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Abstract

The combination of phase separation and disorder-to-order transitions can give rise to ordered,
semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian
transfer of information across cells. Recently, a method known as Distributed Amphifluoric
Forster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase
separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is
expressed to a broad range of concentrations and the acquisition of local density and order,
measured by changes in FRET, is used to map phase transitions for different proteins. The high-
throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior
relationships in live cells. Here, we report the development of a supervised method to obtain
automated and accurate classifications of phase transitions quantified using the DAmFRET assay.
Systems that we classify as undergoing two-state discontinuous transitions are consistent with
prion-like behaviors, although the converse is not always true. We uncover well-established and
surprising new sequence features that contribute to two-state phase behavior of prion-like domains.
Additionally, our method enables quantitative, comparative assessments of sequence-specific
driving forces for phase transitions in live cells. Finally, we demonstrate that a modest
augmentation of DAmMFRET measurements, specifically time-dependent protein expression
profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower
bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead
to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase

transitions in live cells.



Introduction

Phase transitions can lead to the formation of various types of macromolecular assemblies
in cells [1-7]. These include liquid or gel-like biomolecular condensates that concentrate protein
and nucleic acid molecules [8-10], liquid crystalline assemblies [11], and semi-crystalline
assemblies [12] such as prions [13, 14], which are protein-based elements that enable non-
Mendelian inheritance [15-17]. Phase transitions are characterized by cooperative changes to order
parameters and different types of transitions are associated with changes to different types of order
parameters [18]. Phase separation is a form of phase transition where macromolecular
concentration is the relevant order parameter [6, 18, 19]. In a macromolecular solution, if and only
if homotypic interactions are the main drivers of phase separation [20, 21], then the system
separates into two or more coexisting phases when the concentration of macromolecules crosses a
system-specific threshold concentration, with each pair of phases being delineated by a distinct

phase boundary.

On a microscopic level, phases are defined and distinguished on the basis of structural
symmetry and the type of order found in a phase [18]. Distinguishing order versus disorder in
different phases requires quantification of how a phase responds to a set of symmetry operations
such as the Euclidean group [22], which represents a set of translational, rotational, and reflection
operations. Isotropic liquids and gases are statistically invariant under all symmetry operations.
Accordingly, the entire Euclidean group is the symmetry group for isotropic fluids and such
systems have the highest possible symmetry. As a result, a vapor-liquid transition of isotropic
fluids does not involve a change in symmetry, but it does involve a change in density. The working
hypothesis that has emerged from in vitro characterizations is that liquid-liquid phase separation

that gives rise to some biomolecular condensates [1] is akin to a vapor-liquid transition that



involves a change in density [23], without a change in symmetry [24]. There can be significant
differences in compositions [25-27], including the exclusion of certain components such as

macromolecular crowders from dense phases [28] points to a change in compositional symmetries.

The onset of order in a phase implies that the phase in question is statistically invariant to
a subgroup of operations that define the Euclidean group. The extent and type of order versus
disorder is governed by the size of the symmetry group for a given phase and the type of symmetry
operations to which the phase in question remains statistically invariant. At equilibrium, higher
entropy disordered phases have high symmetries whereas lower entropy ordered phases have lower
symmetries. Accordingly, disorder-to-order transitions are also described as symmetry-breaking
transitions [18]. Symmetries are quantified in terms of non-conserved order parameters, typically
taking values between 0 (maximal disorder) and 1 (maximal order). This is relevant because phase
separation in vitro and in live cells can also be accompanied by the breaking of symmetries that
drive collective disorder-to-order transitions [19, 29, 30]. Examples include protein crystallization

in vitro [31] and the formation of fibrillar solids both in vitro and in cells [18, 19, 29, 30].

The order parameter for phase transitions that combine phase separation and disorder-to-
order transitions has two components namely, macromolecular concentration and a measure of
order / disorder [32, 33]. The free energy barrier for nucleating an ordered phase is determined in
part by the supersaturation [34-36], defined as the natural logarithm of the ratio of the bulk
concentration to the saturation concentration [37]. Above the saturation concentration, the
supersaturation increases, thereby decreasing the nucleation barrier and increasing the probability
of spontaneously nucleating the ordered assembly [38] (Figure 1a). The assembly of prion-like
states arises through templated growth of the nucleus, which is the embryo of the ordered phase

that forms within the disordered phase [14]. The latter is either a dilute or dense liquid where the



distinction between dilute and dense points to the difference in macromolecular concentration
within the liquid phase, and the extent of order versus disorder refers to the fraction of molecules

that are incorporated into the ordered phase.

Results of measurements made under conditions where the effects of active processes are
minimized are helpful for understanding how the milieu of a living cell impacts the intrinsic
driving forces for phase transitions [39]. Live cell investigations of macromolecular phase
transitions have been driven by adaptations of optogenetics technologies [40, 41], advances in
super-resolution microscopy [34, 42], and single particle tracking [43, 44]. Recently, a new method
known as Distributed Amphifluoric Forster Resonance Energy Transfer (DAmFRET) was
introduced to investigate phase transitions that lead to prion-like assemblies in yeast [39] and
mammalian cells [45]. In DAmFRET measurements, live cells are used as femto-liter sized test
tubes in which protein self-assembly is measured. FRET is used as the reporter for protein
assembly within each cell. Because changes to FRET intensities result mainly from changes to
intermolecular distance, DAmMFRET measures changes to both density and the extent of order /
disorder. Accordingly, phase transitions such as prion formation that combine phase separation

and disorder-order transitions can be measured using DAmFRET.



(a) Medium [Protein] High [Protein]

@) © o

AG

Reaction Coordinate
Normalized FRET, AmMFRET

Medium [Protein] High [Protein]

2O o 2 Ne O o

2 QC QC QC

sl Y ol Yrall®Pao

2 Q Q Q

O "oll9 olld "o

. O - o e Assembled
AmFRET

Figure 1: Schematic of disorder-order transitions and details of the DAmFRET assay. (a) At
low (1) and medium (2) protein concentrations there is a free energy barrier for nucleation of
ordered assemblies, whereas at high (3) protein concentrations this barrier is eliminated. Here, the
protein concentration in (1) corresponds to a system that is subsaturated and protein concentrations
in (2) and (3), respectively correspond to systems that are supersaturated. (b) DAmMFRET is
performed using a chimera of an aggregation-prone or prion-like protein of interest and a
photoconvertible fluorescent protein mEoS3.1. This allows for the examination of FRET in live
cells and AmFRET can be measured using flow cytometry for thousands of cells with different
expression levels. We assume that steady-state assembly is reached instantaneously upon
nucleation, at least given the temporal resolution of measurements and the rapid timescales one is
likely to associate with actual barrier crossings, i.e., transition path dynamics in typical physico-

chemical reactions [46]. At low concentrations, the system is subsaturated, and nucleation is



highly disfavored so all cells should have low AmFRET values indicating the protein remains in
the dilute phase (off-white color). At intermediate concentrations, the system is supersaturated and
the barrier for nucleation is reduced and now some cells maintain a dilute population and low
AmMFRET, whereas other cells undergo nucleation and thus the formation of ordered assembles as
indicated by high AmFRET (bright yellow). At high concentrations the system is significantly

supersaturated, and there is no longer a barrier for nucleation and most cells show high AmFRET.

In DAmFRET experiments a photo-switchable fluorescent protein mEos3.1 is expressed
as a chimera with the protein of interest (Figure 1) [39]. mEos3.1 is a green fluorescent protein
that can be converted to a red fluorescent protein upon illumination with violet light. This
conversion can be achieved in a controlled, time- and intensity-dependent manner. Photo
conversion allows the generation of FRET pairs from a single genetic construct in a consistent and
controllable ratio that is independent of expression level. The resulting green and red forms
constitute the FRET donor and acceptor, respectively. In yeast, variability in expression under the
GALI promoter and the 2 microns replication system is achieved by harnessing the wide range
(more than 100-fold) of plasmid copy numbers across thousands of cells. This allows wide
coverage of protein expression levels across a population of cells analyzed by flow cytometry.
Intracellular phase behavior is interrogated after cell division and protein degradation have been
turned off upon galactose induction. This ensures that each cell mimics a closed system and that
phase transitions are being interrogated in a cell autonomous manner since propagation via cell
division is eliminated. In effect, the DAmFRET approach affords two advantages: from the
perspective of physical chemistry, it allows one to treat each live cell as being a femtoliter test

tube. Secondly, live cells are not passive reservoirs and therefore the insights gleaned from the



DAmMFRET assay are likely to have a direct bearing on understanding how spontaneous and driven

phase transitions are controlled by protein expression and influenced by a dynamic cellular milieu.

DAmMFRET assays enable the interrogation of protein assembly behavior across a large
population of live cells by monitoring AmFRET, defined as the ratio of sensitized emission FRET
to acceptor fluorescence intensity [39]. AmMFRET measured by flow cytometry is not an order
parameter in the strictest sense of the term. For example, two different proteins that have similar
AmFRET values do not necessarily have the same degree of order / disorder. Likewise, the
densities of assemblies corresponding to similar AmMFRET values do not have to be similar.
However, it can be used as a proxy of a non-conserved parameter for understanding the nature of
the phase transition that a specific system undergoes because, for a specific system, interrogated
across a population of cells, it provides a quantitative assessment of relative order versus disorder.
Further, as we show here, parameters extracted from analysis of DAmMFRET histograms can be
compared across different proteins. Dispersed monomers should have low AmFRET values around
zero, whereas the AmFRET value will increase upon assembly formation. For proteins that do not
become trapped in long-lived partially assembled intermediates, we can distinguish the
concentration dependence of assemblies into three categories. At low overall expression levels,
the effective concentration is below the saturation concentration, and a dilute, disordered phase
will form for the protein of interest across the population of cells (Figure 1b). At intermediate
levels of expression, the protein of interest is supersaturated, and two distinct populations of cells
can coexist with one another: In one population, the protein of interest will be entirely in the dilute,
disordered phase, whereas in the coexisting population, we will observe proteins concentrated into
dense, ordered assemblies. The likelihood of observing a coexisting population of cells that feature

dilute, disordered phases will be tied to the supersaturation-dependent nucleation probability. At



high expression levels, dense ordered assemblies will form for the protein of interest in a majority
of the cells. In each of these three categories cells only fall into one of the two distinct states, dilute
or ordered assembled; therefore, these proteins can be classified as undergoing a two-state

discontinuous phase transition.

Given that the DAmFRET assay collects data across expression levels that span 2-3 orders
of magnitude [39], one can analyze two-dimensional histograms of expression levels and
AmFRET values across a large (~10%) population of cells and categorize proteins based on the
types of assembly behaviors observed. Information extracted from analysis of two-dimensional
histograms allows us to quantify the expression level at which proteins in 50% of the cells are in
the assembled phase. Because the driving forces for phase transitions are dependent on protein
concentration through the degree of supersaturation, the measure of the expression level at which
proteins in 50% of the cells are in the assembled phase allows for a comparative assessment of
sequence-encoded driving forces for phase transitions that show two-state discontinuous behavior.
Further, one can also analyze the measured phase behavior to identify proteins into groups that do
not undergo a measurable transition or undergo continuous or discontinuous transitions into

different phases that are amenable to interrogation by the DAmFRET assay.

Here, we assess and analyze the information gleaned from DAmFRET measurements to
answer three questions: (1) Given the large amount of data that can be generated through the
DAmMFRET assay, approximately 10° histograms in a day, we ask if we can automate the
classification of phase transitions measured by DAmFRET into distinct categories? (2) Further, do
the phase transitions of proteins that form bona fide prions belong to a specific category? And (3),
for proteins that show discontinuous two-state phase behavior, consistent with nucleated

transitions, can we use data from DAmMFRET experiments to extract information regarding the



barriers to nucleation at different degrees of supersaturation? To answer the first question, we
develop a supervised method [47] that classifies different types of DAmMFRET histograms based
on analyzing synthetic AmFRET data as a function of expression level. We apply these methods
to analyze DAmFRET data obtained for a large number of candidate prion-like domains (cPrDs)
[16] and uncover sequence features that correlate with the degree of discontinuity of a two-state
transition. We also show that expression levels at which 50% of the cells are in the assembled state
can be accurately extracted by analysis of DAmMFRET measurements using our automated method.
This value, designated as cso, can be used to rank order proteins based on their driving forces for
assembly. As for the second question, we find that proteins classified as undergoing two-state
discontinuous transitions tend to show prion-like properties, although bona fide prions can be
classified into other categories of transition classes as well. Finally, we deploy a numerical method
motivated by classical nucleation theory to show that information from DAmFRET measurements
can be adapted to estimate the sizes of free energy barriers to nucleation of ordered assemblies.
Usage of this analysis does require augmentation to the data collected from DAmMFRET
measurements. Overall, the analysis pipeline we develop here paves the way for gleaning
quantitative and mechanistic inferences from analysis of large-scale, proteome-level investigations

of prion formation and related phase transitions in live cells.

Results

Classifiers of phase transitions measured using DAmFRET: Depending on how AmFRET
changes as a function of protein expression levels, we classify DAmFRET datasets into five

categories.

One-state — no transition: Across the concentration range interrogated by DAmMFRET

experiments, AmMFRET does not change its value. If AmMFRET is low across the concentration
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range, then this is a manifestation of one-state behavior without assembly. Alternatively, if
AmFRET is uniformly high across the concentration range, then the data are concordant with the

designation of one-state behavior with assembly.

Two-state discontinuous transitions: These are characterized by the existence of a threshold
expression value, such that above this value AmMFRET changes in a stepwise fashion from low to
high values. Accordingly, cells fall into one of two categories defined by the presence or absence

of dense, ordered assemblies.

Two-state continuous transitions: Here, AmFRET increases continuously once the
expression level crosses a threshold value. Unlike two-state discontinuous transitions, the two-state
continuous transitions are best modeled using a smooth function that interpolates between low and
high AmMFRET values. Continuous transitions likely reflect the formation of a distribution of low-
affinity oligomers or mesophases whereby the sizes and / or numbers of assemblies increase as
concentration increases. This would result in a continuous increase in FRET intensity, which is

also proportional to the numbers of complexes of specific sizes.

Three- or multistate transitions: Here, the transitions proceed through multiple states
characterized by intermediate values of AmFRET. It is worth noting that intermediate values of

AmMFRET may also be a reflection of non-equilibrium steady states or long-lived transients.

Enabling supervised learning and classification based on synthetic data sets for each of
the different categories of phase transitions: Synthetic two-dimensional histograms of expression
level and AmFRET were generated for each of the five categories of phase transitions (Figure 2a).
We generate synthetic AmMFRET datasets using a simple step function or a sigmoid function. The
minimum and maximum values of the step and sigmoid functions in the synthetic data for the

supervised learning are set as Amin = 0 and Amax = 1.5. Each histogram was generated using ~10*
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data points, where the points are proxies for measurements in individual cells. Points were
generated using a logio(expression) value in the range of 2.0 to 8.0 and an AmFRET value between
0.0 and 1.5. Noise was added in the logio(expression) value using a Gaussian with a mean of 0.5
and standard deviation of 0.75, which we term c.. The expression at which 50% of the cells show
high AmFRET assemblies is designated as cso and logio(cso) was set to be 1.0, 2.0, 4.0, 6.0, 8.0,
10.0, or 12.0; to increase the width of the range of concentrations where high and low AmFRET
values overlap, we introduced random noise to cso with a variance of + 0.8, which we term csoe.
For three-state transitions, the variance value was increased to = 4.0 in order to represent
observations in some instances of experimental data where a wider range of concentrations have
both low and high AMFRET populations, and to test the ability of our algorithm to classify data
with larger overlaps. For our analysis, we only consider data points with logio(expression) values
between 3.0 and 10.0. Note that datasets with logio(cso) less than 3.0 or greater than 10.0 were
intentionally chosen to be outside this concentration range. Accordingly, datasets generated using
logio(cso) = 1.0 or 2.0 were designated as “One state: with assembly”, and datasets with logio(cso)
= 12.0 were designated as “One state: No assembly”. Data for logio(cso) = 10 fall at the edge of
the range of generated points. However, because of noise, data generated using this model show
evidence for transitions from low AmFRET to high AmFRET states, although this transition is
incomplete within the simulated concentration range. These synthetic data were used to represent

experimentally observed cases where the complete transition is not fully captured.

To mimic data from measurements that correspond to two-state transitions, the synthetic
data for AmMFRET values were generated using a piecewise step function with logio(cso) as the
transition point to mimic two-state discontinuous transitions, or using a Boltzmann sigmoid

logistic equation [48] to mimic continuous two-state transitions. For the latter case, data were
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generated by sampling points from the following equation for AmMFRET, which will be a function

of the bulk concentration ¢ and the values will depend on the baselines for Amax and Amin, our

choices for ¢so and the choice of m, which is the slope of the transition between low and high

AmFRET values. Accordingly, for synthetic continuous two-state data, AmMFRET as a function of

¢ is computed using:

AmFRET = $e (A = Ar)

c, c.,—¢C
cso[l—kexp(”TD

(1

Synthetic data to mimic three-state transitions were generated with two overlapping piecewise step

functions, one stepping from zero to 0.4 Amax and the other to 0.8 Amax. For a given set of parameters

namely, (1) the values of cso, (i1) stepwise versus sigmoid function, and (iii) whether the transitions

are one-, two- or three-state, synthetic data were generated in three independent repetitions using

different random number seeds with three different AmMFRET noise levels (low, medium, high).
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Figure 2: Schematic of the method used to classify synthetic DAmFRET data. (a) Row one
shows representative synthetic DAmMFRET histograms for the five different classes we aim to
classify. (b) Each synthetic DAmFRET histogram is sliced into expression level windows and the
corresponding 1-dimensional AmFRET histograms are fit to a sum of two Gaussians where the
position of the first peak is set to AmMFRET=0 and the position of the second peak is set to the
maximum mean AmFRET across all expression slices after removal of AmFRET values around

zero. Here, example fits are shown for the expression level slice of 6-6.5. For the other expression



slices see Figure S1. (c) The fits are used to extract the fraction of cells that undergo assembly in
each expression slice by taking the area under the curve of the second peak and dividing it by the
total area under both curves. If the change in fraction assembled from the last expression slice
minus the minimum fraction assembled is less than 0.1, then the profile is classified as one state
and the mean AmFRET across all expression slices determines whether the protein is in the no
assembly versus all assembled class. (d) For all profiles that are not classified as one-state, we use
the R? values of the fit to the sum of two Gaussians across the expression slices to rule out
histograms that do not show two-state discontinuous behavior. Profiles that show a minimum in
R? values around logio(cso) are classified as two-state continuous and profiles that show a
continuous decrease in R? values across expression slices are classified as three-state
discontinuous. All other profiles pass the test of the null hypothesis and are thus classified as two-

state discontinuous.

Heuristics to classify different categories of phase transitions: Since synthetic datasets
were generated from known priors, we can assess the accuracy of a classifier with certainty. This
supervised approach, whereby we know how data were generated and ask if a classifier is accurate
in its assignment of the category of phase transitions, yields heuristics that can be deployed in the
analysis of real data while also knowing the level of confidence one can ascribe to a specific

classification.

The null hypothesis is that all synthetic DAmMFRET histograms belong to the two-state
discontinuous transition category. We use the synthetic DAMFRET histograms to rule in or rule
out this hypothesis. Specifically, each histogram is divided along the expression-axis into
expression level slices. The one-dimensional histogram of AmFRET values within each expression

level slice is fit to a sum of two Gaussians (Figure 2b and Figure S1). Here, the position of the
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first peak is set to be at zero AmMFRET and the position of the second peak is set to the maximum
mean AmFRET across expression level slices. For calculating the latter, we discard all AmFRET
values within the noise around AmMFRET=0. We use a sum of two Gaussians since the null model
is that of a discontinuous two-state transition wherein all cells either have no assembly or have
reached steady-state assembly. Next, the fraction assembled in each expression slice is calculated
by computing the area under the curve of the second Gaussian peak and dividing it by the total

area under both curves (Figure 2c).

If the fraction assembled in the last expression slice minus the minimum value for the
fraction assembled is less than 0.1, then the DAmFRET histogram is classified as being one-state.
The mean AmFRET value is then used to determine if the one-state behavior corresponds to no
assembly or all assembled in the given expression range. Specifically, if the mean AmFRET value

is less than the noise cutoff around AmMFRET=01it is classified as being one-state without assembly.

For DAMFRET histograms that are inconsistent with one-state assembly we examine the
R? values as a function of expression slice for the fit of the AMFRET histogram to the sum of the
two Gaussians (Figure 2d). For discontinuous two-state transitions, the R? values should be high
(near 1.0) across all expression level slices. Additionally, Gaussian fits of AmMFRET histograms
for two-state continuous and three-state discontinuous data show distinct R? dependencies on
expression level. Specifically, for two-state continuous transitions, the R? values are lowest at
expression level slices around logio(cso). This is because, within the transition region, most cells
have AmFRET values that lie between zero and high AmFRET for a two-state continuous
transition (Figure 2b and Figure S1). The percent of cells that lie between the limits will depend
on the slope of the transition. At equivalent noise levels, smaller slopes imply that a larger

percentage of cells lie between the limits, thereby leading to a smaller R? value. In contrast, the
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three-state discontinuous transitions show a linear decrease in R* values across expression level
slices due to the existence of three overlapping states. We used these two trends to determine if a
DAmFRET histogram is consistent with either a two-state continuous or multi-state transition (see
Materials and Methods for details). If R as a function of expression slice does not show either of
these two trends, then it passes our null hypothesis and the transition measured by DAmFRET is

classified as being two-state discontinuous.

Figure 3 shows how well the classifier performs in categorizing the synthetic data. The
corresponding synthetic DAmFRET histograms are shown in Figure S2. Each dataset is assigned
a color that corresponds to its classification and the shade of the color indicates the confidence
level in the classification, the darker the shade the more confidence in the classification. Synthetic
data were created in three replicates and therefore each row represents a different replica. Of the
162 histograms that we generated, our classification scheme yields a 90% accuracy, classifying
146 of the histograms correctly. In general, we succeed in classifying synthetic datasets into the
correct categories, although the confidence in these classifications decreases as logio(cso)
approaches the limits of the expression range that can be assessed, or the noise becomes too high.

This is evident for synthetic data corresponding to two-state continuous transitions (Figure 3d).
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the shade the more confident the method is in its classification (Table S1). For a non-shaded
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version of Figure 3 see Figure S3. Each row denotes a different replica. Each column is denoted
by the logio(cso) (1.0, 2.0, 4.0, 6.0, 8.0, 10.0, or 12.0), the function (Sigmoid, Step, or 2 Step), and

the noise level (Low, Medium, or High) used to generate the synthetic DAMFRET histograms.

Beyond classifying datasets into distinct categories, for data classified as two-state systems
we can fit the fraction assembled as a function of expression to a logistic function and extract cso.
This is a strategy we adopt for analyzing real DAmFRET data, and we prototype it here for
synthetic data. Figure 4 shows the comparison between the actual value of cso used to generate
the synthetic datasets and the estimate for cso extracted from the logistic fits to the synthetic
datasets. We observe good agreement between the actual versus extracted values. However,
deviations from the actual value of cso occurs when this value approaches the limits of the
expression range that can be accessed. Overall, the results in Figures 3 and 4 show that the method
introduced here allows for accurate classifications of phase transitions, while also enabling the

extraction of accurate quantitative estimates for cso.
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Figure 4: Actual logio(cso) values versus the logio(cso) values extracted from the logistic fit of
the fraction assembled profiles for all two-state DAmFRET histograms (Figure 2¢). Boxplots
show distributions of logio(cso) extracted from 54 histograms for logio(cs0)=4.0, 6.0, and 8.0 and

38 histograms for logio(cs0)=10.0.

Application of the numerical classifier to DAmFRET data for a set of cPrDs: We collected
and analyzed DAmFRET data for 84 of the 100 candidate prion domains (cPrDs) identified and
analyzed by Alberti et al., [16] in their screen for proteins with prion behavior (see Materials and
Methods). Alberti et al. used a combination of four different assays to test if the cPrDs are bona
fide prion formers. In their assessments, a bona fide prion former should have the following
characteristics: (a) it should form foci in cells; (b) the assemblies extracted from cells should be
stable as assessed by sensitivity to detergent; (c) the assembly state should be transferable from
mother to daughter cells during cell division and (d) the assemblies should stain positively with
amyloid sensitive dyes such as thioflavin T (ThT). In all, Alberti et al., identified 18 cPrDs that
showed prion-like behavior in all four assays [16]. Here, we make comparisons against the
assessments made by Alberti et al. in order to test our classification method and to uncover

information about mechanisms for prion formation as assessed by DAmFRET.

Figure S shows our classification of the cPrDs for which DAmMFRET measurements were
performed. The corresponding DAMFRET histograms are shown in Figure S4. For these data, we
included an additional class to allow for proteins that are not classified as one-state, but only show
assembly in fewer than 10% percent of the cells that were interrogated. Given the low percent of
cells in the assembled state there is not enough information to classify the type of transition
observed and therefore we denote this class as “Infrequent Transition”. Additionally, unlike the

synthetic data set, in which the transition was binary in terms of being discontinuous or continuous,

20



the classification of real data for two-state histograms falls along a continuum from discontinuous
to continuous (Figure 5e). Thus, we group all cPrDs that show two-state behavior together and

then further annotate their position on the spectrum.

Figure 5a shows that of the 84 cPrDs that were examined using DAmMFRET, 35 showed
no assembly across all expression levels, 9 showed infrequent transitions, 23 showed two-state
behavior, and 2 showed assemblies at all expression levels. Additionally, 15 cPrDs showed mixed
classification in which not all of the individual cPrD replicates were sorted into the same class
(Figure Sc¢). Figures Sb-d show the classification of each cPrD for each of its four replicates. The
pixel color denotes the classification, and the darkness indicates the confidence level in that
classification, with darker being more confident (Materials and Methods). The two-state cPrDs are
sorted by where they fall on the spectrum of discontinuous to continuous transitions (Figure Sb,

Materials and Methods).

Figure Se shows representative DAmFRET histograms for five cPrDs that show two-state
behavior in the DAmFRET assays. Here, the color represents where the cPrD of interest falls on
the two-state spectrum. Nsp1 shows discontinuous two-state behavior with low AmFRET up until
a threshold expression level and then a transition to a high AmFRET state with few cells showing
intermediate AMFRET values. In contrast, Rbs1 features continuously increasing AmMFRET values
as the expression level increases. The other two-state cPrDs fall between these two extremes.
Along the progression from discontinuous to increasingly continuous transitions we observe a
positive slope in AmFRET at low expression values and a larger population of cells with
intermediate AmMFRET values in the transition region. In this context, it is worth noting that Publ,
which falls in the middle of the spectrum between discontinuous and continuous transitions, has

been shown to form both disordered liquid-like condensates and ordered amyloid-like assemblies
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[49]. This may suggest that the positive slope in AmMFRET at low expression values corresponds
to the formation of liquid-like condensates, which, with increasing expression, transform into

ordered assemblies.

cPrDs that fall outside the classification as two-state are grouped by classification and
ordered by their predicted prion aggregation propensity as quantified by PAPA (Figure 5c-d).
Toombs et al.,[50] previously showed that a cutoff score of +0.05 yielded greater than 90%
accuracy in delineating the 18 bona fide prion domains from the 18 non-prion domains in the
Alberti et al. study. We find that 31 of the 35 cPrDs that were classified as showing no assembly
across all expression levels had PAPA scores below this cutoff. In comparison, 3 of 9 cPrDs with
infrequent transition (33%), 6 of 23 two-state cPrDs (26%), and 0 of 2 cPrDs that assembled at all
expression levels (0%) had PAPA scores below this cutoff. Thus, our classification method is

consistent with the trends expected based on PAPA scores.
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Figure 5: Classification of DAMFRET histograms of 84 cPrDs previously examined by
Alberti et al. (a) Number of cPrDs in each type of phase transition class. (B-D) List of cPrDs that
were classified as two-state (b), mixed classification - having replicates belonging to multiple

classes (c), assembled at all expression values (d-black), undergoing an infrequent transition (d-
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yellow), and showing no assembly at all expression values (d-blue). For the checkboard plots, each
square represents an experimental replicate, and the color of the square denotes the classification.
The darker the shade the more confident the method is in the classification (Table S2). The
classifications not shaded by confidence score are showed in Figure S5. The PAPA prion score
for each cPrD is listed in parentheses. The cPrDs classified as undergoing a two-state transition
are sorted by the degree of discontinuity of the transition. The cPrDs for all other classes are sorted
by their PAPA prion score [50]. (¢) Representative DAmMFRET histograms of cPrDs that were
classified as undergoing a two-state transition. The color corresponding to each histogram denotes

the degree of discontinuity in the transition (see Materials and Methods).

cPrDs that are classified as two-state discontinuous from DAmFRET show prion-like
behavior: By cross-referencing our classifications with the results of Alberti et al., [16] we tested
our hypothesis that cPrDs that are classified as undergoing two-state discontinuous transitions in
the DAmMFRET assay are in fact bona fide prion forming domains. Eight of the cPrDs were
classified as undergoing a two-state discontinuous transition for all four experimental replicates.
Therefore, we examined how many of these eight cPrDs engendered prion-like behavior in each
of the four assays conducted by Alberti et al. (Figure 6a-d). All of the cPrDs that were classified
as undergoing a two-state discontinuous transition formed foci in cells (Figure 6a), had assemblies
that were SDS resistant (Figure 6b), and stained positively with ThT (Figure 6d). Two of the
eight cPrDs did not pass the most stringent test for prion-like behavior, namely a heritable switch
in the context of a Sup35 chimera (Figure 6¢). One of these, Cyc8 was subsequently shown to be
a bona fide prion [51]. These results suggest that, while a two-state discontinuous transition likely
implies amyloid assembly consistent with prion formation, it does not necessitate heritability. This

is expected given that DAMFRET interrogates the mechanism of assembly formation, whereas the
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biological context of prions dictates whether the amyloids propagate or not. For example,
propagation in rapidly dividing budding yeast cells requires specific interactions with the yeast-

specific prion replication factor Hsp104 [52].
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Figure 6: Assessment of cPrDs classified as undergoing a discontinuous two-state transition.
For the eight DAMFRET profiles that were classified as two-state discontinuous we examined
whether or not the associated cPrDs formed (a) foci, (b) SDS resistant assemblies, (c) heritable

assemblies, and (d) ThT positive assemblies in the assays conducted by Alberti et al. [16].

DAmFRET histograms of cPrDs that are bona fide prions are not always classified as
undergoing a two-state discontinuous transition: Next, we asked whether being a bona fide prion
implies that the cPrD is classified as undergoing a two-state discontinuous transition from the
DAmMFRET analysis. Of the 18 bona fide prion-forming domains, 16 were examined using
DAmMFRET. Of these, ten were classified as two-state, with six of these bona fide prion-forming
domains being classified as two-state discontinuous in all four of their replicates (Figure 6).
Additionally, three of the bona fide prion-forming domains were classified as undergoing an

infrequent transition and three showed mixed classification. Given that ten of the 16 bona fide
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prion-forming domains were not classified as undergoing a two-state discontinuous transition, this
suggests prions can exhibit other types of DAmFRET histograms. We find that 15 of the 16 did
show at least the emergence of a transition to a higher AmMFRET state. Only Cbk1 had a negligible
increase in AmFRET across the expression levels analyzed. Together with the fact that Cbk1 was
only weakly amyloidogenic in Alberti et al., [16] this suggests that its self-propagating ability and

/ or nucleation mechanism may be atypical of prions.

In general, our analysis indicates that not all proteins capable of forming bona fide prions
exhibit two-state discontinuous behavior under the specific experimental conditions used to
generate these DAMFRET data. Shorter induction times or the use of a more sensitive cytometer
may allow detection of missing low-FRET states for some proteins, while longer induction times
or allowing the protein states to evolve through multiple rounds of cell division may allow

detection of missing or infrequent high-FRET states for other proteins.
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Figure 7: Classification of DAmMFRET histograms of the 16 bona fide prion-forming domains
identified by Alberti et al. and analyzed with DAmFRET. For the checkboard plots, each
rectangle represents an experimental replicate of one of the prion domains and the color of the

rectangle denotes the classification. The darkness of the shade denotes the degree of confidence in
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that classification, with darker shades corresponding to more confidence. Those prion domains

classified as two-state are sorted by the degree of discontinuity at the transition.

Can DAmFRET data be used to quantify nucleation probabilities for proteins that undergo
two-state discontinuous transitions? As shown for the dataset of Alberti et al., two-state
discontinuous transitions are likely to be nucleated phase transitions. The simplest mechanism for
such transitions is that of homogeneous nucleation described in terms of classical nucleation theory
[35, 38, 53, 54]. We define the probability of homogeneous nucleation as the probability of
observing non-zero or high AmFRET states as a function of time and concentration. The

probability of nucleation and assembly are correlated, and this is governed by the degree of

. . . .. . c
supersaturation and the free energy barrier. The supersaturation ratio is quantified as S=| —
c

sat

where c is the bulk concentration and ¢ 1s the saturation concentration above which the phase
transition is thermodynamically favored. In DAmFRET, measurements are typically performed at
a fixed time ¢ across a population of cells containing a fixed concentration ¢ of the protein of
interest. Since each cell is akin to a femtoliter-scale test tube, each cell acts as a separate,

independent experiment.

The fraction of cells in which assembly has occurred at time ¢ and concentration c is used

n' t)

to define the probability p(t)= . Here, n* is the number of cells in which assembly has

occurred at time ¢, and # is the total number of cells in which measurements are being made. Each
cell is an independent observation volume in which two outcomes are possible namely, high
AmFRET, implying the observation of assembly or no AmFRET, which means the lack of

assembly in the cell. Accordingly, observations within each cell are Bernoulli trials, which are akin
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to a random experiment with exactly two outcomes. Accordingly, the overall outcomes across a
population of cells can be treated as a binomial distribution. Since the outcome is also dependent
on time and we are interested in the number of high AmMFRET outcomes in a specific interval of
time, the binomial distribution becomes a Poisson distribution, which is essentially a binomial

distribution in the limit of infinite sub-divisions of the time interval [55].

We adapt the approach of Jiang and ter Horst [56], which uses the Poisson distribution to
extract information regarding nucleation rates and barriers from distributions of induction time
measurements. If the average number of nuclei N that form in a time interval is known, the

probability of finding & nuclei within that time interval is given by the Poisson distribution as:

~ Nke—N
k!

P, . Note that the average number of nuclei that form in time interval ¢ in volume V is

directly related to the nucleation rate J because N = JVt. From the Poisson distribution, the
probability that nuclei do not form in the time interval is given by po = ¢™. Therefore, (1 — po) =
1 — eV is the probability that at least one nucleus has formed in the interval of interest. Accordingly,
the probability of observing a high AmFRET state at time ¢ is p(f) = 1 — exp(—=/V¥) and this can be
equated to the fraction of cells in which assembly has occurred at a given time and concentration.

At a fixed time-interval, the probability of observing a fully assembled state is governed by the

supersaturation S because J (S ) = AS exp(— j . Here, A is a kinetic parameter that is governed

In*S

by the rate of crossing the free energy barrier for nucleation, while B is a thermodynamic parameter

governed by the size of the free energy barrier.
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Assembly Probability

Figure 8. Modeling assembly probability as a function of time and concentration. Assembly
probability versus time and assembly probability versus concentration are orthogonal planes
forming a surface when plotted in three dimensions (time, concentration, assembly probability).
As an approximation, DAmFRET data are in the assembly probability vs. concentration plane, at

a single fixed time (black circles and line).

The Poisson distribution applies to a scenario in which supersaturation is achieved
instantaneously and then fixed. While protein translation can be inhibited in cells by the addition
of cycloheximide, this does not address the issue at hand, i.e., up to the point of cycloheximide
addition, the concentration of protein, and therefore supersaturation, is continually changing.
Although this may seem like a limitation, the reality is that, embedded within a single DAmFRET
experiment is rich information about the concentration and time dependence of nucleation for tens
to hundreds of thousands of cells, and this can be leveraged to provide an extraordinary advantage.

By quantifying p(¢) as a function of both time and concentration one can obtain a complete
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assembly probability landscape. This is shown in Figure 8 for a specific choice of values for 4
and B. Here, we set 4 = 10" m> s!, B=3.6, csar = 1.0 a.u., and V= 10"'® m>. We use a time range
of 0 to 20 h, and a concentration range of 1.0 — 5.0 a.u. Note that we use acceptor intensity as a
proxy for concentration and hence the choice of arbitrary units (a.u.) for concentrations. This is
convenient since concentration shows up in terms of the supersaturation, which is dimensionless,

and therefore the specific concentration scale is not relevant here.

To map the assembly probability across time and concentration for a population of cells
and fully capitalize on the time- and concentration-dependent information contained in DAmFRET
data, we require knowledge of acceptor intensity as a function of time or at least upper and lower
bounds on rates of protein expression. It is possible to observe individual cells via microscopy,
while ensuring that they are incubated under conditions that are identical to the DAmFRET assay.
Protein expression data for eight cells expressing the mammalian prion ASC (PYCARD) [57]
fused to mEos3.1 were collected in this manner (Figure 9a). Variability in expression levels across
the cell population is apparent and this is the result of variation in plasmid copy number that was
designed into the system. Although this approach reduces the throughput of the DAmFRET assay
and does not yield the numbers desirable for large-scale statistical analyses, it shows that

expression levels at distinct time points can be quantified.

In typical chemical kinetics assays used to study phase transitions in vitro, purified and
fully disaggregated proteins are dissolved or diluted into buffer prior to performing measurements
as a function of time [58-60]. This ensures that measurements begin from a fully monomerized
and dispersed phase. In contrast, the DAmFRET assay is performed in live cells that have been
induced to express protein over a period of 10-24 hours. Unlike in vitro assays, the starting protein

concentration is a moving target, since the protein of interest has gradually accumulated over a
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period of 10-24 hours prior to measurement. Further, the rate of protein accumulation varies from
cell to cell. Because concentration is a moving target, the starting time # for the initiation of the
phase transition is less well defined. We propose that the most accurate way to quantify incubation
time at a particular concentration in the DAmFRET assay is to recognize that each concentration
level ¢; attained during protein expression must be marked by a separate #o, which we designate as
toi, and hence there exists a distinct starting time fo; for every ¢; reached. Therefore, time is counted
as the time elapsed from time #o;, when a given concentration ¢; is reached, to the time of
measurement designated as t, (Figure 9b). This method of tracking time elapsed at each
concentration only holds while the concentration is increasing. Therefore, we identify the time
point when 99% of the maximum concentration is reached. The expression data are fit to a logistic
function in order to facilitate extrapolation and interpolation of the expression trajectory in
subsequent analysis. Based on our data and other published values of protein expression in yeast
this seems to be a reasonable model for approximating expression under the GALI promoter in

yeast [61].

Using parameters from fits to the fastest and the slowest protein expression trajectories as
limits, we used nearly exhaustive combinations of parameters between these limits to calculate
possible expression trajectories that fall between the fastest and slowest trajectories (Figure 9b,
gray area). Where the lines approach verticality, the data can be ignored since the modified
method of counting time no longer applies. In order to explore how measured expression
trajectories within individual cells affect the DAmFRET readouts, we select representative fast,
intermediate, and slow trajectories from the expression data and plot them as a function of both
time and concentration (Figure 9d) using the assembly probability landscape shown in Figure 8.

This analysis identifies the relationship between the DAmMFRET data and the three-dimensional
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model, by demarcating the bounded range of assembly probabilities that can be fit to DAmFRET

data.
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Figure 9. Modeling assembly probability using knowledge of protein expression
trajectories. (a) Monitoring of protein expression in DAmFRET cells shows variability in
accumulation of protein over time due to differences in plasmid copy number, as designed.
Fluorescence intensity is used as a proxy for protein concentration. The data (open circles) are fit
using a logistic function (lines). The raw data were from video S1 in the work of Khan et al. [39].
(b) To relate the expression trajectory to the three-dimensional plot more accurately, the data are

converted to time elapsed at each concentration (i.e., time elapsed from when concentration C; is
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reached (tci) to the time of measurement (tm), see text). Characteristic fast (red), intermediate
(maroon) and slow (blue) trajectories were selected from the expression data for analysis in three
dimensions. With the fit parameters from the red and blue traces as upper and lower limits, all
combinations of parameters were used to calculate the range of possible logistic expression
trajectories within these limits (gray fill). (¢) Two-dimensional projection of the three-dimensional
model with characteristic fast (red), intermediate (maroon) and slow (blue) trajectories selected
from the expression data. The blue line is not visible because low expression did not result in
appreciable assembly probability. The endpoints of the trajectories, defined as 99% of max
concentration, provides a lower bound for assembly probability (green line). The upper bound for
assembly probability at any concentration corresponds to the fastest expression rate (red line). (d)
Protein expression versus elapsed time trajectories are plotted in three dimensions illustrating how
the change in concentration over time during an experiment maps to the assembly probability

landscape.

Using the modeled range of expression trajectories, we estimated lower bounds for the
assembly probability as a function of concentration in a two-dimensional projection of the three-
dimensional data. The red, maroon and blue traces in Figure 9¢ indicate lower limits of assembly
probability for the fastest, intermediate and slowest expression trajectories, respectively. While
these plots show the full history of various cells in assembly probability versus concentration space
based on protein expression trajectory within a cell, the actual measurement of FRET only happens
when the cell is at the end of the plotted trace. As can be seen for the intermediate expression rate
trace, the final concentration at the time of measurement can yield a lower probability of assembly

than the lower concentration values that were passed through earlier in the trace. This is because
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the final concentration was only present briefly before the measurement was made, and lower

concentrations that were reached earlier in that cell had a longer incubation time.

From our observations, we draw the following conclusions: 1) the endpoint represents a
lower bound for assembly probability because it represents the shortest time spent at that
concentration (Figure 9¢, green trace); 2) the fastest expression trajectory provides an upper limit
on the lower bound of the assembly probability because it represents the case in which the highest
concentrations were achieved most rapidly, and 3) the maximum lower bounds on the assembly
probabilities for all other expression trajectories will fall in between the values inferred for the
slowest and fastest expression trajectories. We note that even though the measured assembly
probability is attributed to the final concentration within a cell, that same cell also existed at lower
concentrations for longer periods of time and therefore has increased probability of assembly as
indicated by the maximum of the trace. This is evident in the red and green traces in Figure 9c,

which demarcate the bounded range of assembly probabilities that can be fit to DAmFRET data.

Overall, we can conclude that measurements of a small number of protein expression
trajectories should make it feasible to extract the nucleation probability for various proteins that
undergo two-state discontinuous transitions. Essentially, the protocol to follow would be to
categorize the nature of the transitions using the supervised approach we have introduced here.
This, supplemented by measurements of a modest number ~10 expression trajectories for systems
classified as undergoing two-state transitions, can be used to extract bounds on the in-cell
saturation concentration and classical nucleation theory parameters 4 and B, which are directly
related to the kinetics and thermodynamics of nucleation, respectively. The combination of these
parameters provides a unique quantitative description of nucleation mechanism and paves the way

for dissecting sequence-to-mechanism relationships. This is noteworthy because it represents
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acquisition of key biophysical quantities from measurements made directly in a cellular
environment, rather than extrapolating from measurements made in the simplified context of a test

tube.

Do inferred values of cso and the slope m provide useful information regarding the
mechanism of nucleation? As discussed above, classical nucleation theory allows for the prospect
of fixing the observation time, varying the supersaturation and quantifying the fraction of proteins
2(S) that have been incorporated into an assembled phase as a function of S. Previously, Khan et
al., built on the conjecture of Sear [62] who proposed that g(S) can be described empirically using
a Weibull distribution. These distributions were defined by shape and scale parameters designated
as 6 and ECso, respectively, which relate to the slope m and midpoint cso that we calculate here by
fitting logistical models to DAMFRET histograms [39]. The shape parameter & was found to
correlate with the amount of structural order in the Sup35 prion domain. With our usage of classical
nucleation theory, we can directly test if and how the slope and midpoint parameters extracted
from DAmMFRET experiments are related to the mechanistically relevant parameters csat, 4, and B.
Specifically, we wish to know if useful inferences can be forthcoming regarding the nucleation
parameters in the absence of any additional information. We use classical nucleation theory,
specifically the model based on the underlying Poisson distribution, to explore how the values of
m and cso of nucleation probability curves relate to the values of 4, B, and csa that were used to
generate the data. It is necessary to use an expression trajectory, and for the sake of simplicity, we
choose the highest rate of expression that we modeled previously. However, once the nucleation
probability data are generated, we proceed with the subsequent analysis as if we have no

knowledge of expression rates.
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By assuming a fixed value for two of the three variables A, B, csa, and varying the third
within a reasonable range, we can explore how these variables affect m and cso. The parameter A
was varied from 10" to 10! (spanning this range in log-scale increments) with B fixed at 3.0 and
csat fixed at 1.0. The resulting nucleation probability curves were collapsed onto distinct planes,
and we assume these curves to be representative of the points acquired from fits to slices of
DAmFRET data as previously described. We fit a logistic function to these points in order to obtain
a slope, m, and midpoint cso (Figure 10a). We then plotted m and cso as a function of the values
used for 4 (Figure 10b-c). We find that m has a strong dependence on A4, as shown by the dramatic
changes in slope of the curves in Figure 10a. Although the values of c¢so also change with A4, this
effect appears to be determined by the change in slope rather than a shifting of the entire curve.
This can be seen clearly in Figure 10a, where all of the curves begin to depart from zero nucleation
probability at the same location (near an acceptor intensity of 2.0 a.u.) but with different slopes.
Thus, 4, the parameter that measures the effective shape of the nucleation barrier, appears to affect

m directly and cso indirectly.

Next, we repeated the above analysis by varying B between 1.0 and 5.0, fixing 4 at 10'*
and csa at 1.0 (Figure 10d). Unlike 4, we find that B, which quantifies the barrier height, has an
inverse relationship with m (Figure 10e). Importantly, the value of B directly affects both m and
cso (Figure 10f). This is evident in the fact that in addition to changing slope, the onset of the
transition i.e., the initial departure from zero nucleation probability, shifts further to the right with

increasing B (Figure 10d).
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circles) in order to simulate points acquired from fits to slices of DAmFRET data. A logistic
function (solid lines) was fit to these points in order to obtain a slope, m, and midpoint c¢so. (a) The
parameter 4 was varied from 10'? (dark blue) to 10'° (dark red) with B fixed at 3.0 and csa fixed
at 1.0. (b) The relationship between slope, m and A. Colors correspond to those used in panel (a).
Panel (c¢) The midpoints, cso, of the fitted curves in panel (a) are plotted against A. Panels (d), (e)
and (f) are equivalent to panels (a), (b) and (c), except that the parameter B was varied between
1.0 and 5.0, while 4 was fixed at 10" and csa was fixed at 1.0. Panels (g), (h), and (i) correspond
to panels (a), (b), and (c), except that the parameter csac was varied between 1.0 and 2.0, while the
parameter 4 was fixed at 10'* and the parameter B was fixed at 1.0. Panel (j) shows the fitted
values of cso represented by marker size for all combinations of parameters 4, B and cs:. The
positive linear correlation between cso and csar holds for all combinations of 4, B and csar. In panel
(k) the fitted values of m are represented by marker size as a function of all combinations of
parameters A, B and cs. Many combinations of these parameters result in similar intermediate

slopes, while the largest slopes arise for high values of 4 and low values for B and csat.

Repeating the analysis with the cs varied between 1.0 and 2.0, fixing 4 at 10'* and B at
1.0 revealed that csa and cso are positively correlated with one another (Figure 10g, i). This is true
for all combinations of 4, B and csa in the ranges that we tested (Figure 10j). Taken together, we
observe that while there are many combinations of 4, B and ¢, that result in similar intermediate
slopes, the largest slopes corresponding with the steepest transitions are the result of high 4, low
B, and low csa (Figure 10k). Accordingly, the steepest slopes correspond with the highest rates,
lowest barriers, and lowest saturation concentrations. These analyses indicate that even in the

absence of information about expression rates, cso can provide useful information for comparing
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different proteins. Even though cso is influenced by 4, B, and cat, it has a strong positive correlation
with csa across all values of 4 and B and this is a direct consequence of the two-state behavior
suggesting it can be used as a reasonable proxy for csa, which measures the driving forces for
phase separation. On the other hand, m, (or the & parameter from the original work [39]) is a
convolution of contributions from A4, B and csa, and therefore m on its own is not a readily
interpretable parameter. However, it still carries information regarding the relative drive for
nucleation, whereby steeper slopes are often due to a combination of high values for 4, and low

values for B as well as csat.

Analysis of DAmFRET data yields information regarding the driving forces for assembly:
DAmFRET data are information-rich, and additional insights can be extracted from the
histograms. For instance, we can extract accurate quantitative estimates for cso values for all
proteins that show two-state behavior. Figure 11 shows the cso for all 23 cPrDs which were
classified as undergoing a two-state transition. By extracting cso values we can rank order these
proteins according to their cso values. Given the relationship shown in Figure 10, for proteins that
show two-state discontinuous behavior, the lower the c¢so, the lower the concentration needed for
assembly, and thus the greater the driving force for assembly. The analysis in Figure 11 shows a
two-order of magnitude variation in inferred cso values. It is worth emphasizing that all cells for
all measurements were prepared in identical fashion. All proteins are probed across overlapping
concentration ranges in similar cellular environments. Therefore, to zeroth order, the only variable
distinguishing different experiments is the sequence of the protein whose phase behavior is being
probed. Accordingly, to zeroth order, assuming the cellular factors do not have cryptic sequence-
specific responses as modulators of phase behavior, the data for c¢so help quantify the impact of

sequence-encoded interactions as drivers of phase transitions. If there are sequence-specific effects
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of cellular factors, it still follows that the modulation of the driving forces is governed by the
sequences of the proteins whose phase behavior is being probed.
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Figure 11: Extracted cso values for all 23 cPrDs which were classified as undergoing a two-
state transition from the DAmFRET data. The color and shade of each bar corresponds to the

degree of discontinuity in the transition.

Extracting sequence-to-assembly relationships from DAmFRET data: The minimum R?
value in the transition expression region yields information on the degree of discontinuity in the
two-state transition. Larger R? values imply that the DAmFRET data fits well to a sum of two
Gaussians in the transition region and thus most cells are either at zero AmFRET or at high
AmFRET, thus implying the transition is discontinuous. In contrast, small R? values imply that
AmFRET values for most cells falls between zero and high values for AmMFRET. The fraction of
cells that fall between the two limits should increase as the slope of the transition becomes smaller,
and thus the R? should be lowest for two-state continuous cases with shallow transitions. We can
use this relationship to examine whether there are certain amino acids that correlate with one type
of two-state transition over another. Figure 12 plots the fraction of a given amino acid against the

minimum R? value in the transition region. Each point represents one in-cell experimental replicate
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per cPrD. These data are shown for the four amino acids with the highest positive versus negative
linear correlations. The correlations for all amino acids are showed in Figure S6. We find that an
increase in the fraction of Phe or Thr correlates positively with increased discontinuity. In contrast,
an increase in the fraction of Pro or Tyr correlates negatively with increased discontinuity. The
impact of Pro on the discontinuity of the two-state transition is not surprising given its tendency
toward disrupting secondary structures other than beta turns. However, the non-equivalence of Phe
and Tyr as promoters of two-state discontinuous transitions is surprising. This suggests that
titrations of Phe versus Tyr contents in low complexity domains might be a way to tune the
discontinuity of a phase transition and the tendency for forming liquid-like condensates versus
ordered assemblies [63, 64]. A recent study has uncovered clear differences between Phe and Tyr
as drivers of condensate formation via phase separation aided percolation transitions in prion-like
low complexity domains (PLCDs). Further, analysis across homologous sequences highlights a
negative correlation between Phe and Tyr contents [65]. Taken together with findings in Figure
11, a prediction that emerges is that weakening of the driving forces for condensate formation by
lowering the Tyr content and increasing the Phe content also enables a facile transition to ordered
assemblies. This would suggest that there is likely to be discernible code for distinguishing
sequences that drive condensate formation that also turnover into ordered assemblies versus those

that form stable, reversible condensates that are unlikely to undergo disorder-to-order transitions.
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Figure 12: Correlation between amino acid frequency and degree of discontinuity for all 23
cPrDs classified as undergoing a two-state transition. Each point corresponds to an
experimental replicate. The color of each point denotes the degree of discontinuity of the transition.

Numbers indicate the Pearson r-values used to quantify positive or negative correlations.

Discussion

There is growing interest in measuring phase transitions in live cells [34, 39, 40, 42]. Of
particular interest are results of measurements made under conditions where the effects of active
processes are minimized. These measurements are helpful for understanding how the milieu of a
living cell impacts the intrinsic driving forces for phase transitions [39]. These experiments,
performed as a function of controlling the expression levels of the protein of interest, can help in
mapping the sequence-specific free energy landscape that underlies the driving forces for and

mechanisms of phase transitions that are under thermodynamic control.

Here, we analyze in-cell phase transitions by allowing for a range of transition categories
and use a supervised approach to develop a method that enables the automated analysis of
DAmMFRET data. This approach affords classification of the type of phase transition and

comparative assessments of the driving forces for phase transitions. We applied our method
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derived from supervised learning to analyze DAmFRET data for 84 different candidate prion
domains. Our analysis helps categorize the phase transitions for each of these domains and identify
sequences that clearly show two-state behavior. Among the trends that emerge, we find a
noticeable negative correlation between the Tyr / Pro content and systems that undergo
discontinuous two-state transitions. Conversely, we observe a weak positive correlation between
the Phe / Thr content and the propensity for showing discontinuous two-state behavior. We
envisage the possibility of using information gleaned across large libraries of sequences to design
novel domains that undergo specific categories of phase transitions. The ability to quantify the
sequence contributions to cso values also affords the prospect of manipulating the driving forces

for forming prion-like assemblies through sequence design.

In addition to categorizing sequence-specific phase transitions and quantifying the driving
forces for these transitions, we show how classical nucleation theory can be brought to bear for
estimating the lower bounds on nucleation probabilities of systems that undergo discontinuous
two-state transitions. This analysis requires independent measurements of expression trajectories,
although this information is not available across the spectrum of proteins that have been
interrogated using DAmFRET. If the parameters S, and J can be extracted using analysis of the
DAmMFRET data as a function of S, then the parameters 4 and B can be determined by plotting J/S
versus In2S. This would allow mechanistic inferences such as estimates of free energy barriers to
be extracted from a single DAMFRET experiment. Although expression trajectories are not
currently obtained with the same level of throughput and speed as the generation of DAmMFRET
histograms, the data regarding expression trajectories are essential for estimating nucleation
probabilities. It suffices to have these data for the fastest and slowest expression trajectories. High-

throughput methods for obtaining upper and lower bounds on expression levels versus time should
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be feasible, and promising options are being explored. Supplementing datasets by defining bounds
on probable expression rates will go a long way toward facilitating a near complete mechanistic
understanding of nucleated phase transitions for systems that undergo two-state discontinuous
transitions. The physical parameters extracted from the application of classical nucleation theory
to the analysis of DAmMFRET histograms augmented by expression trajectories could be useful in

enabling proteome-wide comparisons of the driving forces for forming ordered assemblies.

Finally, the packaged code for supervised learning and for automated analysis of

DAmMFRET data are available via Github (https://github.com/pappulab/damfret_classifier). This

package is distributed as open source, available for free download and usage, and users are invited
to contribute code and insights to further the development of the package that is intended to enable
automated classification of phase transitions and mechanistic inferencing based on DAmMFRET

data.
Materials and Methods
Biological reagents and Yeast transformation

The yeast strain used was rhyl1713 as described in previous work [39]. The strain is a
knockout of CLN3 combined with a galactose-inducible overexpression of WHIS, thereby
breaking the G1 cell cycle checkpoint and inducing cell arrest [66]. This allowed us to detect only
de novo nucleation events by preventing mother-daughter cell propagation of the prions. Table
S4, attached as an Excel spreadsheet, lists all plasmids used in this study. Plasmid number, gene
name, cell count and encoded polypeptide sequences for each gene region are listed for each
construct and replicate. Cells were transformed using a standard lithium acid transformation

protocol [67].
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Preparation of Cells for Cytometry

Protein expression is induced in a 2% synthetic galactose (SGal)medium for 14 hours
before being resuspended in fresh SGal for 4 hours to minimize autofluorescence. After 18 hours
of total induction, the cells are uniformly illuminated with 405nm violet light for 25 minutes to
convert a highly reproducible ratio of the mEos3.1 from the green donor form to the red acceptor

form.
DAmFRET Cytometric Assay

Following photoconversion, acceptor fluorescence intensity and FRET are measured using
a flow cytometer. The ratio of indirect and direct acceptor fluorescence (595 + 10 nm when excited
with 488 nm or 561 nm light, respectively) is referred to as AmMFRET, and this is used to measure
the extent of ordered assembly within each cell. In the original implementation of the DAmFRET
assay, the acceptor intensity, excited directly, was converted into units of concentration by dividing
it by the measured cytosolic volume of the cell. In this work, cell imaging during flow cytometry
measurements was bypassed to increase throughput by greater than 150-fold. The acceptor
fluorescence intensity is still measured and used to monitor expression level, and this serves as a

useful proxy for protein concentration in the cell.
Additional details for the generation of the synthetic dataset

The number of points generated, which mimics the number of cells being interrogated in
a DAMFRET measurement, was randomly selected to be between 10* and 1.5x10%. In order to
represent different distributions of points across the concentration range, an additional 10* to
1.5x10* points were added to each dataset in three ways: points were chosen from a uniform

distribution spanning the full range from 2.0 to 8.0, only at concentrations above the cso, or only
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at concentrations below cso. The values of AmMFRET for these additional points were determined
as described above. Data were also generated without these additional points to simulate datasets
obtained using fewer measurements. These smaller datasets had between 10* and1.5x10* points in

total, rather than 2x10* or 3x10* points.
Method for classification of DAmFRET histograms

For each replicate, non-overlapping slices are made along logio(Expression). These slices
are made in intervals of 0.5 (synthetic data), and 0.2 (real data). To reduce noise contributions at
the extrema, our method uses a low cutoff of 3.0 and a high cutoff of 10.0 in logio(Expression) for
synthetic data, and slices are only collected between these limits. A low cutoff of 1.5 and a high
cutoff of 5.0 is employed for real data. For each slice, a normalized 1D histogram of the AmFRET
counts is determined by binning the synthetic data in intervals of 0.1, while the real data is binned
in intervals of 0.02. That histogram is fit to the sum of two Gaussians. The first Gaussian is
centered at AmFRET=0, while the second Gaussian is centered at the position corresponding to
highpger. Here, highpger is calculated by taking the mean of AMFRET>0.5 (synthetic data) or
AmFRET>0.05 (real data) in each expression level slice and taking the maximum of this value

over all expression slices. The R? value of the fitted function is saved to be utilized later on.

Using the fitted parameters, each Gaussian is numerically integrated to extract the area
under the curve, yielding the quantities g; and g,, for the first and second Gaussians, respectively.
The fraction assembled in a given expression level, 7, is then given by f,; = g,/(g; + g2). To
determine if no transition is observed in the DAmFRET histogram the change in the fraction

assembled, Af,, is calculated as:

Afy = fan — min(fA,i)
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where f,, is the fraction assembled in the last expression level slice. We define an assembly
threshold, Afy ¢nresn, for one-state assembly as 0.10 (synthetic data) and 0.15 (real data). If Af, <
Afa thresn, then the DAmMFRET histogram does not show a transition and can be classified as one-
state. If the mean AmFRET<O0.5 (synthetic data) or AmFRET<0.05 (real data), then the
DAmMFRET histogram is classified as one-state: no assembly at all expressions (blue). Else, the
DAmMFRET histogram is classified as one-state: assembled at all expressions (black). To determine
the confidence in either assignment, we calculate a confidence score of the system using the

deviation of Af, from Afy ¢tpresn:

Confidence Scoreg yg g pLack = (AfA,thresh - AfA)/AfA,thresh-
Since this score is normalized, it ranges from 0 to 1.

If Afy = Afatnresn. the system is likely to be undergoing some kind of transition.
Therefore, we fit a logistic function to fraction assembled profile using the equation: 1/(1+exp(-
(c-cs0)/m)). Here, c is the logio(Expression) of a given slice, cso is the logio(concentration at which
50% of cells are in the assembled state), and m is the inverse of the slope. Thus, we can extract cso

from the fit of the fraction assembled to the logistic function.

To account for the fact that real data can limited and / or noisy at the extrema of the
expression level range, we add a couple additional checks for one-state behavior when analyzing
real data. If ¢ < 1.5, i.e., below the lower limit of logio(Expression) used in our analysis of the
real data, then this implies the system transitioned at low logio(Expression) values at which we
have limited and / or noisy information. Thus, we also classify these histograms as one-state:

assembled at all expressions (black). For these cases, the confidence score is just set to one.
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At this point we perform our final check on whether a system has undergone no assembly
at all expression levels. If c5, < 4.0, then we check the number of measurements that are above
cso. If this number is less than or equal to 20, then we ascribe these points to noise and the
corresponding DAmMFRET histogram is classified as one-state: no assembly at all expressions
(blue). If c5q > 4.0, then the transition is at the edge of the expression level range, which implies
cso 1s not likely well defined. Thus, we just examine the number of points with AmFRET>0.05
corresponding to an expression level above cso. This checks the number of points that are genuinely
in the assembled state above cso. If this number is less than or equal to 20, then we also ascribe
these points to noise and the corresponding DAmFRET histogram is classified as one-state: no
assembly at all expressions (blue). In both cases, the confidence score of these assignments is set

to one.

Next, we check whether there is enough data to classify the transition. This check was not
part of the method to analyze the synthetic data, but this checkwas added for the real data to account
for cases in which there was not enough data to classify the transition. If the fraction of cells above
the cs0 (f50) 1s less than 10% of the total number of cells for that replicate, the system is classified
as undergoing an infrequent transition (yellow). Unlike the one-state classes, our check for this
class involves first eliminating the DAmFRET histogram as being classified as one-state. Thus,
our confidence score in the assignment of an infrequent transition must reflect the multiple checks
that are performed to lead to this assignment. We calculate Scorel =
min (1, (Afy — AMfacnresn)/ (0.5 = Afatnresn)) and Score2 = (0.1 — f,50)/0.1. Here, Scorel
checks the deviation from the one-state criterion and Score2 checks the deviation from the
infrequent transition criterion. The final confidence score is set to be the minimum of Scorel and

Score?.
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The remaining DAMFRET histograms undergo some sort of transition. Thus, we utilize
the R? values of the fit to the sum of two Gaussians to determine features of the transition and
further classify these histograms. Histograms that show a two-state continuous transitions should
have low R? values around cso given that a majority of the points will be between AmFRET=0 and
AmFRET=highpggr. Thus, we identify an expression level window of ¢so -/+1. If cso+1 exceeds
the expression level range, then the last four expression slices are used for the window. Then,
within this identified window both the maximum absolute change in consecutive R? values,
max(AR2), and the minimum R? value, min(R2), is recorded. Here, the subscript w denotes that
we are only examining the R? values that correspond with expression level slices around cso as
described above. If max(AR2) > 0.08 and min(R2) < 0.6, then the DAmFRET histogram is
classified as undergoing a two-state continuous transition (red). The confidence score in this
classification is then the minimum confidence of the preceding three checks. Specifically, we
calculate Scorel = min (1, (Afy — Afaenresn)/ (0.5 — Afatnresn)) and Score2 =
min(1, (f,5o — 0.1)/(0.3 — 0.1)) and Score3 = min(1, (0.6 — min(RZ))/(0.6 — 0.3)). Here,
Scorel checks the deviation from the one-state criterion, Score2 checks the deviation from the
infrequent transition criterion, and Score3 checks the deviation from the two-state continuous

transition criterion. The final confidence score is then the minimum of these three values.

Next, we sought to determine if any of the remaining DAmFRET histograms showed multi-
state transition behavior. From the synthetic 2-step data, we noticed that the R? values tended to
linearly decrease with increasing expression level slice. This is due to the fact that the extracted
highprer value is a convolution of several high AmFRET states that are overlapping in their
expression level range and thus neither high AmFRET state ever fits well to the sum of two

Gaussians. To classify DAmFRET histograms that show this behavior, we fit the full R? profile to
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a linear fit and restricted the maximum slope of that fit to be zero. Then the R? value of this fit was
extracted, R7. If Rf > 0.6, then the DAmFRET histogram was classified as undergoing a higher
order state transition (magenta). As before, the confidence score in this classification was

calculated using the previous checks. Here, we have Scorel =

min (11 (AfA - AfA,thresh)/(O-S - AfA,thresh)) and Score2 = min(l' (chO - 01)/(03 - 01))
and Score3 = (min(R2) — 0.6)/(1 — 0.6) and Score4 = (R? —0.6)/(1 —0.6). The final

confidence score is the minimum of all four values.

Finally, the remaining DAmMFRET histograms were classified as undergoing a two-state
discontinuous transition (green) as the data did not show any features that led to the data failing
the null hypothesis. The confidence score for this classification was set to the minimum of the
following four scores: Scorel = min (1, (AfA - AfA’thresh)/(O.S — Afathresn)) and Score2 =
min(1, (f.so — 0.1)/(0.3 — 0.1)) and Score3 = (min(R3) — 0.6)/(1 —0.6) and Score4 =

(0.6 — R?)/0.6.
Alberti et al. Dataset and Creation of DAmFRET histograms

DAmFRET histograms were collected for all 94 Alberti et al. cPrDs, 93 were performed
in quadruplicate and one construct was performed with eight repeats. Each replicate is composed
of 0 — 170,000 individual cell measurements of AmMFRET at a given expression level. Figure S7
shows the distribution of the number of cell measurements for all replicates. Given the wide range
in the number of individual cell measurements performed across the dataset, we used an
information theoretic approach to identify the ideal common grid size for our two-dimensional
DAmFRET histograms of expression level and AmFRET. To determine an acceptable grid size

which could be applied to all replicates for subsequent analysis, we examined the information
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density quantified by the Shannon Entropy, S = —Z?jl Z;z . bijlogp;j, and its change as a

function of increasing grid size, on a subset of replicates. Our analysis, shown in Figure S8 and
described in further detail in the supplementary material, led to the choice of a 300x300 common
grid size. This grid size was chosen to maintain a large amount of information across varying
numbers of individual cell measurements. However, given that replicates at lower measurement
counts tend to experience significant |AS| loss at the 300 X 300 grid size, any subsequent analysis
may be impaired. Hence, we excluded cPrDs who had at least one replicate with < 2 x 10*

individual cell measurements. This left us with 84 cPrDs for subsequent analysis.

Determining the degree of discontinuity in the transition of a cPrD classified as undergoing a two-

State transition

The R? value around the expression slice that corresponds to logio(cso) yields information
on how well a sum of two Gaussians can capture the 1-dimensional AmMFRET histogram at the
transition. Thus, we sort the cPrDs by their mean minimum R? in the region that corresponds to
the expression level slices within the window of logio(cso) -/+1, min(R32), to order them by the
degree of discontinuity in the transition. To color the data in plots Figure SE, Figure 11 and
Figure 12 we take advantage of the fact that one of the criteria for classification of DAmFRET
data into the two-state continuous class is that min(R2,) must be less than 0.6. Thus, any cPrD that
has a mean min(R2)of less than 0.6 is colored red (two-state continuous) and any cPrD that has a
mean min(R2,)of greater than 0.6 is colored green (two-state discontinuous). Then, the alpha color
for each of the two-state cPrDs / cPrD replicates is based on how far the <min(R3)>/ min(R32) is
from the threshold of 0.6. For those cPrDs classified as two-state discontinuous the alpha color is

set to a=(min(R2)-0.6)/(1-0.6). For those cPrDs classified as two-state discontinuous the alpha
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color is set to o=min(1,(0.6- min(R2))/(0.6-0.3)). A lower limit of 0.3 rather than 0.0 is used in

the latter case given that R? values rarely ever drop below 0.3.
Microscopy

Yeast cells expressing ASC-mEos3.1 were grown overnight in synthetic media containing
2% dextrose while shaken at 30°C. Cells were then loaded into a CellASIC ONIX microfluidic
device (Millipore Sigma B04A03). Media containing 2% galactose was flowed through the
microfluidic device at a rate of SkPa from 2 wells at a time. Timelapse images were acquired on
an Ultraview Vox (Perkin Elmer) Spinning Disc (Yokogawa CSU-X1). Images were collected
with an alpha Plan Apochromat 100x objective (Zeiss, NA 1.4) onto an Orca R2 camera
(Hamamatsu, C10600-10B). mEos3.1 was excited with a 488nm laser, and the fluorescence
emission was collected through a 525-50nm bandpass filter. Images were collected as z-stacks
with 0.5 um steps (41 slices) and a 30ms camera integration time every 5 minutes. Additionally, a
single transmitted light image was acquired in the middle of the z stack with an integration time
of 200ms. Each time point was sum projected and the resulting time course was registered to
reduce movement of the cells. Regions of interest were then drawn in individual cells and the
mean intensity of the sum projected fluorescence was measured from the beginning of the time

course until the end.
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