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Indoor environment construction for occupants has high energy consumption; as such, occupancy plays a
noteworthy role in the complete life cycle phase of buildings, including design, operation, and retrofit-
ting. In the past few years, building occupancy, which is considered the basis of occupant behavior,
has attracted increasing attention from researchers. There are increasing requirements for buildings to
be both comfortable and energy efficient; with the development of detection methods and analyzing
algorithms, occupancy prediction has become a topic of interest for building automation and energy con-
servation. Therefore, this article reviews the literature regarding future building occupancy predictions
(forecasting). This review is distinguished from occupancy simulation and detection research and focuses
on the research purpose, physical routine, and complete methodology of occupancy forecasting. First, the
research purposes, including the application field and detailed requirements for occupancy forecasting,
are summarized and analyzed. Next, an overall methodology of occupancy forecasting, including data
acquisition, modeling techniques, and evaluation, is discussed in terms of issues affecting prediction per-
formance. Finally, the current challenges and perspectives of occupancy forecasting are highlighted, con-
sidering the insights of natural characteristics, on-site implementation, valid dataset sharing, and
research techniques. Overall, accurate and robust future occupancy predictions will help to improve
building system operations and energy conservation.
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1. Introduction

1.1. Background

Buildings intend to provide occupants with a comfortable envi-
ronment of relatively steady temperature, sufficient illuminance,
quietness, and fresh air by installing heating, ventilation, air condi-
tioning (HVAC), lighting, and other systems and equipment. These
systems cause buildings to constitute a large proportion of global
energy consumption. In 2017, the total consumption of residential,
commercial, and public services was 2.85 billion toe, accounting
for 29.3% of worldwide energy consumption [1]. Occupants are
one of the main service targets of buildings, meaning that the
design, construction, and operation of buildings should carefully
consider occupants [2]. Energy consumption is affected by occu-
pant behavior under occupant-related building designs [3] and
occupant control actions or occupant-centric operations [4]. For
this reason, research and policy have been increasingly focused
on occupant behavior in buildings over the past few years [5,6].
To date, the influential cooperating research projects on occupant
behavior are the International Energy Agency Energy in Buildings
Fig. 1. Definition and concep
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and Communities programme Annex 66 [7] and Annex 79 [8],
which have achieved significant research outcomes.

Within the scope of occupant behavior research, occupancy is
one of the most important factors during different phases, includ-
ing building design, operation, and renovation. Therefore, this sec-
tion summarizes the definition, physical properties, and scope of
related research, which require a review of occupancy forecasting
research.

(1) Definition and importance of building occupancy
Among the factors related to occupants, building occupancy
is the most crucial and is the basis of occupant behavior
research. Fig. 1 illustrates the definition and impact of occu-
pancy in buildings. Building occupancy includes the pres-
ence state, occupant number, and trajectory, which
indicate whether the occupant is in a certain space in the
building, the number of occupants, and how the occupants
are moving. Irregular and partial occupancy affects the
indoor environment and energy consumption [9]. Therefore,
occupancy is carefully considered during the life cycle of
building research and practice, including design, operation,
t of building occupancy.
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retrofitting, and evaluation. The resolutions of occupancy
studies vary for different issues. Furthermore, temporal res-
olution varies from seconds to days, while spatial resolution
varies from rooms to the entire building. The difference
between this review article and previously published
reviews is that this article focuses on occupancy forecasting,
a branch of occupancy prediction research. The research
method of simulation and prediction is described in Sec-
tion (3). However, for both research targets, the entire
methodology loop includes data measurement, modeling,
and evaluation.

(2) Physical properties of building occupancy
Research on building occupancy is difficult because of its
physical nature, which is the basis of this article. In recent
years, the notion that building occupancy possesses the
properties of stochasticity [10–12] and variety has been
widely analyzed and recognized [13–15]. The stochastic nat-
ure of occupancy leads to different situations compared with
the static settings included in the standards according to an
international review of occupant-related aspects of building
energy codes [16]. From one on-site measurement of eight
homes, only half of the rooms were used for up to 60% of
the time when the home was occupied [17]. Meanwhile,
occupancy comprises various occupancy and vacancy time
distributions [18] and bimodal distributions [19]. Various
studies have considered profile extraction and applications
in building performance simulations [20,21]. Furthermore,
occupancy behavior was examined at both the spatial [22]
and temporal scales [23]. Spatial scale refers to the transfer
relationship from one space to another; temporal scale
refers to the autocorrelation among occupancy data with dif-
ferent time steps [24] or the correlation between the occu-
pancy and ambient parameters at consecutive time steps
[25]. The location or activity of one occupant also depends
on the duration the occupant already spends in the current
location [26,27]. There are also other types of contextual
temporal information that are frequently discussed, includ-
ing the time of day, weekdays or weekends, and season
[28–30]. Hou et al. [31] investigated the spatial and tempo-
ral dependencies between building occupancy and the con-
ditions of urban surroundings. Several studies have
concentrated on the predictability of occupancy routines.
Song et al. [32] used the concept of entropy, which is likely
the most fundamental quantity for determining the degree
of predictability and characterizing a time series, to depict
the predictability of the occupancy state at a district scale.
Fig. 2. Comparison of occupancy simulation and pre
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Ahn et al. [33] found that according to different building
types and features of zones or areas in buildings, the charac-
teristics of the presence of occupants may differ. The nor-
malized cumulative periodogram method is used to test
the random walking pattern of the presence of occupants
in rooms, levels, or an entire building; furthermore, this
method precisely demonstrates that the presence pattern
is unpredictable. This indicates that more work on occu-
pancy models should be performed based on different types
of buildings. Gunay et al. [34] discussed the predictability of
recurring occupancy patterns in offices. They found that
occupancy is a nonstationary process that changes with time
and space. Based on an autocorrelation analysis, the occu-
pancy in their case study had a weak correlation with the
arrival and departure times. It was also asserted that the
positions of individuals are almost predictable in office
buildings or institutions with a fixed timetable [35].

(3) Research on building occupancy: occupancy simulations and
occupancy prediction
For the past few years, several studies have been conducted
within the area of occupancy in an attempt to demonstrate
physical routine, mathematical depiction, and research
applications. The research methods employed are commonly
denoted as ‘‘occupancy simulation” and ‘‘occupancy predic-
tion” (comparison of model development is shown in
Fig. 2). A simulation denotes the methods that represent
the occupancy profiles of a building for a certain period.
Modeling methods of occupancy simulation research include
refined and attentive analyses, a typical embodiment as a
Markov chain model, and a logistic regression model [36].
Occupancy simulation methods have been effectively inte-
grated into energy consumption simulations and building
design and retrofit evaluations [37]. Meanwhile, a prediction
denotes the methods used for estimating or forecasting the
occupancy state of a certain space scale in a building based
on historical occupancy data or ambient parameter data
from various sensors. Research on occupancy simulations
and predictions has certain common features and distinc-
tions. A physical routine and pattern are crucial common
features, and a basic mathematical model can be proposed
to achieve both objectives. As for the distinctions, research
on occupancy simulation usually trains the model using his-
torical data inputs, and there is no need to update the model
during simulation implementation. Instead, the results are
evaluated according to the distribution of certain metrics
during a period, such as the accumulated occupancy
diction research regarding model development.
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duration, arrival time, and departure time. Additionally,
there is no need to split the training and testing datasets
for model verification. Conversely, research on occupancy
prediction normally contributes to on-site system operation,
requiring precise occupancy prediction for each time step
and the estimation of real-time errors, such as root-mean-
square error (RMSE), coefficient of variation of RMSE
(CVRMSE), and accuracy. To overcome the variety and fluc-
tuation of occupancy patterns, the model must be updated
regularly with new historical data. Because the evaluation
should be conducted at each time step, a split between the
training and testing sets is also recommended. To demon-
strate the limitation of occupancy simulations using the
Markov chain model, Mahdavi et al. [24] proposed an MT
model (simple nonprobablistic model). The model generates
daily binary occupancy profiles based on aggregated past–
presence data with concise threshold rules in order to show
the distinction between simulation and prediction research.

Research on occupancy prediction has the potential to enhance
building operation performance via occupancy-based control.
According to review articles of occupancy prediction research,
there are two categories of occupancy prediction: ‘‘occupancy
detection/estimation” and ‘‘occupancy forecast.” The prediction
window should be distinguished well, as shown in Fig. 3. ‘‘Occu-
pancy detection” refers to predicting the occupancy for the current
time step, whereas ‘‘occupancy forecast” refers to predicting the
occupancy for a future time step. The two research avenues differ
in terms of their purpose, data acquisition, and input data. To opti-
mize building operation strategies, such as model predictive con-
trol (MPC), it is crucial to forecast occupancy [38]. Therefore, this
review mainly focuses on reviewing occupancy prediction, also
named occupancy forecasting, to analyze the detailed modeling
techniques and potential challenges.

Despite several efforts that have been made towards occupancy
forecasting, the performance and on-site application conditions are
less satisfactory than those of occupancy simulations. Thus,
improving occupancy detection devices, data mining algorithms,
and building automation technology will provide occupancy fore-
casting research with immense potential.
1.2. Objectives

To date, several articles have reviewed occupancy simulations
and detection research [39–42]. However, there are no specific
Fig. 3. Distinctions between ‘‘occupancy
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review articles that focus on a systematic summary and detailed
technical analysis of occupancy forecasting. For instance, Dai
et al. [43] reviewed machine learning models for occupancy and
window-opening behavior. However, they mainly focused on occu-
pancy detection and estimation, and their review of occupancy
prediction in future time steps could be improved. Moreover,
occupancy-related research, including simulations, detections or
estimations, and forecasting, has not been well distinguished in
many research articles. Therefore, in this review, we focus on
future occupancy forecasting for buildings by incorporating the
knowledge of occupancy essence and the potential of occupancy
forecasting. The objective of this article was to review the litera-
ture on occupancy forecasting, including previous research pur-
poses and overall research methodologies. Based on this
comprehensive review, interpretation, and critical evaluation, we
ultimately identify and narrate the challenges and perspectives
of occupancy forecasting research.

In Section 2, the methodology and framework for this review
are proposed, and a summary of the basic information is provided.
In Section 3, we present the review results of the research purpose
for occupancy forecasting and the detailed requirements for realiz-
ing this purpose. In Sections 4-6, the overall methodology of occu-
pancy forecasting, including data acquisition, modeling, and
evaluation, is reviewed and critically analyzed. In Section 7, the
challenges and perspectives of the study are discussed. Finally, in
Section 8, the conclusions of this study are summarized.
2. Methodology

2.1. Methodology

This article conducted a review using the three steps shown in
Fig. 4.

Step 1: Literature search
The literature was searched using two databases: Web of

Science (Core Collection) and Scopus. After a preliminary search,
the articles were refined based on their abstracts. The literature
was also supplemented by two means: related articles and one
more search before article submission.

Step 2: Systematic and critical evaluation
According to the research methodology, the systematic and crit-

ical evaluation of occupancy forecast-related articles can be
divided into four parts: research purposes, data acquisition, model-
ing techniques, and evaluation methods (Section 2.3).

Step 3: Challenges and perspective
detection” and ‘‘occupancy forecast”



Fig. 4. Overall review methodology.
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After an overall review and technical analysis, the challenges
and perspectives of occupancy forecasting research were proposed.

2.2. Literature search

Currently, occupancy forecast-related research mostly uses the
term ‘‘prediction” Therefore, the key phrase ‘‘occupancy prediction
in buildings” was used to search the Web of Science and Scopus
databases, with the publication year limited to after 2009. The
search operators for the two databases were as follows:

TS ¼ occupan � NEAR=5predict�ð ÞANDbuilding�ð Þ; ð1Þ

occupan �W=5predict�ð ÞANDbuilding� ð2Þ
where, (1) was the search operator used for Web of Science, and (2)
was the search operator used for Scopus.

Based on the literature search, related article supplement, and
final round of searching on April 25, 2021, 258 articles mentioning
occupancy prediction research were found. Among these articles,
88 articles mainly focused on future occupancy prediction. We
conducted a preliminary analysis based on these articles to identify
the basic information of the search results.
Fig. 5. Year of publication of reviewed articles.
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(1) Chronological summary
Since 2009, occupancy prediction has been an attractive
research topic, and the number of publications has contin-
ued to increase gradually (Fig. 5). A detailed review was con-
ducted to ensure that the research focused on future
occupancy prediction. To avoid misleading information, the
data for 2021 are not presented because of their
incompleteness.

(2) Thematic summary
For the thematic analysis, we summarized the type and pub-
lisher of all related articles (Fig. 6). Overall, 59% of the arti-
cles were from journals (153 articles), and there were 48
more journal articles than conference articles (105 in total).

According to the article numbers for each publisher, the main
thematic research areas of occupancy forecasting were electronic
engineering, building technology, and computing machinery.
Research in electronic engineering focuses on occupancy detection
technology and related control realization. For building technol-
ogy, the research mainly focuses on the impact of occupancy on
building design and operations to conserve energy consumption.
For computing machinery, the occupancy detection and forecasting
algorithm was analyzed.

2.3. Systematic and critical evaluation

Occupancy forecasting research was critically analyzed from
the aspects of research purpose and complete methodology, which
includes data acquisition, modeling techniques, and evaluation. As
such, the main part of this article is composed of four aspects
(Fig. 7).

All research articles related to occupancy forecasting were cat-
egorized and critically evaluated according to these four aspects.
The research purpose consists of the application areas and detailed
requirements for occupancy forecasting. Data acquisition considers
the building type, prediction object (e.g., occupancy state or occu-
pant number), occupancy detection method, and the size of the
dataset. The modeling technique includes input, temporal and spa-
tial resolution, lagged variable (the time steps of historical data
used for prediction), prediction window (the time steps of the pre-
dicted occupancy data, e.g., next hour or next day), and a predic-
tion algorithm. Finally, evaluation comprises a split of the
training/validation/testing set, evaluation methods, and evaluation
results.

There is a high correlation among these four aspects that com-
prehensively instruct occupancy forecasting research. For example,
the application area determines the type of occupancy data to be
acquired. Different applications are related to different temporal
and spatial resolutions for occupancy prediction research, as well
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Fig. 6. Thematic summary of reviewed articles.
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as different prediction windows. Furthermore, for application for
occupancy forecasting, the results should generally be evaluated
using the occupancy forecast performance and fit-for-purpose
metrics.
3. Research purpose

3.1. Application areas

As we identified many similar conference or journal articles,
there were a total of 70 articles with relatively independent
research on occupancy forecasts. From the results of the literature
review, 68.5% of the articles did not only cover occupancy forecast-
ing but also mentioned potential applications. With the develop-
ment of occupant-centric designs and controls in buildings [8,9],
future occupancy prediction has been widely explored, as it can
6

benefit various application fields. Specifically, occupancy forecast-
ing can facilitate building management planning and supervision
of building operations while considering electricity market needs
[44].

The statistical results of the articles that mention different
application areas are shown in Fig. 8. Among the application areas,
43 of the 48 articles were related to control strategies, including
HVAC, lighting, blinds, and appliances; these factors are major con-
tributors to occupancy forecasting in buildings. Furthermore, pre-
dictive strategies show better energy-saving performance and
quality of controlling services than reactive strategies [44]. Thus,
the predictive control method could enhance the energy-saving
performance and temperature regulation [45] and could be com-
bined with a demand–response strategy [46]. D’Oca et al. [18]
found that occupancy profiles can help optimize appliances, plug
loads, lighting use, HVAC control systems, fresh air requirements,
internal heat gain, and building design plans in office buildings.
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Moreover, other studies have demonstrated the significance of
occupancy forecasts for building operations, which guarantee both
energy conservation and occupant comfort. Erickson [15,22,47,48]
proposed a series of occupancy forecast methods for usage-based
demand control strategies for air conditioning in order to reduce
energy consumption. Oldewurtel et al. [49] found that an occu-
pancy forecast could be integrated with an MPC framework for
room automation, such as HVAC, lighting, and blind control. Dong
[50–52] focused efforts on the MPC of building heating and cooling
systems. The occupancy state and number can be predicted to
improve energy and comfort management, and the number of
occupants can guide ventilation strategies [52].

In residential buildings, energy consumption is affected by
occupancy behavior [53]. Many studies have been conducted to
improve heating and cooling control in homes using occupancy
state forecasts. Preheating ensures a comfortable thermal environ-
ment and simultaneously decreases energy consumption [54,55].
Specifically, a home HVAC system may be automatically turned
on/off, and a deep setback temperature may be selected according
to the occupancy state forecast of the home [17]. Furthermore, the
predictive control strategy of smart homes also considers the
requirements of the entire power grid to some extent [56].

At different scales, occupancy forecasts can be adapted for var-
ious applications. At the building level, they can be used for auto-
mated building energy management, real-time evaluation of
building energy flexibility, and accurate operation strategies.
Demand-response events can be scheduled by predicting the occu-
pancy state in commercial buildings at different resolutions [57].
At the grid level, occupancy forecasts can promote demand–re-
sponse analyses, dynamic pricing, and demand-side management
[44]. Using occupant behavior cognition, real-time smart grid
energy management can be realized to reduce the peak load and
conserve energy by allocating renewable resources, such as solar
sources [58].

Moreover, a few studies have applied occupancy forecasting in
buildings to domains outside of operation control, which increases
the number of occupancy forecast applications. Das et al. [59]
found that space usage patterns can be identified to enhance space
efficiency by predicting the occupancy presence in commercial
buildings. Ohsugi et al. [60] optimized a package delivery route
by predicting the occupancy state in residential buildings based
on electricity usage. Sama et al. [61] identified security issues in
7

smart homes, and Ali et al. [62] predicted the occupancy of parking
places to provide advanced guidance to drivers regarding the loca-
tion and daily and hourly occupation data of parking lots. Atif et al.
[63] analyzed a method to predict the availability of parking spaces
and recommended a route to minimize the journey duration for
selecting a parking lot, ultimately relieving traffic congestion.

3.2. Detailed forecast characteristics

Gaetani et al. [64] emphasized the importance of fit-for-purpose
occupant behavior modeling for buildings, which is the same as
occupancy forecasting for buildings. The detailed requirements of
occupancy forecast research can vary with the aims of different
applications. Determining the application aim and comprehen-
sively analyzing the specific requirements and characteristics of
occupancy forecasts are crucial for conducting validated research
and occupancy forecast-based applications.

Because of the transient nature of heat transfer in building fab-
rics, as for demand–response HVAC control, real-time occupancy
detection is not adequate to control HVAC systems, thereby
emphasizing the importance of occupancy prediction in the future
[34,65]. The results of occupancy forecasting must be accurate,
reliable, and able to determine occupancy changes and repetitive
patterns in real time [18,22]; these factors are considered to be
the center of occupancy-based building energy management [15].
For current HVAC operations, schedules tend to consider a room
to be fully occupied when it contains the maximum number of
occupants [47].

However, it is sometimes insufficient to simply predict the pres-
ence state without the number of occupants during HVAC control
[23]. Because the effect of HVAC possesses hysteresis, an accurate
occupancy forecast will help guide precooling or preheating.

Furthermore, occupancy forecasting should ensure system
maintenance. If the occupancy forecast is too aggressive, home sys-
tems may be frequently turned on/off; the resulting recurring
equipment cycling wastes energy and shortens the lifetime of the
system [17].

Meanwhile, the stochasticity, variety, repetitive, nonstationary,
and drift characteristics of occupancy present significant chal-
lenges to its application performance. Owing to the nonstationary
features of occupancy patterns in buildings, an offline occupancy
model is not recommended for on-site applications [34].
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4. Data acquisition

4.1. Building type and forecast object

Due to accuracy and privacy issues, data acquisition is one of
the challenges of occupancy-related studies [66]. The limited appli-
cability and acceptability of occupancy detection means that stud-
ies tend to be limited to academic buildings (laboratories or offices
in university/research institutes), which affects the amount of valid
collected data. In this section, the issues of occupancy data acqui-
sition are reviewed and discussed.

Based on the literature review, 39.7% of the buildings studied in
the occupancy forecast field were academic buildings. Other build-
ing types included residential (27.4%), office (19.2%), and other
buildings (13.7%), such as mosques [67], airports [68], parking lots
[62,63], hospitals [69], and self-established test beds [25] (Fig. 9).
Note that some articles mention more than one building type,
causing the sum of all the building types of the occupancy forecasts
to be more than 70.

The object of occupancy forecasting and data acquisition varies
for different applications and aims according to detailed require-
ments. The lighting control of a room or HVAC control at the zone
level is based on occupant presence detection [70–72], while the
fresh air ventilation control or airflow rate control at the zone level
requires the occupant number as an input [29,73]. Research has
also been conducted to adjust the temperature setpoint according
to the predicted number of occupants in a room [10]. To realize the
control of HVAC systems, several studies predicted the duration of
presence [50] or that for the remainder of the day [74] to guide
Table 1
Articles with different forecast objects.

Forecast object

Presence-related Presence
Presence and duration of pre
Presence and time for prese
Presence and status
Time for presence

Occupant number Occupant number
-related Occupancy level (low, mediu

Occupant number pattern ty
Location-related Location
Combined Presence and location

Presence and occupant num
Presence and occupancy lev
Duration of presence and oc
Presence of occupant and oc

Fig. 9. Building types examined in occupancy forecast studies.
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turning off the HVAC system or setback temperature control ahead
of the leaving time. The setback temperature and thermostat con-
trol can also be based on the forecast of arrival and departure
times, which are considered another form of occupancy state
[34,75,76]. There is also research predicting the occupancy stage
(such as empty, low, medium, and full), which differentiate
between the presence and detailed occupant number [44,77]. For
more elaborate research, the occupant location is predicted to
maximize the energy efficiency [78] or security guard [61]. The
number of occupied beds in hospitals is forecasted for the specific
application of surgery management in hospitals, which is similar to
occupant number forecasting [69].

Meanwhile, for residential buildings, HVAC system controls
may also consider different temperature setpoints in the active
or inactive (sleeping) stages [17]. The occupancy state in a house-
hold is instructive for smart home operations [79] and grid
requirements [56]. For space utilization and optimization, the fore-
cast object turns to agents to determine the future presence loca-
tion in a certain commercial building [59]. For delivery route
optimizations, future forecasting of occupancy states in house-
holds may overcome this issue [60].

A summary of the predicted occupancy objects is presented in
Table 1. For occupancy prediction in the future, nearly half of the
research focused on the occupancy state forecast, while over a
quarter of the research predicted the detailed number of occupants
in the building. Meanwhile, only four articles mentioned location
forecasts for smart home operations and smart grid energy man-
agement [58,59,61,78]. Thus, the dominant forecast objects are
presence and occupant number, not occupancy trajectory, which
is mainly the research target of occupancy detection for security
issues and target of occupancy simulation for layout design.
4.2. Collection method and size of dataset

Occupant-related data acquisition faces the challenges of data
accuracy and personal security, which require manual labor and
affect the data quality and size of the occupant behavior dataset
[73]. With the innovation and development of occupancy data col-
lection, research on occupancy forecasting has been inundated
with valid ground truth data rather than occupancy data from sim-
ulation methods [80].

For occupancy data collection, traditional research methods
tracked the presence and absence state of rooms using typical
occupancy and vacancy duration questionnaires [49], motion
sensors [24,26,34,57,61,71,74,76,81–92], radio frequency
identification (RFID) sensors [55], door sensors [17], Bluetooth bea-
cons [93–95] and mobile phone records [54,75]. For occupant
number acquisition, detection methods include motion sensors
Number of articles

34
sence 1
nce 1

1
2
21

m, high) 1
pe 1

3
1

ber 1
el (low, medium, high) 1
cupant number 1
cupant number 1



Fig. 10. Summary plot of occupancy dataset size for different studies.
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installed at each exit [96], sensor network capturing and process-
ing image data [22,67,72,97], depth-image/video cameras
[44,59,65,83,98,99], probing signals from Wi-Fi networks
[11,58,68,73,100,101], manual logs using a mobile (Android) app
[29], geo-fencing apps on mobile phones [102], and manual count-
ing via on-site surveys [77,102] or video records [103]. The accu-
racy of image/video data processing to distinguish occupant
numbers ranged from 80% to 95% in different studies. Some studies
have estimated the number of occupants by analyzing the ambient
parameters or appliance electrical loads, in which the temperature,
relative humidity, acoustics, CO2 data [25,50,104], and electrical
load [79] may be collected by sensors. Additionally, several studies
have directly developed occupancy forecast models based on pub-
licly available datasets [30,60,78,105,106].

Based on our literature review, we found several articles focus-
ing on occupancy detection and estimation in buildings that con-
flated the expression of ‘‘detection” with ‘‘forecast” [107–111].
These studies mainly estimated real-time occupancy and did not
determine future situations. Because the application areas and
detailed modeling techniques differ, it was suggested that a speci-
fic term for ‘‘detection and forecast” should be used.

Owing to the distinction of the data acquisition method, the size
of the occupancy dataset also varies among different studies,
which influences the stability and generalizability of the occu-
pancy forecast models. Fig. 10 shows a summary of the results of
the amount of valid data based on the findings of the literature
review. The dots are separated between commercial (blue) and res-
idential buildings (green). Regarding the spatial scale, ‘‘building” is
the expression used for commercial, and ‘‘household” is used for
residential buildings. As seven articles did not mention the dataset
size and several articles only stated the size on the temporal or
spatial scale, these articles were not included in the figure. More
detailed information is listed in Table A.1 in Appendix A. Overall,
most of the articles mentioned the size of the valid dataset used
for their occupancy forecast analyses. The scale of the datasets
includes rooms or buildings. For the spatial scale of the room, the
valid duration was concentrated from twomonths to eight months,
whereas that of an entire building/household tended to be less
9

than two months. Razavi et al. [106] proposed an occupancy fore-
cast model based on a large dataset from a smart meter dataset
that contained 5000 households and spanned for 1.5 years. Such
large-scale datasets are valuable for model establishment and
validation.

In this review, we mainly analyzed the temporal and spatial
scales to evaluate the size of the occupancy datasets. We found
that few studies predicting occupant positioning collected data
that were mainly quantified by tracking the number of occupants
[78] and are thus not discussed in detail in Table A.1.
5. Forecast methods and techniques

Several key terms are used for occupancy forecasting, most of
which are discussed in this section. The terms have been written
in blue, as shown in Fig. 11, and include the input, lagged variable,
and forecast algorithm. These terms are reviewed and analyzed in
the following subsections.
5.1. Inputs

This subsection analyzes the forecasting models and techniques
that are crucial for performing occupancy forecasts. In an occu-
pancy forecast study, it is important to correlate the study with
the physical nature and characteristics of occupancy, which have
the potential to improve robustness and generalizability.

The input of a forecast model is important because it reflects a
deep analysis of the inner physical features and characteristics of
occupancy. As improper inputs may cause bias during model
establishment and training, inputs greatly affect the accuracy of
occupancy forecasting. In general, the inputs for occupancy fore-
cast methods can be divided into three categories: (1) historical
occupancy data; (2) contextual information [18], such as season,
hour of the day, day of the week, and special holidays; and (3)
ambient parameters [50,60,101,106,112], including temperature,
CO2, plug loads, motion sensor data, and acoustics. Position-
based occupancy forecasts use information from mobile phones



Fig. 11. Key terms of occupancy forecast research.

Table 2
Summary of inputs for occupancy forecasting.

Historical data Contextual information Ambient parameter Reference
p

[10,11,22,24,26,34,49,54–58,61–63,65,70,71,74–76,79,82–84,87–90,94,95,97,98,100,104,105,113]p
[59,67–69]p
[50,112,114]p p
[18,29,30,44,73,78,80,81,86,91,93,96,102,103,115,116]p p
[25,99,101]p p
[17,28,60,72,77,106]
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as inputs, such as cellular information, Wi-Fi fingerprints, and loca-
tion coordinates fromWi-Fi positioning systems (WPSs) and global
positioning systems (GPSs) [75]. Inputs from more than one cate-
gory are sometimes introduced into the forecast model
[17,25,44]. An input summary is listed in Table 2, and detailed
information is provided in Table B.1, B.2, and B.3.
10
For historical occupancy data input, the researcher normally
utilizes probability analyses to predict occupancy or temporal
sequential characteristic analyses such as the autoregressive inte-
grated moving average method [65]. For contextual information
input, the periodicity of occupancy is considered with a period of
one day or one week. Meanwhile, holidays are usually listed as
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an important factor in occupancy patterns. In specific places, con-
textual information can be supplemented by flight schedules for
airports [68] or meeting schedules for conference rooms [28]. For
the ambient parameters, researchers determine the forecast based
on the assumption that the occupants in buildings will affect cer-
tain environmental parameters such as CO2 concentration, trigger-
ing motion, or acoustic sensors. However, only the environmental
parameters of past time steps can be utilized to predict occupancy
in future time steps. This is different from occupancy detection
research, in which the occupancy of the current time step is
inferred using the parameters of the current time step as input.

It is essential to comprehensively determine the purpose and
requirements of the forecast while determining the inputs. For
example, occupancy and ventilation control can both affect the
CO2 concentration in a room; thus, if the purpose of the study is
to optimize the ventilation control strategy using an occupancy
forecast, the CO2 concentration should not be listed as the input
variable.
Fig. 12. Temporal and spatial res

Table 3
Summary of lagged variable in reviewed articles.

Lagged time step

1
1
28 (historical data with the same time point)
5
7 (historical data with the same time point)
All historical data of current partial days start from 14
Last prayer event
24
Artificial neural network – 3, 11, 12, 15
Support vector machine – 3, 5, 12, 18
60 spatial coordinate data points
24
12
Change points detection for the moving windows
6
6 (historical data with the same day of week and time point)
5
3–12 symbols/activities
7 for k-nearest neighbors method
4 for preheat method
24
7 (clustering day type)
8
20

11
5.2. Temporal and spatial resolution, lagged variable, and prediction
window

The temporal and spatial resolutions of occupancy forecasts
vary for different applications and scales [36]. The temporal reso-
lution for an occupancy forecast varies from second to minute
and hour, while the spatial resolution ranges from a single room
to a zone, level, or even an entire building (Fig. 12). In total,
88.6% of the studies reported both temporal and spatial resolu-
tions, while 98.6% stated spatial resolution. For studies controlling
the HVAC system based on an occupancy forecast, the temporal
resolution is often set at 10–20 min. Meanwhile, the resolution
for heating (1 h) is normally longer than that for cooling
(15 min) [50]. Several studies have also analyzed the impact of
temporal resolution on forecast performance [65,82,83,95,97,
100,102]. The results show that a higher resolution normally
achieves higher accuracy. Most (61.4%) of the studies focused on
the room scale for spatial resolution, while 27.1% focused on the
olutions of reviewed studies.

Lagged duration Reference

1 s [22]
10 min [18]
28 days [24]
75 min [54]
7 days
/ [55]
/ [67]
1 day [73]
45 min, 5.5 h, 12 h, 30 h [65]
45 min, 2.5 h, 12 h, 36 h
/ [59]
12 h [30]
3 h increments from 3 h to 36 h [97]
/ [82]
30 min [26]
6 weeks [94]
5 h [80]
/ [61]
70 min [57]
40 min
24 h [99]
7 days [101]
8 min [114]
20 days [69]



Fig. 13. Chronological plot of occupancy forecast algorithms (As for the abbreviations of different algorithms in the figure, please refer to Table 4 below).
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building scale (including the presence forecast in a single house-
hold or residential building).

A lagged variable refers to the order of historical data used to
correlate or conduct a regression analysis at each time step. For
example, the Markov chain model assumes that the occupancy
state is related to the state of the last time step, making the lagged
variable equal to one time step. This reflects the cognition of the
study when considering occupancy patterns. If the lagged variable
is too short, the occupancy pattern will not be well reflected, caus-
ing a deficiency in the historical data for the occupancy forecast.
Conversely, if the lagged variable is too long, the forecast perfor-
mance is compromised because of the introduction of excessive
noise. In the current research, the lagged variable is not well dis-
cussed, and only 30.0% of the reviewed articles use the term. Chen
et al. [65] optimized the lagged variable for different temporal res-
olutions, revealing that the optimized lagged variable decreases at
higher temporal resolutions. Thus, temporal resolutions of 15 min,
30 min, 1 h, and 2 h had optimal lagged variables of 3, 11, 12, and
15 time steps, respectively. The details are summarized in Table 3.

The prediction window, also called the prediction horizon,
denotes the duration of the occupancy forecast in the following
time steps and is highly related to on-site applications. In an HVAC
system control study [50], the prediction window for heating was
24 h, while the prediction window for cooling was 3 h. In a study
on residential building preheating control [55], the prediction win-
dow was evaluated from 15 to 180 min (3 h) and finally set to 3 h.
Moreover [54], for home heating control, a prediction window is
required to guarantee the temperature of home to return to the
comfort zone before people return home; this window is deter-
mined and calculated using the current indoor air temperature,
the target comfort temperature, and the forecast for the outside
temperature. Adamopoulou et al. [44] considered the frequency
of forecasting and found that different combinations of prediction
windows and frequencies correspond to different applications.
For example, 8 h – 8 h (prediction window – frequency) is related
to operational and energy resource planning, and 15 min – 15 min
is related to demand responses or real-time predictive control.
Note that a longer prediction window induces higher errors
with more uncertainty in the unknown future period
[29,60,65,82,83,99,106].
12
For forecast research, the target variable depends on a certain
hidden and unknown context. A changing context may lead to vari-
ations in forecasting targets. With deeper insight into the ‘‘concept
drift” in building occupancy forecasting, which is used to depict the
routine/characteristics of occupancy change with time [117], the
amount of historical data used for model training or generating
the state transition probability matrix is also important. Hence, if
the amount of historical data is too large, the trained model may
encounter too much chaotic information, thereby decreasing the
accuracy of the forecast. By contrast, the amount of historical data
may be too limited to grasp the overall routine pattern for the fore-
cast. Consequently, it is crucial to determine the valid amount of
data for occupancy forecasting. This amount can be highly influ-
enced by pattern modifications; a sensitivity analysis is the opti-
mal solution to overcome concept drift. Furthermore, regularly
updating the model could help improve the forecast performance
and overcome the concept drift of the occupancy pattern. However,
selecting an appropriate update interval is difficult. Yuan et al.
[116] retrained the forecast model every day using all historical
data before the forecast day and achieved a steady improvement
in the forecast performance. Currently, only 32.9% of the reviewed
articles mention the amount of training data used. In one study
[30], the historical data for model training was collected over eight
weeks. Although discourse on this topic is currently limited, Tah-
masebi et al. [89] analyzed the influence of data utilization options
with three alternatives: 5, 10, and 20 days. Salimi et al. [95] con-
ducted a sensitivity analysis to investigate the effect of the data
collection period on the accuracy of the occupant number forecast
model. Turley et al. [102] changed the collection period of training
data from 1 week to 4 weeks to optimize the forecast model. They
also discussed the efficacy of a moving mode for model training
over time.
5.3. Forecast algorithm

Over the past decade, forecast algorithms have significantly
improved the performance of occupant forecasts. Fig. 13 shows
the evolution of methods for occupancy forecasting (models for
benchmark and comparison are omitted in the figure). The
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complete descriptions of the forecast algorithm abbreviations are
listed in Table 4.

In general, forecast methods can be classified into four cate-
gories: (1) traditional statistical methods, (2) unsupervised
machine learning methods, (3) supervised machine learning meth-
ods, and (4) hybrid models. With chronological evolution, the
supervised machine learning method-based model began to dom-
inate, replacing traditional statistical models. Currently, research
concerning hybrid models is relatively limited; however, these
models have the potential to improve calculation precision and
consider the natural characteristics and routines of occupancy.

A major traditional statistical model is the Markov chain-based
model [17,22,50,63,70,77,79,104,112,113], which is based on tran-
sition probability and has been developed and innovated over time.
Another type of traditional model predicts the occupancy state
based on the historical occupied ratio [24,87] and the occupant
number based on historical data at the same time point [29]. Other
researchers have established forecast models based on other statis-
Table 4
Abbreviations of forecast algorithms in the reviewed articles.

Abbreviation Forecast algorithm Ref.

ALOS Automatic learning of an occupancy schedule [76]
ARIMA Autoregressive integrated moving average [65]
BHMM Backward hidden Markov model [77]
CAM Context-aware method based on the spatiotemporal

analysis from (semi-)Markov model
[44]

CMI Clustering and motif identification-based approach [101]
CPNPM Clustering probability based nonparametric modeling [91]

CSPALZ Compression-based sequential prediction methods,
based on the active LeZi algorithm

[61]

DMC Discrete Markov chain model [63]
DMTWI Dynamic Markov time-window inference approach [11]

DT Decision tree [103]

DTP Decision tree with pattern [96]
DTRI Decision tree with rule induction [18]
FEkNN Feature extraction-based k-nearest neighbor (KNN) [84]
GB Gradient boosting [106]
GMO Graph mining-based optimization [119]
HMM Hidden Markov model [17,25,50]
IBMC Inhomogeneous blended Markov chain model [22]

ICTSW Inter-cell transition - Smith-Waterman alignment
algorithm

[75]

KNN k-nearest neighbors [60,74]
MC Markov chain model [79]
MLP Multilayer perceptron [60,72]

MMLM Mixtures of multilag Markov chains [26]
MT Daily binary occupancy profiles based on aggregated

past–presence data
[24,87]

NIM New inhomogeneous Markov model [82]

PODkC Proper orthogonal decomposition-based k-means
clustering for occupancy prediction model

[56]

PROMT Predicting occupancy presence in multiple resolution
with time-shift agnostic classification

[57]

RNN Recurrent neural network [30]

RNN-LSTM Recurrent neural network with long short-term
memory units

[94,97,99]

SAMLE Self-adaptive occupancy learning control algorithm
based on maximum likelihood estimation

[34]

SLRCP Novel statistical model based on logistic regression
model with change points

[105]

SUNSH Improved sensor-utility-network (SUN) algorithm with
incorporation of scheduling and adaptive historical data

[80]

SVR Support vector regression [65]
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tical algorithms or distributions, such as Gaussian distribution [50],
Gamma distribution [68], maximum likelihood estimation [34],
Smith-Waterman alignment algorithm [75], logistic regression
[105], finite state automata [10], and temporal sequential analysis
[65].

Machine learning methods have greatly contributed to data
analytics in buildings, including occupancy research [118]. For
unsupervised machine learning method-based models, a predomi-
nant method predicts the occupancy state or number using the
clustering results of the data from several past data points. These
results are considered to represent different occupancy patterns
and distinguish weekdays from weekends, even on different days
of the week. Scott et al. [55] utilized the Hamming distance to
determine the distinctions between the patterns. In addition, sev-
eral researchers have introduced clustering algorithms for further
occupancy forecasting, such as k-means [56] and k-nearest
neighbor techniques [60,84]. Vazquez et al. [90] evaluated the
performance of different clustering forecast algorithms, including
Abbreviation Forecast algorithm Ref.

ANN Artificial neural network [65,69]
ARM Association rule mining [78]
BMC Blended Markov chain model [70]
CM Clustering-based model [90,115]

CPM Contextual probabilistic model [102]
CPOP Clustering-based probabilistic occupancy

prediction model
[95]

DHSMM Dynamic hidden semi-Markov model [112]

DML Distributed machine learning [58]
DOPM Occupancy prediction model built by using

decision guidance query language (DGQL)
framework

[28]

DTDM Dwell time distribution-based mathematical
model

[68]

DTR Decision tree-based model with routine [29]
ER Event-based regression model [67]
FSA A novel finite state automata [10]
GMM Gaussian mixture models [50]
HD Hamming distance-based model [55]
HOMC Higher order Markov chain occupancy model [104]
ICDMC Inhomogeneous closest distance Markov chain

model
[22]

IMC Inhomogeneous Markov chain model [113,116]

LR Linear regression model [116]
MLC Multilabel classification [81,86]
MLR/ANN Model based on combination of linear regression

and artificial neural networks
[73]

MoC Monte Carlo-based model [49]
NARX Nonlinear autoregressive with eXternal input

neural network
[93]

NMIMCP New moving window inhomogeneous Markov
model based on change point analysis

[83]

PRECEPT A variant of recurrent neural network known as
gated recurrent unit (GRU) network

[59]

RF Random forest [60,98,103]

RNN-DLSTM Recurrent neural network with deep long short-
term memory units

[62,100,114]

RR Rule-based model with routine [29]

SCNN Sequential & contextual neural network [116]

STMB Self-tuning Markov occupancy model with on-
line Bayesian training

[71]

SVM Support vector machine [60]
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self-organizing maps, eXclusive self-organizing maps, fuzzy C-
means clustering, k-means, k-means with repeated bisection,
graph clustering, and support vector clustering.

For supervised machine learning method-based models, studies
have analyzed the forecast performance of multilayer perceptrons
[72] and multilabel classifications [81]. With the increasing com-
plexity of models, more complicated neural networks (nonlinear
Table 5
Occupancy forecast evaluation metrics.

Evaluation metrics Equation

Average static occupancy duration /
Jensen-Shannon divergence (JSD) for room

occupancy distribution
KL P1kP2ð Þ ¼ P

x2XP1 xð Þlog P1 xð Þ
P2 xð Þ

JS P1kP2ð Þ ¼ 1
2KL P1k P1þP2

2

� �
þ 1

2K

Duration between entrances and exits of a room /
Percentage of forecasts with errors below specific

thresholds for five statistics
FA: First arrival time error; LD:
OD: Occupancy duration error
SM: Occupancy state matching
NT: Number of transitions erro

Confusion matrix and related metrics
CM ¼ TP FP

FN TN

� �
; PPV ¼ TP

TPþFPTP

ACC ¼ TPþTN
TPþTNþFPþFNinACC ¼ 1� A

F ¼ 1þb2ð Þ�PPV�TPR
b2�PPVþTPR

LL ¼ � 1
N

PN
i¼1 yð

þ 1� yið Þ log 1� TPRð ÞÞMMC ¼ p
CM: confusion matrixP: positiv
F: falsePPV: precision; TPR: rec
inACC: inaccuracy or error rate
MCC: Matthews correlation coe

Confusion matrix-based receiver operating
characteristic curve

/

Accuracy for occupant number or location forecast
I Yi ¼ bY i

h i
¼ 1; ifYi ¼ bY i; else0AC

Accuracy with x-number tolerance I Yi � bY i

��� ���; xh i
¼ 1; if Yi � bY i

��� ��� �
ACC ¼

PN

i¼1
I Yi�bY i

�� ��;xh i
N

Proportion of different occu_num errors /
ME (mean error) ME ¼ 1

N

PN
i¼1 Yi � bY i

� �
medE (median error) medE ¼ median Yi � bY i

� �
MdAE (median absolute error) MdAE ¼ median Yi � bY i

��� ���� �
MAE (mean absolute error) MAE ¼ 1

N

PN
i¼1 Yi � bY i

��� ���
Normalized MAE NormalizedMAE ¼ MAE

Y

MAPE (mean absolute percentage error)
MAPE ¼ 1

N

PN
i¼1

Yi�bY i
Yi

����
����

MSE (mean squared error)
MSE ¼ 1

N

PN
i¼1 Yi � bY i

� �2

MSLE (mean squared log error)
MSLE ¼ 1

N

PN
i¼1 log Yi þ 1ð Þ � lo

�
RMSE (root-mean-squared error)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

bY i � Yi

� �2
r

CVRMSE (coefficient of variation RMSE) CVRMSE ¼ RMSE
Y

Accuracy based on CVRMSE ACC ¼ 100� 1� CVRMSEð Þ
Total average NRMSE (normalized root-mean-

squared error) RMSE periodt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1
coccjk�occjk

�
n

r
¼ RMSE periodt

maxoxx�minocc AverageNRMSE zo

¼
Ptp

t¼1
NRMSE periodt

tp AverageNRMS

¼
Pz

j¼1
AverageNRMSE zoneij

z TotalAver

¼
PTestD

i¼1
AverageNRMSE dayi

TestD j: zone; k
n: total number of compared v
maxoxx;minocc: maximum and
value
tp: total number of time period
zones
TestD: total number of testing

R-squared value
R2 ¼ 1�

PN

i¼1
bY i�Yi

� �2

PN

i¼1
Y�Yið Þ2

SD (standard deviation)
SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 Yi � Y

�� ��2q
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autoregressive with eXternal input neural network [93], recurrent
neural network with long short-term memory units [62,94,97,99],
gradient boosting [106]), and other models, such as support vector
regression [65], decision tree [103], and random forest [60,98],
must be introduced to forecast research.

There are also models that introduce hybrid concepts. Liang
et al. [96] combined a clustering method for occupancy patterns
Reference

[22]
[22]

L P2k P1þP2
2

� �
[22]

Last departure time error

error
r

[24,89]

R ¼ TP
TPþFN;

CC;

i log TPRð Þ
TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ
e; N: negativeT: true;
allACC: accuracy;
LL: logarithmic loss;
fficient

[17,18,26,54,55,57,60,72,76,81–83,86–
88,90,91,102,112,114]

[26,54,55,82]

C ¼
PN

i¼1
I Yi¼bY i

h i
N

[10,25,30,50,61,78,113]

x; else 0 [11]

[104]
[65]

[96]

[62]

[29,59,62,83,96,97,105,114,116]

[29]

[58,80,97]

[59,62]

g bY i þ 1
� ��2 [62]

[10,29,58,59,62,65,69,71,73,83,94,96,97,100,114,116]

[29,67,73,95,98,99]

[73]ffiffiffiffiffi	2

NRMSE periodt

neij

E dayi

ageNRMSE

: time step; t: period;
alues
minimum occupancy

s; z: total number of

days

[44]

[67,68,73,95,113,114]

[114]
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with a decision tree algorithm to predict the number of occupants
in a building. Nacer et al. [76] proposed the automatic learning of
an occupancy schedule method to classify arrivals and departures
using a clustering method and calculated the detailed duration
using the expectation maximization algorithm. Ryan et al. [80]
improved a linear state-space model by introducing a schedule
term in the optimization function and setting up a mechanism to
automatically update the historical data. Sama et al. [61] used
the Active LeZi algorithm as a sequential compression method to
generate an order-k Markov model.

However, several gaps in the research need to be carefully
defined and addressed. Although occupant behavior varies in dif-
ferent buildings and rooms, summarizing common features or sim-
ilar routines is the key to generalizing a prediction method. As the
previously discussed concept drift, determining how to overcome
the uncertain changes in the occupancy pattern over time is impor-
tant for on-site applications. To date, efforts have been made to
establish additional open-source datasets concerning occupancy
states in buildings and to improve the generalizability and perfor-
mance of methods and techniques.

6. Evaluation

6.1. Training/validation/testing set

The forecast method should be evaluated with sufficient histor-
ical data from either a test bed or on-site measurement to show the
average performance of the model and guarantee its stability and
robustness. A forecast evaluation should be a complete and norma-
tive process. In the initial step, the dataset is separated into train-
ing, validation, and testing sets to avoid potential overfitting,
especially in a complex model [120].

The goal of an occupancy simulation is to represent the features
and characteristics of the objective. Thus, during the parameter
acquisition of the simulation model, it is not strictly required to
separate the training and testing sets. However, dataset splitting
is crucial for occupancy forecasting. A training set is used for model
training, which is an optimization process employed to minimize
the loss function of the model. A validation set is more popular
in the area of machine learning studies and is used to guide
hyperparameter optimizations for the model. Finally, a testing
Fig. 14. Accuracy result
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set indicates occupancy data occurring in the future and provides
standard data for the comparison of different models.

According to the literature review, 43% of the articles men-
tioned separating training and testing sets or cross-validation,
while only a few (6%) mentioned a validation set. The proportions
of training and testing sets are also important for overfitting or
underfitting issues. Among the review articles, no study has dis-
cussed the impact of set proportions on forecast performance,
which potentially needs further exploration.
6.2. Evaluation metrics and results

To demonstrate the overall performance, occupancy forecast-
related studies usually establish a set of evaluation metrics. These
metrics are composed of two parts: the evaluation of the occu-
pancy forecast results and related application performance.

For the occupancy forecast metrics (occupant number), the
RMSE and normalized RMSE are most commonly used. Erickson
et al. [22] evaluated how long room occupancy remains static in
order to measure occupancy variability. They also proposed the
Jensen-Shannon divergence for the room occupancy distribution.
To predict the presence state in buildings, the confusion matrix
and receiver operating characteristic curve were utilized to evalu-
ate forecast performance. Mahdavi et al. [24] focused on the first
arrival time, last departure time, occupancy duration error, occu-
pancy state matching error, and number of transitions. A previous
study also analyzed [91] the uneven frequency of the occupancy
state, which refers to the phenomenon in which people generally
spend daytime in the office. Therefore, certain metrics, such as
the Matthews correlation coefficient, are used to avoid an imbal-
ance in the evaluation.

Table 5 summarizes the detailed evaluation metrics for future
occupancy forecasting. In total, 40% of the articles reviewed pro-
posed accuracy to evaluate the final performance of the occupancy
forecast (Fig. 14). Note that the definition of accuracy in some stud-
ies contains tolerance (refer to ‘‘Accuracy with x-number toler-
ance” in Table 5). In one study [11], accuracy was expressed as x-
accuracy, in which the � occupant error was allowed. Therefore,
the green columns in Fig. 14 refer to accuracy metrics with relative
tolerance.
s in review articles.
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Of the occupancy forecast-related applications based on the
metrics, the most common is energy conservation with the help
of occupancy-forecast-based control. In total, 16 articles men-
tioned energy conservation performance. Of these, 72% are simula-
tion case studies, for which energy conservation ranges from 9 to
42%. Meanwhile, the energy conservation from on-site applications
and measurements ranges from 18 to 30%. A detailed comparison
of the baseline values is presented in Table 6.

Occupant comfort is an important indicator in research. In a
study of residential heating and cooling control [17], a miss time
was introduced to represent the control results; miss time is
defined as the total duration when the home is occupied but the
temperature does not meet the setpoint temperature. Kleiminger
et al. [54] introduced discomfort degree hours as a measure of
comfort loss. This term is defined as the average sum of the hourly
differences between the actual indoor air temperature and the
comfort temperature for all occupied intervals. In one study [67],
the traditional predicted mean vote and predicted percentage dis-
satisfied metrics were used as indicators of occupant comfort.
Dobbs et al. [71] considered comfort loss as a part of the loss func-
tion of model predictive control. They found that comfort loss
increases with increasing deviation between the actual zone, the
Fig. 15. Logical structure of oc

Table 6
Energy conservation performance of occupancy forecast-based control.

Type of case
study

Comparison baseline case

Simulation Static temperature setting
Simulation International Organization for Standard (ISO) 13790-standard heating
Simulation Static nighttime temperature setback strategy
Simulation Base case without occupancy forecast
Simulation Conventional scheduled control
Simulation Static schedule (model predictive control with occupant number fore
Simulation Basic control with no occupancy info
Simulation Reactive heating system (On/off based on occupancy detection)
Simulation Typical heating system
Simulation Static schedule (adaptive model predictive HVAC controller)
Simulation Case of the corresponding day of the previous week with traditional c
Simulation Base case without pre-heating and pre-cooling
Simulation Typical HVAC control strategy assuming maximum occupancy for vent

22:00
On-site Conventional scheduled temperature set-points (cooling)
On-site Existing single-zoned thermostat case
On-site standard sensible cooling control strategy embedded in the Building M

normalization against outdoor climate and room occupancy
On-site Conventionally scheduled cooling systems
On-site Conventional scheduled temperature set-points (heating)
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comfort setpoint temperature, and the occupancy level. In another
study [90], the average difference between the real and desired
temperatures when there are people at home, time in comfort dur-
ing the occupied state, and the accumulated time to reach the com-
fort temperature during the occupied state were utilized to depict
the control performance.

For other applications, the metrics are also fit-for-purpose. For
instance, for parking lot guidance, the failure rate of the available
parking space and the time consumed before entering a parking
space are used to evaluate the control algorithm [63].
7. Challenges and perspectives

The structure of the summary of occupancy forecast research is
shown in Fig. 15. Based on the literature review and analysis, there
are still several challenges and perspectives for researchers to con-
sider, including the following: (1) data acquisition and dataset
establishment, (2) consideration of the natural characteristics of
occupancy in buildings, (3) applicability and unification of tempo-
ral and spatial resolutions, and (4) on-site application and occu-
pant behavior combined analyses.
cupancy forecast research.

Proportion of energy
conservation

Reference

9% [102]
model 12% [54]

13% [34]
15% [79]
19% [71]

cast) 20% [116]
20% [10]
22% [76]
28% [17]
30% [116]

ontrol 31% [67]
39% [119]

ilation and conditions all rooms from 7:00– 42% [22]

18% [50]
20% [88]

anagement System (BMS) after the 20% [74]

30% [84]
30% [50]



Fig. 16. Summary of application scenarios relating to temporal and spatial resolutions and prediction window.
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7.1. Data acquisition and dataset establishment

Occupancy-related data are challenging to obtain in buildings
because of accuracy and privacy issues. However, with the devel-
opment of the Internet of Things, in addition to RFID and Wi-Fi
solutions for occupancy detection, big data collection methods
and analytics could potentially improve occupancy-related studies
using GPS and social media data. Thus, the new challenge is how to
carefully manage these data, from data cleaning to data mining.
Meanwhile, occupancy information with enlarged and detailed
spatial tags will help to deepen routine information and potentially
improve occupancy-based research.

Additionally, according to the literature review, building occu-
pancy datasets are relatively sparse, making it difficult to validate
research results. Therefore, a shared and authentic dataset is
required. One project sponsored by the American Society of Heat-
ing, Refrigerating, and Air-Conditioning Engineers collects valid
global occupant behavior databases from researchers worldwide
to help promote the standardization of occupancy forecast
research.
7.2. Natural characteristics of occupancy

A basic physical routine analysis of occupancy is introduced in
Section 1. However, deeper analyses and accurate occupancy fore-
casting require additional information regarding physical occu-
pancy routines and nature analyses. Features such as periodicity,
temporal sequential characteristics, and predictability would con-
tribute to forecast studies and guide parameter selection and
online model updates. Based on the reviewed modeling tech-
niques, supervised machine learning methods are beginning to
dominate the field. However, hybrid models, which could be a
potential solution to combine the machine learning method with
insight into the natural characteristics of occupancy routines, are
relatively limited. Additionally, the diversity of occupancy patterns
should be specified and distinguished under different circum-
stances, and sensitivity analyses may help identify the key influen-
tial factors for occupancy forecasts.
7.3. Temporal and spatial resolution

The temporal and spatial resolutions were highly correlated
with the application scenario (Fig. 16). For different operation
objects, the spatial resolution may be at the room, floor, or building
level. Currently, research mainly focuses on predictive controls at
the room scale, controlling the on/off operation state or tempera-
ture setpoint of terminals. Occupancy forecast results are impor-
tant for larger spatial scales, and unifying the results for different
resolutions is important.
Fig. 17. Proportion of occupancy-based simulation and on-site implementation
applications in reviewed articles.
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Moreover, it remains a challenge to systematically propose a
framework of occupancy in buildings using quantification on the
temporal and spatial scales.

7.4. Implementation and on-site application

Based on the literature review results, a major application area
for future occupancy predictions is to guide and optimize building
operations. However, 80% of the application studies reviewed were
based on simulation test beds (Fig. 17). Further, the results of the
review indicate that it is necessary to improve the on-site imple-
mentation of occupancy forecast-based applications.

Meanwhile, the gaps in the knowledge corresponding to on-site
implementation include: (1) designing an effective and more accu-
rate occupancy information detection method, (2) developing a
robust method for occupancy forecasting, and (3) determining
valid model-updating rules for on-site applications.

Moreover, occupant behaviors with different operable appli-
ances and systems could also be predicted in future studies. To
accomplish this, feedback from occupants should be recorded
and used to guide control strategy improvements. These results
would provide additional information during the operation phase.
The performance of predictive and feedback-based controls is
promising compared with traditional control methods in terms of
the ambient state and energy consumption.
8. Conclusions

Occupancy is the basis for energy demand analyses and
comfort-centric operations. Occupancy prediction is a key issue
in building occupant behavior studies, which have recently under-
gone significant improvements. This article provides a systematic
and critical review of the literature concerning future occupancy
predictions (occupancy forecasting). This review summarizes a
complete and systematic framework for occupancy forecasting.
The related articles were analyzed by application area, data acqui-
sition, modeling techniques, and evaluation metrics. For each
aspect, the detailed requirements and influential parameters are
analyzed and summarized as follows:

(1) Most occupancy forecast studies were employed for opera-
tion optimization. At different spatial scales, the detailed
applications may vary from HVAC terminal control to build-
ing energy management. Thus, the forecast model should
capture both changes and repetitive patterns of occupancy
for future predictions.

(2) Nearly one-third of the occupancy forecasting research was
conducted in academic buildings, and the forecast objects
mostly consisted of occupancy presence and occupant num-
ber. Based on the size of the collected datasets, the two most
frequently used spatial scales were room and building
(household). Furthermore, occupancy data were usually col-
lected during a measurement period of several months.

(3) Most studies on forecasting methods are based on the input
of historical data. However, several studies have considered
contextual information, such as the hour of the day and the
day of the week. The temporal resolution of the occupancy
forecast was mostly distributed from 15 min to 1 h. More-
over, the lagged variable and the prediction window (hori-
zon) are two key factors that must be carefully considered
in this field. Previous studies have discussed the influence
of lagged variables on forecast performance. Nevertheless,
the impact of the prediction window remains an issue for
further study. Moreover, the concept drift of the occupancy
pattern is crucial for model generalizability and robustness.
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Regarding the forecast algorithm, chronological evolution
shows that the dominance of methods changed from tradi-
tional statistical models to supervised machine learning
and hybrid methods.

(4) Because occupancy forecasts are faced with on-site control
applications, evaluating the accuracy of each time step is
crucial. Normally, separating the training and testing sets
is required. However, to date, few studies have discussed
the impact of the amount of training data on forecast
performance.

Furthermore, the following challenges for occupancy forecast-
ing must be solved:

(1) Data acquisition and dataset establishment. In addition to
residential and academic buildings, the occupancy data for
different types of buildings should be analyzed. However,
it is necessary to design methods that can obtain occupancy
data with high accuracy and without intruding on privacy.

(2) Insight of the natural characteristics of occupancy in build-
ings. According to a review of the occupancy forecast algo-
rithms, the inputs of forecast methods are mainly
continuous historical occupancy data and contextual infor-
mation, such as hours, weekdays, and holidays. The combi-
nation of natural characteristics, such as temporal and
spatial features, with machine learning methods may
improve forecast accuracy. Furthermore, it is also essential
to consider different event-related drivers, such as the
timetables of airlines or trains for airports or railway sta-
tions, and the information of meetings and seminars for aca-
demic buildings to achieve accuracy improvements.

(3) Generalizability and robustness of model. It is important to
enhance the generalizability of the model in buildings with
different temporal and spatial resolutions for different appli-
cation scenarios. Currently, concept drift during occupancy
forecasting has not been sufficiently discussed with regard
Table A1
Summary of sizes of occupancy datasets.

Ref. Temporal scale S

Day Month Year Not mentioned R

[22] 5
[49] 5
[18] 2 1
[50] 14
[24] 9 8
[54] 2
[17] 10
[55] 2
[44] 14 3
[67] 1
[28] 1
[73] 1.5
[115] 5 1
[70] �
[34] 1 7
[65] 4 1
[59] 1
[71] 2 1
[10] 6 1
[29] 1 3
[112] 8 2
[58] � 1
[68] 2
[30] 1
[79] �
[81] 2
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to model robustness. Thus, the realization of self-learning
and updating remains a challenge for occupancy forecasting
models.

(4) On-site implementation and occupant behavior combined
analysis. The gap between occupancy forecasting and on-
site application to the operation must be addressed by con-
sidering the relationship between occupancy information
and system operation variables. Building energy conserva-
tion via operation may be greatly promoted by generalizing
occupancy forecast studies and related applications.
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Appendix A. Summary of sizes of occupancy datasets
patial scale

oom Zone/ Floor Building/Household Not mentioned

1
�

6
1

45
8
5

1
�

1

�

1

2
1
100

�
�

(continued on next page)



Table A1 (continued)

Ref. Temporal scale Spatial scale

Day Month Year Not mentioned Room Zone/ Floor Building/Household Not mentioned

[56] 1 �
[97] 10 1
[75] 2 �
[82] 2 4
[83] 6 4
[83] 4 1
[96] 1 1
[72] � 2
[26] 6 10
[76] 4 2
[93] � �
[60] 8 5
[104] � 4
[74] 7 6
[84] 7.5 11
[94] 7 161
[100] 1.5 18
[106] 1.5 5000
[78] 1.5 �
[78] 1.5 �
[80] � �
[25] 7 1
[113] 1 1
[61] � �
[57] 4 2
[103] � 2 �
[86] 3.5 �
[98] 3 2
[87] � 4
[105] 2 1
[88] � �
[77] 12 1
[89] 9 8
[90] 5 3
[11] 2 1
[11] 7 1
[99] 4 1
[99] 1 1
[62] 9 30
[63] � �
[91] 2 1
[91] 6 1
[101] 7 1
[95] 1.5 1
[102] 1.5 6
[116] 9 1
[119] 1 1
[114] 15 1
[69] 7 1
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Appendix B. Input summary of occupancy forecast model
Table B1
Input summary of historical data.

Historical
occupancy
state

Historical
occupant
number

Historical
position

Clustering result
from historical data

Historical
forecast error

Historical probability of
time and duration

Ref.

p
[18,24,26,30,34,49,54–
58,62,70,71,74,76,79,81,82,84,86–
88,90,94,102,104,105,113]p
[10,11,22,25,44,63,65,73,80,93,96–
100,103,116]p
[59,61,75,78]p
[101]p
[89]p p
[83]p p
[91,95,115]p p
[29]
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Table B2
Input summary of contextual information.

Time of day Day of week Day of year Clustering day type Month of year Holiday Season Schedule Ref.
p

[17,60,72]p
[78,91,102,115]p
[28,68,80]p p
[29,30,116]p p p
[93]p p p
[77]p p p p
[106]p p p
[73]p p p
[18,81]p p p
[86,103]p p p
[67]p p
[44,96]p p
[69]

Table B3
Input summary of ambient parameters.

Temp. Humid. CO2 Acoustic Motion Lighting Pressure Electricity Wi-Fi count Ref.
p p p p p

[72]p p p p p
[114]p p p p
[50]p p
[25]p
[17,28,77]p p
[112]p p
[101]p p p
[99]p
[60,106]
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