(Rn

;R)
along a vector field f ∈ Γ ν(Rn) is written as Lf g(x). The Lie
bracket between two vector fields f 1, f 2 ∈ Γ 1(Rn) is computed as
[f 1, f 2](x) = Jf 2 (x)f 1(x)− Jf 1 (x)f 2(x), where Jf (x) is the standard
Jacobian of f in the x-coordinates.

Let D ⊂ Rn be a bounded subset with a nonempty interior.
Suppose that J : D → R is a cost function that has the following
properties:

Assumption 2.1. Assume that J ∈ C3(D;R) and that there exists
a unique point x∗ ∈ D, such that J̃(x) = J(x) − J∗ > 0 ∀x ̸= x∗,
where J∗ = J(x∗) and

κ1 J̃(x)2−
1
m ≤ ∥∇J(x)∥2 ≤ κ2 J̃(x)2−

1
m

γ1 J̃(x)1−
1
m ≤ ∥∇

2J(x)∥ ≤ γ2 J̃(x)1−
1
m

here κi, γi > 0 and m ≥ 1.

Next, define the epigraph and strict epigraph of J

epi(J) =
{
(x, z) ∈ D× R

⏐⏐J(x)− z ≤ 0
}

epiS(J) =
{
(x, z) ∈ D× R

⏐⏐J(x)− z < 0
}
,

et θ = (x, z) ∈ epiS(J), and define the functions gi : epiS(J) →
, i ∈ {1, 2, 3}

g1(θ) = J̃(x)− J0, g2(θ) = z − J∗ − z0

g3(θ) =
tanh(J̃(x)2−

1
m )

z − J(x)
− y0

(2.1)

here J0, y0, z0 are positive constants. Let ϵ > 0 and define the
omains
∆0 =

{
θ ∈ epiS(J)

⏐⏐gi(θ) ≤ 0, ∀i ∈ {1, 2, 3}
}

∆ϵ =
{
θ ∈ epiS(J)

⏐⏐gi(θ) ≤ ϵ, ∀i ∈ {1, 2, 3}
}

Let Λ denote the set of all ordered pairs (j, s), where j ∈

{1, . . . , n}, s ∈ {1, 2}. Then, consider the dynamical system

θ̇ = f 0(θ)+
∑
λ∈Λ

f λ(θ)uλ(t)

f 0(θ) = −(z − J(x)) en+1

f j,s(θ) = Fs(z − J(x)) ej

(2.2)

and the functions uj,1, uj,2 (the dithers) are given by

uj,1(t) = 2
√
πωjω sin(2πωjωt)

uj,2(t) = 2
√
πωjω cos(2πωjωt)

(2.3)

here ω ∈ (0,∞), ωj ∈ N, ∀j ∈ {1, 2, . . . , n}, and the functions
1(·), F2(·) are given by:

F1(y) =
√
y sin (log(y))

F2(y) =
√
y cos (log(y))

(2.4)

ote that other choices for Fs(·) are possible (Grushkovskaya et al.,
017). Also note that the second equation in system (2.2) is
imilar to the approach in Suttner (2019).

Theorem 2.2. Suppose that the function J satisfies Assumption 2.1,
and consider the system defined by (2.2), (2.3) and (2.4). Fix a choice
for the collection of frequencies ωj ∈ N, ∀j ∈ {1, 2, . . . , n} such
that ∀i ̸= j, ωi ̸= ωj. Then, ∃ω∗

∈ (0,∞) such that ∀ω ∈

(ω∗,∞), ∀θ(0) ∈ ∆0 we have:

1. θ(t) ∈ ∆ϵ,∀t ∈ [0,∞),
2. θ(t) → (x∗, J∗) as t → ∞.

Proof. The proof is in Appendix B. Note that we outline a proce-
dure to estimate a sufficiently high frequency ω∗ in Lemmas A.2
and A.3.
2

Fig. 1. (Left): Illustration of ∆0,∆ϵ and sample trajectories, (right): Numerical
results of Example 3.1 for the approach in Grushkovskaya et al. (2017) (top),
and our approach (bottom).

Remark 2.3. Since J(x(0)) is available via measurement, it is
always possible to place z(0), which is an internal state of the
controller, such that the initial condition strictly lies in ∆0. We
emphasize that this does not require additional information other
than online measurement of the function value.

3. Numerical simulations

Example 3.1. Let x ∈ R2, and consider the dynamical system
ẋ = A(t)(x− x∗)+ Bu

J(x, t) =
3
2
∥x− x∗∥2 + 5(1+ exp(−t))

(3.1)

here u ∈ R2 is the control input, x∗ = (1,−1), and

(t) =
[

cos(t)2 sin(t)2

− sin(t)2 cos(t)2

]
, B =

[
1 1
−1 1

]
The numerical results for the proposed control law are shown

in Fig. 1, where we used the initial conditions x(0) = (−3, 3),
(0) = J(x(0)) + 3 = 61, and the frequency parameters ω =

, ω1 = 1, ω2 = 2.

Remark 3.2. We remark that the proposed method can toler-
ate bounded monotonic decrease of the minimum value of the
function as demonstrated in the provided example. However,
we emphasize that it does not tolerate general time-dependent
variations of the cost function in the current formulation. This
is due to the nature of the dynamic upper bound on the cost
function (i.e. z(t)).

4. Conclusion and future work

In this brief note, we propose an extension to extremum seek-
ing control via Lie bracket approximations that allows asymptotic
convergence to the minimum point for a cost function in the
absence of information on its minimum value. The proposed
control law leads to bounded control signals that vanish as the
system converges to the minimum point, and bounded frequency
of oscillation. We also a provide a procedure to obtain an estimate
on the required frequency. Numerical simulations show that sim-
ilar results may hold for the case of a dynamic cost function under
appropriate assumptions on the dynamics.

Acknowledgments

The authors like to acknowledge the support of the NSF Grant
CMMI-846308. The authors also thank the reviewers who pro-
vided constructive suggestions to improve the manuscript. The
first author would like to thank Prof. Anton Gorodetski for fruitful
discussions, and Prof. Mostafa Abdallah for his continued support.



M. Abdelgalil and H. Taha Automatica 133 (2021) 109735

A

ζ

I
c
f
o

T

o
h
R
s

ppendix A. Preliminary results

Consider the Initial Value Problem (IVP)

˙(t) = f 0(ζ(t))+
∑
λ∈Λ

f λ(ζ(t)) uλ(t), ζ(0) ∈ Ξ0 (A.1)

where Ξ0 ⊂ Ξ ⊂ Rn, Λ is the set of all ordered pairs (j, s), j ∈
{1, 2, . . . , n}, s ∈ {1, 2}, f 0, f λ ∈ Γ 2(Ξ ) and the dither signals
uλ(·) are defined by Eq. (2.3)

Lemma A.1 (Dürr et al., 2013; Liu, 1997b; Suttner, 2019). Let g ∈

C3(Ξ ;R). Then, for every solution ζ : I → Ξ of (A.1), the function
g ◦ ζ : I → R satisfies

g(ζ(t))
⏐⏐t2
t1
= Rg

1(ζ(t), t)
⏐⏐t2
t1
+

∫ t2

t1

(
F g (ζ(t))+ Rg

2(ζ(t), t)
)
dt

where I is the interval of existence and uniqueness of ζ(·), t1, t2 ∈

I, t2 > t1, and

F g (ζ) = Lf 0g(ζ)−
m∑
j=1

L[f j,1,f j,2]g(ζ)

Rg
1(ζ, t) =

∑
λ∈Λ

Lf λg(ζ) Uλ(t)

−

∑
λ1,λ2∈Λ

Lf λ2 Lf λ1 g(ζ) Uλ1,λ2 (t)

Rg
2(ζ, t) = −

∑
λ∈Λ

Lf 0Lf λg(ζ) Uλ(t)

+

∑
λ1,λ2∈Λ

Lf 0Lf λ2 Lf λ1 g(ζ) Uλ1,λ2 (t)

+

∑
λ1,λ2,λ3∈Λ

Lf λ3 Lf λ2 Lf λ1 g(ζ) Uλ1,λ2 (t)uλ3 (t)

Uλ(t) =
∫

uλ(t) dt

Uλ1,λ2 (t) =
∫ (

vλ1,λ2 + Uλ1 (t) uλ2 (t)
)
dτ

vλ1,λ2 =

⎧⎨⎩
+1 λ1 = (j, 1) & λ2 = (j, 2)
−1 λ1 = (j, 2) & λ2 = (j, 1)
0 otherwise

Lemma A.2. Let Ξ ⊆ Rn, gi ∈ C3(Ξ ;R) ∀i ∈ {1, 2, . . . , r}. Let
ϵ > 0 and define

∆0 =
{
ζ ∈ Ξ

⏐⏐gi(ζ) ≤ 0, ∀i ∈ {1, 2, .. , r}
}

∆ϵ =
{
ζ ∈ Ξ

⏐⏐gi(ζ) ≤ ϵ, ∀i ∈ {1, 2, .. , r}
}

and the subsets ∆i
ϵ =

{
ζ ∈ ∆ϵ

⏐⏐0 ≤ gi(ζ) ≤ ϵ
}
. Suppose that

∀i ∈ {1, 2, . . . , r}, whenever ζ ∈ ∆i
ϵ , the following bounds holdRgi

1 (ζ, t)
 ≤

cgi1
√
ω
,

Rgi
2 (ζ, t)

 ≤
cgi2
√
ω
, F gi (ζ) ≤ −bgi

∀t ∈ R, where cgi1 , c
gi
2 , b

gi > 0 are constants. Then ∃ω∗
∈ (0,∞)

such that ∀ω ∈ (ω∗,∞),∀ζ(0) ∈ ∆0 and maximal solution ζ : I →
∆ϵ for the IVP (A.1), where 0 ∈ I = (t−e , t

+
e ),

lim sup
τ→t+e

gi(ζ(τ )) < ϵ, ∀i ∈ {1, 2, . . . , r}

Proof. Fix δ ∈ (0, ϵ). If gi(ζ(t)) < δ, ∀t ∈ [0, t+e ), the proof is
complete. If not, then, by continuity of gi ◦ζ and the Intermediate
Value Theorem, ∃t , t ∈ I , t > t ≥ 0, where g (ζ(t ))
1 2 2 1 i 1

3

= 0, gi(ζ(t2)) = δ, and ζ(t) ∈ ∆i
ϵ, ∀t ∈ [t1, t2]. Using the bounds

on Rgi
1 , R

gi
2 , F

gi and Lemma A.1, we get

gi(ζ(t2)) ≤✘✘✘✘⁓0
gi(ζ(t1)) +

2cgi1
√
ω

+

∫ t2

t1

(
−bgi +

cgi2
√
ω

)
dt

We define

ω∗
= max

i∈{1,2,...,r}

{(2cgi1
δ

)2
,

( cgi2
bgi

)2}
and observe that ∀ω ∈ (ω∗,∞),∀i ∈ {1, 2, . . . , r}, we have

gi(ζ(t2)) < δ H⇒ lim sup
τ→t+e

gi(ζ(τ )) < ϵ □

Note that ω∗ in the proof of Lemma A.2 gives an estimate of
the required frequency of oscillation in terms of the constants
cgi1 , c

gi
2 , b

gi and a choice of δ ∈ (0, ϵ). Thus, to choose a sufficiently
large frequency, one needs to know the constants cgi1 , c

gi
2 , b

gi .
n the next lemma, we outline a procedure to estimate these
onstants under Assumption 2.1 for the static cost case. In fact,
or a general dynamical system, if one can establish these bounds
n the remainders, then the conclusions of Theorem 2.2 hold, as

demonstrated by the numerical results provided above.

Lemma A.3. Consider the system (2.2) and the functions (2.1).
hen, there exist constants cgi1 , c

gi
2 > 0 such that, ∀θ ∈ ∆i

ϵ, i ∈

{1, 2, 3} and ∀t ∈ R:Rgi
1 (θ, t)

 ≤
cgi1
√
ω
,

Rgi
2 (θ, t)

 ≤
cgi2
√
ω

Proof. Via direct integration, the following bounds can be estab-
lished⏐⏐Uλ1 (t)

⏐⏐ ≤ a1
√
ω
,

⏐⏐Uλ1,λ2 (t)
⏐⏐ ≤ a1

ω
,⏐⏐Uλ1,λ2 (t)uλ3 (t)

⏐⏐ ≤ a1
√
ω

∀λ1, λ2, λ3 ∈ Λ,∀t ∈ R, where a1 > 0 depends on the choice
f the frequencies ωj. Due to space constraints, we only show
ow to establish a bound on one of the highest order terms in
g3
2 (·, ·). The rest of the bounds can be established following the
ame approach. Let y = z − J(x). We compute

Lf (i,1)Lf (i,1)Lf (i,1)g3(θ) = ∂3
i g3(θ)F1(y)

3
− 2∂2

i g3(θ)

×F ′1(y)F1(y)
2∂iJ(x)− ∂2

i g3(θ)F
′

1(y)F1(y)
2∂iJ(x)

+∂ig3(θ)F ′′1 (y)F1(y)
2∂iJ(x)2 + ∂ig3(θ)F ′1(y)

2

×F1(y)∂iJ(x)2 − ∂ig3(θ)F ′1(y)F1(y)
2∂2

i J(x)

It can be shown by direct computation that, for y > 0, we have

|F1(y)| ≤
√
y, |F ′1(y)| ≤

2
√
y
, |F ′′2 (y)| ≤

2
y
√
y

∂ig3(θ) =(2−
1
m

)
J̃(x)1−

1
m ∂iJ(x)

z − J(x)
sech(J̃(x)2−

1
m )2

+
tanh(J̃(x)2−

1
m )∂iJ(x)

(z − J(x))2

|∂ig3(θ)| ≤
2J̃(x)1−

1
m |∂iJ(x)|

|z − J(x)|
+

J̃(x)2−
1
m |∂iJ(x)|

(z − J(x))2

Using Assumption 2.1, we can see that

|∂iJ(x)| ≤ ∥∇J(x)∥ ≤
√
κ2 J̃(x)1−

1
2m

Moreover, we know that

tanh(J(x)2−
1
m )

≤ y0 + ϵ, ∀θ ∈ ∆3
ϵ
z − J(x)
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∂ig3(θ)| ≤
√
κ2(y0 + ϵ)

J̃(x)2−
3
2m

tanh(J̃(x)2−
1
m )

(2+ J̃(x))

For θ ∈ ∆3
ϵ , we have J̃(x) ≤ J0, and |F ′(y)F (y)| ≤ 2. Thus, we have:

|∂ig3(θ)F ′(y)F (y)∂iJ(x)| ≤ a2
J̃(x)2−

1
m

tanh(J̃(x)2−
1
m )

here a2 = κ2J
1− 1

m
0 (y0 + ϵ)(2+ J0). Finally, it can be shown that

J̃(x)2−
1
m

tanh(J̃(x)2−
1
m )

≤ J̃(x)2−
1
m + 1

This leads to the bound:

|∂ig3(θ)F ′(y)F (y)∂iJ(x)| ≤ a3

where a3 = a2(1 + J
2− 1

m
0 ). Following a similar approach, it can

be shown that all the terms in the Lie derivative are bounded,
|Lf (i,1)Lf (i,1)Lf (i,1)g3(θ)| ≤ a4, where a4 > 0 is the sum of all the
bounds on the individual terms. Consequently, we have estab-
lished the bound

|Lf (i,1)Lf (i,1)Lf (i,1)g3(θ)U(i,1),(i,1)(t)u(i,1)(t)| ≤
a5
√
ω

θ ∈ ∆3
ϵ ,∀t ∈ R, where a5 = a1a4 > 0. Following this

rocedure for each individual term in the remainders will give the
xplicit bounds on Rgi

1 , R
gi
2 , i ∈ {1, 2, 3} in terms of the constants

κ1, κ2, γ1, γ2, ϵ, J0, y0, z0, ωj.

Appendix B. Proof of main theorem

Proof. Let J0 > 0 be such that the level set

LJ0 =
{
x ∈ Rn

⏐⏐J̃(x) ≤ J0
}
⊂ D

Fix an ϵ > 0, and let

y0 >
1

2κ1

(
1+

√
1+ 8κ1ϵ

)
, z0 > J0 + y0

he functions Fs(·), s ∈ {1, 2} are locally Lipschitz in ∆ϵ . Hence,
bsolutely continuous maximal solutions of (2.2) with θ(0) ∈ ∆ϵ

xist and are unique. We consider a maximal solution θ : I → ∆ϵ

f (2.2) with θ(0) ∈ ∆0 and apply Lemma A.1 to the functions
gi, i ∈ {1, 2, 3} defined by Eq. (2.1). The next step is to establish
the bounds on F gi , Rgi

1 , R
gi
2 in Lemma A.2 for gi(·), i ∈ {1, 2, 3}. We

compute

F g1 (θ) = −∥∇J(x)∥2 , F g2 (θ) = −z + J(x)

F g3 (θ) =
η(J̃(x)2−

1
m )

(z − J(x))
−

η(J̃(x)2−
1
m ) ∥∇J(x)∥2

(z − J(x))2

−

(
2− 1

m

)
J̃(x)1−

1
m η′(J̃(x)2−

1
m ) ∥∇J(x)∥2

z − J(x)
here η(y) = tanh(y). We note that in case of g2, the remainder

terms Rg2
1 , Rg2

2 in Lemma A.1 identically vanish, and the only
remaining term inside the integral is

F g2 (θ) = −z + J(x) < 0, ∀θ ∈ epiS(J)

We conclude, similar to the proof of Lemma A.2, that g2(θ(t)) ≤
0, ∀t ∈ I, ∀ω ∈ (0,∞). Due to Assumption 2.1, we know that
∀θ ∈ ∆1

ϵ , we have

F g1 (θ) ≤ −κ J
2− 1

m

1 0

4

Furthermore, by definition of g3(·), and thanks to the property
that tanh(y) ≤ y, ∀y ≥ 0 and the choice of y0, we have

F g3 (θ) ≤ y0 + ϵ − κ1y20 < −ϵ, ∀θ ∈ ∆3
ϵ

he bounds on the remainders Rg2
1 , Rg2

2 can be explicitly com-
puted, as outlined in Lemma A.3. We now apply Lemma A.2 with
the bounds established above to conclude that ∃ω∗

∈ (0,∞) such
that ∀ω ∈ (ω∗,∞),∀θ(0) ∈ ∆0 and maximal solution θ : I → ∆ϵ ,
where 0 ∈ I = (t−e , t

+
e ), we have

lim sup
τ→t+e

gi(θ(τ )) < ϵ, ∀i ∈ {1, 2, 3}

We note that the only remaining boundary in the definitions of
∆0,∆ϵ is the point (x∗, J(x∗)). Clearly ż(t) < 0. Moreover, we have
that

ż = −z + J(x) ≥ −z + J(x∗) H⇒ z̃(t) ≥ z̃(0)e−t > 0

where z̃(t) = z(t)− J(x∗). Thus for any finite t+e > 0, we have that

lim
τ→t+e

z(τ )− J(x(τ )) > 0

This implies that ∀ω ∈ (ω∗,∞), maximal solutions that start
inside ∆0 do not escape ∆ϵ in any finite time, hence [0,∞) ⊂ I .
Moreover, since z(t) is bounded below and strictly decreasing, we
have that

lim
τ→+∞

z(τ )− J(x(τ )) = 0

Consequently, we see that due to the definition of g3(·), it must
be true that

lim
τ→+∞

η(J̃(x(τ ))2−
1
m ) = 0 H⇒ lim x(τ ) = x∗

Combining all of the above, we conclude that

lim
τ→+∞

θ(τ ) = (x∗, J(x∗))
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