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Abstract 

The combination of phase separation and disorder-to-order transitions can give rise to ordered, 

semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian 

transfer of information across cells. Recently, a method known as Distributed Amphifluoric 

Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase 

separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is 

expressed to a broad range of concentrations and the acquisition of local density and order, 

measured by changes in FRET, is used to map phase transitions for different proteins. The high-

throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior 

relationships in live cells. Here, we report the development of a supervised method to obtain 

automated and accurate classifications of phase transitions quantified using the DAmFRET assay. 

Systems that we classify as undergoing two-state discontinuous transitions are consistent with 

prion-like behaviors, although the converse is not always true. We uncover well-established and 

surprising new sequence features that contribute to two-state phase behavior of prion-like domains. 

Additionally, our method enables quantitative, comparative assessments of sequence-specific 

driving forces for phase transitions in live cells. Finally, we demonstrate that a modest 

augmentation of DAmFRET measurements, specifically time-dependent protein expression 

profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower 

bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead 

to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase 

transitions in live cells. 
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Introduction 

Phase transitions can lead to the formation of various types of macromolecular assemblies 

in cells [1-7]. These include liquid or gel-like biomolecular condensates that concentrate protein 

and nucleic acid molecules [8-10], liquid crystalline assemblies [11], and semi-crystalline 

assemblies [12] such as prions [13, 14], which are protein-based elements that enable non-

Mendelian inheritance [15-17]. Phase transitions are characterized by cooperative changes to order 

parameters and different types of transitions are associated with changes to different types of order 

parameters [18]. Phase separation is a form of phase transition where macromolecular 

concentration is the relevant order parameter [6, 18, 19]. In a macromolecular solution, if and only 

if homotypic interactions are the main drivers of phase separation [20, 21], then the system 

separates into two or more coexisting phases when the concentration of macromolecules crosses a 

system-specific threshold concentration, with each pair of phases being delineated by a distinct 

phase boundary.  

On a microscopic level, phases are defined and distinguished on the basis of structural 

symmetry and the type of order found in a phase [18]. Distinguishing order versus disorder in 

different phases requires quantification of how a phase responds to a set of symmetry operations 

such as the Euclidean group [22], which represents a set of translational, rotational, and reflection 

operations. Isotropic liquids and gases are statistically invariant under all symmetry operations. 

Accordingly, the entire Euclidean group is the symmetry group for isotropic fluids and such 

systems have the highest possible symmetry. As a result, a vapor-liquid transition of isotropic 

fluids does not involve a change in symmetry, but it does involve a change in density. The working 

hypothesis that has emerged from in vitro characterizations is that liquid-liquid phase separation 

that gives rise to some biomolecular condensates [1] is akin to a vapor-liquid transition that 
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involves a change in density [23], without a change in symmetry [24]. There can be significant 

differences in compositions [25-27], including the exclusion of certain components such as 

macromolecular crowders from dense phases [28] points to a change in compositional symmetries.  

The onset of order in a phase implies that the phase in question is statistically invariant to 

a subgroup of operations that define the Euclidean group. The extent and type of order versus 

disorder is governed by the size of the symmetry group for a given phase and the type of symmetry 

operations to which the phase in question remains statistically invariant. At equilibrium, higher 

entropy disordered phases have high symmetries whereas lower entropy ordered phases have lower 

symmetries. Accordingly, disorder-to-order transitions are also described as symmetry-breaking 

transitions [18]. Symmetries are quantified in terms of non-conserved order parameters, typically 

taking values between 0 (maximal disorder) and 1 (maximal order). This is relevant because phase 

separation in vitro and in live cells can also be accompanied by the breaking of symmetries that 

drive collective disorder-to-order transitions [19, 29, 30]. Examples include protein crystallization 

in vitro [31] and the formation of fibrillar solids both in vitro and in cells [18, 19, 29, 30].  

The order parameter for phase transitions that combine phase separation and disorder-to-

order transitions has two components namely, macromolecular concentration and a measure of 

order / disorder [32, 33]. The free energy barrier for nucleating an ordered phase is determined in 

part by the supersaturation [34-36], defined as the natural logarithm of the ratio of the bulk 

concentration to the saturation concentration [37]. Above the saturation concentration, the 

supersaturation increases, thereby decreasing the nucleation barrier and increasing the probability 

of spontaneously nucleating the ordered assembly [38] (Figure 1a). The assembly of prion-like 

states arises through templated growth of the nucleus, which is the embryo of the ordered phase 

that forms within the disordered phase [14]. The latter is either a dilute or dense liquid where the 
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distinction between dilute and dense points to the difference in macromolecular concentration 

within the liquid phase, and the extent of order versus disorder refers to the fraction of molecules 

that are incorporated into the ordered phase.  

Results of measurements made under conditions where the effects of active processes are 

minimized are helpful for understanding how the milieu of a living cell impacts the intrinsic 

driving forces for phase transitions [39]. Live cell investigations of macromolecular phase 

transitions have been driven by adaptations of optogenetics technologies [40, 41], advances in 

super-resolution microscopy [34, 42], and single particle tracking [43, 44]. Recently, a new method 

known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was 

introduced to investigate phase transitions that lead to prion-like assemblies in yeast [39] and 

mammalian cells [45]. In DAmFRET measurements, live cells are used as femto-liter sized test 

tubes in which protein self-assembly is measured. FRET is used as the reporter for protein 

assembly within each cell. Because changes to FRET intensities result mainly from changes to 

intermolecular distance, DAmFRET measures changes to both density and the extent of order / 

disorder. Accordingly, phase transitions such as prion formation that combine phase separation 

and disorder-order transitions can be measured using DAmFRET.  
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Figure 1: Schematic of disorder-order transitions and details of the DAmFRET assay. (a) At 

low (1) and medium (2) protein concentrations there is a free energy barrier for nucleation of 

ordered assemblies, whereas at high (3) protein concentrations this barrier is eliminated. Here, the 

protein concentration in (1) corresponds to a system that is subsaturated and protein concentrations 

in (2) and (3), respectively correspond to systems that are supersaturated. (b) DAmFRET is 

performed using a chimera of an aggregation-prone or prion-like protein of interest and a 

photoconvertible fluorescent protein mEoS3.1. This allows for the examination of FRET in live 

cells and AmFRET can be measured using flow cytometry for thousands of cells with different 

expression levels. We assume that steady-state assembly is reached instantaneously upon 

nucleation, at least given the temporal resolution of measurements and the rapid timescales one is 

likely to associate with actual barrier crossings, i.e., transition path dynamics in typical physico-

chemical reactions [46].  At low concentrations, the system is subsaturated, and nucleation is 
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highly disfavored so all cells should have low AmFRET values indicating the protein remains in 

the dilute phase (off-white color). At intermediate concentrations, the system is supersaturated and 

the barrier for nucleation is reduced and now some cells maintain a dilute population and low 

AmFRET, whereas other cells undergo nucleation and thus the formation of ordered assembles as 

indicated by high AmFRET (bright yellow). At high concentrations the system is significantly 

supersaturated, and there is no longer a barrier for nucleation and most cells show high AmFRET. 

 

In DAmFRET experiments a photo-switchable fluorescent protein mEos3.1 is expressed 

as a chimera with the protein of interest (Figure 1) [39]. mEos3.1 is a green fluorescent protein 

that can be converted to a red fluorescent protein upon illumination with violet light. This 

conversion can be achieved in a controlled, time- and intensity-dependent manner. Photo 

conversion allows the generation of FRET pairs from a single genetic construct in a consistent and 

controllable ratio that is independent of expression level. The resulting green and red forms 

constitute the FRET donor and acceptor, respectively. In yeast, variability in expression under the 

GAL1 promoter and the 2 microns replication system is achieved by harnessing the wide range 

(more than 100-fold) of plasmid copy numbers across thousands of cells. This allows wide 

coverage of protein expression levels across a population of cells analyzed by flow cytometry. 

Intracellular phase behavior is interrogated after cell division and protein degradation have been 

turned off upon galactose induction. This ensures that each cell mimics a closed system and that 

phase transitions are being interrogated in a cell autonomous manner since propagation via cell 

division is eliminated. In effect, the DAmFRET approach affords two advantages: from the 

perspective of physical chemistry, it allows one to treat each live cell as being a femtoliter test 

tube. Secondly, live cells are not passive reservoirs and therefore the insights gleaned from the 
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DAmFRET assay are likely to have a direct bearing on understanding how spontaneous and driven 

phase transitions are controlled by protein expression and influenced by a dynamic cellular milieu.  

DAmFRET assays enable the interrogation of protein assembly behavior across a large 

population of live cells by monitoring AmFRET, defined as the ratio of sensitized emission FRET 

to acceptor fluorescence intensity [39]. AmFRET measured by flow cytometry is not an order 

parameter in the strictest sense of the term. For example, two different proteins that have similar 

AmFRET values do not necessarily have the same degree of order / disorder. Likewise, the 

densities of assemblies corresponding to similar AmFRET values do not have to be similar. 

However, it can be used as a proxy of a non-conserved parameter for understanding the nature of 

the phase transition that a specific system undergoes because, for a specific system, interrogated 

across a population of cells, it provides a quantitative assessment of relative order versus disorder. 

Further, as we show here, parameters extracted from analysis of DAmFRET histograms can be 

compared across different proteins. Dispersed monomers should have low AmFRET values around 

zero, whereas the AmFRET value will increase upon assembly formation. For proteins that do not 

become trapped in long-lived partially assembled intermediates, we can distinguish the 

concentration dependence of assemblies into three categories. At low overall expression levels, 

the effective concentration is below the saturation concentration, and a dilute, disordered phase 

will form for the protein of interest across the population of cells (Figure 1b). At intermediate 

levels of expression, the protein of interest is supersaturated, and two distinct populations of cells 

can coexist with one another: In one population, the protein of interest will be entirely in the dilute, 

disordered phase, whereas in the coexisting population, we will observe proteins concentrated into 

dense, ordered assemblies. The likelihood of observing a coexisting population of cells that feature 

dilute, disordered phases will be tied to the supersaturation-dependent nucleation probability. At 
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high expression levels, dense ordered assemblies will form for the protein of interest in a majority 

of the cells. In each of these three categories cells only fall into one of the two distinct states, dilute 

or ordered assembled; therefore, these proteins can be classified as undergoing a two-state 

discontinuous phase transition.  

Given that the DAmFRET assay collects data across expression levels that span 2-3 orders 

of magnitude [39], one can analyze two-dimensional histograms of expression levels and 

AmFRET values across a large (~104) population of cells and categorize proteins based on the 

types of assembly behaviors observed. Information extracted from analysis of two-dimensional 

histograms allows us to quantify the expression level at which proteins in 50% of the cells are in 

the assembled phase. Because the driving forces for phase transitions are dependent on protein 

concentration through the degree of supersaturation, the measure of the expression level at which 

proteins in 50% of the cells are in the assembled phase allows for a comparative assessment of 

sequence-encoded driving forces for phase transitions that show two-state discontinuous behavior. 

Further, one can also analyze the measured phase behavior to identify proteins into groups that do 

not undergo a measurable transition or undergo continuous or discontinuous transitions into 

different phases that are amenable to interrogation by the DAmFRET assay.   

Here, we assess and analyze the information gleaned from DAmFRET measurements to 

answer three questions: (1) Given the large amount of data that can be generated through the 

DAmFRET assay, approximately 103 histograms in a day, we ask if we can automate the 

classification of phase transitions measured by DAmFRET into distinct categories? (2) Further, do 

the phase transitions of proteins that form bona fide prions belong to a specific category? And (3), 

for proteins that show discontinuous two-state phase behavior, consistent with nucleated 

transitions, can we use data from DAmFRET experiments to extract information regarding the 
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barriers to nucleation at different degrees of supersaturation? To answer the first question, we 

develop a supervised method [47] that classifies different types of DAmFRET histograms based 

on analyzing synthetic AmFRET data as a function of expression level. We apply these methods 

to analyze DAmFRET data obtained for a large number of candidate prion-like domains (cPrDs) 

[16] and uncover sequence features that correlate with the degree of discontinuity of a two-state 

transition. We also show that expression levels at which 50% of the cells are in the assembled state 

can be accurately extracted by analysis of DAmFRET measurements using our automated method. 

This value, designated as c50, can be used to rank order proteins based on their driving forces for 

assembly. As for the second question, we find that proteins classified as undergoing two-state 

discontinuous transitions tend to show prion-like properties, although bona fide prions can be 

classified into other categories of transition classes as well. Finally, we deploy a numerical method 

motivated by classical nucleation theory to show that information from DAmFRET measurements 

can be adapted to estimate the sizes of free energy barriers to nucleation of ordered assemblies. 

Usage of this analysis does require augmentation to the data collected from DAmFRET 

measurements. Overall, the analysis pipeline we develop here paves the way for gleaning 

quantitative and mechanistic inferences from analysis of large-scale, proteome-level investigations 

of prion formation and related phase transitions in live cells.  

Results 

Classifiers of phase transitions measured using DAmFRET: Depending on how AmFRET 

changes as a function of protein expression levels, we classify DAmFRET datasets into five 

categories.  

One-state – no transition: Across the concentration range interrogated by DAmFRET 

experiments, AmFRET does not change its value. If AmFRET is low across the concentration 
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range, then this is a manifestation of one-state behavior without assembly. Alternatively, if 

AmFRET is uniformly high across the concentration range, then the data are concordant with the 

designation of one-state behavior with assembly. 

Two-state discontinuous transitions: These are characterized by the existence of a threshold 

expression value, such that above this value AmFRET changes in a stepwise fashion from low to 

high values. Accordingly, cells fall into one of two categories defined by the presence or absence 

of dense, ordered assemblies.  

Two-state continuous transitions: Here, AmFRET increases continuously once the 

expression level crosses a threshold value. Unlike two-state discontinuous transitions, the two-state 

continuous transitions are best modeled using a smooth function that interpolates between low and 

high AmFRET values. Continuous transitions likely reflect the formation of a distribution of low-

affinity oligomers or mesophases whereby the sizes and / or numbers of assemblies increase as 

concentration increases. This would result in a continuous increase in FRET intensity, which is 

also proportional to the numbers of complexes of specific sizes.  

Three- or multistate transitions: Here, the transitions proceed through multiple states 

characterized by intermediate values of AmFRET. It is worth noting that intermediate values of 

AmFRET may also be a reflection of non-equilibrium steady states or long-lived transients.  

 Enabling supervised learning and classification based on synthetic data sets for each of 

the different categories of phase transitions: Synthetic two-dimensional histograms of expression 

level and AmFRET were generated for each of the five categories of phase transitions (Figure 2a). 

We generate synthetic AmFRET datasets using a simple step function or a sigmoid function. The 

minimum and maximum values of the step and sigmoid functions in the synthetic data for the 

supervised learning are set as Amin = 0 and Amax = 1.5. Each histogram was generated using ~104 
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data points, where the points are proxies for measurements in individual cells. Points were 

generated using a log10(expression) value in the range of 2.0 to 8.0 and an AmFRET value between 

0.0 and 1.5. Noise was added in the log10(expression) value using a Gaussian with a mean of 0.5 

and standard deviation of 0.75, which we term ce. The expression at which 50% of the cells show 

high AmFRET assemblies is designated as c50 and log10(c50) was set to be 1.0, 2.0, 4.0, 6.0, 8.0, 

10.0, or 12.0; to increase the width of the range of concentrations where high and low AmFRET 

values overlap, we introduced random noise to c50 with a variance of ± 0.8, which we term c50e. 

For three-state transitions, the variance value was increased to ± 4.0 in order to represent 

observations in some instances of experimental data where a wider range of concentrations have 

both low and high AmFRET populations, and to test the ability of our algorithm to classify data 

with larger overlaps. For our analysis, we only consider data points with log10(expression) values 

between 3.0 and 10.0.  Note that datasets with log10(c50) less than 3.0 or greater than 10.0 were 

intentionally chosen to be outside this concentration range. Accordingly, datasets generated using 

log10(c50) = 1.0 or 2.0 were designated as “One state: with assembly”, and datasets with log10(c50) 

= 12.0 were designated as “One state: No assembly”. Data for log10(c50) = 10 fall at the edge of 

the range of generated points. However, because of noise, data generated using this model show 

evidence for transitions from low AmFRET to high AmFRET states, although this transition is 

incomplete within the simulated concentration range. These synthetic data were used to represent 

experimentally observed cases where the complete transition is not fully captured. 

 To mimic data from measurements that correspond to two-state transitions, the synthetic 

data for AmFRET values were generated using a piecewise step function with log10(c50) as the 

transition point to mimic two-state discontinuous transitions, or using a Boltzmann sigmoid 

logistic equation [48] to mimic continuous two-state transitions. For the latter case, data were 
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generated by sampling points from the following equation for AmFRET, which will be a function 

of the bulk concentration c and the values will depend on the baselines for Amax and Amin, our 

choices for c50 and the choice of m, which is the slope of the transition between low and high 

AmFRET values. Accordingly, for synthetic continuous two-state data, AmFRET as a function of 

c is computed using: 

   (1) 

Synthetic data to mimic three-state transitions were generated with two overlapping piecewise step 

functions, one stepping from zero to 0.4Amax and the other to 0.8Amax. For a given set of parameters 

namely, (i) the values of c50, (ii) stepwise versus sigmoid function, and (iii) whether the transitions 

are one-, two- or three-state, synthetic data were generated in three independent repetitions using 

different random number seeds with three different AmFRET noise levels (low, medium, high).  

AmFRET = 
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c Amax − Amin( )
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Figure 2: Schematic of the method used to classify synthetic DAmFRET data. (a) Row one 

shows representative synthetic DAmFRET histograms for the five different classes we aim to 

classify. (b) Each synthetic DAmFRET histogram is sliced into expression level windows and the 

corresponding 1-dimensional AmFRET histograms are fit to a sum of two Gaussians where the 

position of the first peak is set to AmFRET=0 and the position of the second peak is set to the 

maximum mean AmFRET across all expression slices after removal of AmFRET values around 

zero. Here, example fits are shown for the expression level slice of 6-6.5. For the other expression 
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slices see Figure S1. (c) The fits are used to extract the fraction of cells that undergo assembly in 

each expression slice by taking the area under the curve of the second peak and dividing it by the 

total area under both curves. If the change in fraction assembled from the last expression slice 

minus the minimum fraction assembled is less than 0.1, then the profile is classified as one state 

and the mean AmFRET across all expression slices determines whether the protein is in the no 

assembly versus all assembled class. (d) For all profiles that are not classified as one-state, we use 

the R2 values of the fit to the sum of two Gaussians across the expression slices to rule out 

histograms that do not show two-state discontinuous behavior. Profiles that show a minimum in 

R2 values around log10(c50) are classified as two-state continuous and profiles that show a 

continuous decrease in R2 values across expression slices are classified as three-state 

discontinuous. All other profiles pass the test of the null hypothesis and are thus classified as two-

state discontinuous.  

Heuristics to classify different categories of phase transitions: Since synthetic datasets 

were generated from known priors, we can assess the accuracy of a classifier with certainty. This 

supervised approach, whereby we know how data were generated and ask if a classifier is accurate 

in its assignment of the category of phase transitions, yields heuristics that can be deployed in the 

analysis of real data while also knowing the level of confidence one can ascribe to a specific 

classification.  

The null hypothesis is that all synthetic DAmFRET histograms belong to the two-state 

discontinuous transition category. We use the synthetic DAmFRET histograms to rule in or rule 

out this hypothesis. Specifically, each histogram is divided along the expression-axis into 

expression level slices. The one-dimensional histogram of AmFRET values within each expression 

level slice is fit to a sum of two Gaussians (Figure 2b and Figure S1). Here, the position of the 



 16 

first peak is set to be at zero AmFRET and the position of the second peak is set to the maximum 

mean AmFRET across expression level slices. For calculating the latter, we discard all AmFRET 

values within the noise around AmFRET=0. We use a sum of two Gaussians since the null model 

is that of a discontinuous two-state transition wherein all cells either have no assembly or have 

reached steady-state assembly. Next, the fraction assembled in each expression slice is calculated 

by computing the area under the curve of the second Gaussian peak and dividing it by the total 

area under both curves (Figure 2c).  

If the fraction assembled in the last expression slice minus the minimum value for the 

fraction assembled is less than 0.1, then the DAmFRET histogram is classified as being one-state. 

The mean AmFRET value is then used to determine if the one-state behavior corresponds to no 

assembly or all assembled in the given expression range. Specifically, if the mean AmFRET value 

is less than the noise cutoff around AmFRET=0 it is classified as being one-state without assembly.  

For DAmFRET histograms that are inconsistent with one-state assembly we examine the 

R2 values as a function of expression slice for the fit of the AmFRET histogram to the sum of the 

two Gaussians (Figure 2d). For discontinuous two-state transitions, the R2 values should be high 

(near 1.0) across all expression level slices. Additionally, Gaussian fits of AmFRET histograms 

for two-state continuous and three-state discontinuous data show distinct R2 dependencies on 

expression level. Specifically, for two-state continuous transitions, the R2 values are lowest at 

expression level slices around log10(c50). This is because, within the transition region, most cells 

have AmFRET values that lie between zero and high AmFRET for a two-state continuous 

transition (Figure 2b and Figure S1). The percent of cells that lie between the limits will depend 

on the slope of the transition. At equivalent noise levels, smaller slopes imply that a larger 

percentage of cells lie between the limits, thereby leading to a smaller R2 value. In contrast, the 
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three-state discontinuous transitions show a linear decrease in R2 values across expression level 

slices due to the existence of three overlapping states. We used these two trends to determine if a 

DAmFRET histogram is consistent with either a two-state continuous or multi-state transition (see 

Materials and Methods for details). If R2 as a function of expression slice does not show either of 

these two trends, then it passes our null hypothesis and the transition measured by DAmFRET is 

classified as being two-state discontinuous.  

 Figure 3 shows how well the classifier performs in categorizing the synthetic data. The 

corresponding synthetic DAmFRET histograms are shown in Figure S2. Each dataset is assigned 

a color that corresponds to its classification and the shade of the color indicates the confidence 

level in the classification, the darker the shade the more confidence in the classification. Synthetic 

data were created in three replicates and therefore each row represents a different replica. Of the 

162 histograms that we generated, our classification scheme yields a 90% accuracy, classifying 

146 of the histograms correctly. In general, we succeed in classifying synthetic datasets into the 

correct categories, although the confidence in these classifications decreases as log10(c50) 

approaches the limits of the expression range that can be assessed, or the noise becomes too high. 

This is evident for synthetic data corresponding to two-state continuous transitions (Figure 3d). 
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Figure 3: Classification of synthetic DAmFRET histograms. Each histogram is colored by its 

classification and the shade of the color indicates the confidence of that classification. The darker 

the shade the more confident the method is in its classification (Table S1). For a non-shaded 
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version of Figure 3 see Figure S3. Each row denotes a different replica. Each column is denoted 

by the log10(c50) (1.0, 2.0, 4.0, 6.0, 8.0, 10.0, or 12.0), the function (Sigmoid, Step, or 2 Step), and 

the noise level (Low, Medium, or High) used to generate the synthetic DAmFRET histograms.  

 Beyond classifying datasets into distinct categories, for data classified as two-state systems 

we can fit the fraction assembled as a function of expression to a logistic function and extract c50. 

This is a strategy we adopt for analyzing real DAmFRET data, and we prototype it here for 

synthetic data. Figure 4 shows the comparison between the actual value of c50 used to generate 

the synthetic datasets and the estimate for c50 extracted from the logistic fits to the synthetic 

datasets. We observe good agreement between the actual versus extracted values. However, 

deviations from the actual value of c50 occurs when this value approaches the limits of the 

expression range that can be accessed. Overall, the results in Figures 3 and 4 show that the method 

introduced here allows for accurate classifications of phase transitions, while also enabling the 

extraction of accurate quantitative estimates for c50.  
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Figure 4: Actual log10(c50) values versus the log10(c50) values extracted from the logistic fit of 

the fraction assembled profiles for all two-state DAmFRET histograms (Figure 2c). Boxplots 

show distributions of log10(c50) extracted from 54 histograms for log10(c50)=4.0, 6.0, and 8.0 and 

38 histograms for log10(c50)=10.0. 

Application of the numerical classifier to DAmFRET data for a set of cPrDs: We collected 

and analyzed DAmFRET data for 84 of the 100 candidate prion domains (cPrDs) identified and 

analyzed by Alberti et al., [16] in their screen for proteins with prion behavior (see Materials and 

Methods). Alberti et al. used a combination of four different assays to test if the cPrDs are bona 

fide prion formers. In their assessments, a bona fide prion former should have the following 

characteristics: (a) it should form foci in cells; (b) the assemblies extracted from cells should be 

stable as assessed by sensitivity to detergent; (c) the assembly state should be transferable from 

mother to daughter cells during cell division and (d) the assemblies should stain positively with 

amyloid sensitive dyes such as thioflavin T (ThT). In all, Alberti et al., identified 18 cPrDs that 

showed prion-like behavior in all four assays [16]. Here, we make comparisons against the 

assessments made by Alberti et al. in order to test our classification method and to uncover 

information about mechanisms for prion formation as assessed by DAmFRET.  

Figure 5 shows our classification of the cPrDs for which DAmFRET measurements were 

performed. The corresponding DAmFRET histograms are shown in Figure S4. For these data, we 

included an additional class to allow for proteins that are not classified as one-state, but only show 

assembly in fewer than 10% percent of the cells that were interrogated. Given the low percent of 

cells in the assembled state there is not enough information to classify the type of transition 

observed and therefore we denote this class as “Infrequent Transition”. Additionally, unlike the 

synthetic data set, in which the transition was binary in terms of being discontinuous or continuous, 
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the classification of real data for two-state histograms falls along a continuum from discontinuous 

to continuous (Figure 5e). Thus, we group all cPrDs that show two-state behavior together and 

then further annotate their position on the spectrum.   

Figure 5a shows that of the 84 cPrDs that were examined using DAmFRET, 35 showed 

no assembly across all expression levels, 9 showed infrequent transitions, 23 showed two-state 

behavior, and 2 showed assemblies at all expression levels. Additionally, 15 cPrDs showed mixed 

classification in which not all of the individual cPrD replicates were sorted into the same class 

(Figure 5c). Figures 5b-d show the classification of each cPrD for each of its four replicates. The 

pixel color denotes the classification, and the darkness indicates the confidence level in that 

classification, with darker being more confident (Materials and Methods). The two-state cPrDs are 

sorted by where they fall on the spectrum of discontinuous to continuous transitions (Figure 5b, 

Materials and Methods).  

Figure 5e shows representative DAmFRET histograms for five cPrDs that show two-state 

behavior in the DAmFRET assays. Here, the color represents where the cPrD of interest falls on 

the two-state spectrum. Nsp1 shows discontinuous two-state behavior with low AmFRET up until 

a threshold expression level and then a transition to a high AmFRET state with few cells showing 

intermediate AmFRET values. In contrast, Rbs1 features continuously increasing AmFRET values 

as the expression level increases. The other two-state cPrDs fall between these two extremes. 

Along the progression from discontinuous to increasingly continuous transitions we observe a 

positive slope in AmFRET at low expression values and a larger population of cells with 

intermediate AmFRET values in the transition region. In this context, it is worth noting that Pub1, 

which falls in the middle of the spectrum between discontinuous and continuous transitions, has 

been shown to form both disordered liquid-like condensates and ordered amyloid-like assemblies 
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[49]. This may suggest that the positive slope in AmFRET at low expression values corresponds 

to the formation of liquid-like condensates, which, with increasing expression, transform into 

ordered assemblies.  

cPrDs that fall outside the classification as two-state are grouped by classification and 

ordered by their predicted prion aggregation propensity as quantified by PAPA (Figure 5c-d). 

Toombs et al.,[50] previously showed that a cutoff score of +0.05 yielded greater than 90% 

accuracy in delineating the 18 bona fide prion domains from the 18 non-prion domains in the 

Alberti et al. study. We find that 31 of the 35 cPrDs that were classified as showing no assembly 

across all expression levels had PAPA scores below this cutoff. In comparison, 3 of 9 cPrDs with 

infrequent transition (33%), 6 of 23 two-state cPrDs (26%), and 0 of 2 cPrDs that assembled at all 

expression levels (0%) had PAPA scores below this cutoff. Thus, our classification method is 

consistent with the trends expected based on PAPA scores.  
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Figure 5: Classification of DAmFRET histograms of 84 cPrDs previously examined by 

Alberti et al. (a) Number of cPrDs in each type of phase transition class. (B-D) List of cPrDs that 

were classified as two-state (b), mixed classification - having replicates belonging to multiple 

classes (c), assembled at all expression values (d-black), undergoing an infrequent transition (d-
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yellow), and showing no assembly at all expression values (d-blue). For the checkboard plots, each 

square represents an experimental replicate, and the color of the square denotes the classification. 

The darker the shade the more confident the method is in the classification (Table S2). The 

classifications not shaded by confidence score are showed in Figure S5. The PAPA prion score 

for each cPrD is listed in parentheses. The cPrDs classified as undergoing a two-state transition 

are sorted by the degree of discontinuity of the transition. The cPrDs for all other classes are sorted 

by their PAPA prion score [50]. (e) Representative DAmFRET histograms of cPrDs that were 

classified as undergoing a two-state transition. The color corresponding to each histogram denotes 

the degree of discontinuity in the transition (see Materials and Methods).  

cPrDs that are classified as two-state discontinuous from DAmFRET show prion-like 

behavior: By cross-referencing our classifications with the results of Alberti et al., [16] we tested 

our hypothesis that cPrDs that are classified as undergoing two-state discontinuous transitions in 

the DAmFRET assay are in fact bona fide prion forming domains. Eight of the cPrDs were 

classified as undergoing a two-state discontinuous transition for all four experimental replicates. 

Therefore, we examined how many of these eight cPrDs engendered prion-like behavior in each 

of the four assays conducted by Alberti et al. (Figure 6a-d). All of the cPrDs that were classified 

as undergoing a two-state discontinuous transition formed foci in cells (Figure 6a), had assemblies 

that were SDS resistant (Figure 6b), and stained positively with ThT (Figure 6d). Two of the 

eight cPrDs did not pass the most stringent test for prion-like behavior, namely a heritable switch 

in the context of a Sup35 chimera (Figure 6c). One of these, Cyc8 was subsequently shown to be 

a bona fide prion [51]. These results suggest that, while a two-state discontinuous transition likely 

implies amyloid assembly consistent with prion formation, it does not necessitate heritability. This 

is expected given that DAmFRET interrogates the mechanism of assembly formation, whereas the 
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biological context of prions dictates whether the amyloids propagate or not. For example, 

propagation in rapidly dividing budding yeast cells requires specific interactions with the yeast-

specific prion replication factor Hsp104 [52].  

 

Figure 6: Assessment of cPrDs classified as undergoing a discontinuous two-state transition. 

For the eight DAmFRET profiles that were classified as two-state discontinuous we examined 

whether or not the associated cPrDs formed (a) foci, (b) SDS resistant assemblies, (c) heritable 

assemblies, and (d) ThT positive assemblies in the assays conducted by Alberti et al. [16].  

DAmFRET histograms of cPrDs that are bona fide prions are not always classified as 

undergoing a two-state discontinuous transition: Next, we asked whether being a bona fide prion 

implies that the cPrD is classified as undergoing a two-state discontinuous transition from the 

DAmFRET analysis. Of the 18 bona fide prion-forming domains, 16 were examined using 

DAmFRET. Of these, ten were classified as two-state, with six of these bona fide prion-forming 

domains being classified as two-state discontinuous in all four of their replicates (Figure 6). 

Additionally, three of the bona fide prion-forming domains were classified as undergoing an 

infrequent transition and three showed mixed classification. Given that ten of the 16 bona fide 
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prion-forming domains were not classified as undergoing a two-state discontinuous transition, this 

suggests prions can exhibit other types of DAmFRET histograms. We find that 15 of the 16 did 

show at least the emergence of a transition to a higher AmFRET state. Only Cbk1 had a negligible 

increase in AmFRET across the expression levels analyzed. Together with the fact that Cbk1 was 

only weakly amyloidogenic in Alberti et al., [16] this suggests that its self-propagating ability and 

/ or nucleation mechanism may be atypical of prions.   

In general, our analysis indicates that not all proteins capable of forming bona fide prions 

exhibit two-state discontinuous behavior under the specific experimental conditions used to 

generate these DAmFRET data. Shorter induction times or the use of a more sensitive cytometer 

may allow detection of missing low-FRET states for some proteins, while longer induction times 

or allowing the protein states to evolve through multiple rounds of cell division may allow 

detection of missing or infrequent high-FRET states for other proteins.   

 

 

Figure 7: Classification of DAmFRET histograms of the 16 bona fide prion-forming domains 

identified by Alberti et al. and analyzed with DAmFRET. For the checkboard plots, each 

rectangle represents an experimental replicate of one of the prion domains and the color of the 

rectangle denotes the classification. The darkness of the shade denotes the degree of confidence in 
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that classification, with darker shades corresponding to more confidence. Those prion domains 

classified as two-state are sorted by the degree of discontinuity at the transition.  

Can DAmFRET data be used to quantify nucleation probabilities for proteins that undergo 

two-state discontinuous transitions? As shown for the dataset of Alberti et al., two-state 

discontinuous transitions are likely to be nucleated phase transitions. The simplest mechanism for 

such transitions is that of homogeneous nucleation described in terms of classical nucleation theory 

[35, 38, 53, 54]. We define the probability of homogeneous nucleation as the probability of 

observing non-zero or high AmFRET states as a function of time and concentration. The 

probability of nucleation and assembly are correlated, and this is governed by the degree of 

supersaturation and the free energy barrier. The supersaturation ratio is quantified as  

where c is the bulk concentration and csat is the saturation concentration above which the phase 

transition is thermodynamically favored. In DAmFRET, measurements are typically performed at 

a fixed time t across a population of cells containing a fixed concentration c of the protein of 

interest. Since each cell is akin to a femtoliter-scale test tube, each cell acts as a separate, 

independent experiment.  

The fraction of cells in which assembly has occurred at time t and concentration c is used 

to define the probability . Here, n+ is the number of cells in which assembly has 

occurred at time t, and n is the total number of cells in which measurements are being made. Each 

cell is an independent observation volume in which two outcomes are possible namely, high 

AmFRET, implying the observation of assembly or no AmFRET, which means the lack of 

assembly in the cell. Accordingly, observations within each cell are Bernoulli trials, which are akin 

S = c
csat

⎛

⎝
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⎞
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to a random experiment with exactly two outcomes. Accordingly, the overall outcomes across a 

population of cells can be treated as a binomial distribution. Since the outcome is also dependent 

on time and we are interested in the number of high AmFRET outcomes in a specific interval of 

time, the binomial distribution becomes a Poisson distribution, which is essentially a binomial 

distribution in the limit of infinite sub-divisions of the time interval [55].  

We adapt the approach of Jiang and ter Horst [56], which uses the Poisson distribution to 

extract information regarding nucleation rates and barriers from distributions of induction time 

measurements. If the average number of nuclei N that form in a time interval is known, the 

probability of finding k nuclei within that time interval is given by the Poisson distribution as: 

. Note that the average number of nuclei that form in time interval t in volume V is 

directly related to the nucleation rate J because N = JVt.  From the Poisson distribution, the 

probability that nuclei do not form in the time interval is given by p0 = e–N.  Therefore, (1 – p0) = 

1 – e–N is the probability that at least one nucleus has formed in the interval of interest. Accordingly, 

the probability of observing a high AmFRET state at time t is p(t) = 1 – exp(–JVt) and this can be 

equated to the fraction of cells in which assembly has occurred at a given time and concentration. 

At a fixed time-interval, the probability of observing a fully assembled state is governed by the 

supersaturation S because  . Here, A is a kinetic parameter that is governed 

by the rate of crossing the free energy barrier for nucleation, while B is a thermodynamic parameter 

governed by the size of the free energy barrier. 

pk =
N ke−N

k!

J S( ) = AS exp − B
ln2 S
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Figure 8.  Modeling assembly probability as a function of time and concentration. Assembly 

probability versus time and assembly probability versus concentration are orthogonal planes 

forming a surface when plotted in three dimensions (time, concentration, assembly probability). 

As an approximation, DAmFRET data are in the assembly probability vs. concentration plane, at 

a single fixed time (black circles and line). 

 

The Poisson distribution applies to a scenario in which supersaturation is achieved 

instantaneously and then fixed. While protein translation can be inhibited in cells by the addition 

of cycloheximide, this does not address the issue at hand, i.e., up to the point of cycloheximide 

addition, the concentration of protein, and therefore supersaturation, is continually changing.  

Although this may seem like a limitation, the reality is that, embedded within a single DAmFRET 

experiment is rich information about the concentration and time dependence of nucleation for tens 

to hundreds of thousands of cells, and this can be leveraged to provide an extraordinary advantage. 

By quantifying p(t) as a function of both time and concentration one can obtain a complete 
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assembly probability landscape. This is shown in Figure 8 for a specific choice of values for A 

and B. Here, we set A = 1014 m-3 s-1, B = 3.6, csat = 1.0 a.u., and V = 10-18 m3. We use a time range 

of 0 to 20 h, and a concentration range of 1.0 – 5.0 a.u. Note that we use acceptor intensity as a 

proxy for concentration and hence the choice of arbitrary units (a.u.) for concentrations. This is 

convenient since concentration shows up in terms of the supersaturation, which is dimensionless, 

and therefore the specific concentration scale is not relevant here. 

To map the assembly probability across time and concentration for a population of cells 

and fully capitalize on the time- and concentration-dependent information contained in DAmFRET 

data, we require knowledge of acceptor intensity as a function of time or at least upper and lower 

bounds on rates of protein expression. It is possible to observe individual cells via microscopy, 

while ensuring that they are incubated under conditions that are identical to the DAmFRET assay. 

Protein expression data for eight cells expressing the mammalian prion ASC (PYCARD) [57] 

fused to mEos3.1 were collected in this manner (Figure 9a). Variability in expression levels across 

the cell population is apparent and this is the result of variation in plasmid copy number that was 

designed into the system. Although this approach reduces the throughput of the DAmFRET assay 

and does not yield the numbers desirable for large-scale statistical analyses, it shows that 

expression levels at distinct time points can be quantified.  

In typical chemical kinetics assays used to study phase transitions in vitro, purified and 

fully disaggregated proteins are dissolved or diluted into buffer prior to performing measurements 

as a function of time [58-60]. This ensures that measurements begin from a fully monomerized 

and dispersed phase. In contrast, the DAmFRET assay is performed in live cells that have been 

induced to express protein over a period of 10-24 hours. Unlike in vitro assays, the starting protein 

concentration is a moving target, since the protein of interest has gradually accumulated over a 
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period of 10-24 hours prior to measurement. Further, the rate of protein accumulation varies from 

cell to cell. Because concentration is a moving target, the starting time t0 for the initiation of the 

phase transition is less well defined. We propose that the most accurate way to quantify incubation 

time at a particular concentration in the DAmFRET assay is to recognize that each concentration 

level ci attained during protein expression must be marked by a separate t0, which we designate as 

t0i, and hence there exists a distinct starting time t0i for every ci reached. Therefore, time is counted 

as the time elapsed from time t0i, when a given concentration ci is reached, to the time of 

measurement designated as tm (Figure 9b). This method of tracking time elapsed at each 

concentration only holds while the concentration is increasing. Therefore, we identify the time 

point when 99% of the maximum concentration is reached. The expression data are fit to a logistic 

function in order to facilitate extrapolation and interpolation of the expression trajectory in 

subsequent analysis. Based on our data and other published values of protein expression in yeast 

this seems to be a reasonable model for approximating expression under the GAL1 promoter in 

yeast [61]. 

Using parameters from fits to the fastest and the slowest protein expression trajectories as 

limits, we used nearly exhaustive combinations of parameters between these limits to calculate 

possible expression trajectories that fall between the fastest and slowest trajectories (Figure 9b, 

gray area). Where the lines approach verticality, the data can be ignored since the modified 

method of counting time no longer applies. In order to explore how measured expression 

trajectories within individual cells affect the DAmFRET readouts, we select representative fast, 

intermediate, and slow trajectories from the expression data and plot them as a function of both 

time and concentration (Figure 9d) using the assembly probability landscape shown in Figure 8. 

This analysis identifies the relationship between the DAmFRET data and the three-dimensional 
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model, by demarcating the bounded range of assembly probabilities that can be fit to DAmFRET 

data. 

 

Figure 9.  Modeling assembly probability using knowledge of protein expression 

trajectories.  (a) Monitoring of protein expression in DAmFRET cells shows variability in 

accumulation of protein over time due to differences in plasmid copy number, as designed. 

Fluorescence intensity is used as a proxy for protein concentration. The data (open circles) are fit 

using a logistic function (lines). The raw data were from video S1 in the work of Khan et al. [39]. 

(b) To relate the expression trajectory to the three-dimensional plot more accurately, the data are 

converted to time elapsed at each concentration (i.e., time elapsed from when concentration Ci is 
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reached (tCi) to the time of measurement (tm), see text). Characteristic fast (red), intermediate 

(maroon) and slow (blue) trajectories were selected from the expression data for analysis in three 

dimensions. With the fit parameters from the red and blue traces as upper and lower limits, all 

combinations of parameters were used to calculate the range of possible logistic expression 

trajectories within these limits (gray fill).  (c) Two-dimensional projection of the three-dimensional 

model with characteristic fast (red), intermediate (maroon) and slow (blue) trajectories selected 

from the expression data.  The blue line is not visible because low expression did not result in 

appreciable assembly probability. The endpoints of the trajectories, defined as 99% of max 

concentration, provides a lower bound for assembly probability (green line).  The upper bound for 

assembly probability at any concentration corresponds to the fastest expression rate (red line). (d) 

Protein expression versus elapsed time trajectories are plotted in three dimensions illustrating how 

the change in concentration over time during an experiment maps to the assembly probability 

landscape. 

 

Using the modeled range of expression trajectories, we estimated lower bounds for the 

assembly probability as a function of concentration in a two-dimensional projection of the three-

dimensional data. The red, maroon and blue traces in Figure 9c indicate lower limits of assembly 

probability for the fastest, intermediate and slowest expression trajectories, respectively. While 

these plots show the full history of various cells in assembly probability versus concentration space 

based on protein expression trajectory within a cell, the actual measurement of FRET only happens 

when the cell is at the end of the plotted trace. As can be seen for the intermediate expression rate 

trace, the final concentration at the time of measurement can yield a lower probability of assembly 

than the lower concentration values that were passed through earlier in the trace. This is because 
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the final concentration was only present briefly before the measurement was made, and lower 

concentrations that were reached earlier in that cell had a longer incubation time.  

From our observations, we draw the following conclusions: 1) the endpoint represents a 

lower bound for assembly probability because it represents the shortest time spent at that 

concentration (Figure 9c, green trace); 2) the fastest expression trajectory provides an upper limit 

on the lower bound of the assembly probability because it represents the case in which the highest 

concentrations were achieved most rapidly, and 3) the maximum lower bounds on the assembly 

probabilities for all other expression trajectories will fall in between the values inferred for the 

slowest and fastest expression trajectories. We note that even though the measured assembly 

probability is attributed to the final concentration within a cell, that same cell also existed at lower 

concentrations for longer periods of time and therefore has increased probability of assembly as 

indicated by the maximum of the trace. This is evident in the red and green traces in Figure 9c, 

which demarcate the bounded range of assembly probabilities that can be fit to DAmFRET data.  

Overall, we can conclude that measurements of a small number of protein expression 

trajectories should make it feasible to extract the nucleation probability for various proteins that 

undergo two-state discontinuous transitions. Essentially, the protocol to follow would be to 

categorize the nature of the transitions using the supervised approach we have introduced here. 

This, supplemented by measurements of a modest number ~10 expression trajectories for systems 

classified as undergoing two-state transitions, can be used to extract bounds on the in-cell 

saturation concentration and classical nucleation theory parameters A and B, which are directly 

related to the kinetics and thermodynamics of nucleation, respectively. The combination of these 

parameters provides a unique quantitative description of nucleation mechanism and paves the way 

for dissecting sequence-to-mechanism relationships. This is noteworthy because it represents 
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acquisition of key biophysical quantities from measurements made directly in a cellular 

environment, rather than extrapolating from measurements made in the simplified context of a test 

tube. 

Do inferred values of c50 and the slope m provide useful information regarding the 

mechanism of nucleation? As discussed above, classical nucleation theory allows for the prospect 

of fixing the observation time, varying the supersaturation and quantifying the fraction of proteins 

g(S) that have been incorporated into an assembled phase as a function of S. Previously, Khan et 

al., built on the conjecture of Sear [62] who proposed that g(S) can be described empirically using 

a Weibull distribution. These distributions were defined by shape and scale parameters designated 

as d and EC50, respectively, which relate to the slope m and midpoint c50 that we calculate here by 

fitting logistical models to DAmFRET histograms [39]. The shape parameter d was found to 

correlate with the amount of structural order in the Sup35 prion domain. With our usage of classical 

nucleation theory, we can directly test if and how the slope and midpoint parameters extracted 

from DAmFRET experiments are related to the mechanistically relevant parameters csat, A, and B. 

Specifically, we wish to know if useful inferences can be forthcoming regarding the nucleation 

parameters in the absence of any additional information. We use classical nucleation theory, 

specifically the model based on the underlying Poisson distribution, to explore how the values of 

m and c50 of nucleation probability curves relate to the values of A, B, and csat that were used to 

generate the data. It is necessary to use an expression trajectory, and for the sake of simplicity, we 

choose the highest rate of expression that we modeled previously. However, once the nucleation 

probability data are generated, we proceed with the subsequent analysis as if we have no 

knowledge of expression rates. 
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By assuming a fixed value for two of the three variables A, B, csat, and varying the third 

within a reasonable range, we can explore how these variables affect m and c50.  The parameter A 

was varied from 1013 to 1015 (spanning this range in log-scale increments) with B fixed at 3.0 and 

csat fixed at 1.0. The resulting nucleation probability curves were collapsed onto distinct planes, 

and we assume these curves to be representative of the points acquired from fits to slices of 

DAmFRET data as previously described. We fit a logistic function to these points in order to obtain 

a slope, m, and midpoint c50 (Figure 10a). We then plotted m and c50 as a function of the values 

used for A (Figure 10b-c). We find that m has a strong dependence on A, as shown by the dramatic 

changes in slope of the curves in Figure 10a. Although the values of c50 also change with A, this 

effect appears to be determined by the change in slope rather than a shifting of the entire curve.  

This can be seen clearly in Figure 10a, where all of the curves begin to depart from zero nucleation 

probability at the same location (near an acceptor intensity of 2.0 a.u.) but with different slopes.  

Thus, A, the parameter that measures the effective shape of the nucleation barrier, appears to affect 

m directly and c50 indirectly. 

Next, we repeated the above analysis by varying B between 1.0 and 5.0, fixing A at 1014 

and csat at 1.0 (Figure 10d). Unlike A, we find that B, which quantifies the barrier height, has an 

inverse relationship with m (Figure 10e). Importantly, the value of B directly affects both m and 

c50 (Figure 10f). This is evident in the fact that in addition to changing slope, the onset of the 

transition i.e., the initial departure from zero nucleation probability, shifts further to the right with 

increasing B (Figure 10d). 
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Figure 10. Relationship between the parameters m and c50, and the parameters from classical 

nucleation theory. Overall, we find that c50 is linearly correlated with csat, whereas m is a complex 

convolution of contributions from A, B, and csat. Assuming the highest expression rate (see text), 

and by varying one of the three parameters A, B, and csat, while keeping the other two fixed, we 

generated curves for nucleation probabilities using the Poisson distribution model. The resulting 

data in three dimensions were projected onto distinct planes and plotted (panels a, d, and g, open 
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circles) in order to simulate points acquired from fits to slices of DAmFRET data. A logistic 

function (solid lines) was fit to these points in order to obtain a slope, m, and midpoint c50. (a) The 

parameter A was varied from 1013 (dark blue) to 1015 (dark red) with B fixed at 3.0 and csat fixed 

at 1.0. (b) The relationship between slope, m and A. Colors correspond to those used in panel (a). 

Panel (c) The midpoints, c50, of the fitted curves in panel (a) are plotted against A. Panels (d), (e) 

and (f) are equivalent to panels (a), (b) and (c), except that the parameter B was varied between 

1.0 and 5.0, while A was fixed at 1014 and csat was fixed at 1.0. Panels (g), (h), and (i) correspond 

to panels (a), (b), and (c), except that the parameter csat was varied between 1.0 and 2.0, while the 

parameter A was fixed at 1014 and the parameter B was fixed at 1.0. Panel (j) shows the fitted 

values of c50 represented by marker size for all combinations of parameters A, B and csat. The 

positive linear correlation between c50 and csat holds for all combinations of A, B and csat. In panel 

(k) the fitted values of m are represented by marker size as a function of all combinations of 

parameters A, B and csat. Many combinations of these parameters result in similar intermediate 

slopes, while the largest slopes arise for high values of A and low values for B and csat.  

 

Repeating the analysis with the csat varied between 1.0 and 2.0, fixing A at 1014 and B at 

1.0 revealed that csat and c50 are positively correlated with one another (Figure 10g, i). This is true 

for all combinations of A, B and csat in the ranges that we tested (Figure 10j).  Taken together, we 

observe that while there are many combinations of A, B and csat that result in similar intermediate 

slopes, the largest slopes corresponding with the steepest transitions are the result of high A, low 

B, and low csat (Figure 10k). Accordingly, the steepest slopes correspond with the highest rates, 

lowest barriers, and lowest saturation concentrations. These analyses indicate that even in the 

absence of information about expression rates, c50 can provide useful information for comparing 
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different proteins. Even though c50 is influenced by A, B, and csat, it has a strong positive correlation 

with csat across all values of A and B and this is a direct consequence of the two-state behavior 

suggesting it can be used as a reasonable proxy for csat, which measures the driving forces for 

phase separation. On the other hand, m, (or the d parameter from the original work [39]) is a 

convolution of contributions from A, B and csat, and therefore m on its own is not a readily 

interpretable parameter. However, it still carries information regarding the relative drive for 

nucleation, whereby steeper slopes are often due to a combination of high values for A, and low 

values for B as well as csat. 

Analysis of DAmFRET data yields information regarding the driving forces for assembly: 

DAmFRET data are information-rich, and additional insights can be extracted from the 

histograms. For instance, we can extract accurate quantitative estimates for c50 values for all 

proteins that show two-state behavior. Figure 11 shows the c50 for all 23 cPrDs which were 

classified as undergoing a two-state transition. By extracting c50 values we can rank order these 

proteins according to their c50 values. Given the relationship shown in Figure 10, for proteins that 

show two-state discontinuous behavior, the lower the c50, the lower the concentration needed for 

assembly, and thus the greater the driving force for assembly. The analysis in Figure 11 shows a 

two-order of magnitude variation in inferred c50 values. It is worth emphasizing that all cells for 

all measurements were prepared in identical fashion. All proteins are probed across overlapping 

concentration ranges in similar cellular environments. Therefore, to zeroth order, the only variable 

distinguishing different experiments is the sequence of the protein whose phase behavior is being 

probed. Accordingly, to zeroth order, assuming the cellular factors do not have cryptic sequence-

specific responses as modulators of phase behavior, the data for c50 help quantify the impact of 

sequence-encoded interactions as drivers of phase transitions. If there are sequence-specific effects 
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of cellular factors, it still follows that the modulation of the driving forces is governed by the 

sequences of the proteins whose phase behavior is being probed.   

 

Figure 11: Extracted c50 values for all 23 cPrDs which were classified as undergoing a two-

state transition from the DAmFRET data. The color and shade of each bar corresponds to the 

degree of discontinuity in the transition.  

Extracting sequence-to-assembly relationships from DAmFRET data: The minimum R2 

value in the transition expression region yields information on the degree of discontinuity in the 

two-state transition. Larger R2 values imply that the DAmFRET data fits well to a sum of two 

Gaussians in the transition region and thus most cells are either at zero AmFRET or at high 

AmFRET, thus implying the transition is discontinuous. In contrast, small R2 values imply that 

AmFRET values for most cells falls between zero and high values for AmFRET. The fraction of 

cells that fall between the two limits should increase as the slope of the transition becomes smaller, 

and thus the R2 should be lowest for two-state continuous cases with shallow transitions. We can 

use this relationship to examine whether there are certain amino acids that correlate with one type 

of two-state transition over another. Figure 12 plots the fraction of a given amino acid against the 

minimum R2 value in the transition region. Each point represents one in-cell experimental replicate 
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per cPrD. These data are shown for the four amino acids with the highest positive versus negative 

linear correlations. The correlations for all amino acids are showed in Figure S6. We find that an 

increase in the fraction of Phe or Thr correlates positively with increased discontinuity. In contrast, 

an increase in the fraction of Pro or Tyr correlates negatively with increased discontinuity. The 

impact of Pro on the discontinuity of the two-state transition is not surprising given its tendency 

toward disrupting secondary structures other than beta turns. However, the non-equivalence of Phe 

and Tyr as promoters of two-state discontinuous transitions is surprising. This suggests that 

titrations of Phe versus Tyr contents in low complexity domains might be a way to tune the 

discontinuity of a phase transition and the tendency for forming liquid-like condensates versus 

ordered assemblies [63, 64]. A recent study has uncovered clear differences between Phe and Tyr 

as drivers of condensate formation via phase separation aided percolation transitions in prion-like 

low complexity domains (PLCDs). Further, analysis across homologous sequences highlights a 

negative correlation between Phe and Tyr contents [65]. Taken together with findings in Figure 

11, a prediction that emerges is that weakening of the driving forces for condensate formation by 

lowering the Tyr content and increasing the Phe content also enables a facile transition to ordered 

assemblies. This would suggest that there is likely to be discernible code for distinguishing 

sequences that drive condensate formation that also turnover into ordered assemblies versus those 

that form stable, reversible condensates that are unlikely to undergo disorder-to-order transitions.  
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Figure 12: Correlation between amino acid frequency and degree of discontinuity for all 23 

cPrDs classified as undergoing a two-state transition. Each point corresponds to an 

experimental replicate. The color of each point denotes the degree of discontinuity of the transition. 

Numbers indicate the Pearson r-values used to quantify positive or negative correlations. 

 

Discussion 

There is growing interest in measuring phase transitions in live cells [34, 39, 40, 42]. Of 

particular interest are results of measurements made under conditions where the effects of active 

processes are minimized. These measurements are helpful for understanding how the milieu of a 

living cell impacts the intrinsic driving forces for phase transitions [39]. These experiments, 

performed as a function of controlling the expression levels of the protein of interest, can help in 

mapping the sequence-specific free energy landscape that underlies the driving forces for and 

mechanisms of phase transitions that are under thermodynamic control.  

Here, we analyze in-cell phase transitions by allowing for a range of transition categories 

and use a supervised approach to develop a method that enables the automated analysis of 

DAmFRET data. This approach affords classification of the type of phase transition and 

comparative assessments of the driving forces for phase transitions. We applied our method 
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derived from supervised learning to analyze DAmFRET data for 84 different candidate prion 

domains. Our analysis helps categorize the phase transitions for each of these domains and identify 

sequences that clearly show two-state behavior. Among the trends that emerge, we find a 

noticeable negative correlation between the Tyr / Pro content and systems that undergo 

discontinuous two-state transitions. Conversely, we observe a weak positive correlation between 

the Phe / Thr content and the propensity for showing discontinuous two-state behavior. We 

envisage the possibility of using information gleaned across large libraries of sequences to design 

novel domains that undergo specific categories of phase transitions. The ability to quantify the 

sequence contributions to c50 values also affords the prospect of manipulating the driving forces 

for forming prion-like assemblies through sequence design.  

In addition to categorizing sequence-specific phase transitions and quantifying the driving 

forces for these transitions, we show how classical nucleation theory can be brought to bear for 

estimating the lower bounds on nucleation probabilities of systems that undergo discontinuous 

two-state transitions. This analysis requires independent measurements of expression trajectories, 

although this information is not available across the spectrum of proteins that have been 

interrogated using DAmFRET. If the parameters S, and J can be extracted using analysis of the 

DAmFRET data as a function of S, then the parameters A and B can be determined by plotting J/S 

versus ln-2S. This would allow mechanistic inferences such as estimates of free energy barriers to 

be extracted from a single DAmFRET experiment. Although expression trajectories are not 

currently obtained with the same level of throughput and speed as the generation of DAmFRET 

histograms, the data regarding expression trajectories are essential for estimating nucleation 

probabilities. It suffices to have these data for the fastest and slowest expression trajectories. High-

throughput methods for obtaining upper and lower bounds on expression levels versus time should 



 44 

be feasible, and promising options are being explored. Supplementing datasets by defining bounds 

on probable expression rates will go a long way toward facilitating a near complete mechanistic 

understanding of nucleated phase transitions for systems that undergo two-state discontinuous 

transitions. The physical parameters extracted from the application of classical nucleation theory 

to the analysis of DAmFRET histograms augmented by expression trajectories could be useful in 

enabling proteome-wide comparisons of the driving forces for forming ordered assemblies.  

Finally, the packaged code for supervised learning and for automated analysis of 

DAmFRET data are available via Github (https://github.com/pappulab/damfret_classifier). This 

package is distributed as open source, available for free download and usage, and users are invited 

to contribute code and insights to further the development of the package that is intended to enable 

automated classification of phase transitions and mechanistic inferencing based on DAmFRET 

data.  

Materials and Methods 

Biological reagents and Yeast transformation 

The yeast strain used was rhy1713 as described in previous work [39]. The strain is a 

knockout of CLN3 combined with a galactose-inducible overexpression of WHI5, thereby 

breaking the G1 cell cycle checkpoint and inducing cell arrest [66]. This allowed us to detect only 

de novo nucleation events by preventing mother-daughter cell propagation of the prions. Table 

S4, attached as an Excel spreadsheet, lists all plasmids used in this study.  Plasmid number, gene 

name, cell count and encoded polypeptide sequences for each gene region are listed for each 

construct and replicate. Cells were transformed using a standard lithium acid transformation 

protocol [67]. 
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Preparation of Cells for Cytometry 

Protein expression is induced in a 2% synthetic galactose (SGal)medium for 14 hours 

before being resuspended in fresh SGal for 4 hours to minimize autofluorescence.  After 18 hours 

of total induction, the cells are uniformly illuminated with 405nm violet light for 25 minutes to 

convert a highly reproducible ratio of the mEos3.1 from the green donor form to the red acceptor 

form.  

DAmFRET Cytometric Assay 

Following photoconversion, acceptor fluorescence intensity and FRET are measured using 

a flow cytometer. The ratio of indirect and direct acceptor fluorescence (595 ± 10 nm when excited 

with 488 nm or 561 nm light, respectively) is referred to as AmFRET, and this is used to measure 

the extent of ordered assembly within each cell. In the original implementation of the DAmFRET 

assay, the acceptor intensity, excited directly, was converted into units of concentration by dividing 

it by the measured cytosolic volume of the cell. In this work, cell imaging during flow cytometry 

measurements was bypassed to increase throughput by greater than 150-fold. The acceptor 

fluorescence intensity is still measured and used to monitor expression level, and this serves as a 

useful proxy for protein concentration in the cell.   

Additional details for the generation of the synthetic dataset 

 The number of points generated, which mimics the number of cells being interrogated in 

a DAmFRET measurement, was randomly selected to be between 104 and 1.5´104. In order to 

represent different distributions of points across the concentration range, an additional 104 to 

1.5´104 points were added to each dataset in three ways: points were chosen from a uniform 

distribution spanning the full range from 2.0 to 8.0, only at concentrations above the c50, or only 
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at concentrations below c50. The values of AmFRET for these additional points were determined 

as described above. Data were also generated without these additional points to simulate datasets 

obtained using fewer measurements. These smaller datasets had between 104 and1.5´104 points in 

total, rather than 2´104 or 3´104 points.  

Method for classification of DAmFRET histograms 

For each replicate, non-overlapping slices are made along log10(Expression). These slices 

are made in intervals of 0.5 (synthetic data), and 0.2 (real data). To reduce noise contributions at 

the extrema, our method uses a low cutoff of 3.0 and a high cutoff of 10.0 in log10(Expression) for 

synthetic data, and slices are only collected between these limits. A low cutoff of 1.5 and a high 

cutoff of 5.0 is employed for real data. For each slice, a normalized 1D histogram of the AmFRET 

counts is determined by binning the synthetic data in intervals of 0.1, while the real data is binned 

in intervals of 0.02. That histogram is fit to the sum of two Gaussians. The first Gaussian is 

centered at AmFRET=0, while the second Gaussian is centered at the position corresponding to 

ℎ𝚤𝑔ℎ$$$$$$!"#$. Here, ℎ𝚤𝑔ℎ$$$$$$!"#$ is calculated by taking the mean of AmFRET>0.5 (synthetic data) or 

AmFRET>0.05 (real data) in each expression level slice and taking the maximum of this value 

over all expression slices. The 𝑅% value of the fitted function is saved to be utilized later on. 

Using the fitted parameters, each Gaussian is numerically integrated to extract the area 

under the curve, yielding the quantities 𝑔& and 𝑔%, for the first and second Gaussians, respectively. 

The fraction assembled in a given expression level, i, is then given by 𝑓',) = 	𝑔% (𝑔& + 𝑔%)⁄ . To 

determine if no transition is observed in the DAmFRET histogram the change in the fraction 

assembled, ∆𝑓', is calculated as:  

∆𝑓' = 𝑓',* − 	min2𝑓',)3 
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where 𝑓',* is the fraction assembled in the last expression level slice. We define an assembly 

threshold, ∆𝑓',+,-./,, for one-state assembly as 0.10 (synthetic data) and 0.15 (real data). If ∆𝑓' <

∆𝑓',+,-./,, then the DAmFRET histogram does not show a transition and can be classified as one-

state. If the mean AmFRET<0.5 (synthetic data) or AmFRET<0.05 (real data), then the 

DAmFRET histogram is classified as one-state: no assembly at all expressions (blue). Else, the 

DAmFRET histogram is classified as one-state: assembled at all expressions (black). To determine 

the confidence in either assignment, we calculate a confidence score of the system using the 

deviation of ∆𝑓' from ∆𝑓',+,-./,: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	𝑆𝑐𝑜𝑟𝑒012#	&	01'56 = 2∆𝑓',+,-./, −	∆𝑓'3 ∆𝑓',+,-./, .?  

Since this score is normalized, it ranges from 0 to 1. 

 If ∆𝑓' ≥ ∆𝑓',+,-./,, the system is likely to be undergoing some kind of transition. 

Therefore, we fit a logistic function to fraction assembled profile using the equation: 1/(1+exp(-

(c-c50)/m)). Here, c is the log10(Expression) of a given slice, c50 is the log10(concentration at which 

50% of cells are in the assembled state), and m is the inverse of the slope. Thus, we can extract c50 

from the fit of the fraction assembled to the logistic function.  

 To account for the fact that real data can limited and / or noisy at the extrema of the 

expression level range, we add a couple additional checks for one-state behavior when analyzing 

real data. If 𝑐78 ≤ 1.5, i.e., below the lower limit of log10(Expression) used in our analysis of the 

real data, then this implies the system transitioned at low log10(Expression) values at which we 

have limited and / or noisy information. Thus, we also classify these histograms as one-state: 

assembled at all expressions (black). For these cases, the confidence score is just set to one.  
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 At this point we perform our final check on whether a system has undergone no assembly 

at all expression levels. If 𝑐78 ≤ 4.0, then we check the number of measurements that are above 

c50. If this number is less than or equal to 20, then we ascribe these points to noise and the 

corresponding DAmFRET histogram is classified as one-state: no assembly at all expressions 

(blue). If 𝑐78 > 4.0, then the transition is at the edge of the expression level range, which implies 

c50 is not likely well defined. Thus, we just examine the number of points with AmFRET>0.05 

corresponding to an expression level above c50. This checks the number of points that are genuinely 

in the assembled state above c50. If this number is less than or equal to 20, then we also ascribe 

these points to noise and the corresponding DAmFRET histogram is classified as one-state: no 

assembly at all expressions (blue). In both cases, the confidence score of these assignments is set 

to one.  

 Next, we check whether there is enough data to classify the transition. This check was not 

part of the method to analyze the synthetic data, but this checkwas added for the real data to account 

for cases in which there was not enough data to classify the transition. If the fraction of cells above 

the c50 (𝑓978) is less than 10% of the total number of cells for that replicate, the system is classified 

as undergoing an infrequent transition (yellow). Unlike the one-state classes, our check for this 

class involves first eliminating the DAmFRET histogram as being classified as one-state. Thus, 

our confidence score in the assignment of an infrequent transition must reflect the multiple checks 

that are performed to lead to this assignment. We calculate 𝑆𝑐𝑜𝑟𝑒1 =

min	(1, 2∆𝑓' − ∆𝑓',+,-./,3 (0.5 − ∆𝑓',+,-./,)? ) and 𝑆𝑐𝑜𝑟𝑒2 = (0.1 − 𝑓978) 0.1⁄ . Here, Score1 

checks the deviation from the one-state criterion and Score2 checks the deviation from the 

infrequent transition criterion. The final confidence score is set to be the minimum of Score1 and 

Score2.   
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 The remaining DAmFRET histograms undergo some sort of transition. Thus, we utilize 

the R2 values of the fit to the sum of two Gaussians to determine features of the transition and 

further classify these histograms. Histograms that show a two-state continuous transitions should 

have low R2 values around c50 given that a majority of the points will be between AmFRET=0 and 

AmFRET=ℎ𝚤𝑔ℎ$$$$$$!"#$. Thus, we identify an expression level window of c50 -/+1. If c50+1 exceeds 

the expression level range, then the last four expression slices are used for the window. Then, 

within this identified window both the maximum absolute change in consecutive R2 values, 

max(∆𝑅:% ), and the minimum R2 value, min(𝑅:% ), is recorded. Here, the subscript w denotes that 

we are only examining the R2 values that correspond with expression level slices around c50 as 

described above. If max(∆𝑅:% ) > 0.08 and min(𝑅:% ) < 0.6, then the DAmFRET histogram is 

classified as undergoing a two-state continuous transition (red). The confidence score in this 

classification is then the minimum confidence of the preceding three checks. Specifically, we 

calculate 𝑆𝑐𝑜𝑟𝑒1 = min	(1, 2∆𝑓' − ∆𝑓',+,-./,3 (0.5 − ∆𝑓',+,-./,)? ) and 𝑆𝑐𝑜𝑟𝑒2 =

min(1, (𝑓978 − 0.1) (0.3 − 0.1))⁄  and 𝑆𝑐𝑜𝑟𝑒3 = min(1, (0.6 − min(𝑅:% )) (0.6 − 0.3))⁄ .  Here, 

Score1 checks the deviation from the one-state criterion, Score2 checks the deviation from the 

infrequent transition criterion, and Score3 checks the deviation from the two-state continuous 

transition criterion. The final confidence score is then the minimum of these three values.  

  Next, we sought to determine if any of the remaining DAmFRET histograms showed multi-

state transition behavior. From the synthetic 2-step data, we noticed that the R2 values tended to 

linearly decrease with increasing expression level slice. This is due to the fact that the extracted 

ℎ𝚤𝑔ℎ$$$$$$!"#$ value is a convolution of several high AmFRET states that are overlapping in their 

expression level range and thus neither high AmFRET state ever fits well to the sum of two 

Gaussians. To classify DAmFRET histograms that show this behavior, we fit the full R2 profile to 



 50 

a linear fit and restricted the maximum slope of that fit to be zero. Then the R2 value of this fit was 

extracted, 𝑅;%. If 𝑅;% > 0.6, then the DAmFRET histogram was classified as undergoing a higher 

order state transition (magenta). As before, the confidence score in this classification was 

calculated using the previous checks. Here, we have 𝑆𝑐𝑜𝑟𝑒1 =

min	(1, 2∆𝑓' − ∆𝑓',+,-./,3 (0.5 − ∆𝑓',+,-./,)? ) and 𝑆𝑐𝑜𝑟𝑒2 = min(1, (𝑓978 − 0.1) (0.3 − 0.1))⁄  

and 𝑆𝑐𝑜𝑟𝑒3 = (min(𝑅:% ) − 0.6) (1 − 0.6)⁄  and 𝑆𝑐𝑜𝑟𝑒4 = (𝑅;% − 0.6) (1 − 0.6)⁄ .  The final 

confidence score is the minimum of all four values.   

 Finally, the remaining DAmFRET histograms were classified as undergoing a two-state 

discontinuous transition (green) as the data did not show any features that led to the data failing 

the null hypothesis. The confidence score for this classification was set to the minimum of the 

following four scores: 𝑆𝑐𝑜𝑟𝑒1 = min	(1, 2∆𝑓' − ∆𝑓',+,-./,3 (0.5 − ∆𝑓',+,-./,)? ) and 𝑆𝑐𝑜𝑟𝑒2 =

min(1, (𝑓978 − 0.1) (0.3 − 0.1))⁄  and 𝑆𝑐𝑜𝑟𝑒3 = (min(𝑅:% ) − 0.6) (1 − 0.6)⁄  and 𝑆𝑐𝑜𝑟𝑒4 =

(0.6 − 𝑅;%) 0.6⁄ . 

Alberti et al. Dataset and Creation of DAmFRET histograms 

DAmFRET histograms were collected for all 94 Alberti et al. cPrDs, 93 were performed 

in quadruplicate and one construct was performed with eight repeats. Each replicate is composed 

of 0 – 170,000 individual cell measurements of AmFRET at a given expression level. Figure S7 

shows the distribution of the number of cell measurements for all replicates. Given the wide range 

in the number of individual cell measurements performed across the dataset, we used an 

information theoretic approach to identify the ideal common grid size for our two-dimensional 

DAmFRET histograms of expression level and AmFRET. To determine an acceptable grid size 

which could be applied to all replicates for subsequent analysis, we examined the information 
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density quantified by the Shannon Entropy, 𝑆 = −∑ ∑ 𝑝)<
*!
<=& log	𝑝)<

*"
)=& , and its change as a 

function of increasing grid size, on a subset of replicates. Our analysis, shown in Figure S8 and 

described in further detail in the supplementary material, led to the choice of a 300x300 common 

grid size. This grid size was chosen to maintain a large amount of information across varying 

numbers of individual cell measurements. However, given that replicates at lower measurement 

counts tend to experience significant |∆𝑆| loss at the 300 × 300 grid size, any subsequent analysis 

may be impaired. Hence, we excluded cPrDs who had at least one replicate with < 2 × 10> 

individual cell measurements. This left us with 84 cPrDs for subsequent analysis.   

Determining the degree of discontinuity in the transition of a cPrD classified as undergoing a two-

state transition  

The R2 value around the expression slice that corresponds to log10(c50) yields information 

on how well a sum of two Gaussians can capture the 1-dimensional AmFRET histogram at the 

transition. Thus, we sort the cPrDs by their mean minimum R2 in the region that corresponds to 

the expression level slices within the window of log10(c50) -/+1, min(𝑅:% ), to order them by the 

degree of discontinuity in the transition. To color the data in plots Figure 5E, Figure 11 and 

Figure 12 we take advantage of the fact that one of the criteria for classification of DAmFRET 

data into the two-state continuous class is that min(𝑅:% ) must be less than 0.6. Thus, any cPrD that 

has a mean min(𝑅:% )of less than 0.6 is colored red (two-state continuous) and any cPrD that has a 

mean min(𝑅:% )of greater than 0.6 is colored green (two-state discontinuous). Then, the alpha color 

for each of the two-state cPrDs / cPrD replicates is based on how far the <min(𝑅:% )>/ min(𝑅:% ) is 

from the threshold of 0.6. For those cPrDs classified as two-state discontinuous the alpha color is 

set to a=(min(𝑅:% )-0.6)/(1-0.6). For those cPrDs classified as two-state discontinuous the alpha 
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color is set to a=min(1,(0.6- min(𝑅:% ))/(0.6-0.3)). A lower limit of 0.3 rather than 0.0 is used in 

the latter case given that R2 values rarely ever drop below 0.3.  

Microscopy 

 Yeast cells expressing ASC-mEos3.1 were grown overnight in synthetic media containing 

2% dextrose while shaken at 30oC. Cells were then loaded into a CellASIC ONIX microfluidic 

device (Millipore Sigma B04A03). Media containing 2% galactose was flowed through the 

microfluidic device at a rate of 5kPa from 2 wells at a time. Timelapse images were acquired on 

an Ultraview Vox (Perkin Elmer) Spinning Disc (Yokogawa CSU-X1). Images were collected 

with an alpha Plan Apochromat 100x objective (Zeiss, NA 1.4) onto an Orca R2 camera 

(Hamamatsu, C10600-10B). mEos3.1 was excited with a 488nm laser, and the fluorescence 

emission was collected through a 525-50nm bandpass filter. Images were collected as z-stacks 

with 0.5 um steps (41 slices) and a 30ms camera integration time every 5 minutes. Additionally, a 

single transmitted light image was acquired in the middle of the z stack with an integration time 

of 200ms. Each time point was sum projected and the resulting time course was registered to 

reduce movement of the cells.  Regions of interest were then drawn in individual cells and the 

mean intensity of the sum projected fluorescence was measured from the beginning of the time 

course until the end.  
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