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Abstract

Occupants are the core of the built environment. Traditional heating, ventilation, and air-conditioning
(HVACQ) systems operate with predefined schedules and maximum occupancy assumptions with
no consideration of specific occupant information. These generalized assumptions usually do not
align with the actual demand and result in over-conditioning and occupant discomfort. In recent
years, with the aid of Information & Communication Technology (ICT) and Computer Science (CS),
it is possible to acquire real-time and accurate occupant information to satisfy the exact thermal
requirement through specific HVAC control in one particular built environment. This mechanism is
called HVAC “Occupant-centric Control (OCC)” HVAC OCC strategy starts with collecting the
occupant’s information (e.g., presence/absence) and then applies it to meet the occupant’s
requirement (e.g., thermal comfort). However, even though some research studies and field pilot
demonstrations have been devoted to the field of OCC, there is a lack of systematic knowledge
about occupant data, which is the principal component of OCC for HVAC researchers and
practitioners. To fill this gap, this review paper discusses OCC with a particular emphasis on
occupant information and investigates how this information can assist HVAC operation in providing
an acceptable built environment in required spaces during the required time. We provide a
fine-grained, comprehensive picture of occupant information, discuss its features, the modalities
of information feed-in into the HVAC control, and the application of commonly utilized occupant
information for OCC.
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adjusting the thermostat setpoint), problems like low thermal

Occupants have always been the center of indoor environment
control. From 40,000 years ago, when Neanderthals began
to dig caves to protect themselves from the cold (Janssen
1999), to 1947, when engineer Henry Galson developed a
compact and inexpensive window air-conditioner (AC)
and introduced modern ACs into hundreds of thousands
of homes (DOE 2015), human beings have been contriving
to build a safe and comfortable man-made space and satisfy
their needs. Although the early phase of the modern heating,
ventilation, and air conditioning (HVAC) system offered
occupants the ability to individually control the indoor
environment (for example, by turning on/off the AC or
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comfort level, high energy consumption, and inconvenient
control mechanisms were pertinent (Park et al. 2019).
These issues occurred because ordinary people lacked the
professional knowledge required to achieve stable thermal
comfort manually, and HVAC industries had technical and
cost limitations in automating these processes.

Automatic HVAC control allows the maintenance of an
acceptable indoor environment with minimal human labor
and involvement. The logic behind the control mechanism
is either based on maintaining a predefined temperature
and humidity range or pre-established metrics like the
predicted mean vote (PMV) and the predicted percentage
of dissatisfied (PPD) indices (Fanger 1970). However, due
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to a lack of real-time measurement application, traditional
HVAC control focuses on providing thermal comfort to
the statistically averaged occupant with a pre-assumed
occupancy, and thus, has several problematic attributes:
individual occupants’ discomfort, conditioning unoccupied
spaces (Erickson et al. 2009), predefined operating schedule
that assumes maximum occupancy (Agarwal et al. 2011),
etc. These issues cause significant occupant discomfort and
energy wastage.

To achieve optimizing automatic HVAC control, the
fundamental principle is ensuring that building services
are delivered only when and where they are required for
providing a suitable built environment for the occupant, and
in the amount that they are required (Salimi and Hammad
2019). Two essential elements required to realize this goal
are actual occupant information and comprehensive context-
aware information from target buildings. Occupant
characteristic is then recognized and fed into the control
network to make an appropriate decision. HVAC occupant-
centric control (OCC) exactly follows this process.

A concise summary and timeline of the aforementioned
developments are demonstrated in Figure 1. We list major
HVAC OCC advancements from the 1970s to the present,
which illustrates how advances in interdisciplinary fields,
like the ICT and CS, have been integral in driving HVAC
control to be more specific (rather than general) by
utilizing occupant information, thereby making HVAC
OCC possible.

1.1 Definition of HYAC OCC

While the importance of occupant influence in the built
environment is widely accepted by researchers and
practitioners, there is a lack of consensus regarding how
HVAC OCC should be defined. In the following subsections,
we first discuss the definitions of occupant information and
HVAC occupant-centric control used in this review paper.

1.1.1 Occupant information

Many studies have been conducted to develop various
approaches to investigate the data associated with building
occupants. Research in this spectrum started by detecting
occupant presence/absence status in a particular space
within certain time periods (Hagras et al. 2004; Harris and
Cahill 2005; Dodier et al. 2006) and then progressed further
into quantifying the number of occupants (Lam et al. 2009;
Erickson and Cerpa 2010; Dong and Lam 2011). With the
development of communication technology, the occupant’s
indoor position started playing a role in occupant research
(Woo et al. 2011; Maaijen et al. 2012; Moreno-Cano et al.
2013). A combination of these concepts is commonly referred
to as “occupancy” and can be regarded to be the primary
level of occupant information (Melfi et al. 2011). Utilizing
these pieces of occupancy information could improve
HVAC control for more occupant-centric. However, the
information was not enough to comprehensively reflect
the status or activity of occupants in buildings. “Occupant
behavior” was then introduced to describe occupants’

Developing Timeline of HVAC OCC

1970

Specific comfort
With the aid of ICT
development, occupants
could actively give a
feedback  about  thermal
sensation. CO2-based DCV
control emerged.

Occupancy data
Sensing system started to help
acquire the occupancy data.
Motion sensor could sense
presence, while REID could
figure out the location. Tt
encouraged HVAC to operate
[or the partial load.

Late 2000s

Model predictive control
MPC started to be appear widely in

the HVAC control. Tt tended to
preemptively  condition  indoor
environment to a acceptable level by
predicting occupant information in
the near future.

Occupant-centric control
OCC started to  make its
presence as its name.

Mid 2010s

PMV-PPD

Dr. Fanger created PMV-PPD.
Other improved functions were
also developed.

Similar  to a  suitable
temperature in the standard, it
is an average thermal index for

HVAC control. Wireless  network  were
developed. It was of significant
convenience for data

Early 1990s

Wireless network

communication.

Fig. 1 Developing timeline of HVAC OCC

Occupant modeling

Known with Markov Chain,
stochastic model started to
contribute
modeling.

o

Early 2010s Late 2010s

Multiple sensors &
Prevailing machine learning

Multiple single sensors and groups of sensors
were developed o acquire more types of
occupant  information.  including  activity,
physiological status, etc.

Machine Icarning was widely applicd in
HVAC control. Tt could help extract occupant
information from miscellaneous sensing data
and develop more accurate occupant model.

oceupant
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interactions with physical building components (e.g., windows,
lights, thermostats, etc.). Each of these actions affects
building energy consumption significantly and is a leading
source of uncertainties in predicting building energy use
(Yan et al. 2015).

1.1.2  Definition of HVAC OCC

Since OCC is a relatively new concept and studied by
researchers and practitioners around the world, there is no
widely acknowledged definition for it at this time. To partially
alleviate this issue, IEA-EBC Annex 79 (O’Brien et al. 2020)
brought together international researchers from diverse
disciplines. They defined OCC as “an approach for indoor
climate control in which occupancy and/or occupants’
comfort and preferences are directly measured or indirectly
inferred from a variety of sensors, occupant feedback from
control interfaces or mobile and wearable devices. This
information is then used to train models to adapt to actual
context-related conditions and occupants’ needs.”
Technically, HVAC systems have always been designed
to be occupant-centric due to their primary function of
serving occupants in buildings in order to ensure an

acceptable built environment for health and productivity.
Traditional HVAC control theory of temperature-humidity
comfort range, PMV-PPD evaluation, or predefined schedule
are all rooted in occupant information. So, while not an
entirely new idea, why did this term “OCC” only become
popular in recent years? The critical difference between
modern occupant-centric control and traditional control
stems from the specific time taken to acquire occupant
information and particular subjects involved in a certain
HVAC control. Instead of leveraging the predefined average
data, modern OCC focuses on the requirements of actual
occupants in the built environment. With the advancement
in industrial technologies and the onset of the digital
revolution, we believe it is the right time to prioritize the
needs of individuals and respect their actual requirements
for the built environment. This is the basic philosophy behind
OCC development and serves as the primary motivation
for this review paper.

In summary, we simplify the definition from IEA-EBC
Annex 79 mentioned above and rephrase HVAC OCC as
any kind of HVAC control that takes into consideration
specific occupant information. Figure 2 illustrates its
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concept of “from occupants to occupants”—OCC starts with
collecting occupant information and comfort preferences,
goes through occupant information transformation, and
ends with requirements. Occupants are always at the
center of the control cycle since the indoor environment is
supposed to be controlled to satisfy occupants’ needs. From
a control system’s perspectives, occupants are the sources of
the information needed for control and they interact with
the HVAC system (such as adjusting a thermostat), hence

exerting uncertainties on the system that is being controlled.

Occupant related information, such as occupancy, occupant
behavior, occupant comfort, etc., are provided to the HVAC
control directly for reactive control or indirectly through
occupant model/profile for model-based control.
Four-dimensional occupant information datasets are
demonstrated at the top of Figure 2. The z-axis of the
coordinate grid is occupant information of interactive
dimension, while the x-axis and y-axis denote temporal
dimension and spatial dimension respectively. The tick
marks correspond to different resolutions. Groups of small
balls with the same color are sets of occupant information
for different cases. The individual dimension is illustrated in
the enlarged pink ball, where different layers denote different
resolutions. Linked with red dashed lines, an example set
of occupant information includes three small pink balls,
which represent presence and application operation in
the interactive dimension, space coverage in the spatial
dimension, time step, time type, and time range in the

temporal dimension, and thermal profile in the individual
dimension.

1.2 Existing relevant review articles

Table 1 presents a list of existing review papers that focus
on OCC for HVAC equipment and systems in buildings.
Even though a widely used definition for OCC does not
exist, the three essential elements of OCC—sensing systems,
occupant modeling systems, and control systems—are
commonly recognized. The review papers curated here
comprise a systematic review of the properties and key
elements of OCC in HVAC operations.

Observing existing review studies, there is a lack of
systematic and comprehensive review of OCC with a strong
emphasis on the characteristics and application of occupant
information. Compared to other reviews that emphasize
the different components of OCC (Eulerian perspective—
similar to “specific locations” in a flow field), we will focus
on occupant information in HVAC OCC (Lagrangian
point of view—similar to the individual particles in a flow
field) (Durst et al. 1984). This paper attempts to contribute
to the existing literature by addressing the following five
questions listed in Table 2.

These five questions originate from the application of
occupant information in the HVAC operation by researchers
and practitioners (i.e., what we should obtain and know if
we want to implement effective occupant-centric control in

Table 1 State-of-the-art review articles related to the occupant-centric control

Reference Year Specific contributions
Mirakhorli and Dong 2016 The first review paper related to occupant-centric HVAC control
2016 Expatiated the application of occupant information in model predictive control (MPC)
Shen et al. 2017 2017 ° Analyzed the resolution and accuracy of building occupancy

e Focused on sensing approaches

e Presented the collection of occupant data categorized as presence/number, location, activity, and energy behavior
Naylor et al. 2018 2018 e Explained occupant-centric control strategies: real-time response to occupancy, control based on individual
occupant preference and behaviors/activity types, control through occupancy/behavior prediction

Salimi and Hammad .
2019 2019 .

Explained a variety of HVAC control systems: set-point-based occupancy detection control, MPC, local control
Created a roadmap regarding the advances in different dimensions of the building management system (BMS)

e Focusing on field-implementation case studies in actual buildings

e Analyzed OCC research trends by text-mining the identified publications

Park et al. 2019 2019
o Classified HVAC OCC as occupancy-centric control (presence and count) and occupant behavior-centric control
(thermal comfort)
Jung and Jazizadeh 2019 ° Explored literature from the perspective of human-in-the-loop HVAC systems
2019 e Presented holistic process maps in two modalities: occupancy-based and comfort-aware control
O’Brien et al. 2020 2020 e Highlighted the challenges and priorities in occupant-centric building design and operation
Xie et al. 2020 2020 e Concentrated on comfort-driven environmental control
e Focused on discussion of residential applications of OCC
Sty tal. 2021 2021
oppseta e Explored the historical advancement of residential OCC
Harputlugil and de

Wilde 2021 2021 .

Investigated the influence of occupant behavior in the HVAC control network
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Table 2 Five questions concerning OCC for the HVAC operation in buildings

No. Questions Relevant sections
1 What is the comprehensive understanding of occupant information in relation to HVAC control in buildings? Sections 2-4
2 What form of occupant information is required for the HVAC system? Section 3
3 How is occupant information involved in HVAC control? Section 4
4 ‘What methodologies are currently used for occupant-centric HVAC control? Section 4.2
5 How can researchers and practitioners choose particular occupant information and OCC control strategies? Section 5

the indoor environment), while also following the essential
elements of the basic human cognitive process (what it is,
why it matters, and how it is applied) (Kamijo et al. 2007).
Thus, this paper aims to primarily define and clarify what
kind of occupant information is required, without delving
into how it is acquired (which is the work of researchers
and practitioners in other fields). We collect OCC-related
papers and categorize them into these predefined questions
to evaluate if these questions are sufficient to cover most of
the research objects and answered well.

1.3 Objective, scope, and organization of the article

The objective of this review paper is to present an in-depth
understanding of the different features of occupant
information and its application in OCC, as well as explore
how this information passes from the sensing module to
the building control module, with special emphasis on
analyzing linkages between these modules.

The scope of this article is on HVAC systems for
occupant-centric control. Mature lighting-associated OCC
techniques are not discussed in this paper except for the
purpose of making a comparison. The rest of this paper
is organized as follows. Section 2 presents a fine-grained,
comprehensive picture of occupant information, while
Section 3 focuses on the representation, acquisition, and
transformation of occupant information in OCC. Section 4
explains how this information is applied in HVAC OCC.
Finally, the cost-efficiency, interdisciplinarity, and humanistic
consideration of OCC are explored in Section 5, where
answers to the five questions raised in the introduction
section are also summarized.

2 Occupant information database for HVAC OCC

2.1 Paper collection for reviews

We focused our efforts on curating relevant academic

publications on occupant-centric control of HVAC systems.

Since several papers did not use the terms “occupant-
centric control” or “OCC” directly, we used a variety of
search keywords like “occupant-centric control,” “human-

in-the-loop control,” “demand-driven control,” “occupancy-
based control,” “human-building interaction,” etc. in Google
Scholar and Scopus to ensure that the collected studies
represent the wide range of existing literature. Additionally,
we scanned the bibliographies of the collected papers and
investigated the authors’ Google Scholar pages to track any
relevant studies we might have missed. A detailed flowchart
of the article curation process can be observed in Figure 3.
Some of the collected papers were not suitable to be
included in our review article for the following reasons:
»  Implementation of OCC in the building lighting system;
= Relates to only one of three elements (i.e., sensing,
occupant modeling, and controlling) of OCC; and
m  Multiple papers from the same authors covering similar
concepts and narratives (e.g., different versions of an
article published first as a conference paper and then as
a journal article).
Finally, we obtained a total of 77 papers that aligned
with the goals of this review study.

2.2 Occupant information database

Occupant information is the data generated by occupants
and their interactions with the buildings that they live in.
In this paper, we propose to systematically classify occupant
information using the two metrics, “dimension” and

» «

“resolution.” “Dimension” refers to a cluster of information
with similar attributes, while “resolution” is the specific
definition for a piece of information belonging to a particular

dimension.

Search Engine Authors’ papers

Science
Driect

Google
Scholar

Keywords

Primary Database
of Relevant Papers

Reference papers

il

Fig. 3 Paper collection process
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We categorize occupant information into the following
four dimensions:

1) Interactive dimension: Information that is generated when
occupants interact with the building, such as presence,
location, etc.

2) Individual dimension: Information that belongs to the
inherent characteristics of individual occupants, such as
identity, thermal preference, etc.

3) Temporal dimension: Information that refers to the
time, such as weekday and weekend, the time step of 15
minutes, etc.

4) Spatial dimension: Information that refers to space, such
as building types (offices vs. residences), room types
(private vs. shared), etc.

All dimensions and resolutions are explained in Table 3
with their respective definitions, examples, and applications.
It should be noted that for this study, we only consider
occupant information related to the indoor environment
that is controlled by building HVAC systems. In the
following subsections, we will discuss the four dimensions
and their resolutions in detail.

2.2.1 Interactive dimension

The interactive dimension includes all occupant information
generated when people interact with the buildings that they
live or work in. When an occupant stays in a building,
he/she creates a relationship with this space and influences
the energy consumption patterns of the building HVAC
system. The built indoor environment also affects occupant
behavior, thereby creating the interactive dimension. Examples
of this dimension include passive occupant information
like occupant presence, number of the occupant, and
location, as well as active occupant behavior such as opening
windows, adjusting thermostat setpoint, and operating
electrical appliances (Chen et al. 2015; Hu et al. 2020).

1) Presence

Presence is a binary parameter (i.e., 0 or 1) that
represents whether any occupants exist in a particular
space (Naylor et al. 2018). This parameter supports HVAC
operation by negating the need for an all-time-on or
predefined on/off operation schedule. Once the presence
information (occupied or unoccupied) is available, the
control strategy involves turning off or throttling back
the HVAC system—an operation that has significant
energy-saving potential. Due to the ease of recording this
information, presence is the occupant information that
was first applied in OCC and is mostly applied to date
(Mirakhorli and Dong 2016). Rosiek and Batlles (2013)
used this parameter to optimize the operating sequence of
the solar-assist air-conditioning system. The cooling process
started only when employees were detected to be present in
the office. The results show that up to 42% energy saving
could be achieved in the cooling season.

2) People count

People count refers to the number of occupants in a
given space (Wang et al. 2017). It helps to quantify the real
load instead of the maximum load schedule that is assumed
in the design process. A typical application of this parameter
in HVAC operation is DCV that adjusts the outdoor air
supply rate based on the count information (Li et al. 2012).
Two light beam sensors and three camera sensors were
used in the study by Kuutti et al. (2014) study to detect
the number of people and an energy consumption saving
of people counting sensor-based DCV over the constant
air volume ventilation (CAV) was demonstrated with an
averaged 46% of the daily airflow reduction.

3) Location

Location refers to the spatial coordinates of an occupant
in a room (Liu et al. 2016). It makes it possible to adjust
the HAVC control to achieve zonal or individual level
with personal comfort systems (PCSs) (Nagarathinam et al.
2017; Magni et al. 2019). Nagarathinam et al. (2017) utilized
the spatial location of each occupant with desk tagging
information in open-plan offices and optimized local
temperature setpoints, which resulted in up to 12% energy
savings. It implies that such a system can create a local
environment required by a specific person without affecting
others in the same space, as well as save energy with
temperature setpoints setback (Jung and Jazizadeh 2019).

4) Thermostat setpoint adjustment

Setpoint refers to the indoor air temperature expected
by an occupant or a group of occupants (Zhao et al. 2015).
It is presumed that comfortable conditions are achieved
when the thermostat is observed to be maintaining the
required setpoint (Lu et al. 2010; Pritoni et al. 2016). Thus,
Barbato et al. (2009) estimated the thermal comfort range
of occupants from their interactions with thermostats.
Some other researchers, in contrast, treated the action of
adjusting the thermostat as an indicator of discomfort and
then recorded these dissatisfactions to investigate a comfort
principle for HVAC control (Tse and Chan 2008).

5) Envelope operation

Envelope operation denotes the behavior of opening
windows, curtains/blinds, or doors (Zhong and Ridley
2020; Zhou et al. 2021a). It is a way for occupants to satisfy
their comfort needs by adjusting the air-exchange and
solar-thermal transfer between the indoor and outdoor
environment. Similar to setpoint adjustment, opening
records also provide information to estimate one’s comfort
status and thermal preference. Andersen (2009) demonstrated
a strong correlation between window opening behavior
and temperature, while Dong et al. (2018) argued that the
behavior patterns of window opening are not coupled with
environmental factors in some cases, but simply a part of
occupants’ daily routines.
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Table 3 List of dimensions and resolutions of occupant information

Dimension Resolution Definition Example Application
. T Turning off or throttling back the HVAC system
o A binary parameter indicating . . L .
Presence . . Occupied/unoccupied when unoccupied, instead of an all-time-on
whether space is occupied )
or predefined on/off schedule
Providing accurate real load, instead of the
. maximum load schedule that is assumed in the
° The number of occupants in the . . o
Count . 0, 1,2, etc. design process; Typical application in HVAC
given space S .
operation is demand controlled ventilation
(DCV)
Location © The spatial coordinates of an  Places: at the desk, etc.; xand  Tailoring building control to an individual level
Interaction dimension occupant in the room y coordinates and tracking movement
information that is
(enerated when Thermostat The indoor air temperature Assessing occupants’ comfort by detecting
5 setpoint expected by one occupant or 24°C, 26 °C, etc. whether thermostats setpoint temperatures

occupants interact

adjustment ©

group

are maintained or not

with the building)
. . . Provides information to estimate occupant’s
Envelope A behavior of opening windows, . . .
) . . Opening windows, etc. comfort status and thermal preference; Provides
operation curtains/blinds, or doors ) R K
information for energy consumption
Appliance . . Computer desktop, printer, A reliable and cost-effective way to offer
ppua ° Use of electrical appliances P PP . ; Y
operation etc. occupancy information
. Acts as a reference to maintain a suitable built
. A physical process that occupants . . o .
Activity level . . . . environment since people with different activity
. o conduct (not intended to adjust Meeting, walking, etc. . .
(metabolic rate) . . levels likely have variable comfort preferences
the indoor thermal environment) R
and CO; generations
Assists in conducting personalized and local
indoor environment control by offerin,
Identity * A unique ID for one person . / 5
the predefined comfort profile for the given
occupant.
Consists of thermal preference and thermal
. . . The occupants’ preferred or acceptability; Classified into individual comfort
Ifldmdual.dnnensmn Thermal profile sece tablepthermp;l environment 24 °C & 75% RH, etc. and collective comfort; Meeting occupants’
(infor matl(?n that P thermal comfort preference is one of the main
b}ellongs to 1nher§nt objectives of HVAC control.
characteristics o
indivi L - Age, gender, weight, shape, . . .
individual occupants) Physiological/ The normal characteristics of 86 gen & p Serve as influential factors to determine an
. . . . skin/ hair/ eye color, heart ,
physical living organisms and their body . occupant’s thermal preference levels and act
. oa K . . . rate, blood pressure, skin .
demographics parts (including their clothing) as an indicator for thermal comfort
temperature, clothes, etc.
Psvchological Inconsistencies in thermal preference measure-
de}r,no raghics or Mental and emotional states Temperature expectation, etc. ment may stem from the failure to account for
grap psychological variation.
- . . The frequency to measure the occupant
. A The minimum chosen unit of ~ seconds, minutes, hours, days, | quency P
Time step time etc information or conduct the control strategy;
Temporal dimension ’ Determines the information density.
(information that Time type & The category of a day, week, or  summer/winter, weekday/ Occupant information has different patterns

refers to the time)

year

weekend, etc.

corresponding to different time types

Time range *

The duration of occupant
information measured

X days/weeks/months/
seasons/years, etc.

Serves to describe the time duration when
acquiring occupant data

Spatial dimension
(information that
refers to space)

Geological Where the target building is . Occupants’ energy use modes can be signifi-
LA . Climate zones . X

location situated on the earth cantly different based on locations.

Building type *  The category of the building Commercial building, Different building types have different HVAC

residential building

systems and operations

Space coverage *

The thermal zone that is of
interest in a particular building

Local, room, zone, floor,
building

Different space coverages correspond to different
levels of localized controls

Service scale *

The space serving a single person
or multiple persons

private space, shared space,
etc.

Used as the basis to choose approaches for
sensing, comfort control, and devising control
strategies

© denotes dynamic data.

* denotes static data
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6) Appliance operation

Appliance operation refers to the behavior of using
electrical appliances and is the most influential variable
in building energy performance (Fukuta et al. 2015). It
includes turning on lights, working on laptops, etc. While
the office equipment is not driven by the quality of the
indoor environment (Parys et al. 2011), recording information
regarding usage of appliances is usually a reliable and cost-
effective way of gathering occupancy information (Maaijen
et al. 2012). For example, Newsham et al. (2017) leveraged
a combination of keyboard/mouse activity and pixel changes
in a webcam image to effectively infer occupancy information
in single-person offices.

7) Activity level

Unlike occupant behavior, which includes energy-
related actions like opening the window or turning on the
thermostat, activity level refers to a physical process that
occupants conduct without the intention to adjust the
indoor thermal environment (Zhou et al. 2021b). It can be
classified either into the two simple categories of “active”
and “quiet” or into different tasks like meeting, studying,
exercising, cooking, etc. Comfort requirements usually
depend on the activity levels of occupants (Li et al. 2017b).
Further, different levels of activity generate various CO,
levels and heat loads from occupants should be considered
(ASHRAE 2019a). Thus, this information can act as a critical
reference for DCV strategy (O’Neill et al. 2020).

2.2.2 Individual dimension

In contrast to the interactive dimension, the individual
dimension refers to those intrinsic features of one person
or one group that do not change with variations in the
building conditions technically. This dimension is added
to the occupant information database whenever a person
is present, regardless of what he/she is doing (Teixeira
et al. 2010). The individual dimension is usually used
for personalized control of the built environment and
adds a level of uncertainty and uniqueness to the occupant
information.

1) Identity

Identity is a unique ID for one person (Teixeira et al.
2010). It can provide information about who the person is.
For example, Balaji et al. (2013) detected occupancy by
mapping WiFi logs to the owner’s identity. Therefore identity-
detection can aid in conducting personalized and local indoor
environment control by offering the predefined comfort
profile for the particular occupant.

2) Thermal profile

The thermal profile comprises thermal preference,
which is used to describe the occupant’s preferred thermal

environment, and thermal acceptability, which indicates
the thermal environment that the occupant can accept
(Brager et al. 1993; Langevin et al. 2013). It is a subjective
indication and a response to the combination of environmental
parameters. Two significant features of thermal profile are
uncertainty and fluctuation (both point towards inconsistency
with the environment). This inconsistency exists not only
for different persons but can also occur on different occasions
for one person. As Jazizadeh et al. (Jazizadeh et al. 2014)
found, one person reported different thermal preferences
under the same thermal condition (e.g., reporting —20
(wanted to be cool) to 10 (wanted to be warm) at the same
indoor air dry bulb temperature of 26 °C ) and the same
thermal preference at different temperatures (i.e., reporting
0, no need to be cooler or warmer, for any temperature
between 22 °C and 26 °C).

3) Physiological attributes

ASHRAE 55 (ASHRAE 2017) defines “thermal comfort”
as: “That condition of mind which expresses satisfaction
with the thermal environment.” This definition provides an
open understanding of thermal satisfaction and emphasizes
that comfort is a cognitive process affected by different
factors, such as physical, physiological, and psychological
attributes.

Physiological attributes are body-related factors (Teixeira
et al. 2010), e.g., age, gender, weight, shape, skin/hair/eye
colors, heart rate, blood pressure, skin temperature, etc.

People will feel thermal comfort when his/her body
temperature keeps in a close range with less physiological
effort for adjustment (ASHRAE 2019b). For example, when
the temperature rises, sweat glands spring into action,
making perspiration (Jung and Jazizadeh 2019). Likewise,
Li and Chen (2021) operated an HVAC system with facial
skin temperature measurement in a single-occupied office
and achieved a 91% thermal neutrality.

4) Psychological attributes

Psychological conditions can be difficult to sense
(Jazizadeh and Becerik-Gerber 2012) and inconsistencies
in thermal preference measurement partly stem from the
failure to account for their variations (Jung and Jazizadeh
2019). Langevin et al. (2012) found that perceived control
levels (the ability to control the indoor environment in line
with their expectations) are statistically related to occupants’
thermal satisfaction. Compared to those who perceived
little or no control over the indoor environment, occupants
with easier access to control were found to be more tolerant
towards a wider temperature range (Brager et al. 2004;
Toftum 2010). To utilize physiological and psychological
attributes, factors that should be considered are applicability,
sensitivity, non-intrusiveness, and ubiquity (Jung and
Jazizadeh 2017, 2018, 2019).
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2.2.3 Temporal dimension

The temporal dimension describes occupant information
from the perspective of time and provides sequenced tags
for occupant information recording. Each piece of occupant
information in the temporal dimension is an indispensable
component of the overall time slice of building operation
information. Based on application type, we categorize the
solutions in the temporal dimension as: 1) time step;
2) time type (e.g., summer/winter, weekday/weekend, etc.);
and 3) time range (e.g., days, weeks, months, years, etc.).

1) Time step

Time step is the minimum chosen unit of time
(Nagarathinam et al. 2017) and determines the information
density. It is the frequency at which occupant information
is measured or the control strategy is conducted. A time
step can be chosen to be seconds (Erickson et al. 2009;
Scott et al. 2011; Erickson et al. 2013), minutes (Nassif and
Moujaes 2008; Widén and Wackelgard 2010; Maaijen et al.
2012; Goyal et al. 2013; O’Brien et al. 2017; Gilani et al.
2018), hours (1 hour for heating control (Dong et al. 2011)),
among which 5 minutes (Nassif and Moujaes 2008; Maaijen
et al. 2012; O’Brien et al. 2017) are the most commonly
used time step for data acquisition. The higher resolution
of time steps can potentially capture the dynamic variation
of occupant information, which in turn allows us to conduct
a more detailed analysis if required. However, recording
information at high resolution can require additional sensory
energy, extra storage space, and more computational time
to parse through (Melfi et al. 2011).

2) Time type

Time type is the category of time. Examples include
daytime and nighttime for one day, workday and weekend
for one week, summer and winter for one year. Occupant
information can have different patterns corresponding to
different time types (Lee et al. 2019). In a particular study,
when occupant information is categorized into different
time types, the control strategy is often simplified. Using
this approach, Gunay et al. (2016) studied temperature
setbacks during the night on weekends and on weekdays
and finally found that a setback schedule could cover less
than 55% of the year.

3) Time range

Time range is the duration of occupant information
acquisition or OCC implementation (Erickson et al. 2009).
It could be minutes, hours, days, weeks, or even months.
The use of prediction horizon (the amount of time into the
future for which predictions are made (Naylor et al. 2018))
in predictive optimal control (Nguyen and Aiello 2013) is
an example of the utility of time range. The time range
of OCC validation in literature can vary significantly from
a few hours (Castilla et al. 2011) up to a year (Aghemo et al.

2014). Most studies focus on short-term occupant information
to implement OCC in buildings.

2.2.4 Spatial dimension

The spatial dimension refers to the occupant information
from the perspective of the space where this information is
generated (Xie et al. 2019). Based on the application type,
solutions in the spatial dimension can be categorized as 1)
geological location, 2) building type, 3) space coverage, or 4)
service scale.

1) Geological location

Geological location is the place where the target building
is situated on the earth. Climate zones are often more
meaningful when discussing geological locations. International
Energy Conservation Code (IECC) (Suh et al. 2014) divides
the US regions into eight temperature-oriented climate zones.
Different climate zones not only have contrasting local
weather patterns but also have distinct occupant energy use
modes. Pang et al. (2020a) quantified the influence of
group occupant schedules on HVAC energy performance
in five locations by simulating a medium-sized office from
the DOE Commercial Prototype Building Models. They
found a higher rate of energy savings in heating-dominated
climate zones as compared to that in cooling-dominated
zones. For example, the energy-saving ratio in Chicago
(Zone 5A) was 42.3%, while that in Houston (Zone 2A)
was found to be only 18.5%.

2) Building type

For the purpose of this review article, buildings are
classified as commercial building types and residential
building types, as defined in Field et al. (2010). Commercial
buildings include offices, hospitals, schools, etc. Among
these building types, offices are most commonly studied
(Jung and Jazizadeh 2019). Different types of buildings have
significantly different HAVC operation schedules (Naylor
etal. 2018).

3) Space coverage

Space coverage refers to the thermal space of interest
in a building. It includes local, rooms, zones, floors, and
buildings. The resolution of space coverage in a particular
study depends on the purpose of research and the sensing
ability. Different space coverages correspond to different
levels of localized control. A majority of the existing literature
detects coverage at the room or zone level (Shen et al. 2017).

4) Service scale

Service scale refers to a space serving a single person or
multiple persons, i.e., a shared space or a private space.
Thermal sensing usually has higher accuracy in a single-
person space than in a multiple-person space. It is also
easier to achieve satisfaction using thermal comfort control
in a single-person room since comfort conflicts can cause
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problems in a multi-occupied space. However, in terms of
control strategy, a private room is less suitable for predictive
control than an open-plan room (Nagarathinam et al. 2017).

3 Representation, acquisition, and transformation
of occupant information

3.1 Occupant information representation

Before the occupant information summarized in Section 2
can be utilized, the raw data needs to be processed and
represented in a form that is applicable for occupant-centric
control of HVAC systems. Single independent points of
information can be directly used in real-time reactive control.
However, for advanced control strategies (like predictive
control), it is necessary to analyze a batch of points and
develop corresponding occupant models.

3.1.1 Independent points

Independent points can contain any of the different types
of occupant information described in Section 2. They are
commonly used as an instantaneous “if-then” control strategy.
For example, if space is “unoccupied,” the temperature
is adjusted as a setback. This is called reactive control or
feedback control, which will be discussed in Section 4 in
detail. An independent point can also act as the input of
one occupant model for predictive control.

3.1.2 Grouped points

Grouped points are a series of independent points.
Collectively, these points form an occupant model to either
support predictive control directly or to indicate occupant
information with ambient values. Occupant models can be
classified as occupant schedules and occupant profiles.
Occupant schedules represent groups of occupancy infor-
mation (e.g., presence, number, setpoint, etc.) over time,
while occupant profiles indicate occupant thermal profile and
occupant behavior (e.g., adjust setpoint, open door/window,
turn on/off the electrical appliances, etc.) related to building
energy performance (Tang et al. 2021).

1) Occupant schedule

The occupant schedule is a traditional way of providing
occupant information for HVAC design and operation.
It is usually an hourly binary value or fraction of the
presumed occupancy (having a value between 0 and 1) on
weekdays/weekends/holidays (Chen et al. 2015). A typical
occupancy schedule in an office is shown in Figure 4. The
occupant schedule used by the current energy modeling
is usually predefined based on the ASHRAE standards
(Jia et al. 2017), so it cannot reflect the real occupancy
variation. Simulations of different schedules and behaviors

Office occupant schedule
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Fig. 4 Office occupant schedule in the DOE reference model for
office buildings (Sun and Hong 2017)

in commercial buildings showed an occupant-dependent
variation of 30%-150% of final energy use (Naylor et al.
2018). Thus, in OCC, the predefined schedule is upgraded
by real-time occupancy information (Muroni et al. 2019;
Kang et al. 2021). For example, Gunay et al. (2015) learned
the occupancy patterns and parameters to dynamically
adjust the setback temperature schedules.

2) Occupant profile

Occupant profiles include occupant thermal profiles
and behavior models that can be used for practical controls
of building HVAC systems (Jia et al. 2017; Zhang et al.
2021). While occupant schedule is widely studied to replace
conventional fixed- schedule operation of building systems,
research involving occupant profiles is limited.

Quite a few data-driven techniques, including logistic
regression, artificial neural networks, fuzzy predictive
modeling, Gaussian process, are employed to learn occupant
preference with diverse types of variables (Fan et al. 2021;
Zhu et al. 2021a). Apply a smartphone application framework,
Li et al. (2017a) achieved a thermal preference prediction
accuracy of 0.68 and 0.62 separately, using a logistic
regression and a linear regression with various input
variables (e.g., indoor temperature/umidity, skin temperature,
cloth level, etc.).

For occupant behavior models, one of the main objectives
is to assist Model Predictive Control (MPC) in predicting
the future evolution of the building system so that control
actions can be generated in advance to meet the occupants’
requirements to the extent possible (Oldewurtel et al. 2012).
Since occupant behavior usually has a causal relationship
with the surrounding environment, ambient data sensors
are usually placed within the area of interest. Langevin et al.
(2015, 2016) used agent-based modeling (ABM) approach
to explore the interaction between occupants in a medium-
sized, air-conditioned office building and built environment
systems for adaptive behaviors, like turning fan, heater, and
window on/off.
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3.2 Occupant information acquisition and transformation

The acquisition of raw occupant information is the first step
of OCC. Technological advances in the fields of electrical
and computer engineering over the past decade have helped
facilitate data collection and enhance data accuracy. Physical
measurements and survey studies are the two different
approaches to conduct occupant information acquisition
(Awada et al. 2021). Various types of devices, such as sensors,
cameras, or meters, are currently used (Jia et al. 2017).

A majority of sensed occupant information originates
in the interactive dimension, especially presence and count
resolutions. Reviews on occupant information acquisition
are out of the scope of this paper. If readers are interested
in the detailed descriptions of sensing system techniques as
well as their accuracy, advantages, and limitations (which
are beyond the scope of this paper), review papers from
Jung and Jazizadeh (2019), Shen et al. (2017), and Dong
et al. (2019) are recommended.

After the collection of selected data, occupant modeling
is required to transform the data to the modes (Wang et al.
2011; Jin et al. 2020), as described in Section 3.1. Then,
occupant profiles can be used for predictive control of the
indoor environment (Jin et al. 2021a; Zhou et al. 2021c¢).
The main techniques currently used to model occupant
information can be categorized into “agent-based modeling
(Lee and Malkawi 2014),” “statistical analysis (Langevin et
al. 2012),” “data mining (D’Oca and Hong 2015),” and
“stochastic modeling (Meyn et al. 2009).”

4 Application of occupant information in HVAC
control

The ultimate goal of OCC is to satisfy the comfort
requirement of occupants in required spaces throughout a
preferred timeframe, while achieving other performance
goals, such as saving energy. To achieve this goal, building
operations should automatically respond to dynamic thermal
load instead of relying on fixed schedules and maximum
occupancy assumptions. This drives the need for the
upgradation of traditional HVAC control with real-time
occupant information, as shown in Figure 5.

In this section, we first introduce the commonly applied
occupant information in OCC. Then, we introduce two
control elements: the control strategy (i.e., reactive control
and predictive control) and control objects (i.e., temperature
and ventilation). These two types of elements are categorized
from the perspectives of the required operation timing
and the required indoor environment for HVAC control,
respectively.

4.1 Occupant information applied in the OCC

While each piece of occupant information presented in
Section 2 is useful in occupant-centric control, only a few
of that information is utilized currently due to the complexity
and cost. Figure 6 presents that presence, count, location,
identity, thermal preference, and activity levels have all
been utilized for HVAC OCC in the paper reviewed in this
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study. Among them, presence (~35.6%) and count (~26.9%)
are the most common occupant information used in
existing studies that are reviewed. Specific control of each
occupant’s information has been expatiated in Section 2
and is not repeated here.

4.2 Control strategy

From the perspective of the temporal dimension, several
HVAC OCC strategies with occupant information can be
implemented to optimize parameters (like temperature
setpoints and airflow volumes) during the required timeframe
(Li et al. 2012; Ouf et al. 2021). Alkhatib et al. (2021)
reviewed a series of control methods (e.g., rule-based control,
intelligent control, adaptive control, etc.) that can be used
to handle occupant-like uncertainties in the control loop.
Based on that, we introduce two strategies in the following
subsections: reactive control and predictive control,
classified by the time scale. Both strategies are significant
improvements from the traditional fixed schedule.

4.2.1 Reactive control

Occupant-reactive operation (i.e., feedback control, real-time
response, etc.) is an intuitive operational strategy. It involves
adjusting the operational settings of an HVAC system in
real-time when a change (presence/absence) in the occupant
state of a particular space is observed (Jung and Jazizadeh
2019). Examples include turning off the system or letting
the temperature/ventilation in a room drift away from
comfortable conditions when the room is detected to be
unoccupied. When space is occupied again, the HVAC
system will be operated to recover the comfort levels. Pang

et al. (2020b) applied this control strategy and used a
heating setpoint of 21 °C and a cooling setpoint of 24 °C
during occupied hours, and 1 °C (for offices)/2 °C (for
conference rooms) for the setback in unoccupied hours.
Simulation results showed a 19%-44% reduction in HVAC
energy consumption nationwide, for the medium office
using the ASHRAE Standard 90.1-2004 as the baseline.

Unlike lighting, the thermal ramp up or down of a
room involves delay because of the thermal inertia of
buildings. Thus, reactively conditioning a room will likely
leave occupants uncomfortable until the target indoor
environment is met. Because of its contribution to energy
saving, it is suitable for the scenario where precise comfort
control is not required. However, in some cases, it might
be more energy efficient to maintain temperature than to
ramp up temperatures from a very low level, as the reactive
strategy has to work hard to ramp up the room temperatures
between periods of occupancy (Erickson et al. 2013). These
shortcomings of reactive control can partially be solved
by using predictive control with forecasting occupant
information.

4.2.2 Predictive control

Though towards a similar objective of utilizing real-time
occupant information and adjusting the indoor environment
based on occupant requirement, the main difference of
predictive control from active control is the operation time,
i.e., “predictive horizon.”, which is strongly related to the
occupancy and occupant behavior prediction (Alkhatib et al.
2021; Jin et al. 2021b). Utilizing the slower-response HVAC
systems, predictive control aims to condition the space to
acceptable levels in advance by predicting the attributes of



Yang et al. / Building Simulation

occupant-based space in the near future. This preconditioning
time helps relieve the discomfort of occupants at the
beginning of HVAC operation and reduces energy waste
by a setback when the space is unoccupied.

Predictive control that cooperates with occupant
information can be categorized as rule-based control (RBC)
and optimal control (Drgona et al. 2020). RBC constructs
a set of predefined rules, which are defined as a function
of preconditioning time, conditioning rate, or occupancy
probability (Esrafilian-Najafabadi and Haghighat 2021), to
achieve thermal comfort and energy saving, corresponding
to the future occupancy status. Applying such an RBC
strategy for OCC, Peng et al. (2018) reported 7%-52% energy
savings in various room types of a real building.

More advanced and complex compared to the RBC,
MPC, a dominant strategy in optimal control, employs
optimization algorithms to support HVAC control decisions.
MPC requires a model that is used for predicting some
variables and figures out the optimal control actions in
advance by taking into account the occupant comfort and
technological constraints, and weather forecasts (Drgona
et al. 2020). It can improve thermal comfort while achieving
energy saving from 15% up to 50% in several simulations
and field tests (Ma et al. 2012; Maasoumy et al. 2014; Dobbs
and Hencey 2014).

4.3 Control objects

The goal of occupant-centric control is to provide an indoor
built environment that satisfies the comfort and work
efficiency requirements of occupants while maintaining
other building performances. Temperature and ventilation
are the main control variables (Janssen 1999). The tem-
perature in a space, controlled according to the occupant’s
thermal preference, occupancy detection, occupant activity,
and outside weather, directly affects the comfort of occupants.
It is the most commonly used control object (Balaji et al.
2013; Gao and Keshav 2013; Jazizadeh et al. 2013). As shown
in Figure 6, room temperature is the primary control object,
accounting for 87.7% of the reviewed OCC papers.

Ventilation air is introduced into the zone to improve
indoor air quality, of which the required minimum amount
is dependent on the real-time number of occupants.
Ventilation control is usually involved in the temperature
setpoint regulation. O’Neill et al. (2020) conducted a
simulation study of the CO, based DCV in typical single-
duct variable air volume systems. This study reported
9%~33% HVAC energy savings compared to the baseline
of a simplified ASHRAE 62.1 approach in four U.S. climate
zones.

5 Discussion

5.1 Accuracy and errors of occupant information: Balance
in HVYAC OCC

A balance must be maintained between the accuracy level
of occupant information and the financial or computational
cost associated with collecting or predicting that information.
High accuracy requirements with smaller time steps in the
temporal dimension can lead to significant sensory equipment
costs (Shen et al. 2017) and the computational burden of
running complex algorithms (Dong et al. 2019). Therefore,
it is beneficial to define a minimum acceptable accuracy
limit for occupant data that will still satisfy the primary
objective of maintaining thermal comfort.

The HVAC system is generally error-tolerant in HVAC
OCC. Unlike lighting control, which has an immediate
influence on occupants, HVAC control can endure prediction
errors to a large extent (Bengea et al. 2015). Occupancy
sensing errors can be categorized as false positive (sensing
someone in the zone when, in fact, the zone is unoccupied)
and false negative (sensing no one in the zone when, in fact,
the zone is occupied) (Shen et al. 2017). A system with false
positives will waste energy, while a system with false
negatives will result in occupant inconvenience. Since in
reality, in particular for office buildings, satisfying occupant
comfort usually takes the relatively higher priority than
reducing energy consumption, false negatives are generally
more problematic than false positives.

5.2 Interdisciplinary efforts: Techniques fuel OCC

Technological advancements and scientific innovations
require strong interdisciplinary efforts. information &
communication technology (ICT) and computer science
(CS) (e.g., artificial intelligence (AI)) are two significant
interdisciplinary technologies that aid the collection,
transportation, storage, and transformation of occupant
information.

5.2.1 Information & communication technology

Many occupants have to endure thermal dissatisfaction
(Huizenga et al. 2006) owing to inaccurate occupant
information acquisition and consequent over-cooling/
heating (Sanguinetti et al. 2016; Jung and Jazizadeh 2018).
Over the past few decades, declining hardware costs and
the availability of configurable software have made it possible
for researchers to collect a huge amount of real-time data
in different categories (e.g., presence, number of people,
comfort feedback, etc.). This data has, in turn, fueled the
rapid development of OCC.
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As a result of the advancements in ICT, IoT (Internet of
Things) now provides ample opportunities for ubiquitous
occupant data collection and communication. For example,
it can combine occupancy-related sensors and data sources
to support building occupant detection with less cost (Shen
et al. 2017) for the application of data-driven pattern
recognition and occupant-centric control algorithms.

5.2.2 Artificial intelligence

Occupant model development with AI methods (e.g.,
machine learning) has been prevailing in recent years (Ryu
and Moon 2016; Huchuk et al. 2019; Lu et al. 2021). Al
approaches are especially suitable for modeling human
patterns (e.g., activity routine, presence schedule, thermal
preference, etc.) as these can successfully extract relevant
information from information security measures datasets
as well as handle human behavior randomness. The growing
amalgamation of AI predictive analysis and smart BMSs
makes building systems self-learning and intelligent by
adapting to changes and uncertainties in the building (Salimi
and Hammad 2019).

5.3 Information privacy: Humanity matters

Due to acquiring and storing occupant information in
OCC implementations, privacy concerns emerge. There are
mainly two privacy concerns in intelligent buildings (Namdeo
and Pawar 2017; Cui et al. 2018). The first is identity
privacy. One example is the concern of using the video
camera to collect occupant information in public spaces
(Wang et al. 2017). The second one is location privacy,
since location information is sometimes required for
personalized OCC implementation or people counting (Park
et al. 2019). More information means more responsibility.
For the OCC deployment, more information security
measures should be considered in the future to protect
occupant privacy.

5.4 Open-source occupant dataset: Making the best of
collective intelligence and labor

The availability of occupant information data is critical for
occupant-centric control as it facilitates the development of
more accurate occupant models for specific HVAC OCCs.
Therefore, an open-source dataset is valuable for the entire
HVAC field and beneficial to improving the quality of OCC
research. Without an open dataset, it is virtually impossible
to conduct a peer review properly or reproduce studies
effectively. A consequence is that academic peer reviews are
often capable of checking methods, without ways to verify

the models and data proposed in the research (Pfenninger
etal. 2017).

Open-source data also helps to save the time and cost
of researchers and practitioners in the HVAC field. The
collection of occupant information is usually time-consuming
and expensive. An open occupant dataset, especially
generated by research supported by public funds (Kazmi et
al. 2021), can help avoid unnecessary duplication in the
sense of collaboration. The Horizon 2020 project by the
European Commission is one such example (Spichtinger
2012). Recently, several programs, including Ecobee’s
“Donate Your Data” (Ecobee), the Pecan Street Datasets
(https://www.pecanstreet.org), the REFIT Datasets (REFIT
2019), and the ASHRAE Global Occupant Behavior Database
(ASHRAE 2021), have begun making their efforts to build
the available open-source of laboratory data and field data.

One of the problems facing the open dataset for
occupant information is the collection standards of different
researchers who are willing to make contributions. To deal
with this issue, the International Energy Agency’s Energy
in Buildings and Communities Programme (IEA EBC)
Annex 79 (O’Brien et al. 2020) initiated a platform for
sensing technologies and data sources on Occupant Presence
and Action (OPA). They proposed to develop a metadata
schema to support the consistent sharing and reuse of OPA
data. Similarly, Balaji et al. (2016) proposed Brick Schema
to promote a united naming convention by developing
a concrete ontology to describe sensors, equipment, and
control variables contained in the BAS.

5.5 Brief answers to the questions raised in Introduction
Section

Question 1: What is the comprehensive understanding
of occupant information in relation to HVAC control in
buildings?

Answer: Occupant information is the data generated by
occupants and their interactions with the buildings that
they live or work in. It can be classified systematically
using the two metrics, “dimension” and “resolution.” With
occupant information, building services are delivered only
when and where they are required for providing a suitable
built environment for the occupant, and in the amount that
they are required.

Question 2: What form of occupant information is required
for the HVAC system?

Answer: Single independent points and grouped points
of occupant information are applied in HVAC control.
Grouped points can collectively form occupant models,
which are classified as occupant schedules and occupant



Yang et al. / Building Simulation

profiles. Occupant schedules represent groups of occupancy
information (e.g., presence, number, setpoint, etc.) over
time, while occupant profiles indicate occupant thermal
profile and occupant behavior (e.g., adjust setpoint, open
door/window, turn on/off the electrical appliances, etc.)
related to building energy performance.

Question 3: How is occupant information involved in
HVAC control?

Answer: Occupant information improves HVAC control
by providing the required operation timeframe and required
indoor environment. These elements are revealed in the
control strategy (reactive/predictive control) and control
objects (temperature and ventilation), respectively. Single
independent points of information can be directly used in
real-time reactive control. Grouped points collectively form
an occupant model to either support predictive control
directly or to indicate occupant information with ambient
environment values.

Question 4: What control strategies are currently used for
occupant-centric HVAC control?

Answer: Two OCC control strategies are reactive control
and predictive control. With specific occupant information
known, both strategies are significant improvements from
the traditional fixed schedule for energy efficiency and
occupant comfort. Reactive control involves adjusting the
operational settings of an HVAC system in real-time when
a change (e.g., presence/absence) in the occupant state of a
particular space is observed. Predictive control that cooperates
with forecasted occupant information can be categorized as
rule-based control and optimal control. Predictive control
aims to condition the space to acceptable levels in advance
by predicting the attributes of occupant-based space in the
near future.

Question 5: How can researchers and practitioners choose
particular occupant information and OCC control strategies?
Answer: When conducting OCC in the HVAC system, for
a given application, particular occupant information can
be inferred in Table 3. Meanwhile, costs and benefits
of utilizing occupant information, along with the inter-
disciplinary techniques and information privacy should
also be considered.

6 Conclusion and future research directions

This paper aims to provide an in-depth understanding of
occupant information in HVAC OCC and explore how the
occupant information flows from the sensing module to
the building control module with special emphasis on the
linkages between these modules.

Firstly, we compared the existing OCC-related review
papers and defined OCC as any kind of HVAC control that

considers the specific occupant information.

Secondly, we presented a fine-grained, comprehensive
picture of occupant information with “dimensions” and
“resolutions.” We categorized various occupant information
into four dimensions: Interactive dimension, Individual
dimension, Temporal dimension, and Spatial dimension.

Furthermore, to reiterate, the ultimate goal of HVAC
OCC is to satisfy the comfort preferences of occupants in
required spaces throughout a required timeframe. In this
paper, we discussed the application of the following aspects
of occupant information:

1) Occupant information applied in OCC, including presence,
count, location, comfort preference, activity level;

2) Control strategies: reactive control and predictive control
(for required operation timing);

3) Control objects: temperature and ventilation (for the
indoor built environment).

Finally, we also explored the costs and benefits of applying
occupant information, the interdisciplinary techniques,
and information privacy that are integral to the utilization
of occupant information in OCC. Answers to the five
questions of occupant information understanding raised in
the Introduction section are also elaborated.

The future research directions are summarized as
follows:

1) Interdisciplinarity is the inherent nature and driving
force of HVAC OCC. It is imperative to enhance the
connection with a variety of other cutting-edge research
fields and develop a commonly acceptable protocol to
transfer data and techniques among different disciplines.
m Information and Communications Technology (ICT)

research, including IoT, 5G (5th generation of mobile
networks), and cloud computing, can provide more
sources, data storage and communication approaches
for occupant information and real-time control. IoT
makes it possible to interconnect objects in the building
and facilities occupant information acquisition by
data fusion (Zhu et al. 2021b). 5G provides real-time
big data access and speeds up the data transmission
for occupant information. Cloud computing offers
a shared and dynamic infrastructure for running
advanced control algorithms with a large number
of occupant information. Application of these ICT
techniques can potentially remove obstacles for
acquisition, transmission, storage and computation
of occupant information in the application of OCC.

m  Computer Science (CS) research can enrich occupant
information by data mining technique, transform
occupant information to models by neural network
technique (e.g., deep learning), or generate HVAC
control logics by reinforcement learning.



Yang et al. / Building Simulation

m  Grid-Interactive Efficient Building (GEB) research
can incorporate occupant information into operations
with flexible demand.

m  The combination of these state-of-the-art technologies
can largely strengthen occupant information
acquisition. The computer vision technique, which
performs well in multiple occupant information types
(e.g., detection, counting, localization, identification,
etc.), is a typical example. It can enhance com-
putation power by transmitting images to the cloud
over 5G and extract accurate occupant information
by utilizing advanced image recognition in cloud
computing, and then realize high accuracy occupant-
centric HVAC control.

2) An open-source occupant information dataset would
facilitate the development of more accurate occupant
models for specific HVAC OCC, and promote academic
peer review and research reproducibility.

3) Occupant information privacy and security is the biggest
concern that hinders the occupant information from being
open and accessible. Blockchain would be a possible way
to solve this problem.

4) The non-intrusive sensing system is required to minimize
the interference to the occupant’s normal daily activities.
The virtual sensor is a potential solution to provide
non-intrusive and cost-effective measurement to detect
occupancy by utilizing existing energy-related systems.

5) The balance between individual and collective occupant
thermal requirements, especially when conflicting, still
needs further investigation.

6) Occupant information, including lifestyle and schedule,
varies in some new events (Sanchez-Garcia et al. 2020),
for example, the COVID-19 period (Dai and Zhao 2020).
Pre- and post-pandemic comparison and new operation
schedule optimization are worth further study.

7) Besides the occupant presence, the number of people and
occupant’s thermal preference is commonly used in the
current HVAC OCC control. Other occupant information
such as location, psychological and psychological attributes
could be integrated into the HVAC OCC.

8) More field tests are required to demonstrate practical
HVAC OCC in real buildings.
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