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In recent years, an approach to extremum seeking control made it possible to design control vector
fields that lead to asymptotic stability of the minimum point provided that the minimum value of the
function is known a priori. In this work we aim to relax that assumption. We propose an extremum
seeking control law that converges to the minimum point with vanishing control oscillations, without
access to the minimum value of the cost function. We provide a numerical example to support our

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Extremum seeking control is an adaptive control technique
that drives the steady-state response of a dynamical system to
a neighborhood of the minimum point of a cost function in the
absence of direct access to gradient information. For more details,
the reader is referred to Ariyur and Krstic (2003), Oliveira, Krsti¢,
and Tsubakino (2017), Suttner (2020b), Tan, Moase, Manzie, NeSi¢,
and Mareels (2010) and the references therein. In this paper,
we focus on extremum seeking systems that exploit high am-
plitude, high frequency, sinusoidal signals. This type of signal
is prominently used in motion planning of nonholonomic sys-
tems (Hassan & Taha, 2020; Liu, 1997a; Murray & Sastry, 1993),
and techniques from averaging theory are typically applied for
analysis (Liu, 1997b; Maggia, Eisa, & Taha, 2020). The first con-
nection to the motion planning framework appears in the Ref.
Diirr, Stankovic, Ebenbauer, and Johansson (2013). Thenceforth,
several authors have contributed to this line of work, e.g. Diirr,
Krsti¢, Scheinker, and Ebenbauer (2015, 2017), Grushkovskaya
and Ebenbauer (2020), Grushkovskaya, Zuyev, and Ebenbauer
(2017), Labar, Feiling, and Ebenbauer (2018), Scheinker and Krsti¢
(20144, 2014b), Suttner (2019, 2020a) and
Suttner and Dashkovskiy (2017).

Traditional extremum seeking (Diirr et al., 2013; Krsti¢ &
Wang, 2000) suffers from persistent oscillations of the steady
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state response around the minimum point. A solution was pro-
posed in Scheinker and Krsti¢ (2014b), where the authors ex-
tended the averaging techniques in Liu (1997b) to nonsmooth
systems, which enabled analysis for a set of nonsmooth con-
trol vector fields with useful properties such as vanishing at
minimum points. A different set of nonsmooth control func-
tions was proposed in Suttner and Dashkovskiy (2017), which
allowed asymptotic stability of the minimum point. Later, it was
shown in Grushkovskaya et al. (2017) that both sets of control
functions proposed in Scheinker and Krsti¢ (2014b) and Suttner
and Dashkovskiy (2017) belong to a unifying class of generating
vector fields. Nevertheless, one of the main assumptions in all
these efforts (Grushkovskaya & Ebenbauer, 2020; Grushkovskaya
et al., 2017; Scheinker & Krsti¢, 2014b; Suttner & Dashkovskiy,
2017) to guarantee asymptotic convergence to the minimum is
that the function value at the minimum point is known a priori.
This was pointed out explicitly in several locations, for instance
in Grushkovskaya and Ebenbauer (2020) and Grushkovskaya et al.
(2017).

The contribution of this paper is to provide an extension of the
results highlighted so far to the case when the minimum value
of the function is unknown. Specifically, we prove asymptotic
convergence to the minimum point with bounded amplitude and
frequency, for all initial conditions in a subset of the epigraph of
the cost function.

2. Main theorem

Notations: We use bold characters to distinguish vectors and
vector valued maps from scalars. Let D C R" be a subset. We
denote the set of k-times continuously differentiable real-valued
functions on D by C¥(D; R). We denote by e; the jth canonical unit
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vector in R". The set of vector fields with regularity v € Non R" is
denoted by I"V(R"). The Lie derivative of a function g € C'(R"; R)
along a vector field f € I'"(R") is written as Ly g(x). The Lie
bracket between two vector fields f, f, € I''(R") is computed as
[F1.£21(x) = Jg, (X)f 1 (x) — J, (%)f 5 (x), where Jg(x) is the standard
Jacobian of f in the x-coordinates.

Let D C R" be a bounded subset with a nonempty interior.
Suppose that ] : D — R is a cost function that has the following
properties:

Assumption 2.1. Assume that] € C 3(D; R) and that there exists
a unique point ¥* € D, such that J(x) = J(x) —J* > 0 Vx # x*,
where J* = J(x*) and

@ < V@I < k()
@) < V@) < yalx) 7
where «;j, ; > 0 and m > 1.
Next, define the epigraph and strict epigraph of |
epi(J) = {(*.2) € D x R|J(x) —z < 0}
epis(J) = {(x,2) € D x R|J(x) — z < 0},

Let § = (x,z) € epig(J), and define the functions g; : epis(J) —
R, ie{1,2,3}
g0)=J®) —Jo, O)=z-J -2z

h(j(x)?m (2.1)
gy(0) = BOU® )

z —J(x)

where Jo, o, Zo are positive constants. Let ¢ > 0 and define the
domains

Ao = {6 € epis())|gi(0) < 0, Vi€ {1,2,3}}
Ao = {0 € epis())|gi(0) < €, Vie {1,2,3}}

Let A denote the set of all ordered pairs (j,s), where j €
{1,...,n},s € {1, 2}. Then, consider the dynamical system

0 =Fo(0)+ ) _fF,(0u()

reA
Jol0) = —(z —J(x)) enss
fis(0) =Fy(z —]J(x)) ¢
and the functions u; 1, u;» (the dithers) are given by
uj1(t) = 2 /Twjo sin(2r wjwt )
Uuj»(t) = 2 /T wjw cos(2m wjwt )
where w € (0, 00), w; € N, Vj € {1,2,...,n}, and the functions
F1(+), F5(-) are given by:
Fi(y) = /y sin(log(y))
Fo(y) = {/y cos (log(y))

Note that other choices for Fy(-) are possible (Grushkovskaya et al.,
2017). Also note that the second equation in system (2.2) is
similar to the approach in Suttner (2019).

(2.2)

(2.3)

(2.4)

Theorem 2.2. Suppose that the function ] satisfies Assumption 2.1,
and consider the system defined by (2.2), (2.3) and (2.4). Fix a choice
for the collection of frequencies w; € N, Vj € {1,2,...,n} such
that Vi # j, o; # w; Then, Jw* € (0, 00) such that Vo €
(w*, 00), VO(0) € Ay we have:

1. 6(t) € A, Yt € [0, 00),
2. 0(t) > (x*,J*)as t — oo.

Proof. The proof is in Appendix B. Note that we outline a proce-
dure to estimate a sufficiently high frequency w* in Lemmas A.2
and A.3.
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Fig. 1. (Left): Illustration of Ag, A. and sample trajectories, (right): Numerical
results of Example 3.1 for the approach in Grushkovskaya et al. (2017) (top),
and our approach (bottom).

Remark 2.3. Since J(x(0)) is available via measurement, it is
always possible to place z(0), which is an internal state of the
controller, such that the initial condition strictly lies in Ao. We
emphasize that this does not require additional information other
than online measurement of the function value.

3. Numerical simulations

Example 3.1. Let x € R?, and consider the dynamical system
x = A(t)(x — x*) + Bu

3.1
S, 1) = 2 18— 17 + 501+ exp(~1) G-

where u € R? is the control input, ¥ = (1, —1), and
| cos(t)?*  sin(t)? 1o
Alt) = [ cos(t)? |’ B=|_1 1

— sin(t)?
The numerical results for the proposed control law are shown
in Fig. 1, where we used the initial conditions x(0) = (-3, 3),
z(0) = J(x(0)) + 3 = 61, and the frequency parameters w =
4, w1 = 1,(02 = 2.

Remark 3.2. We remark that the proposed method can toler-
ate bounded monotonic decrease of the minimum value of the
function as demonstrated in the provided example. However,
we emphasize that it does not tolerate general time-dependent
variations of the cost function in the current formulation. This
is due to the nature of the dynamic upper bound on the cost
function (i.e. z(t)).

4. Conclusion and future work

In this brief note, we propose an extension to extremum seek-
ing control via Lie bracket approximations that allows asymptotic
convergence to the minimum point for a cost function in the
absence of information on its minimum value. The proposed
control law leads to bounded control signals that vanish as the
system converges to the minimum point, and bounded frequency
of oscillation. We also a provide a procedure to obtain an estimate
on the required frequency. Numerical simulations show that sim-
ilar results may hold for the case of a dynamic cost function under
appropriate assumptions on the dynamics.
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Appendix A. Preliminary results

Consider the Initial Value Problem (IVP)
&) = Fo(80) + Y _F5(80) wi(t),

reA

8(0) € & (A1)

where 5y C & C R", A is the set of all ordered pairs (j, s),j €
{1,2,...,n} s € {1,2}, fo.f, € I'*(Z) and the dither signals
u,(+) are defined by Eq. (2.3)

Lemma A.1 (Diirr et al., 2013; Liu, 1997b; Suttner, 2019). Let g €
C3(&; R). Then, for every solution ¢ : 1 — & of (A.1), the function
g o ¢ I — R satisfies

()] = R, o + / (FE(2(0) + RS (&(r). 0))dr

f

where I is the interval of existence and uniqueness of &(-), t1,t; €
I, th > ty, and

ZLlfjlfJZJg

Ri(g, )= Zfog(C Uy (1)

rEA

3 Ly, Ly, 8(8) Us, (1)

A1, A€/

R3¢, ) == Ls,Ly,8(8) Up(t)

r€A

+ Y Ll Ly, 8(8) Ui,y (0)
A.hpeA

+ Y I,y Ly, 8(2) Uy, g (0 (0)
A,Ap,A3€A

F&(%) _Lfog

Up(t) = /u,\(t) dt

Uppa,(t) = /(le,xz + Uy, (t) sz(f)>df

+1 M =01 & A =(,2)
Vi, =1—1 A1=0,2) & A=(,1)
0 otherwise

Lemma A.2. Let &
€ > 0 and define

Ag={te Elg(t) <0, Vie(1,2,..,r}}
Ac={te Elg(t) <e Vie{l,2,. r}}

and the subsets AL = {¢ € AG|Q < &) <
Vie {1,2,...,r}, whenever ¢ €

C R g € C3(&;R)Vie{1,2,...,r). Let

e}. Suppose that
AL, the following bounds hold

g 8i
, c , c

Rt < L, [R o) < 2%, F&(g)<—b%

[R@ ol = J= IRGol < J= P s

Vt € R, where ¢, 5, b% > 0 are constants. Then Jw* € (0, o0)

such that Vo € (0*, 00), V¢(0) € Ag and maximal solution ¢ : 1 —

A for the IVP (A1), where 0 € [ = (¢, t}}),
limsupgi(¢(t)) <€, Vie{l,2,...,r1}

Tt

Proof. Fix § € (0,¢). If gi(¢(t)) < 8,Vt € [0, t;}), the proof is
complete. If not, then, by continuity of g;o ¢ and the Intermediate
Value Theorem, 3ty,t; € I, t; > t; > 0, where g;i(¢(t1))

Automatica 133 (2021) 109735

=0, gi(¢(t2)) = 6, and &(t) € Ai, Vt € [ty, t;]. Using the bounds
on R%, RS, F& and Lemma A.1, we get

S ( it Cfi)m
B f NG
We define

: [ESRENN
= max =
@ ie(1,2,...r} ) bsi
and observe that Vo € (w*, 00),Vie {1,2,...,

8i(4(t2)) <8 = limsupgi(¢(r)) <€ O

r~>t§r

8i(4(t2))

r}, we have

Note that w* in the proof of Lemma A.2 gives an estimate of
the requ1red frequency of oscillation in terms of the constants
c‘]g', c;', b¥ and a choice of § € (0, €). Thus, to choose a sufﬁc1ently
large frequency, one needs to know the constants c1 ,c2 i bsi,
In the next lemma, we outline a procedure to estimate these
constants under Assumption 2.1 for the static cost case. In fact,
for a general dynamical system, if one can establish these bounds
on the remainders, then the conclusions of Theorem 2.2 hold, as
demonstrated by the numerical results provided above.

Lemma A.3. Consider the system (2.2) and the functions (2.1).
Then, there exist constants ', c5 > 0 such that, ¥0 € AlL,i €
{1,2,3} and Vt € R:

) Cgi gl
ool =L o)=L

Proof. Via direct integration, the following bounds can be estab-
lished

U, (1)) < % Uy, (0)] < %‘
Uy 1Oy (8)] < %

VA1, A2, A3 € A,Vt € R, where a; > 0 depends on the choice
of the frequencies wj;. Due to space constraints, we only show
how to establish a bound on one of the highest order terms in
R§3(-, -). The rest of the bounds can be established following the
same approach. Let y = z — J(x). We compute

Lf” Ly Lr i, 83(0) = 87g3(0)F1(y)’ — 20725(0)

Fiy)F1(y)*0d () — 87 g3(0)F; (y)F1(y)* 0 (x)

+31g3(0)F {WF1(y)*9J (%) + 0igs(B)F; (v’
xF1(y)3J(x)” — digs(0)F; ()F1 (v 9] (x)
It can be shown by direct computation that, for y > 0, we have

2
[Fi)l <y, [F0)I < 77 IF;(y)l < y7

tanh(j(x)>~m )3y (x)

z—JX)P
@) m (@) JxP w1 )]
0ig3(0)] <
19O <= =0 (07

Using Assumption 2.1, we can see that

10| < IVI@)I| < i (%)
Moreover, we know that
tanh(J(x)>~ )

3
Py vVl € A;

<Yo+te,
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Thus, it holds that
J@p-m
tanh(j(x)?~ )
For 6 e Ag, we havef(x) < Jo, and |F'(y)F(y)| < 2. Thus, we have:
J(x)*~
tanh(j(x)>~ )

10ig3(0)] < V/k2(yo + €) 2 +J(x)

El

|8ig3(0)F' (y)F(»)3J (x)| < a;

_1
where a; = Kz](; " (Yo + €)(2 + Jo). Finally, it can be shown that

Jpm
tanh(j(x)> )
This leads to the bound:

10ig3(O)F (Y)F(¥)aJ (x)| < a3

<J@Pm 41

1
where a3 = ay(1 +]§_W). Following a similar approach, it can
be shown that all the terms in the Lie derivative are bounded,
ILg 1Ly Lr1,83(0) < aa, where ag > 0 is the sum of all the
bounds on the individual terms. Consequently, we have estab-
lished the bound

as
ILg i1y L1y Lr .1, 830000, 10,61 (O, (8] < 7o

V0 € A3Vt € R, where as = ajay > 0. Following this
procedure for each individual term in the remainders will give the
explicit bounds on R, RS, i € {1, 2, 3} in terms of the constants

K1, K2, Y1, V2, €, Jo, Yo, 20, ;.
Appendix B. Proof of main theorem

Proof. Let J; > 0 be such that the level set
L, ={xeR"jx) <)o} CD

Fix an € > 0, and let

y0>i(1+ 1+8I{1€), 20 >_]0+_V0

2/(1
The functions Fy(-),s € {1, 2} are locally Lipschitz in A.. Hence,
absolutely continuous maximal solutions of (2.2) with 6(0) € A,
exist and are unique. We consider a maximal solution 8 : I — A,
of (2.2) with 0(0) € Ay and apply Lemma A.1 to the functions
g, i€ {1, 2,3} defined by Eq. (2.1). The next step is to establish
the bounds on F&, RS, R in Lemma A.2 for g(-), i € {1, 2, 3}. We
compute

FE0) = —IIVI@I* . F&2(0) =~z +](&)

~ 1 ~ 1
nJ@ym) (@) m) V@)
(z —J(x)) (z—Jx))
~ 1 ~ 1
2— D)@ my (P m) IVI@)|?
z—]J(x)

where 7n(y) = tanh(y). We note that in case of g, the remainder
terms R%2,R3? in Lemma A.1 identically vanish, and the only
remaining term inside the integral is

F82(0) = —z + J(x) < 0, VO € epis(J)

F&3(0) =

We conclude, similar to the proof of Lemma A.2, that g,(0(t)) <
0, Vt € I, Yo € (0, 0co). Due to Assumption 2.1, we know that
V6 € Al, we have

s 1
FE(0) < —k1Jy ™
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Furthermore, by definition of g3(-), and thanks to the property
that tanh(y) <y, Vy > 0 and the choice of yy, we have

F&(0) <yo+e€ — Ky < —€, V0e A

The bounds on the remainders R§*, R5? can be explicitly com-
puted, as outlined in Lemma A.3. We now apply Lemma A.2 with
the bounds established above to conclude that 3w* € (0, co) such
that Vo € (w*, 00), V0(0) € Ay and maximal solution 6 : I — A,
where 0 € I = (t;, t;), we have

e e

limsupgi(d(t)) < e, Vie{l,2,3}

Tty

We note that the only remaining boundary in the definitions of
Ao, A is the point (x*, J(x*)). Clearly z(t) < 0. Moreover, we have
that

z=—z4+]x) > —z+]J*) = Z(t) > z(0)e " >0
where Z(t) = z(t)—J(x*). Thus for any finite t;” > 0, we have that

lim 2(7) - J(x(x)) > 0

T—>t,

This implies that Yo € (w*, co), maximal solutions that start
inside Ay do not escape A, in any finite time, hence [0, c0) C I.
Moreover, since z(t) is bounded below and strictly decreasing, we
have that

lim z(z) —J(x(z)) =0

T—>400

Consequently, we see that due to the definition of gs(-), it must
be true that

*

TETmnG(x(z))Z*%ho — limx(t) = x

Combining all of the above, we conclude that
lim 6() = (x*,J(x"))
T—>400
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