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Abstract 
Occupants are the core of the built environment. Traditional heating, ventilation, and air-conditioning 

(HVAC) systems operate with predefined schedules and maximum occupancy assumptions with 
no consideration of specific occupant information. These generalized assumptions usually do not 
align with the actual demand and result in over-conditioning and occupant discomfort. In recent 

years, with the aid of Information & Communication Technology (ICT) and Computer Science (CS), 
it is possible to acquire real-time and accurate occupant information to satisfy the exact thermal 
requirement through specific HVAC control in one particular built environment. This mechanism is 

called HVAC “Occupant-centric Control (OCC).” HVAC OCC strategy starts with collecting the 
occupant’s information (e.g., presence/absence) and then applies it to meet the occupant’s 
requirement (e.g., thermal comfort). However, even though some research studies and field pilot 

demonstrations have been devoted to the field of OCC, there is a lack of systematic knowledge 
about occupant data, which is the principal component of OCC for HVAC researchers and 
practitioners. To fill this gap, this review paper discusses OCC with a particular emphasis on 

occupant information and investigates how this information can assist HVAC operation in providing 
an acceptable built environment in required spaces during the required time. We provide a 
fine-grained, comprehensive picture of occupant information, discuss its features, the modalities 

of information feed-in into the HVAC control, and the application of commonly utilized occupant 
information for OCC. 
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1 Introduction 

Occupants have always been the center of indoor environment 
control. From 40,000 years ago, when Neanderthals began 
to dig caves to protect themselves from the cold (Janssen 
1999), to 1947, when engineer Henry Galson developed a 
compact and inexpensive window air-conditioner (AC) 
and introduced modern ACs into hundreds of thousands 
of homes (DOE 2015), human beings have been contriving 
to build a safe and comfortable man-made space and satisfy 
their needs. Although the early phase of the modern heating, 
ventilation, and air conditioning (HVAC) system offered 
occupants the ability to individually control the indoor 
environment (for example, by turning on/off the AC or 

adjusting the thermostat setpoint), problems like low thermal 
comfort level, high energy consumption, and inconvenient 
control mechanisms were pertinent (Park et al. 2019). 
These issues occurred because ordinary people lacked the 
professional knowledge required to achieve stable thermal 
comfort manually, and HVAC industries had technical and 
cost limitations in automating these processes.  

Automatic HVAC control allows the maintenance of an 
acceptable indoor environment with minimal human labor 
and involvement. The logic behind the control mechanism 
is either based on maintaining a predefined temperature 
and humidity range or pre-established metrics like the 
predicted mean vote (PMV) and the predicted percentage 
of dissatisfied (PPD) indices (Fanger 1970). However, due  
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to a lack of real-time measurement application, traditional 
HVAC control focuses on providing thermal comfort to 
the statistically averaged occupant with a pre-assumed 
occupancy, and thus, has several problematic attributes: 
individual occupants’ discomfort, conditioning unoccupied 
spaces (Erickson et al. 2009), predefined operating schedule 
that assumes maximum occupancy (Agarwal et al. 2011), 
etc. These issues cause significant occupant discomfort and 
energy wastage. 

To achieve optimizing automatic HVAC control, the 
fundamental principle is ensuring that building services  
are delivered only when and where they are required for 
providing a suitable built environment for the occupant, and 
in the amount that they are required (Salimi and Hammad 
2019). Two essential elements required to realize this goal 
are actual occupant information and comprehensive context- 
aware information from target buildings. Occupant 
characteristic is then recognized and fed into the control 
network to make an appropriate decision. HVAC occupant- 
centric control (OCC) exactly follows this process. 

A concise summary and timeline of the aforementioned 
developments are demonstrated in Figure 1. We list major 
HVAC OCC advancements from the 1970s to the present, 
which illustrates how advances in interdisciplinary fields, 
like the ICT and CS, have been integral in driving HVAC 
control to be more specific (rather than general) by 
utilizing occupant information, thereby making HVAC 
OCC possible. 

1.1 Definition of HVAC OCC 

While the importance of occupant influence in the built 
environment is widely accepted by researchers and 
practitioners, there is a lack of consensus regarding how 
HVAC OCC should be defined. In the following subsections, 
we first discuss the definitions of occupant information and 
HVAC occupant-centric control used in this review paper.  

1.1.1 Occupant information 

Many studies have been conducted to develop various 
approaches to investigate the data associated with building 
occupants. Research in this spectrum started by detecting 
occupant presence/absence status in a particular space 
within certain time periods (Hagras et al. 2004; Harris and 
Cahill 2005; Dodier et al. 2006) and then progressed further 
into quantifying the number of occupants (Lam et al. 2009; 
Erickson and Cerpa 2010; Dong and Lam 2011). With the 
development of communication technology, the occupant’s 
indoor position started playing a role in occupant research 
(Woo et al. 2011; Maaijen et al. 2012; Moreno-Cano et al. 
2013). A combination of these concepts is commonly referred 
to as “occupancy” and can be regarded to be the primary 
level of occupant information (Melfi et al. 2011). Utilizing 
these pieces of occupancy information could improve 
HVAC control for more occupant-centric. However, the 
information was not enough to comprehensively reflect  
the status or activity of occupants in buildings. “Occupant 
behavior” was then introduced to describe occupants’  

 
Fig. 1 Developing timeline of HVAC OCC 
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interactions with physical building components (e.g., windows, 
lights, thermostats, etc.). Each of these actions affects 
building energy consumption significantly and is a leading 
source of uncertainties in predicting building energy use 
(Yan et al. 2015). 

1.1.2 Definition of HVAC OCC 

Since OCC is a relatively new concept and studied by 
researchers and practitioners around the world, there is no 
widely acknowledged definition for it at this time. To partially 
alleviate this issue, IEA-EBC Annex 79 (O’Brien et al. 2020) 
brought together international researchers from diverse 
disciplines. They defined OCC as “an approach for indoor 
climate control in which occupancy and/or occupants’ 
comfort and preferences are directly measured or indirectly 
inferred from a variety of sensors, occupant feedback from 
control interfaces or mobile and wearable devices. This 
information is then used to train models to adapt to actual 
context-related conditions and occupants’ needs.”  

Technically, HVAC systems have always been designed 
to be occupant-centric due to their primary function of 
serving occupants in buildings in order to ensure an  

acceptable built environment for health and productivity. 
Traditional HVAC control theory of temperature-humidity 
comfort range, PMV-PPD evaluation, or predefined schedule 
are all rooted in occupant information. So, while not an 
entirely new idea, why did this term “OCC” only become 
popular in recent years? The critical difference between 
modern occupant-centric control and traditional control 
stems from the specific time taken to acquire occupant 
information and particular subjects involved in a certain 
HVAC control. Instead of leveraging the predefined average 
data, modern OCC focuses on the requirements of actual 
occupants in the built environment. With the advancement 
in industrial technologies and the onset of the digital 
revolution, we believe it is the right time to prioritize the 
needs of individuals and respect their actual requirements 
for the built environment. This is the basic philosophy behind 
OCC development and serves as the primary motivation 
for this review paper. 

In summary, we simplify the definition from IEA-EBC 
Annex 79 mentioned above and rephrase HVAC OCC as 
any kind of HVAC control that takes into consideration 
specific occupant information. Figure 2 illustrates its 

 
Fig. 2 Workflow of HVAC OCC—“From Occupants to Occupants” 
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concept of “from occupants to occupants”—OCC starts with 
collecting occupant information and comfort preferences, 
goes through occupant information transformation, and 
ends with requirements. Occupants are always at the 
center of the control cycle since the indoor environment is 
supposed to be controlled to satisfy occupants’ needs. From 
a control system’s perspectives, occupants are the sources of 
the information needed for control and they interact with 
the HVAC system (such as adjusting a thermostat), hence 
exerting uncertainties on the system that is being controlled. 
Occupant related information, such as occupancy, occupant 
behavior, occupant comfort, etc., are provided to the HVAC 
control directly for reactive control or indirectly through 
occupant model/profile for model-based control.  

Four-dimensional occupant information datasets are 
demonstrated at the top of Figure 2. The z-axis of the 
coordinate grid is occupant information of interactive 
dimension, while the x-axis and y-axis denote temporal 
dimension and spatial dimension respectively. The tick 
marks correspond to different resolutions. Groups of small 
balls with the same color are sets of occupant information 
for different cases. The individual dimension is illustrated in 
the enlarged pink ball, where different layers denote different 
resolutions. Linked with red dashed lines, an example set 
of occupant information includes three small pink balls, 
which represent presence and application operation in 
the interactive dimension, space coverage in the spatial 
dimension, time step, time type, and time range in the 

temporal dimension, and thermal profile in the individual 
dimension. 

1.2 Existing relevant review articles 

Table 1 presents a list of existing review papers that focus 
on OCC for HVAC equipment and systems in buildings. 
Even though a widely used definition for OCC does not 
exist, the three essential elements of OCC—sensing systems, 
occupant modeling systems, and control systems—are 
commonly recognized. The review papers curated here 
comprise a systematic review of the properties and key 
elements of OCC in HVAC operations.  

Observing existing review studies, there is a lack of 
systematic and comprehensive review of OCC with a strong 
emphasis on the characteristics and application of occupant 
information. Compared to other reviews that emphasize 
the different components of OCC (Eulerian perspective— 
similar to “specific locations” in a flow field), we will focus 
on occupant information in HVAC OCC (Lagrangian 
point of view—similar to the individual particles in a flow 
field) (Durst et al. 1984). This paper attempts to contribute 
to the existing literature by addressing the following five 
questions listed in Table 2.  

These five questions originate from the application of 
occupant information in the HVAC operation by researchers 
and practitioners (i.e., what we should obtain and know if 
we want to implement effective occupant-centric control in  

Table 1 State-of-the-art review articles related to the occupant-centric control 

Reference Year Specific contributions 

Mirakhorli and Dong  
2016 2016  The first review paper related to occupant-centric HVAC control 

 Expatiated the application of occupant information in model predictive control (MPC) 

Shen et al. 2017 2017  Analyzed the resolution and accuracy of building occupancy 
 Focused on sensing approaches 

Naylor et al. 2018 2018 
 Presented the collection of occupant data categorized as presence/number, location, activity, and energy behavior 
 Explained occupant-centric control strategies: real-time response to occupancy, control based on individual 

occupant preference and behaviors/activity types, control through occupancy/behavior prediction 

Salimi and Hammad  
2019 2019  Explained a variety of HVAC control systems: set-point-based occupancy detection control, MPC, local control 

 Created a roadmap regarding the advances in different dimensions of the building management system (BMS) 

Park et al. 2019 2019 

 Focusing on field-implementation case studies in actual buildings 
 Analyzed OCC research trends by text-mining the identified publications 
 Classified HVAC OCC as occupancy-centric control (presence and count) and occupant behavior-centric control 

(thermal comfort) 

Jung and Jazizadeh  
2019 2019  Explored literature from the perspective of human-in-the-loop HVAC systems 

 Presented holistic process maps in two modalities: occupancy-based and comfort-aware control 

O’Brien et al. 2020 2020  Highlighted the challenges and priorities in occupant-centric building design and operation 

Xie et al. 2020 2020  Concentrated on comfort-driven environmental control 

Stopps et al. 2021 2021  Focused on discussion of residential applications of OCC 
 Explored the historical advancement of residential OCC 

Harputlugil and de  
Wilde 2021 2021  Investigated the influence of occupant behavior in the HVAC control network 
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the indoor environment), while also following the essential 
elements of the basic human cognitive process (what it is,  
why it matters, and how it is applied) (Kamijo et al. 2007). 
Thus, this paper aims to primarily define and clarify what 
kind of occupant information is required, without delving 
into how it is acquired (which is the work of researchers 
and practitioners in other fields). We collect OCC-related 
papers and categorize them into these predefined questions 
to evaluate if these questions are sufficient to cover most of 
the research objects and answered well.  

1.3 Objective, scope, and organization of the article 

The objective of this review paper is to present an in-depth 
understanding of the different features of occupant 
information and its application in OCC, as well as explore 
how this information passes from the sensing module to 
the building control module, with special emphasis on 
analyzing linkages between these modules.  

The scope of this article is on HVAC systems for 
occupant-centric control. Mature lighting-associated OCC 
techniques are not discussed in this paper except for the 
purpose of making a comparison. The rest of this paper   
is organized as follows. Section 2 presents a fine-grained, 
comprehensive picture of occupant information, while 
Section 3 focuses on the representation, acquisition, and 
transformation of occupant information in OCC. Section 4 
explains how this information is applied in HVAC OCC. 
Finally, the cost-efficiency, interdisciplinarity, and humanistic 
consideration of OCC are explored in Section 5, where 
answers to the five questions raised in the introduction 
section are also summarized. 

2 Occupant information database for HVAC OCC 

2.1 Paper collection for reviews 

We focused our efforts on curating relevant academic 
publications on occupant-centric control of HVAC systems. 
Since several papers did not use the terms “occupant- 
centric control” or “OCC” directly, we used a variety of 
search keywords like “occupant-centric control,” “human-  

in-the-loop control,” “demand-driven control,” “occupancy- 
based control,” “human-building interaction,” etc. in Google 
Scholar and Scopus to ensure that the collected studies 
represent the wide range of existing literature. Additionally, 
we scanned the bibliographies of the collected papers and 
investigated the authors’ Google Scholar pages to track any 
relevant studies we might have missed. A detailed flowchart 
of the article curation process can be observed in Figure 3.  

Some of the collected papers were not suitable to be 
included in our review article for the following reasons: 
 Implementation of OCC in the building lighting system; 
 Relates to only one of three elements (i.e., sensing, 

occupant modeling, and controlling) of OCC; and 
 Multiple papers from the same authors covering similar 

concepts and narratives (e.g., different versions of an 
article published first as a conference paper and then as 
a journal article). 
Finally, we obtained a total of 77 papers that aligned 

with the goals of this review study.  

2.2 Occupant information database 

Occupant information is the data generated by occupants 
and their interactions with the buildings that they live in. 
In this paper, we propose to systematically classify occupant 
information using the two metrics, “dimension” and 
“resolution.” “Dimension” refers to a cluster of information 
with similar attributes, while “resolution” is the specific 
definition for a piece of information belonging to a particular 
dimension.  

 
Fig. 3 Paper collection process 

Table 2 Five questions concerning OCC for the HVAC operation in buildings  

No. Questions Relevant sections

1 What is the comprehensive understanding of occupant information in relation to HVAC control in buildings? Sections 2–4 

2 What form of occupant information is required for the HVAC system? Section 3 

3 How is occupant information involved in HVAC control? Section 4 

4 What methodologies are currently used for occupant-centric HVAC control? Section 4.2 

5 How can researchers and practitioners choose particular occupant information and OCC control strategies? Section 5 
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We categorize occupant information into the following 
four dimensions: 
1) Interactive dimension: Information that is generated when 

occupants interact with the building, such as presence, 
location, etc. 

2) Individual dimension: Information that belongs to the 
inherent characteristics of individual occupants, such as 
identity, thermal preference, etc. 

3) Temporal dimension: Information that refers to the 
time, such as weekday and weekend, the time step of 15 
minutes, etc. 

4) Spatial dimension: Information that refers to space, such 
as building types (offices vs. residences), room types 
(private vs. shared), etc. 
All dimensions and resolutions are explained in Table 3 

with their respective definitions, examples, and applications. 
It should be noted that for this study, we only consider 
occupant information related to the indoor environment 
that is controlled by building HVAC systems. In the 
following subsections, we will discuss the four dimensions 
and their resolutions in detail.  

2.2.1 Interactive dimension 

The interactive dimension includes all occupant information 
generated when people interact with the buildings that they 
live or work in. When an occupant stays in a building, 
he/she creates a relationship with this space and influences 
the energy consumption patterns of the building HVAC 
system. The built indoor environment also affects occupant 
behavior, thereby creating the interactive dimension. Examples 
of this dimension include passive occupant information 
like occupant presence, number of the occupant, and 
location, as well as active occupant behavior such as opening 
windows, adjusting thermostat setpoint, and operating 
electrical appliances (Chen et al. 2015; Hu et al. 2020).  

1) Presence 
Presence is a binary parameter (i.e., 0 or 1) that 

represents whether any occupants exist in a particular 
space (Naylor et al. 2018). This parameter supports HVAC 
operation by negating the need for an all-time-on or 
predefined on/off operation schedule. Once the presence 
information (occupied or unoccupied) is available, the 
control strategy involves turning off or throttling back 
the HVAC system—an operation that has significant 
energy-saving potential. Due to the ease of recording this 
information, presence is the occupant information that  
was first applied in OCC and is mostly applied to date 
(Mirakhorli and Dong 2016). Rosiek and Batlles (2013) 
used this parameter to optimize the operating sequence of 
the solar-assist air-conditioning system. The cooling process 
started only when employees were detected to be present in 
the office. The results show that up to 42% energy saving 
could be achieved in the cooling season. 

2) People count  
People count refers to the number of occupants in a 

given space (Wang et al. 2017). It helps to quantify the real 
load instead of the maximum load schedule that is assumed 
in the design process. A typical application of this parameter 
in HVAC operation is DCV that adjusts the outdoor air 
supply rate based on the count information (Li et al. 2012). 
Two light beam sensors and three camera sensors were 
used in the study by Kuutti et al. (2014) study to detect 
the number of people and an energy consumption saving 
of people counting sensor-based DCV over the constant 
air volume ventilation (CAV) was demonstrated with an 
averaged 46% of the daily airflow reduction. 

3) Location 
Location refers to the spatial coordinates of an occupant 

in a room (Liu et al. 2016). It makes it possible to adjust 
the HAVC control to achieve zonal or individual level 
with personal comfort systems (PCSs) (Nagarathinam et al. 
2017; Magni et al. 2019). Nagarathinam et al. (2017) utilized 
the spatial location of each occupant with desk tagging 
information in open-plan offices and optimized local 
temperature setpoints, which resulted in up to 12% energy 
savings. It implies that such a system can create a local 
environment required by a specific person without affecting 
others in the same space, as well as save energy with 
temperature setpoints setback (Jung and Jazizadeh 2019). 

4) Thermostat setpoint adjustment 
Setpoint refers to the indoor air temperature expected 

by an occupant or a group of occupants (Zhao et al. 2015). 
It is presumed that comfortable conditions are achieved 
when the thermostat is observed to be maintaining the 
required setpoint (Lu et al. 2010; Pritoni et al. 2016). Thus, 
Barbato et al. (2009) estimated the thermal comfort range 
of occupants from their interactions with thermostats. 
Some other researchers, in contrast, treated the action of 
adjusting the thermostat as an indicator of discomfort and 
then recorded these dissatisfactions to investigate a comfort 
principle for HVAC control (Tse and Chan 2008).  

5) Envelope operation 
Envelope operation denotes the behavior of opening 

windows, curtains/blinds, or doors (Zhong and Ridley 
2020; Zhou et al. 2021a). It is a way for occupants to satisfy 
their comfort needs by adjusting the air-exchange and 
solar-thermal transfer between the indoor and outdoor 
environment. Similar to setpoint adjustment, opening 
records also provide information to estimate one’s comfort 
status and thermal preference. Andersen (2009) demonstrated 
a strong correlation between window opening behavior 
and temperature, while Dong et al. (2018) argued that the 
behavior patterns of window opening are not coupled with 
environmental factors in some cases, but simply a part of 
occupants’ daily routines. 
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Table 3 List of dimensions and resolutions of occupant information

Dimension Resolution Definition Example Application 

Presence Ο A binary parameter indicating 
whether space is occupied Occupied/unoccupied 

Turning off or throttling back the HVAC system 
when unoccupied, instead of an all-time-on 
or predefined on/off schedule 

Count Ο The number of occupants in the 
given space  0, 1, 2, etc. 

Providing accurate real load, instead of the 
maximum load schedule that is assumed in the 
design process; Typical application in HVAC 
operation is demand controlled ventilation 
(DCV) 

Location Ο The spatial coordinates of an 
occupant in the room  

Places: at the desk, etc.; x and 
y coordinates 

Tailoring building control to an individual level 
and tracking movement 

Thermostat 
setpoint 
adjustment Ο 

The indoor air temperature 
expected by one occupant or 
group 

24 °C, 26 °C, etc. 
Assessing occupants’ comfort by detecting 
whether thermostats setpoint temperatures 
are maintained or not 

Envelope 
operation Ο 

A behavior of opening windows, 
curtains/blinds, or doors Opening windows, etc. 

Provides information to estimate occupant’s 
comfort status and thermal preference; Provides 
information for energy consumption 

Appliance 
operation Ο Use of electrical appliances Computer desktop, printer, 

etc. 
A reliable and cost-effective way to offer 
occupancy information 

Interaction dimension 
(information that is 
generated when 
occupants interact 
with the building) 

Activity level 
(metabolic rate) Ο 

A physical process that occupants 
conduct (not intended to adjust 
the indoor thermal environment)

Meeting, walking, etc.  

Acts as a reference to maintain a suitable built 
environment since people with different activity 
levels likely have variable comfort preferences 
and CO2 generations 

Identity Δ A unique ID for one person   

Assists in conducting personalized and local 
indoor environment control by offering 
the predefined comfort profile for the given 
occupant. 

Thermal profile Δ The occupants’ preferred or 
acceptable thermal environment 24 °C & 75% RH, etc. 

Consists of thermal preference and thermal 
acceptability; Classified into individual comfort 
and collective comfort; Meeting occupants’ 
thermal comfort preference is one of the main 
objectives of HVAC control.  

Physiological/ 
physical 
demographics ΟΔ 

The normal characteristics of 
living organisms and their body 
parts (including their clothing)

Age, gender, weight, shape, 
skin/ hair/ eye color, heart 
rate, blood pressure, skin 
temperature, clothes, etc. 

Serve as influential factors to determine an 
occupant’s thermal preference levels and act 
as an indicator for thermal comfort 

Individual dimension 
(information that 
belongs to inherent 
characteristics of 
individual occupants) 

Psychological 
demographics ΟΔ Mental and emotional states Temperature expectation, etc.

Inconsistencies in thermal preference measure-
ment may stem from the failure to account for 
psychological variation. 

Time step Δ The minimum chosen unit of 
time  

seconds, minutes, hours, days, 
etc. 

The frequency to measure the occupant 
information or conduct the control strategy; 
Determines the information density.  

Time type Δ The category of a day, week, or 
year 

summer/winter, weekday/ 
weekend, etc. 

Occupant information has different patterns 
corresponding to different time types 

Temporal dimension 
(information that 
refers to the time) 

Time range Δ The duration of occupant 
information measured 

X days/weeks/months/ 
seasons/years, etc. 

Serves to describe the time duration when 
acquiring occupant data 

Geological  
location Δ 

Where the target building is 
situated on the earth Climate zones Occupants’ energy use modes can be signifi-

cantly different based on locations. 

Building type Δ The category of the building Commercial building, 
residential building 

Different building types have different HVAC 
systems and operations 

Space coverage Δ The thermal zone that is of 
interest in a particular building

Local, room, zone, floor, 
building 

Different space coverages correspond to different 
levels of localized controls 

Spatial dimension 
(information that 
refers to space) 

Service scale Δ The space serving a single person 
or multiple persons 

private space, shared space, 
etc. 

Used as the basis to choose approaches for 
sensing, comfort control, and devising control 
strategies 

Ο denotes dynamic data. 
Δ denotes static data 
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       6) Appliance operation 
Appliance operation refers to the behavior of using 

electrical appliances and is the most influential variable 
in building energy performance (Fukuta et al. 2015). It 
includes turning on lights, working on laptops, etc. While 
the office equipment is not driven by the quality of the 
indoor environment (Parys et al. 2011), recording information 
regarding usage of appliances is usually a reliable and cost- 
effective way of gathering occupancy information (Maaijen 
et al. 2012). For example, Newsham et al. (2017) leveraged 
a combination of keyboard/mouse activity and pixel changes 
in a webcam image to effectively infer occupancy information 
in single-person offices.  

7) Activity level 
Unlike occupant behavior, which includes energy- 

related actions like opening the window or turning on the 
thermostat, activity level refers to a physical process that 
occupants conduct without the intention to adjust the 
indoor thermal environment (Zhou et al. 2021b). It can be 
classified either into the two simple categories of “active” 
and “quiet” or into different tasks like meeting, studying, 
exercising, cooking, etc. Comfort requirements usually 
depend on the activity levels of occupants (Li et al. 2017b). 
Further, different levels of activity generate various CO2 
levels and heat loads from occupants should be considered 
(ASHRAE 2019a). Thus, this information can act as a critical 
reference for DCV strategy (O’Neill et al. 2020). 

2.2.2 Individual dimension 

In contrast to the interactive dimension, the individual 
dimension refers to those intrinsic features of one person 
or one group that do not change with variations in the 
building conditions technically. This dimension is added 
to the occupant information database whenever a person 
is present, regardless of what he/she is doing (Teixeira  
et al. 2010). The individual dimension is usually used 
for personalized control of the built environment and 
adds a level of uncertainty and uniqueness to the occupant 
information.  

1) Identity 
Identity is a unique ID for one person (Teixeira et al. 

2010). It can provide information about who the person is. 
For example, Balaji et al. (2013) detected occupancy by 
mapping WiFi logs to the owner’s identity. Therefore identity- 
detection can aid in conducting personalized and local indoor 
environment control by offering the predefined comfort 
profile for the particular occupant.  

2) Thermal profile 
The thermal profile comprises thermal preference, 

which is used to describe the occupant’s preferred thermal 

environment, and thermal acceptability, which indicates 
the thermal environment that the occupant can accept 
(Brager et al. 1993; Langevin et al. 2013). It is a subjective 
indication and a response to the combination of environmental 
parameters. Two significant features of thermal profile are 
uncertainty and fluctuation (both point towards inconsistency 
with the environment). This inconsistency exists not only 
for different persons but can also occur on different occasions 
for one person. As Jazizadeh et al. (Jazizadeh et al. 2014) 
found, one person reported different thermal preferences 
under the same thermal condition (e.g., reporting −20 
(wanted to be cool) to 10 (wanted to be warm) at the same 
indoor air dry bulb temperature of 26 °C ) and the same 
thermal preference at different temperatures (i.e., reporting 
0, no need to be cooler or warmer, for any temperature 
between 22 °C and 26 °C).  

3) Physiological attributes 
ASHRAE 55 (ASHRAE 2017) defines “thermal comfort” 

as: “That condition of mind which expresses satisfaction 
with the thermal environment.” This definition provides an 
open understanding of thermal satisfaction and emphasizes 
that comfort is a cognitive process affected by different 
factors, such as physical, physiological, and psychological 
attributes.  

Physiological attributes are body-related factors (Teixeira 
et al. 2010), e.g., age, gender, weight, shape, skin/hair/eye 
colors, heart rate, blood pressure, skin temperature, etc.  

People will feel thermal comfort when his/her body 
temperature keeps in a close range with less physiological 
effort for adjustment (ASHRAE 2019b). For example, when 
the temperature rises, sweat glands spring into action, 
making perspiration (Jung and Jazizadeh 2019). Likewise, 
Li and Chen (2021) operated an HVAC system with facial 
skin temperature measurement in a single-occupied office 
and achieved a 91% thermal neutrality. 

4) Psychological attributes 
Psychological conditions can be difficult to sense 

(Jazizadeh and Becerik-Gerber 2012) and inconsistencies 
in thermal preference measurement partly stem from the 
failure to account for their variations (Jung and Jazizadeh 
2019). Langevin et al. (2012) found that perceived control 
levels (the ability to control the indoor environment in line 
with their expectations) are statistically related to occupants’ 
thermal satisfaction. Compared to those who perceived 
little or no control over the indoor environment, occupants 
with easier access to control were found to be more tolerant 
towards a wider temperature range (Brager et al. 2004; 
Toftum 2010). To utilize physiological and psychological 
attributes, factors that should be considered are applicability, 
sensitivity, non-intrusiveness, and ubiquity (Jung and 
Jazizadeh 2017, 2018, 2019).  
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2.2.3 Temporal dimension 

The temporal dimension describes occupant information 
from the perspective of time and provides sequenced tags 
for occupant information recording. Each piece of occupant 
information in the temporal dimension is an indispensable 
component of the overall time slice of building operation 
information. Based on application type, we categorize the 
solutions in the temporal dimension as: 1) time step;     
2) time type (e.g., summer/winter, weekday/weekend, etc.); 
and 3) time range (e.g., days, weeks, months, years, etc.). 

1) Time step 
Time step is the minimum chosen unit of time 

(Nagarathinam et al. 2017) and determines the information 
density. It is the frequency at which occupant information 
is measured or the control strategy is conducted. A time 
step can be chosen to be seconds (Erickson et al. 2009;  
Scott et al. 2011; Erickson et al. 2013), minutes (Nassif and 
Moujaes 2008; Widén and Wäckelgård 2010; Maaijen et al. 
2012; Goyal et al. 2013; O’Brien et al. 2017; Gilani et al. 
2018), hours (1 hour for heating control (Dong et al. 2011)), 
among which 5 minutes (Nassif and Moujaes 2008; Maaijen 
et al. 2012; O’Brien et al. 2017) are the most commonly 
used time step for data acquisition. The higher resolution 
of time steps can potentially capture the dynamic variation 
of occupant information, which in turn allows us to conduct 
a more detailed analysis if required. However, recording 
information at high resolution can require additional sensory 
energy, extra storage space, and more computational time 
to parse through (Melfi et al. 2011).  

2) Time type 
Time type is the category of time. Examples include 

daytime and nighttime for one day, workday and weekend 
for one week, summer and winter for one year. Occupant 
information can have different patterns corresponding to 
different time types (Lee et al. 2019). In a particular study, 
when occupant information is categorized into different 
time types, the control strategy is often simplified. Using 
this approach, Gunay et al. (2016) studied temperature 
setbacks during the night on weekends and on weekdays 
and finally found that a setback schedule could cover less 
than 55% of the year. 

3) Time range 
Time range is the duration of occupant information 

acquisition or OCC implementation (Erickson et al. 2009). 
It could be minutes, hours, days, weeks, or even months. 
The use of prediction horizon (the amount of time into the 
future for which predictions are made (Naylor et al. 2018)) 
in predictive optimal control (Nguyen and Aiello 2013) is 
an example of the utility of time range. The time range   
of OCC validation in literature can vary significantly from 
a few hours (Castilla et al. 2011) up to a year (Aghemo et al. 

2014). Most studies focus on short-term occupant information 
to implement OCC in buildings.  

2.2.4  Spatial dimension 

The spatial dimension refers to the occupant information 
from the perspective of the space where this information is 
generated (Xie et al. 2019). Based on the application type, 
solutions in the spatial dimension can be categorized as 1) 
geological location, 2) building type, 3) space coverage, or 4) 
service scale. 

1) Geological location 
Geological location is the place where the target building 

is situated on the earth. Climate zones are often more 
meaningful when discussing geological locations. International 
Energy Conservation Code (IECC) (Suh et al. 2014) divides 
the US regions into eight temperature-oriented climate zones. 
Different climate zones not only have contrasting local 
weather patterns but also have distinct occupant energy use 
modes. Pang et al. (2020a) quantified the influence of 
group occupant schedules on HVAC energy performance 
in five locations by simulating a medium-sized office from 
the DOE Commercial Prototype Building Models. They 
found a higher rate of energy savings in heating-dominated 
climate zones as compared to that in cooling-dominated 
zones. For example, the energy-saving ratio in Chicago 
(Zone 5A) was 42.3%, while that in Houston (Zone 2A) 
was found to be only 18.5%.  

2) Building type 
For the purpose of this review article, buildings are 

classified as commercial building types and residential 
building types, as defined in Field et al. (2010). Commercial 
buildings include offices, hospitals, schools, etc. Among 
these building types, offices are most commonly studied 
(Jung and Jazizadeh 2019). Different types of buildings have 
significantly different HAVC operation schedules (Naylor 
et al. 2018).  

3) Space coverage 
Space coverage refers to the thermal space of interest  

in a building. It includes local, rooms, zones, floors, and 
buildings. The resolution of space coverage in a particular 
study depends on the purpose of research and the sensing 
ability. Different space coverages correspond to different 
levels of localized control. A majority of the existing literature 
detects coverage at the room or zone level (Shen et al. 2017). 

4) Service scale 
Service scale refers to a space serving a single person or 

multiple persons, i.e., a shared space or a private space. 
Thermal sensing usually has higher accuracy in a single- 
person space than in a multiple-person space. It is also 
easier to achieve satisfaction using thermal comfort control 
in a single-person room since comfort conflicts can cause 
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problems in a multi-occupied space. However, in terms of 
control strategy, a private room is less suitable for predictive 
control than an open-plan room (Nagarathinam et al. 2017). 

3 Representation, acquisition, and transformation 
of occupant information 

3.1 Occupant information representation 

Before the occupant information summarized in Section 2 
can be utilized, the raw data needs to be processed and 
represented in a form that is applicable for occupant-centric 
control of HVAC systems. Single independent points of 
information can be directly used in real-time reactive control. 
However, for advanced control strategies (like predictive 
control), it is necessary to analyze a batch of points and 
develop corresponding occupant models.  

3.1.1 Independent points 

Independent points can contain any of the different types 
of occupant information described in Section 2. They are 
commonly used as an instantaneous “if-then” control strategy. 
For example, if space is “unoccupied,” the temperature 
is adjusted as a setback. This is called reactive control or 
feedback control, which will be discussed in Section 4 in 
detail. An independent point can also act as the input of 
one occupant model for predictive control. 

3.1.2 Grouped points 

Grouped points are a series of independent points. 
Collectively, these points form an occupant model to either 
support predictive control directly or to indicate occupant 
information with ambient values. Occupant models can be 
classified as occupant schedules and occupant profiles. 
Occupant schedules represent groups of occupancy infor-
mation (e.g., presence, number, setpoint, etc.) over time, 
while occupant profiles indicate occupant thermal profile and 
occupant behavior (e.g., adjust setpoint, open door/window, 
turn on/off the electrical appliances, etc.) related to building 
energy performance (Tang et al. 2021). 

1) Occupant schedule 
The occupant schedule is a traditional way of providing 

occupant information for HVAC design and operation.   
It is usually an hourly binary value or fraction of the 
presumed occupancy (having a value between 0 and 1) on 
weekdays/weekends/holidays (Chen et al. 2015). A typical 
occupancy schedule in an office is shown in Figure 4. The 
occupant schedule used by the current energy modeling  
is usually predefined based on the ASHRAE standards 
(Jia et al. 2017), so it cannot reflect the real occupancy 
variation. Simulations of different schedules and behaviors  

 
Fig. 4 Office occupant schedule in the DOE reference model for 
office buildings (Sun and Hong 2017) 

in commercial buildings showed an occupant-dependent 
variation of 30%–150% of final energy use (Naylor et al. 
2018). Thus, in OCC, the predefined schedule is upgraded 
by real-time occupancy information (Muroni et al. 2019; 
Kang et al. 2021). For example, Gunay et al. (2015) learned 
the occupancy patterns and parameters to dynamically 
adjust the setback temperature schedules.  

2) Occupant profile 
Occupant profiles include occupant thermal profiles 

and behavior models that can be used for practical controls 
of building HVAC systems (Jia et al. 2017; Zhang et al. 
2021). While occupant schedule is widely studied to replace 
conventional fixed- schedule operation of building systems, 
research involving occupant profiles is limited.  

Quite a few data-driven techniques, including logistic 
regression, artificial neural networks, fuzzy predictive 
modeling, Gaussian process, are employed to learn occupant 
preference with diverse types of variables (Fan et al. 2021; 
Zhu et al. 2021a). Apply a smartphone application framework, 
Li et al. (2017a) achieved a thermal preference prediction 
accuracy of 0.68 and 0.62 separately, using a logistic 
regression and a linear regression with various input 
variables (e.g., indoor temperature/umidity, skin temperature, 
cloth level, etc.). 

For occupant behavior models, one of the main objectives 
is to assist Model Predictive Control (MPC) in predicting 
the future evolution of the building system so that control 
actions can be generated in advance to meet the occupants’ 
requirements to the extent possible (Oldewurtel et al. 2012). 
Since occupant behavior usually has a causal relationship 
with the surrounding environment, ambient data sensors 
are usually placed within the area of interest. Langevin et al. 
(2015, 2016) used agent-based modeling (ABM) approach 
to explore the interaction between occupants in a medium- 
sized, air-conditioned office building and built environment 
systems for adaptive behaviors, like turning fan, heater, and 
window on/off.  
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3.2 Occupant information acquisition and transformation 

The acquisition of raw occupant information is the first step 
of OCC. Technological advances in the fields of electrical 
and computer engineering over the past decade have helped 
facilitate data collection and enhance data accuracy. Physical 
measurements and survey studies are the two different 
approaches to conduct occupant information acquisition 
(Awada et al. 2021). Various types of devices, such as sensors, 
cameras, or meters, are currently used (Jia et al. 2017).  

A majority of sensed occupant information originates 
in the interactive dimension, especially presence and count 
resolutions. Reviews on occupant information acquisition 
are out of the scope of this paper. If readers are interested 
in the detailed descriptions of sensing system techniques as 
well as their accuracy, advantages, and limitations (which 
are beyond the scope of this paper), review papers from 
Jung and Jazizadeh (2019), Shen et al. (2017), and Dong  
et al. (2019) are recommended.  

After the collection of selected data, occupant modeling 
is required to transform the data to the modes (Wang et al. 
2011; Jin et al. 2020), as described in Section 3.1. Then, 
occupant profiles can be used for predictive control of the 
indoor environment (Jin et al. 2021a; Zhou et al. 2021c). 
The main techniques currently used to model occupant 
information can be categorized into “agent-based modeling 
(Lee and Malkawi 2014),” “statistical analysis (Langevin et 
al. 2012),” “data mining (D’Oca and Hong 2015),” and 
“stochastic modeling (Meyn et al. 2009).” 

4 Application of occupant information in HVAC 
control 

The ultimate goal of OCC is to satisfy the comfort 
requirement of occupants in required spaces throughout a 
preferred timeframe, while achieving other performance 
goals, such as saving energy. To achieve this goal, building 
operations should automatically respond to dynamic thermal 
load instead of relying on fixed schedules and maximum 
occupancy assumptions. This drives the need for the 
upgradation of traditional HVAC control with real-time 
occupant information, as shown in Figure 5.  

In this section, we first introduce the commonly applied 
occupant information in OCC. Then, we introduce two 
control elements: the control strategy (i.e., reactive control 
and predictive control) and control objects (i.e., temperature 
and ventilation). These two types of elements are categorized 
from the perspectives of the required operation timing 
and the required indoor environment for HVAC control, 
respectively. 

4.1 Occupant information applied in the OCC  

While each piece of occupant information presented in 
Section 2 is useful in occupant-centric control, only a few 
of that information is utilized currently due to the complexity 
and cost. Figure 6 presents that presence, count, location, 
identity, thermal preference, and activity levels have all 
been utilized for HVAC OCC in the paper reviewed in this  

 
Fig. 5 Functions of occupant information in HVAC OCC (the green arrows represent the inference direction (e.g., occupant presence 
can be detected by printer operation), while the black arrows display the upgradation direction) 
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study. Among them, presence (~35.6%) and count (~26.9%) 
are the most common occupant information used in 
existing studies that are reviewed. Specific control of each 
occupant’s information has been expatiated in Section 2 
and is not repeated here. 

4.2 Control strategy  

From the perspective of the temporal dimension, several 
HVAC OCC strategies with occupant information can be 
implemented to optimize parameters (like temperature 
setpoints and airflow volumes) during the required timeframe 
(Li et al. 2012; Ouf et al. 2021). Alkhatib et al. (2021) 
reviewed a series of control methods (e.g., rule-based control, 
intelligent control, adaptive control, etc.) that can be used 
to handle occupant-like uncertainties in the control loop. 
Based on that, we introduce two strategies in the following 
subsections: reactive control and predictive control, 
classified by the time scale. Both strategies are significant 
improvements from the traditional fixed schedule. 

4.2.1 Reactive control 

Occupant-reactive operation (i.e., feedback control, real-time 
response, etc.) is an intuitive operational strategy. It involves 
adjusting the operational settings of an HVAC system in 
real-time when a change (presence/absence) in the occupant 
state of a particular space is observed (Jung and Jazizadeh 
2019). Examples include turning off the system or letting 
the temperature/ventilation in a room drift away from 
comfortable conditions when the room is detected to be 
unoccupied. When space is occupied again, the HVAC 
system will be operated to recover the comfort levels. Pang 

et al. (2020b) applied this control strategy and used a 
heating setpoint of 21 °C and a cooling setpoint of 24 °C 
during occupied hours, and 1 °C (for offices)/2 °C (for 
conference rooms) for the setback in unoccupied hours. 
Simulation results showed a 19%–44% reduction in HVAC 
energy consumption nationwide, for the medium office 
using the ASHRAE Standard 90.1–2004 as the baseline. 

Unlike lighting, the thermal ramp up or down of a 
room involves delay because of the thermal inertia of 
buildings. Thus, reactively conditioning a room will likely 
leave occupants uncomfortable until the target indoor 
environment is met. Because of its contribution to energy 
saving, it is suitable for the scenario where precise comfort 
control is not required. However, in some cases, it might  
be more energy efficient to maintain temperature than to 
ramp up temperatures from a very low level, as the reactive 
strategy has to work hard to ramp up the room temperatures 
between periods of occupancy (Erickson et al. 2013). These 
shortcomings of reactive control can partially be solved  
by using predictive control with forecasting occupant 
information. 

4.2.2 Predictive control 

Though towards a similar objective of utilizing real-time 
occupant information and adjusting the indoor environment 
based on occupant requirement, the main difference of 
predictive control from active control is the operation time, 
i.e., “predictive horizon.”, which is strongly related to the 
occupancy and occupant behavior prediction (Alkhatib et al. 
2021; Jin et al. 2021b). Utilizing the slower-response HVAC 
systems, predictive control aims to condition the space to 
acceptable levels in advance by predicting the attributes of 

 
* Some of location/identity is used for counting calculation. 

Fig. 6 Application percentage distribution of occupant information in reviewed papers 
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occupant-based space in the near future. This preconditioning 
time helps relieve the discomfort of occupants at the 
beginning of HVAC operation and reduces energy waste 
by a setback when the space is unoccupied.  

Predictive control that cooperates with occupant 
information can be categorized as rule-based control (RBC) 
and optimal control (Drgoňa et al. 2020). RBC constructs 
a set of predefined rules, which are defined as a function 
of preconditioning time, conditioning rate, or occupancy 
probability (Esrafilian-Najafabadi and Haghighat 2021), to 
achieve thermal comfort and energy saving, corresponding 
to the future occupancy status. Applying such an RBC 
strategy for OCC, Peng et al. (2018) reported 7%–52% energy 
savings in various room types of a real building.  

More advanced and complex compared to the RBC, 
MPC, a dominant strategy in optimal control, employs 
optimization algorithms to support HVAC control decisions. 
MPC requires a model that is used for predicting some 
variables and figures out the optimal control actions in 
advance by taking into account the occupant comfort and 
technological constraints, and weather forecasts (Drgoňa  
et al. 2020). It can improve thermal comfort while achieving 
energy saving from 15% up to 50% in several simulations 
and field tests (Ma et al. 2012; Maasoumy et al. 2014; Dobbs 
and Hencey 2014). 

4.3 Control objects  

The goal of occupant-centric control is to provide an indoor 
built environment that satisfies the comfort and work 
efficiency requirements of occupants while maintaining 
other building performances. Temperature and ventilation 
are the main control variables (Janssen 1999). The tem-
perature in a space, controlled according to the occupant’s 
thermal preference, occupancy detection, occupant activity, 
and outside weather, directly affects the comfort of occupants. 
It is the most commonly used control object (Balaji et al. 
2013; Gao and Keshav 2013; Jazizadeh et al. 2013). As shown 
in Figure 6, room temperature is the primary control object, 
accounting for 87.7% of the reviewed OCC papers. 

Ventilation air is introduced into the zone to improve 
indoor air quality, of which the required minimum amount 
is dependent on the real-time number of occupants. 
Ventilation control is usually involved in the temperature 
setpoint regulation. O’Neill et al. (2020) conducted a 
simulation study of the CO2 based DCV in typical single- 
duct variable air volume systems. This study reported 
9%~33% HVAC energy savings compared to the baseline 
of a simplified ASHRAE 62.1 approach in four U.S. climate 
zones. 

5 Discussion 

5.1 Accuracy and errors of occupant information: Balance 
in HVAC OCC 

A balance must be maintained between the accuracy level 
of occupant information and the financial or computational 
cost associated with collecting or predicting that information. 
High accuracy requirements with smaller time steps in the 
temporal dimension can lead to significant sensory equipment 
costs (Shen et al. 2017) and the computational burden of 
running complex algorithms (Dong et al. 2019). Therefore, 
it is beneficial to define a minimum acceptable accuracy 
limit for occupant data that will still satisfy the primary 
objective of maintaining thermal comfort. 

The HVAC system is generally error-tolerant in HVAC 
OCC. Unlike lighting control, which has an immediate 
influence on occupants, HVAC control can endure prediction 
errors to a large extent (Bengea et al. 2015). Occupancy 
sensing errors can be categorized as false positive (sensing 
someone in the zone when, in fact, the zone is unoccupied) 
and false negative (sensing no one in the zone when, in fact, 
the zone is occupied) (Shen et al. 2017). A system with false 
positives will waste energy, while a system with false 
negatives will result in occupant inconvenience. Since in 
reality, in particular for office buildings, satisfying occupant 
comfort usually takes the relatively higher priority than 
reducing energy consumption, false negatives are generally 
more problematic than false positives.  

5.2 Interdisciplinary efforts: Techniques fuel OCC 

Technological advancements and scientific innovations 
require strong interdisciplinary efforts. information & 
communication technology (ICT) and computer science 
(CS) (e.g., artificial intelligence (AI)) are two significant 
interdisciplinary technologies that aid the collection, 
transportation, storage, and transformation of occupant 
information. 

5.2.1 Information & communication technology 

Many occupants have to endure thermal dissatisfaction 
(Huizenga et al. 2006) owing to inaccurate occupant 
information acquisition and consequent over-cooling/ 
heating (Sanguinetti et al. 2016; Jung and Jazizadeh 2018). 
Over the past few decades, declining hardware costs and 
the availability of configurable software have made it possible 
for researchers to collect a huge amount of real-time data 
in different categories (e.g., presence, number of people, 
comfort feedback, etc.). This data has, in turn, fueled the 
rapid development of OCC.  



Yang et al. / Building Simulation 

 

14 

As a result of the advancements in ICT, IoT (Internet of 
Things) now provides ample opportunities for ubiquitous 
occupant data collection and communication. For example, 
it can combine occupancy-related sensors and data sources 
to support building occupant detection with less cost (Shen 
et al. 2017) for the application of data-driven pattern 
recognition and occupant-centric control algorithms.  

5.2.2 Artificial intelligence 

Occupant model development with AI methods (e.g., 
machine learning) has been prevailing in recent years (Ryu 
and Moon 2016; Huchuk et al. 2019; Lu et al. 2021). AI 
approaches are especially suitable for modeling human 
patterns (e.g., activity routine, presence schedule, thermal 
preference, etc.) as these can successfully extract relevant 
information from information security measures datasets 
as well as handle human behavior randomness. The growing 
amalgamation of AI predictive analysis and smart BMSs 
makes building systems self-learning and intelligent by 
adapting to changes and uncertainties in the building (Salimi 
and Hammad 2019).  

5.3 Information privacy: Humanity matters 

Due to acquiring and storing occupant information in 
OCC implementations, privacy concerns emerge. There are 
mainly two privacy concerns in intelligent buildings (Namdeo 
and Pawar 2017; Cui et al. 2018). The first is identity 
privacy. One example is the concern of using the video 
camera to collect occupant information in public spaces 
(Wang et al. 2017). The second one is location privacy, 
since location information is sometimes required for 
personalized OCC implementation or people counting (Park 
et al. 2019). More information means more responsibility. 
For the OCC deployment, more information security 
measures should be considered in the future to protect 
occupant privacy. 

5.4 Open-source occupant dataset: Making the best of 
collective intelligence and labor 

The availability of occupant information data is critical for 
occupant-centric control as it facilitates the development of 
more accurate occupant models for specific HVAC OCCs. 
Therefore, an open-source dataset is valuable for the entire 
HVAC field and beneficial to improving the quality of OCC 
research. Without an open dataset, it is virtually impossible 
to conduct a peer review properly or reproduce studies 
effectively. A consequence is that academic peer reviews are 
often capable of checking methods, without ways to verify 

the models and data proposed in the research (Pfenninger 
et al. 2017).  

Open-source data also helps to save the time and cost 
of researchers and practitioners in the HVAC field. The 
collection of occupant information is usually time-consuming 
and expensive. An open occupant dataset, especially 
generated by research supported by public funds (Kazmi et 
al. 2021), can help avoid unnecessary duplication in the 
sense of collaboration. The Horizon 2020 project by the 
European Commission is one such example (Spichtinger 
2012). Recently, several programs, including Ecobee’s 
“Donate Your Data” (Ecobee), the Pecan Street Datasets 
(https://www.pecanstreet.org), the REFIT Datasets (REFIT 
2019), and the ASHRAE Global Occupant Behavior Database 
(ASHRAE 2021), have begun making their efforts to build 
the available open-source of laboratory data and field data. 

One of the problems facing the open dataset for 
occupant information is the collection standards of different 
researchers who are willing to make contributions. To deal 
with this issue, the International Energy Agency’s Energy 
in Buildings and Communities Programme (IEA EBC) 
Annex 79 (O’Brien et al. 2020) initiated a platform for 
sensing technologies and data sources on Occupant Presence 
and Action (OPA). They proposed to develop a metadata 
schema to support the consistent sharing and reuse of OPA 
data. Similarly, Balaji et al. (2016) proposed Brick Schema 
to promote a united naming convention by developing  
a concrete ontology to describe sensors, equipment, and 
control variables contained in the BAS. 

5.5 Brief answers to the questions raised in Introduction 
Section 

Question 1: What is the comprehensive understanding  
of occupant information in relation to HVAC control in 
buildings? 
Answer: Occupant information is the data generated by 
occupants and their interactions with the buildings that 
they live or work in. It can be classified systematically 
using the two metrics, “dimension” and “resolution.” With 
occupant information, building services are delivered only 
when and where they are required for providing a suitable 
built environment for the occupant, and in the amount that 
they are required. 
Question 2: What form of occupant information is required 
for the HVAC system? 
Answer: Single independent points and grouped points  
of occupant information are applied in HVAC control. 
Grouped points can collectively form occupant models, 
which are classified as occupant schedules and occupant  
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profiles. Occupant schedules represent groups of occupancy 
information (e.g., presence, number, setpoint, etc.) over 
time, while occupant profiles indicate occupant thermal 
profile and occupant behavior (e.g., adjust setpoint, open 
door/window, turn on/off the electrical appliances, etc.) 
related to building energy performance. 
Question 3: How is occupant information involved in 
HVAC control? 
Answer: Occupant information improves HVAC control 
by providing the required operation timeframe and required 
indoor environment. These elements are revealed in the 
control strategy (reactive/predictive control) and control 
objects (temperature and ventilation), respectively. Single 
independent points of information can be directly used in 
real-time reactive control. Grouped points collectively form 
an occupant model to either support predictive control 
directly or to indicate occupant information with ambient 
environment values. 
Question 4: What control strategies are currently used for 
occupant-centric HVAC control? 
Answer: Two OCC control strategies are reactive control 
and predictive control. With specific occupant information 
known, both strategies are significant improvements from 
the traditional fixed schedule for energy efficiency and 
occupant comfort. Reactive control involves adjusting the 
operational settings of an HVAC system in real-time when 
a change (e.g., presence/absence) in the occupant state of a 
particular space is observed. Predictive control that cooperates 
with forecasted occupant information can be categorized as 
rule-based control and optimal control. Predictive control 
aims to condition the space to acceptable levels in advance 
by predicting the attributes of occupant-based space in the 
near future. 
Question 5: How can researchers and practitioners choose 
particular occupant information and OCC control strategies? 
Answer: When conducting OCC in the HVAC system, for 
a given application, particular occupant information can  
be inferred in Table 3. Meanwhile, costs and benefits     
of utilizing occupant information, along with the inter-
disciplinary techniques and information privacy should 
also be considered. 

6 Conclusion and future research directions  

This paper aims to provide an in-depth understanding of 
occupant information in HVAC OCC and explore how the 
occupant information flows from the sensing module to 
the building control module with special emphasis on the 
linkages between these modules.  

Firstly, we compared the existing OCC-related review 
papers and defined OCC as any kind of HVAC control that 

considers the specific occupant information. 
Secondly, we presented a fine-grained, comprehensive 

picture of occupant information with “dimensions” and 
“resolutions.” We categorized various occupant information 
into four dimensions: Interactive dimension, Individual 
dimension, Temporal dimension, and Spatial dimension. 

Furthermore, to reiterate, the ultimate goal of HVAC 
OCC is to satisfy the comfort preferences of occupants in 
required spaces throughout a required timeframe. In this 
paper, we discussed the application of the following aspects 
of occupant information: 
1) Occupant information applied in OCC, including presence, 

count, location, comfort preference, activity level; 
2) Control strategies: reactive control and predictive control 

(for required operation timing); 
3) Control objects: temperature and ventilation (for the 

indoor built environment). 
Finally, we also explored the costs and benefits of applying 

occupant information, the interdisciplinary techniques, 
and information privacy that are integral to the utilization 
of occupant information in OCC. Answers to the five 
questions of occupant information understanding raised in 
the Introduction section are also elaborated. 

The future research directions are summarized as 
follows:  
1) Interdisciplinarity is the inherent nature and driving 

force of HVAC OCC. It is imperative to enhance the 
connection with a variety of other cutting-edge research 
fields and develop a commonly acceptable protocol to 
transfer data and techniques among different disciplines. 
 Information and Communications Technology (ICT) 

research, including IoT, 5G (5th generation of mobile 
networks), and cloud computing, can provide more 
sources, data storage and communication approaches 
for occupant information and real-time control. IoT 
makes it possible to interconnect objects in the building 
and facilities occupant information acquisition by 
data fusion (Zhu et al. 2021b). 5G provides real-time 
big data access and speeds up the data transmission 
for occupant information. Cloud computing offers 
a shared and dynamic infrastructure for running 
advanced control algorithms with a large number 
of occupant information. Application of these ICT 
techniques can potentially remove obstacles for 
acquisition, transmission, storage and computation 
of occupant information in the application of OCC. 

 Computer Science (CS) research can enrich occupant 
information by data mining technique, transform 
occupant information to models by neural network 
technique (e.g., deep learning), or generate HVAC 
control logics by reinforcement learning.  
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 Grid-Interactive Efficient Building (GEB) research 
can incorporate occupant information into operations 
with flexible demand. 

 The combination of these state-of-the-art technologies 
can largely strengthen occupant information 
acquisition. The computer vision technique, which 
performs well in multiple occupant information types 
(e.g., detection, counting, localization, identification, 
etc.), is a typical example. It can enhance com-
putation power by transmitting images to the cloud 
over 5G and extract accurate occupant information 
by utilizing advanced image recognition in cloud 
computing, and then realize high accuracy occupant- 
centric HVAC control. 

2) An open-source occupant information dataset would 
facilitate the development of more accurate occupant 
models for specific HVAC OCC, and promote academic 
peer review and research reproducibility.  

3) Occupant information privacy and security is the biggest 
concern that hinders the occupant information from being 
open and accessible. Blockchain would be a possible way 
to solve this problem.  

4) The non-intrusive sensing system is required to minimize 
the interference to the occupant’s normal daily activities. 
The virtual sensor is a potential solution to provide 
non-intrusive and cost-effective measurement to detect 
occupancy by utilizing existing energy-related systems.  

5) The balance between individual and collective occupant 
thermal requirements, especially when conflicting, still 
needs further investigation. 

6) Occupant information, including lifestyle and schedule, 
varies in some new events (Sánchez-García et al. 2020), 
for example, the COVID-19 period (Dai and Zhao 2020). 
Pre- and post-pandemic comparison and new operation 
schedule optimization are worth further study. 

7) Besides the occupant presence, the number of people and 
occupant’s thermal preference is commonly used in the 
current HVAC OCC control. Other occupant information 
such as location, psychological and psychological attributes 
could be integrated into the HVAC OCC. 

8) More field tests are required to demonstrate practical 
HVAC OCC in real buildings. 
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