
Applied Energy 293 (2021) 116856

Available online 21 April 2021
0306-2619/© 2021 Elsevier Ltd. All rights reserved.

Occupant behavior modeling methods for resilient building design, 
operation and policy at urban scale: A review 

Bing Dong a,*, Yapan Liu a, Hannah Fontenot a, Mohamed Ouf b, Mohamed Osman b, 
Adrian Chong c, Shuxu Qin c, Flora Salim d, Hao Xue d, Da Yan e, Yuan Jin e, Mengjie Han f, 
Xingxing Zhang f, Elie Azar g, Salvatore Carlucci h 

a Department of Mechanical & Aerospace Engineering, Syracuse University, 263 Link Hall, Syracuse, NY 13244, United States 
b Department of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, EV 6.139, Montreal, Quebec H3G 1M8, Canada 
c Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore 
d School of Computing Technologies, RMIT University, Melbourne, Victoria 3000, Australia 
e Building Energy Research Center, School of Architecture, Tsinghua University, Beijing 100084, China 
f School of Technology and Business Studies, Dalarna University, 79188 Falun, Sweden 
g Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates 
h Energy, Environment, And Water Research Center, The Cyprus Institute, Nicosia, Cyprus   

H I G H L I G H T S  

• Review of occupant behavior modeling methods in Building Science and beyond. 
• Bridge the knowledge gap between Building Science and other domains. 
• Cross comparison of the modeling requirements in different domains. 
• Summary of the various metrics for model accuracy evaluation.  
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A B S T R A C T   

Traditional occupant behavior modeling has been studied at the building level, and it has become an important 
factor in the investigation of building energy consumption. However, studies modeling occupant behaviors at the 
urban scale are still limited. Recent work has revealed that urban big data can enable occupant behavior 
modeling at the urban scale – however, utilizing the existing data sources and modeling methods in building 
science to model urban scale occupant behaviors can be quite challenging. Beyond building science, urban scale 
human behaviors have been studied in several different domains using more advanced modeling methods, 
including Stochastic Modeling, Neural Networks, Reinforcement Learning, Network Modeling, etc. This paper 
aims to bridge the gap between data sources and modeling methodologies in building science by borrowing from 
other domains. Based on a comprehensive review, we 1) identify the modeling challenges of the current ap
proaches in building science, 2) discuss the modeling requirements and data sources both in building science and 
other domains, 3) review the current modeling methods in building science and other domains, and 4) sum
marize available performance evaluation metrics for evaluating the modeling methods. Finally, we present future 
opportunities in building science with enhanced data sources and modeling methods from other domains.   
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1. Introduction 

1.1. Background 

By 2050, a staggering 70% of the world’s population is projected to 
live and work in cities, while two-thirds of global primary energy con
sumption will be attributed to cities, leading to the major production of 
the global direct energy-related greenhouse gas emissions. Occupant 
behavior has emerged as one of the leading influences on energy con
sumption in buildings. Current occupant behavior studies are often 
isolated and only research individual behavior such as presence or in
teractions [1–5] in a single space or building [6]. Recent studies have 
also addressed a breadth of optimization, control and occupancy-related 
challenges for the operation of individual buildings [7,8]. However, 
modeling occupant behavior at an urban and city scale for the purpose of 
building design and operation is limited [9,10]. 

Applications in building science: 
Currently, there are four main application areas in which urban scale 

occupant behavior modeling plays key roles:  

• District heating and cooling system design and operation 

With the development of district heating and cooling systems, the 
design and operational strategy for heating and cooling should not be 
limited to a single zone or building but should encompass the urban 
scale [11]. Heat load profiles have been demonstrated to be related to 
users’ behavior [12,13], and the internal heat gain from occupants is the 
most influential factor [14,15]. In addition, behavior mode of air 
conditioner and occupant type composition lead to a 4.5-fold difference 
in the system efficiency of district cooling systems [16] and simplifica
tion of occupant behavior could result in overestimation of the district 
peak load [17].  

• Urban building energy modeling (UBEM) and analysis 

UBEMs aspire to become key planning tools for the holistic optimi
zation of buildings, urban design, and energy systems in neighborhoods 
and districts [10]. However, inappropriate choice of occupant behav
ioral model could result in oversized district energy systems [18,19] and 
a wrong estimation of energy saving due to the implementation of en
ergy conservation measures. For example, Barbour [20] investigated 
urban-scale occupant behavior (U-OB) in the Greater Boston area and 
showed that the use of observation-derived occupancy profiles can help 
to reduce energy consumption up to 15% for residential buildings and 
21% for commercial buildings. Similarly, several recent studies [21–24] 
found that energy consumption can be further reduced (up to 60% in 
some cases) by adopting realistic occupancy profiles. In addition, the 
analysis of the impact of anthropogenic heat released in urban areas is 
an important topic that is gathering high interest in the last 5 years. The 
main research purposes are to understand and predict urban overheating 
and local urban heat island, to study the interaction between buildings 
and the built environment, and to assess local microclimate and hotspot 
risk. Some tools integrate walkability metrics to estimate how friendly 
an outdoor space is to walking [25].  

• Buildings-to-grid integration 

Prior studies have developed a framework to understand the 
coupling of buildings-to-grid integration considering community scale 
occupant behavior [26–28]. Occupant behavior models have been used 
to generate appliance usage patterns (human-building interactions) in 
residential buildings [29] and working schedules (occupant presence) in 
commercial buildings. Such behavior modeling impacts how buildings 
respond to demand response signals from the grid [30], building flexi
bility [31], space-level heating, ventilation, and air conditioning 

(HVAC) controls [32], the optimization of solar photovoltaic (PV) 
planning in an energy community [33], and peer-to-peer (P2P) business 
models for individual PV prosumers in a local electricity market [34].  

• Energy policy 

There are two main categories of policy mechanisms that affect - and 
are affected by - the quality of occupant behavior representation [35]. 
The first category covers regulations, namely building energy codes and 
standards used to develop building technologies. The development of 
regulations is often guided by building energy modeling. The second 
category covers demand-management strategies, mainly occupant in
terventions that aim to alter existing energy consumption patterns (e.g., 
energy education, feedback, and incentives). 

Applications in other domains: 
Modeling human behavior has been studied in other domains such as 

traffic analysis, epidemiology, disaster management, and marketing 
through modeling human mobility. Various datasets have been used to 
analyze human mobility: Geospatial trajectories/ Global Positioning 
System (GPS) data, Call Detail Records (CDR) data, social media check- 
ins and apps, location-based service (LBS) data, and transportation data 
[25]. Individual mobility data can be used for enhanced location-based 
services and can be applied to solve social and market challenges such as 
personalized energy services and route optimization, as well as smart 
and green transportation architectures for citizens and goods.  

• Traffic analysis 

Leveraging social network services and mobile computing can enable 
urban planners to investigate city dynamics [36]. Using human mobility 
and social media data, traffic anomalies can be visualized [37] and 
detected [36,38,39]. In addition, cyclists’ destinations can be predicted 
by learning human behavior, spatial relationships, and external features 
[40]. Other studies show that future driving trip paths can be predicted 
through taxi GPS data [41].  

• Epidemiology 

Traditionally, disease spread is modeled using models which divide a 
population into “compartments”. For instance, in the susceptible- 
infectious-recovered (SIR) model, individuals undergo a process of 
being susceptible to a disease, then infectious, then recovered. In the 
susceptible-exposed-infectious-recovered (SEIR) model [42], there is a 
period of being exposed before becoming infectious. Individuals move 
from one compartment to the next according to some modeled proba
bility. Often these models include an assumption of population homo
geneity or invariance. Recently, however, researchers have made use of 
several large-scale datasets to model human mobility and its impact on 
disease spread, including Bluetooth and WiFi location data [43]–[45], 
CDR data [46], and Google aggregated mobility data [47].  

• Disaster Management 

Understanding of human movements in urban areas plays a key role 
in improving our disaster response, evacuation, and relief plans [48]. By 
analyzing individuals’ movement data collected from Twitter, the in
fluence of natural disasters on human mobility patterns can be better 
understood [49]. In addition, population displacement during or after 
natural disasters can be estimated through analyzing CDR data [50]. 
Furthermore, recent research presents a social media-based approach to 
assess disaster impacts on highways [51].  

• Visitor Analytics, Smart Retail, and Recommender Systems 

Recommender systems investigate and model people’s cyber- 
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physical actions (moving, searching, browsing, etc.) in order to predict 
user demographics [52] and customers’ shopping intent [53,54], make 
contextual recommendations [55] to shoppers, or predict their revisit 
intention [56]. Similarly, graph-based methods can also be used to 
predict point of interest (POI) and user activities [57], as well as 
behavioral trends [58–60]. These methods make use of large-scale 
smartphone datasets including smartphone continuous sensing data, 
WiFi, Bluetooth, and CDR data. 

1.2. Key Challenges, and research questions 

Despite the different approaches to modeling occupant behavior on 
the urban scale, there are still several key challenges in simulating 
occupant behavior: 

1) Insufficient spatial diversity among all different buildings with 
different functions and occupant behaviors. All current measured 
occupant behavior datasets are not large enough (both spatially and 
temporally) to represent all building types at a district or urban level; 

2) Insufficient temporal and longitudinal diversity among the same 
type of building with the same occupancy type. Occupant behavior is 
stochastic in nature. Even for the same type of occupant, the behavior 
will be different over time. It is a challenge to represent such diversity in 
simulating occupant behavior at an urban scale. 

Hence, the goal of this paper is to bridge the data sources and 
methodology gap between building science and beyond. In order to 
achieve this goal, the following research questions are answered 
throughout this paper:  

• What are the modeling requirements of occupant behavior at a 
community level?  

• What data sources have been used in other domains that could 
potentially enhance the modeling capabilities for current building 
science applications?  

• What are the current modeling methods of occupant behavior at a 
community level?  

• What modeling methods have been used in other domains that could 
potentially enhance the modeling capabilities for building science 
applications?  

• What are the potential future research directions for building design, 
operation, and policies at a community level, with enhanced data 
sources and modeling methods from other domains? 

1.3. Review methods and structure of the article 

This work aims to understand current modeling approaches as well 
as big data requirements in building science, and investigate recent 
modeling methods in other domains which include transportation, 
epidemiology, and disaster management among others. We used Google 
Scholar to perform a literature search with keywords including 
“modeling building occupant behavior,” “urban scale occupant 
behavior,” “human mobility patterns,” “human dynamics,” and “spatio- 
temporal data.” After first reading through the abstracts and evaluating 
the papers according to their relevance to the purpose of this study, we 
then filtered out the articles which do not provide detailed modeling 
approaches and data sources. Based on our best knowledge, 206 publi
cations were chosen and further considered in this review work. We 
have categorized those publications by topic and modeling method. 
Based on the research questions listed above, we structure the paper as 
the following: Section 2 analyzes the modeling requirement for the 
aforementioned four applications in building science and data used in 
other domains. Section 3 discusses the current occupant behavior 
modeling methods at community and urban scale. Section 4 presents the 
research opportunities with occupant behavior modeling methods from 
other domains and Section 5 concludes this paper. 

2. Modeling requirement analysis and data sources 

This section answers the following two research questions:  

• What are the modeling requirements of occupant behavior for the 
aforementioned four applications at a community level and how do 
current approaches meet those requirements?  

• What data sources have been used in other domains that could 
potentially enhance the modeling inputs for current building science 
applications? 

Specifically, we will review spatial and temporal characteristics of 
occupant behavior modeling requirements for the aforementioned four 
applications in building science. In addition, data sources and charac
teristics from other domains, which have been used to model occupant 
behavior, will be reviewed to cross compare with the requirements from 
building science. 

2.1. Urban scale building design and operation 

2.1.1. District heating and cooling system design and operation 
Modeling district heating and cooling (DHC) systems requires 

extracting data from each connected building, including its character
istics, energy use profiles, thermostat setpoints, and occupancy status 
[61–64]. For these district systems, previous research was conducted 
using field measurements [16,17,65]. The critical balance between en
ergy supply and demand in such systems required extracting on-site 
measurements from connected smart meters and sensors with tempo
ral granularity ranging from minutes [66] up to one hour [67,68]. 
However, the occupancy state in each building and the interactions of its 
occupants with building systems are key inputs for cooling or heating 
load simulation, which are not typically considered. Smart thermostat 
datasets with indoor and outdoor temperature measurements as well as 
setpoint profiles can provide this information and identify the impact of 
external parameters such as season and energy price on occupant 
behavior [13,69–71]. The duration of data collection can range from 
several months [72,73] up to several years [74], with a temporal reso
lution from 10 to 15 min, up to one hour [61,66,75]. Upscaling the 
research objective to the urban scale requires improving the method of 
data collection accordingly. Therefore, questionnaire surveys [76,77] 
can be used to supplement the related data at a large spatial scale. 

2.1.2. Urban scale building energy performance modeling and analysis 
Salim et al. [25] reviewed the use of occupant-centric urban data to 

model occupant behavior and address the uncertainties in UBEMs. 
Modeling occupancy in UBEM requires data with fine temporal resolu
tion (seconds or minutes) and spatial resolution defined by the latitude 
and longitude of each location with relatively high accuracy. Thank
fully, the proliferation of big data technologies enables this level of data 
granularity. With derived urban scale building occupancy profiles from 
big data, recent studies have integrated urban scale occupant behaviors 
with UBEM [20,22,23]. For example, Barbour et al. [20] used CDR data 
of 40 days, with a temporal resolution of 10 min and spatial resolution of 
300 m, to model commercial buildings’ occupancy using the novel 
TimeGeo model [78]. The TimeGeo framework was established on a 
time-inhomogeneous Markov chain model for modeling temporal 
choices, and a rank-based exploration and preferential return (r-EPR) 
model for generating spatial choices. Alternatively, aggregated data 
such as the total number of occupants and their hourly distribution over 
the day were enough to create the typical occupancy schedules [79]. 
Location-based services (LBS) are promising data sources that presently 
include only public access buildings; however, they are expected to have 
residential buildings and private offices data in upcoming years [80]. 
The Google popular time (GPT) data is used to develop dynamic occu
pancy schedules for different types and scales of public buildings 
[80–82]. Moreover, Mohammadi and Taylor [83] used one year of 
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location records extracted from Twitter to predict energy consumption 
of residential buildings. Lu et al. [84] showed a slight difference between 
the schedules developed based on different LBS datasets, reinforcing the 
significance of validation phases. Moreover, smart connected sensors 
provide an opportunity to gather standardized and scalable on-site data 
with high temporal resolution regarding occupancy and occupant’s 
behavior, as shown in [85–88]. Wang et al. [89] used census data, 
transportation accessibility data, and population data to upscale a 
building scale dynamic occupancy model to the city level. 

2.1.3. Buildings-to-grid (B2G) integration 
Currently, the B2G framework typically couples the physical models 

of buildings and power grid. The building model is represented by a 
reduced order thermal capacitance and resistance model [90], and the 
power grid model is represented by power flow equations that are solved 
by optimal power flow [91]. Typically, building load is generated either 
through ad-hoc assumption [26,92] or simulation models [93] without 
considering the occupant behavior. However, in reality, occupant 
behavior becomes a leading factor for building energy usages. The 
occupant behavior models at each building are important to generate 
more accurate building loads at any given time so that the power grid 
model can optimize the power flow accurately. Such occupant behavior 
models should include both appliance usages in residential buildings 
and occupant presence in commercial buildings. Unfortunately, large 
scale field measurement of occupant behavior is not available with the 
same scale of power grid distribution network. The current approach 
from few studies to generate such behavior models includes sampling 
from limited field measurement for appliance usages and presence 
[28,94]. The measured data include thermostat behavior, water heater 
usages, kitchen appliance usages, and electric vehicle (EV) charge be
haviors. Due to the coupled control framework, those data need to be at 
a fine granularity of every 15 or 30 min, and at each building level [95]. 
The same scenario occurs for commercial buildings. A stochastic occu
pant behavior simulation tool is often used to generate occupancy 
presence data [96,97]. 

2.1.4. Energy policy 
Energy policy covers two main types of mechanisms, namely regu

lations and demand-side management strategies. Regarding regulations, 
building energy modeling is often used to guide the design of building 
codes and building technology standards. Consequently, simplistic 
occupant behavior representation in models could lead to “unsuitable 
technology adoption and investment in building energy efficiency” [35]. 
Despite advances in sensing and information and communications 
technologies (ICT) to gather occupant behavior data from diverse 
sources, current data collection efforts remain disaggregated. There is a 
growing need to expand and merge current datasets to have represen
tative occupant behavior data for different building types and 
geographical areas, avoiding generic occupant behavior assumptions (e. 
g., ASHRAE’s diversity profiles) [35]. As for demand-side management 
strategies, modeling and simulations are increasingly used to experi
ment with and guide the design of such methods. One such example is 
the work of Azar and Al Ansari [98], who proposed an Agent-Based 
Modeling (ABM) framework to simulate and optimize feedback 
methods at the urban level, accounting for the interaction of occupants 
within and between buildings through social networks. A common gap 
in simulation-driven occupant behavior intervention studies is the lack 
of data to validate the predictions of the developed models. Future data 
collection efforts should include (1) data on the multidisciplinary drivers 
of behaviors (e.g., physiological, social, economic, and psychological) 
and (2) longitudinal occupant behavior data pre- and post-intervention 
(e.g., 6 months before and 12 months after) to help validate existing 
models and guide the design of future intervention mechanisms. 

2.2. Beyond building science 

2.2.1. Transportation 
Recently, mobility data generated in or near real-time are exten

sively integrated into travel models and different intelligent trans
portation systems (ITS) applications [99–101]. Kaffash et al. [99] 
reviewed the algorithms used in the ITS field and showed that artificial 
neural networks and deep learning algorithms were the most frequently 
used methods. Considering this review’s context, the spatial–temporal 
dynamic models developed to estimate human activities in trans
portation systems have a promising potential to be repositioned in the 
building design research field. In ITS research, the origin–destination 
matrices in travel demand models are generated using data sources such 
as GPS tracking, smart ticketing, mobile network connections, and 
multimedia data (speech, text, image, etc.) [102,103]. CDR data has also 
been used to model the universal home-work commute pattern in 
different countries [104–106]. Researchers have developed an explo
ration and preferential return (EPR) model to classify individuals as 
returners and explorers and predict the returners’ frequently visited 
locations such as work or home [105,107]. Fekih et al. [104] developed 
an expansion factor that upscales CDR data to represent the whole 
population. Moreover, social media platforms have emerged as a 
promising data source due to both their widespread popularity in many 
countries and their high temporal resolution. Researchers have 
demonstrated the practicality of extracting mobility data from Twitter 
and Google maps to predict users’ future activities and locations 
[49,100]. Considering the strengths and weaknesses of the available 
data sources, CDR and GPS data overcome the limitations faced by other 
data sources such as scale, resolution, adaptation, and representation 
[104]. However, GPS and CDR companies intentionally reduce the 
temporal and spatial accuracy of data to anonymize them and protect 
users’ privacy [108]. 

2.2.2. Epidemiology 
The COVID-19 pandemic has necessitated the expansion of the 

concept of human behaviors to include such things as wearing a face
mask, improving personal hygiene, and practicing social distancing. 
Such impacts of the pandemic on human behavior have received little 
attention in the literature thus far, and most epidemic models consider 
only the impact of human mobility on disease spread [109]. Tradition
ally, disease spread is modeled either without the inclusion of human 
movement (i.e., humans are modeled as a spatially fixed population 
[110] within a compartmentalized model such as susceptible-exposed- 
infection-recovered, or SEIR) or with a simulated model of human 
movement that is inferred from large-scale human mobility data but not 
necessarily extracted from said data. In one such approach, human 
trajectories were modeled as a random walk in which the step lengths 
are assumed to follow a Lévy distribution [111]. Other studies use 
census data to model mobility using such a distribution [112], and 
mobility patterns have also been extracted from bank note trajectories 
[113]. When it comes to large-scale datasets, there are varying data 
requirements depending on the research need. Dong, Pentland, and 
Heller used a graph-coupled hidden Markov model [43] and a Bayesian, 
discrete-time multi-agent model of infection [44] to model the spread of 
an infectious disease within a social network, training the model using 
the Social Evolution dataset [114] which consists of Bluetooth- and 
WiFi-enabled occupant tracking data (collected every six minutes) and 
daily flu symptom surveys completed by undergraduate dormitory res
idents. Madan et al. analyzed the same dataset to track disease spread by 
characterizing changes in face-to-face interactions and individual tra
jectories [45]. By using CDR data, Frias-Martinez et al. generated an 
agent mobility model with a granularity of 1 h to estimate the position of 
each agent at each moment in time, and a social network model to 
identify the set of individuals with whom a person has close contact 
[46]. 

The ongoing global pandemic has spurred a large body of research 
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involving human mobility modeling. The Google aggregated mobility 
research dataset1, used in [47] and [115] for COVID-19 forecasting 
aggregates inter-region flows of users both spatially (to a region of 5 sq. 
km) and temporally (on a weekly basis), and it can be further aggregated 
to obtain lower-resolution flows (inter-county and intra-county) 
depending on the required analysis. Further, the dataset includes 
“mobility trends” which may be used to infer social distancing-based 
metrics. Chang et al. [116] integrated two mobility networks - hourly 
movements of people in census block groups to POIs, derived from CDR 
data - to inform a SEIR model for modeling the spread of COVID-19 and 
identify more effective reopening strategies. Similarly, Ramchandani 
et al. [117] uses the SafeGraph dataset2, which combines population 
activities data (including POI and social distancing data), mobility data 
(including travel data), and census features (including sociodemo
graphic features), to develop an interpretable deep learning model, 
DeepCOVIDNet, for forecasting increase in infected cases for the next 
seven days in the United States. Panagopolous et al. [118] utilize the 
Facebook Data For Good datasets3 to develop a Graph Neural Network 
for COVID-19 forecasting. Hu et al. [119] utilize large-scale mobility 
data from several sources, including Apple4, C2SMART5, Cuebiq6, 
Google, and SafeGraph to develop a generalized additive mixed model 
for similar COVID-19 forecasting purposes. 

2.2.3. Disaster management 
Geo-tagged tweets collected from Twitter have a very fine resolution, 

both spatially and temporally. This level of precision is necessary to map 
and measure the effects of natural disasters on human mobility on a 
relatively small scale (i.e., within a city) [49,51,120]. CDR data, by 
contrast, has a fine temporal resolution but coarser spatial resolution, 
which is still useful for assessing national-level population movements 
in the wake of a natural disaster with a much wider area of impact (in the 
case of [50], an earthquake). Researchers in Japan constructed a large 
human mobility database which has GPS records from nearly 1.6 million 
mobile phone users with a time span from 1 August 2010 to 31 July 2011 
[121,122]. The temporal and spatial resolution of this kind of GPS data 
can reach the level of seconds and meters. Built on Markov Decision 
Process, Song et al. [121] developed a general probabilistic model to 
simulate and predict population evacuations during severe disasters. In 
another study [122], a Hidden Markov Model based disaster behavior 
model was proposed and used to predict human emergency behavior 
and mobility under large-scale disasters. Another study [123] focused on 
capturing pedestrians’ movement behavior during disaster evacuation. 
With 41 GPS traces used in this study, the sampling rate of those GPS 
data was every 30 seconds and the spatial resolution was at meter level. 

2.2.4. Visitor analytics, smart retail, and recommender system 
In the fields of marketing analysis and social recommendation, large- 

scale, fine-resolution smartphone-based datasets are used to model user 
movements and actions. Kaur et al. [53,54] analyzed a dataset collected 
over WiFi in a large shopping mall which includes logs of WiFi access- 
point association and web queries. The analysis involved two steps: 
first, semantic categorization of physical locations to find semantic 
similarity between user queries and physical points; second, classifica
tion of user trajectories into two categories, intentful and intentless. In 
[52], a location-query-browse (LQB) graph was introduced for making 
contextual recommendations to customers. The LQB was trained using 
the same dataset (WiFi access-point association logs and web browsing 

logs) as mentioned previously. Kim and Lee [56] also made use of WiFi 
data to predict user behavior - specifically, they analyzed data at 5-meter 
granularity to detect the semantic location of customers and explore 
their revisiting behavior. In [59] and [60], a Simultaneous Extraction of 
Context and Community (SECC) model was proposed and demonstrated 
on several datasets, including the Reality Mining [124] and SigComm 
[125] datasets, both of which use Bluetooth proximity signals, and the 
StudentLife dataset [58], which contains continuous sensing and WiFi 
data from students’ smartphones. Datasets used in these and similar 
analyses require fine spatial granularity (several meters) in order to 
make useful predictions regarding user movements and behaviors. 

2.3. Cross comparison 

Fig. 1 graphically compares the modeling requirements for applica
tions both in building science and beyond building science. Each 
application in building science (left side) has various data requirements; 
spatial requirements span three scales (building, community, city) and 
temporal requirements span from the scale of minutes to days for most 
applications. As the figure shows, the four non-building applications 
(right side) often use data at temporal and spatial resolutions that can fill 
the gaps for building application data requirements. For example, UBEM 
requires data spanning community and city scales. Epidemiology and 
disaster management studies may be able to provide data (or methods 
for collecting data) at those scales. 

It is important to observe and learn the context from which the data 
are generated, particularly when dealing with heterogeneous high- 
dimensional data from buildings, cities, and urban areas. One main 
challenge in spatiotemporal sensor data is to discover meaningful re
lationships among the numerous sensor channels and other types of data 
from multiple domains, sampled at different rates, and collected for 
specific purposes. High quality annotations are often not available. 
Therefore, the alignment, fusion, or similarity analysis of sensor data 
needs to be done in the spatial, temporal, and data domain [126] across 
multiple contextual signals [53,54,59]. Furthermore, it should be noted 
that data type and volume provided by non-building applications may 
partially satisfy for building science applications. For example, when 
considering occupant behavior in the UBEM applications, epidemiology 
studies can provide human mobility data at a satisfactory temporal and 
spatial resolutions’ level for UBEM, while UBEM requires appliance 
usage data which is not usually collected in epidemiology research. This 
is a challenge for some building applications. The detailed review for 
data types and sources is conducted by Flora et al. [25]. Due to the wide 
variety of possible data types required by building science applications 
as well as those available through non-building applications, such 
challenges must be met, to some extent, on a case-by-case basis and may 
not be easily solved using a single data resource from applications 
beyond building science. Another major challenge is dynamic changes in 
the real-world, requiring a model to be robust to the fast-changing fea
tures of urban dynamics [127]. The high variability of urban big data 
requires data pre-processing, normalization, and feature engineering to 
take place prior to any machine learning and modeling tasks [25]. 

3. Occupant behavior modeling methodologies 

This section answers the following two research questions:  

• What are the current modeling methods of occupant behavior for the 
aforementioned four applications at a community scale?  

• What modeling methods have been used in other domains that could 
potentially enhance the modeling capabilities for building science 
applications? 

1 https://www.google.com/covid19/mobility/  
2 https://www.safegraph.com/dashboard/covid19-commerce-patterns  
3 https://dataforgood.fb.com/tools/disease-prevention-maps  
4 https://covid19.apple.com/mobility  
5 http://c2smart.engineering.nyu.edu/covid-19-dashboard/  
6 https://help.cuebiq.com/hc/en-us/articles/360041285051-Cuebiq 

-s-COVID-19-Mobility-Insights 
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3.1. Current modeling methods in building science 

3.1.1. Summary of current approaches 
Current urban scale occupant behavior modeling studies are briefly 

reviewed and summarized in Salim et al. [25], and Happle et al. [10] 
without details on specific modeling methods. In general, there are two 
main approaches: 1) Deterministic approach. A fixed occupancy 
schedule is often pre-defined for different building types. Such schedules 
come from either ad-hoc rules or standards defined by ASHRAE [128], 
NREL [129], and DOE [130]. Most of these schedules lack diversity, 
assuming that all occupants have the exact same schedule. Some have 
occupancy diversity through measured building occupancy density, 
census data, use of discrete sets of appliances in residential buildings, 
and random sampling from probabilistic distributions of model param
eters [63]. 2) Stochastic approach. Most prior research has implemented 
first order non-homogeneous Markov Chain Monte Carlo technique to 
generate synthetic data from time-use survey data, without diversity 
[131]. Heterogeneous discrete-time Markov chain was used to model a 
three-state stochastic active-occupancy model with four types of occu
pants in residential buildings with diversity [132]. In addition, sto
chastic sampling was used to obtain individual occupant behavior and 
appliance usage [133]. 

3.1.2. Challenges 
Based on previous reviews, stochastic models have demonstrated 

better performance than deterministic models at the urban scale [17]. In 
addition, stochastic individual-based models seem to have the capability 
of generating urban scale individual occupant behavior. However, at the 
urban scale, all prior studies only generated one type of occupant 
behavior per building type, mostly residential while some others are 
office buildings. Not a single study covers more than two building types. 
In addition, almost all studies neglect to discuss the method by which the 
urban scale occupant behavior was generated apart from a simple 
description of stochastic sampling based on limited measurements 
[133]. Furthermore, mixed-use scenarios involving different types of 
occupancy in a single building are not modeled unless using a deter
ministic approach without stochasticity. Finally, at the urban-scale, 

humans move from one building to another on a daily basis through 
certain types of transportation. Their activities are based on their pres
ence at different buildings, and these activities relate to the energy and 
environmental control in those buildings. Hence, urban-scale occupant 
behavior is a much more complex problem that goes beyond building 
science and relies on knowledge from other relevant urban and heath 
care areas. 

3.2. Modeling methods in other domains 

This section describes in detail some of the modeling methods used in 
other domains, such as transportation, epidemiology, and disaster 
management, which can be leveraged for modeling occupant behavior 
at the urban scale. Specifically, this section focuses on describing 
advanced stochastic models, neural networks, and reinforcement 
learning among other modeling methods, which represent recent ap
proaches to modeling human behavior in different domains. Table 1 
provides a summary of these methods, their loss functions, and examples 
of their applications in different domains as well as some open source 
documentations of these implementations. 

3.2.1. Stochastic models 

3.2.1.1. Advanced hidden Markov models. Markov models have been 
used for different modeling purposes in other domains, including 
monitoring road traffic management [39], modeling individual’s 
movement patterns [154] or behavior patterns [155], studying human 
movement behaviors during a disaster evacuation [121,122], etc. Chen 
et al. [39] proposed a novel approach to monitor traffic congestion 
based on social media data (Twitter). They have developed a unified 
statistical framework based on hinge loss Markov random fields. The 
proposed model was evaluated using Twitter7 and INRIX8 probe speed 
datasets from two major U.S. cities, and results showed that the 

Fig. 1. Modeling requirements for applications both in building science and beyond.  

7 https://twitter.com/  
8 https://inrix.com/ 
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proposed Markov approach can achieve accurate predictions. Further
more, researchers [121,122] have developed Markov based models to 
understand and predict human mobility during a disaster. 

In order to predict individuals’ mobility behavior from sparse tra
jectory data, researchers presented a hierarchical and layered model 
based on a hidden markov model (HMM) framework [154]. Different 
from basic HMM, the proposed model is formulated as shown in Eq. 
(3.1): 

P
(
x k|λ

)
=

∑seqmax

i=1
p

(
x k|sk

i

)
*P

(
sk

i

)
(3.1)  

where seqmax represents the maximum number of hidden states and 
sk
i denotes sequences of hidden states within k-length in the proposed 

movement behavior model. Aggregating the above equation results in 
Eq. (3.2): 

P
(
x k|λ

)
=

∑seqmax

i=1

[
∏k

j=1
P(x(j) )|si(j))*P(si(j)|si(j − 1), si(j − 2), ⋯, 1

]

(3.2) 

Based on a real-life mobility dataset from the Nokia Mobile Data 
Challenge, the above proposed HMM framework was evaluated, and 
results showed that the model outperformed existing studies when 
analyzing sparse trajectory traces. In another study [156], the author 
proposed a hybrid Markov-based model to predict human mobility 
behavior in a large Chinese city using data collected by the Long Term 
Evolution (LTE) network. The proposed model considers non-Gaussian 
and Spatio-temporal characteristics of the location data, it includes 
three components, which are Mobility Pattern Discovery, Variable-order 
Markov Predictor, and Users Similarity Calculation. Results showed 
more than 56% accuracy in predicting individuals’ future movement. 

3.2.1.2. Generalized models. Generalized models describe mobility 
patterns by fitting universal models or laws to empirical data [157]. 
These quantifiable models are termed “generalized” because they are 
formulated to explain and characterize human movements. Examples 
include Lévy flights, continuous-time random walk (CTRW), and gravity 
models. Using a comprehensive database of bank note trajectories to 
capture aspects of human mobility, Brockmann et al. [113] unveiled that 
the distribution of short time traveling distances decays as a power law, 
which can be described by Lévy flights. Lévy distribution has been used 
to model mobility patterns of vector-borne diseases (e.g., dengue out
breaks) in cities [111,112]. Specifically, Barmak et al. [111] modeled 
human mobility using a truncated Levy distribution to represent the 
distribution of displacements’ lengths. However, Brockman [113] 
illustrated that describing human mobility as simple Levy flights is 
incomplete due to the strong spatial inhomogeneity (e.g., people are less 
likely to leave large cities than suburban areas). CTRW [158] was found 
to accurately characterize human mobility on large spatial scales, and 
have found applications in the modeling of human travel and thus the 
geographical spread of infectious diseases [113]. Unlike standard 
random walks in which the jumps are made periodically, in CTRW, the 
waiting times Δt1, Δt2 and the jump sizes Δr1, Δr2, ... are modeled as 
mutually independent and identically distributed (i.i.d) random vari
ables. Therefore, the total displacement after time t is r =
∑N

i=1Δriwhere N is the random number of jumps in the time interval (0,

t). Studies [113,159] indicate that the probability density function 
characterizing human trajectories are fat-tailed and given by 
P(Δr) |Δr|−1−α and P(Δt) |Δt|−1−β where 0 < α ≤ 2 and 0 < β ≤ 2. 

Gravity models provide insights on commuting flow and are often 
used to describe a random walk process with time-varying commuting 
fluxes between different destinations. Balcan et al. [137] analyzed 
mobility data from 29 different countries and found that a gravity model 
is able to reproduce commuting patterns up to 300 km. The authors then 
superimposed epidemic simulations to study commuting networks’ ef
fect on the spread of infectious diseases. Yan et al. [138] built on the 

gravity model to establish a universal model capable of explaining 
various human mobility behaviors, citing applications that include dis
ease control, social stability, congestion alleviation, information prop
agation, and e-commerce. The standard gravity model typically 
assumes a power-law decay with distance 

Wij∝
NiNj

exp
(
dij

) (3.3)  

where Wij is the commuting flux from i to j Ni is the population at i Nj is 
the population at j and dij is the distance between i and j. 

3.2.2. Neural networks 

3.2.2.1. Bayesian neural network. Classical neural networks show a poor 
performance in predicting human behavior because of improper 
network structure and overfitting issues [139,160,161]. As such, the 
Bayesian neural network (BNN) provides a solution to this problem by 
introducing connections’ weights as probabilistic distributions instead 
of using the point estimation approach, as shown in Fig. 2 [162]. The 
variable structure of BNN increased the models prediction accuracy 
from noisy data and provide results with confidence interval instead of 
single estimates obtained from the traditional neural network 
[163,164]. Therefore, the researchers used BNN in predicting travel 
time [164], secondary incidents [165], incident duration [166], battery 
status of unmanned vehicles [167], and zone capacity [163]. 

Bayes’ theorem is used to define the posterior distribution of 
connection weights based on prior distribution and training data as 
shown in Eq. (3.4) [162]: 

P(w|D ) =
P(D |w)P(w)

P(D )
(3.4)  

where P(w|D ) andP(w) are the posterior and prior weights’ distribution, 
P(D |w) is the likelihood of observations, and P(D ) is a normalizing 
constant. 

The posterior distribution is obtained through an optimization 
problem that minimizes the Kullback-Leibler divergence (KL diver
gence) by changing the parameters θ of weights’ distribution q(w|θ) as 
shown in Eqs. (3.5)–(3.7) [162,168]. This results in the variational free 
energy function shown in Eq. (3.8) [162]. More details regarding BNN 
and KL divergence are available in [162,169–171]. 

θ* = argminθKL[q(w|θ)‖P(w|D ) (3.5)  

θ* = argminθ

∫

q(w|θ)log
q(w|θ)

P(w)P(D |w)
dw (3.6)  

θ* = argminθKL[q(w|θ)‖P(w) ] − Eq(w|θ)[logP(D |w)] (3.7)  

F(D , θ) = KL[q(w|θ)‖P(w) ] − Eq(w|θ)[logP(D |w)] (3.8) 

The probabilistic weights allow the BNN to successfully overcome 
overfitting issues. However, this approach considerably increases the 
number of model parameters and the computational cost [162]. Aiming 
to tackle this computational problem, Cui et al. [100] used the auto
matic differential variational inference (ADVI) method to estimate the 
parameters of a BNN model and predicts trip purposes using Google and 
Twitter data. The research conducted using the open source PyMC3 
package [172]. They also integrated their BNN model with the elastic 
net method [173] to eliminate insignificant features from the training 
datasets and decrease the required computational cost by 75%. 
Furthermore, Park et al [165,166] used the inductive learning algorithm 
TREPAN to extract a comprehensive and understandable rule from the 
BNN network and support the decision making in incidents 
management. 

B. Dong et al.                                                                                                                                                                                                                                    
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3.2.2.2. Recurrent neural networks. Recurrent Neural Networks (RNN) 
and variants such as Long Short-Term Memory (LSTM) [174] are widely 
used in modeling human mobility behaviors [141–145,175]. In RNN, 
the previous outputs are fed as the input to the current step (see Fig. 3a, 
where x is the input at each time step and h is the corresponding hidden 
state), making RNN suitable for modeling sequential inputs. 

Although RNNs work effectively to model sequential data, they may 
suffer from the gradient vanishing issue which decreases performance 

when modeling long sequences. To overcome this issue, LSTM, a variant 
of RNN, is introduced. An LSTM cell has three gates (forget gate, input 
gate, and output gate) to control the information flow so that irrelevant 
information can be forgotten. With this unique memory mechanism, an 
LSTM is capable of learning long-term dependencies. In a basic LSTM 
network architecture (Fig. 3b), the hidden state is updated via: 

ht = LSTM(ht−1, xt; W) (3.9) 

Fig. 2. (a) Neural network with point estimate values, (b) Bayesian neural network with connection weights defined as distributions.  

Fig. 3. (a) Illustration of a RNN. (b) Illustration of the LSTM architecture.  

Fig. 4. The Markov decision process for RL agent.  

B. Dong et al.                                                                                                                                                                                                                                    
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where LSTM(∙) represents an LSTM cell and W denotes its trainable 
weight matrices. 

Inside each LSTM cell, the hidden state is determined by the input 
gate vector i, forget gate vector f, output gate vector o, and the cell state 
vector c. The recurrent updating process of the hidden state is described 
by the equations below: 

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

f t = σ
(
Wxfxt + Whfht−1 + Wcfct−1 + bf

)

ct = f tct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo)

ht = ottanh(ct) (3.10)  

where W terms are the weight matrices, σ(∙) denotes the sigmoid acti
vation function, and each b term with a subscript is the bias vector for 
the corresponding gating operation. 

Based on RNN, various methods are proposed to model mobility 
patterns and predict future occupancy states of users based on history 
mobility data. For example, STRNN [142] is an earlier RNN-based model 
which introduces time-specific transition matrices and distance-specific 
transition matrices in a recurrent manner. However, the transition 
matrices result in hand-crafted functions with too many parameters 
which makes it difficult to train and apply. To overcome the above 
shortcoming, DeepMove [141] leverages the attention mechanism to 
capture the long-range dependencies from lengthy and sparse trajec
tories for mobility modeling. Furthermore, Flashback [143] is a more 
recent RNN based method for predicting human mobility, which takes 
the geographical context into consideration in its attention mechanism. 
At a city-wide scale, DeepUrbanEvent [144] is proposed to model the 
crowd dynamics at extreme events such as earthquakes and typhoons. 
The occupant behaviors (e.g., crowd flow) are described in an analogous 
manner to videos, which provides a new perspective for processing such 
behavior data with RNN. These popular RNN-based methods and their 
implementations are summarized in the above Table 1. 

3.2.3. Reinforcement learning 
Intelligent mobility systems provide broad and interactive support 

for other urban subsystems [176]. Some of the tasks for many mobility 
system analyses are formulated as an optimization problem such as 
optimal control problems [177]. Among the control strategies, rein
forcement learning (RL) method relies on large amounts of data and 
advanced algorithms to optimize sequential actions with respect to 
controlling mobility behaviors. 

An RL agent learns how to map situations to actions so as to maxi
mize a numerical reward signal [178]. As shown in Fig. 4, an RL agent 
sequentially interacts with a system by taking an action At and receiving 
a reward signal Rt+1for some discrete time t. The agent chooses a 
deterministic or stochastic action that tries to maximize future returns 
under: 

p(s’, r|s, a) = Pr(St+1 = s’, Rt+1 = r|St = s, At = a) (3.11) 

which is known as Markov decision process (MDP). The state St, a 
specific condition of the environment, is transferred to a subsequent 
state St+1 with the transition probability: 

p(s’|s, a) =
∑

r
p(s’, r|s, a) = Pr(St+1 = s’|St = s, At = a) (3.12) 

A policyπ, a distribution over actions given states, defines the 
learning agent’s way of behaving at a given time: 

π(a|s) = Pr(At = a|St = s) (3.13) 

For value-based algorithms, a state-action value is usually estimated 

by a deep Q-network (DQN) [179]. A world leading school, DeepMind9, 
continually pushes the boundaries of the technique, advancing the field 
of artificial intelligence. On the other hand, policy-based algorithms 
build a representation of a policy by mapping s to a. Policy-based 
methods have better convergence properties and are more effective in 
high-dimensional action space. For a parametrized policy, the objective 
for policy-based algorithms is to find the optimal policy parameters: 

θ* = argmaxθJ(θ) = argmaxθPr(τ; θ)R(τ) (3.14)  

where R(τ)is the sum of rewards over a trajectory τand Pr(τ; θ) is the 
probability over trajectories when executing policy. Policy-based 
methods give more attention to sample efficiency. One toolkit for 
developing and comparing algorithms was developed by OpenAI Gym10. 

A recent review work has demonstrated the state-of-the-art for RL 
applied in mobility [180]. In addition to combinatorial vehicle routing 
optimization [149], there are several scenarios where deep RL can 
outperform other methods when the problem is complex. For example, 
Deep Q-network (DQN) delivers optimal performance in a single- 
intersection scenario [150]. Intelligent traffic light settings have also 
been modeled by multi-agent RL [151], and the controller was able to 
make improvements in time delay and speed in urban transportation. 
Another example concerns EV optimal charging navigation [152]. Deep 
RL is usually conducted for minimizing the total travel time and the 
charging cost by considering actual battery consumption and driving 
cost. Generally, RL provides sustainable dynamic routing solutions for 
urban planners, individual car users and the transport sector. The 
method integrates a number of infrastructures data sources to improve 
the transport policies at both district level and urban level. Occupancy 
schedule in buildings will be more predictable with growing realization 
of autonomous electric vehicles and seamless mobility. The advantage of 
RL method is that the agent can handle complex environment by quickly 
developing adaptive policies. However, data acquisition at large scale 
for training RL agent is still a challenging task. 

3.2.4. Network modeling 
The modeling of social and mobility networks continues to gain 

importance in a variety of fields ranging from epidemiology [116,181], 
to social and community detection [59,60,146,182], to user movement 
and behavior understanding [52,183]. In the Simultaneous Extraction of 
Context and Community (SECC) model proposed by Nguyen et al. [60], 
each context is represented as a multinomial distribution, which in
dicates the participating level of the users to that context. To detect 
communities, SECC then computes the clusters of multinomial distri
bution to discover proximity contexts and users. Recently, Graph Neural 
Networks (GNNs), which have shown great ability in learning and 
modeling graph data, are widely applied in social network modeling. For 
example, GraphRec [147] is designed for social recommender systems to 
learn user representations from different perspectives. Two graphs, 
namely user-user graph and user-item graph, are built to model users 
from the social perspective and understand the interactions between 
users and items. Consequently, GraphRec considers heterogeneous 
strengths of social relations by modeling the two graphs coherently. For 
community detection, Position-aware Graph Neural Networks (PGNNs) 
are proposed to compute position-aware node embeddings in [146]. By 
capturing locations of nodes with respect to the selected anchor nodes, 
this special class of GNNs is able to incorporate node positional infor
mation, while retaining inductive capability and utilizing node features. 

GNNs, first proposed in [184], are an extension of neural networks 

9 https://github.com/deepmind  
10 https://github.com/openai/gym Some other useful repositories can be 

found at https://lilianweng.github. 
io/lil-log/2018/04/08/policy-gradient-algorithms and https://github. 
com/cuhkrlcourse/RLexample 
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that allows for processing of data represented in graph domains. A graph 
is made up of nodes, which are defined by unique features, and edges, 
which represent the relationships between nodes. Thus a node is defined 
not only by its own features but also by the nodes surrounding it. A GNN 
aims to learn a state embedding xn for each node nbased on the infor
mation contained in the neighborhood of n. This state can be repre
sented by a parametric function fw, called the local transition function, 
which expresses the dependence of xn on its neighborhood. The output 
on produced by node n can then be expressed by a local output function 
gw as follows: 

xn = f w
(
ln, lco[n], xne[n], lne[n]

)

on = gw(sn, ln) (3.15)  

where ln, lco[n], xne[n], and lne[n] are the label of n, the labels of its edges, the 
states, and the labels of the nodes in the neighborhood of n, respectively. 
The outputs and states can be computed iteratively using 

xn(t + 1) = f w
(
ln, lco[n], xne[n](t), lne[n]

)

on(t) = gw(xn(t), ln ), n ∈ N. (3.16) 

The computation of fw and gw can be interpreted as the workings of a 
neural network; therefore, each node of the graph can be replaced with a 
neural network unit. In [47], the authors created a graph in which nodes 
represent individual locations and edges represent different relation
ships depending on their domain: edges in the spatial domain represent 
location-to-location movement and edges in the temporal domain 
represent connections to past days. The spatiotemporal GNN, trained to 
minimize mean squared logarithmic error, outperforms LSTM and 
Seq2Seq baselines in predicting COVID-19 caseloads for 20 counties in 
the U.S. The authors of [118] use a GNN in which nodes correspond to a 
country’s regions and edges represent interregional movement; they 
then apply a model-agnostic meta-learning approach to transfer 
knowledge from one country’s model to another. This approach is 
shown to outperform other COVID-19 forecasting techniques in four 
European countries. 

3.2.5. Agent-based modeling 
An agent-based approach, such as those as used by [185,98], or [46], 

can be used to model and simulate human mobility and interaction by 
representing each individual as a software agent. Each agent is charac
terized by a number of attributes which inform its movement and 
behavior. The types of agents used in the model and their attributes vary 
widely depending on the application. In [98], there are two classes of 
agents: occupants and buildings. Occupant-class agents are assigned to a 
host building and characterized by their occupant energy conservation 
index (OECI), susceptibility to peer pressure, and zealotry (probability 
of changing behavior based on feedback). Building-class agents are 
characterized by their energy intensity (EI), elasticity (percentage of 
their energy use which can vary depending on occupant behavior), and 
building energy conservation index (BECI). Both occupants and build
ings have their own social network (other agents to which they are 
connected). The actions of the occupant-agents inside each building 
directly impact the building’s attributes over time as follows: 

BECI(t)
i =

∑N

j=1

(
OECIt

j

/
N

)
(3.17)  

EI(t)
i = EI(0)

i
[
1 + 2∙elasticityi

(
0.5 − BECIt

i

)]
(3.18) 

Additionally, each occupant-agent’s behavior is influenced by the 
behaviors of the agents in its social network and by feedback from its 
host building’s social network: 

OECI(t+1)

i = (1 − Zealoti × Susceptibilityi) × OECI(t)
i + Zealoti

× Susceptibilityi ×
∑N

j=1

(BECIt
j

N

)

i
(3.19) 

In [46], ABM is used to simulate the progression of the H1N1 virus 
outbreak in Mexico. In this model, each agent represents an individual 
and has its behavior defined by three models: a mobility model, a social 
network model, and a disease progression model. The mobility model is 
formed by dividing each day into a set of non-overlapping equal-length 
time slots and assigning the agent to a specific location at each time slot 
using CDR data. The social network is defined as the set of agents with 
whom a particular agent has reciprocal contact at least once. The 

Fig. 5. Agent interactions. (Italicized statements indicate quantities of interest for each type of agent; arrows indicate how each type of agent affects others through 
various actions.) 
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probability that two agents who are in the same location at the same 
time and are part of the same social network can transmit the virus to 
each other is computed as follows: 

pi = 1 − exp

(

τ
∑

r∈R
Nrln(1 − rsiρ)

)

(3.20) 

where τ is the duration of exposure, R is the set of infective agents, Nr 

is the number of agents with infectivity r, si is the agent’s susceptibility, 
and ρ is the disease’s basic transmissibility. 

In [185], the authors simulated the movement of people on a 
campus, their thermal indoor and outdoor comfort levels, and the en
ergy performance of the buildings they occupy. There are two types of 
agents in the proposed ABM, “people” and “buildings”, interacting with 
the outdoor environment and impacting each other’s behavior as sum
marized in Fig. 5. The execution of the proposed model occurs along 
three submodels that cover people movement, thermal comfort calcu
lation, and building energy estimation using surrogate models of 
building energy performance. 

In [43], the authors introduced a graph-coupled hidden Markov 
model (GCHMM), a discrete-time multi-agent model in which multiple 
HMM agents are linked graphically with edges representing interactions 
between agents at time t. Each agent, which represents an individual, 
has an attribute (or state) associated with their stage of disease pro
gression (susceptible/infectious) and multiple attributes describing their 
current symptoms. The GCHMM formulation introduced in the study 
allows for fitting a wide range of agent-based models to large social 
network datasets. 

3.3. Performance evaluation 

Various metrics exist and can be used to evaluate the accuracy of 
models [186]–[188]. A summary of metrics is presented in Table 2, with 
a distinction made between metrics used for regression, classification, 
and probabilistic problems. It is important to note that most of the 
metrics are analytical and can be computed with specific formulas, as 
shown in the table (e.g., mean squared error, accuracy, and F1-score). 
Others, such as ROC curve and the confusion matrix, are rather graph
ical and require interpretation to extract knowledge about the perfor
mance of the models. Metrics evaluating the performance of 
probabilistic predictions should take into account both its reliability and 
sharpness. Examples of metrics that consider both aspects are the 
coverage width criterion (CWC) and the continuous ranked probability 
score (CRPS). 

Most of the metrics listed in Table 2 have been used for the evalua
tion of different occupant behavior modeling methods across the disci
plines covered in the previous sections. For instance, Jiefan et al. [79] 
used the MBE and the CVRMSE metrics to compare actual and predicted 
HVAC energy consumption generated using real-time occupancy data. 
Using CWC and PICP, Chong et al. [189] compared different spatial 
resolutions of occupancy data by evaluating prediction intervals of 
building energy consumption. Karimzadeh et al. [190] applied MAE to 
test their predictions of mobile users’ future locations. Ghosh and Ghosh 
[154] used accuracy, precision, and recall to test the predictive capa
bilities of a model that predicts people movements based on sparse 
trajectory traces. In a similar application of mobility prediction, Klous 
et al. [191] used the R2 metric when comparing predictions to ground 
truth data. Li and Dong [131] combined accuracy and ROC to evaluate 

Table 2 
Common performance metrics, adapted from [186–188,195].  

Metric (R: Regression, C: Classification, P: 
Probabilistic) 

Description and/or formula 

R - MSE (Mean Squared Error) and RMSE (Root Mean 
Squared Error) 

MSE =
1
N

∑N
i=1

(
yi − ŷi

)2
, RMSE =

̅̅̅̅̅̅̅̅̅̅
MSE

√

R - RMSLE (Root Mean Squared Logarithmic Error) and 
CVRMSE (Coefficient of Variation of Root Mean 
Squared Error) 

RMSLE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N
i=1

(

log
1 + yi

1 + ŷi

)2
√

,CVRMSE =
RMSE

y  

R - MAE (Mean Absolute Error) and MBE (Mean Bias 
Error) 

MAE =
1
N

∑N
i=1

⃒
⃒yi − ŷi

⃒
⃒,MBE =

1
N

∑N
i=1

(yi − ŷi )

R - Coefficient of determination R-Squared (R2) 
R2 = 1 −

∑N
i=1

(
yi − ŷi

)2

∑N
i=1

(
yi − yi

)2 , wherey =
1
N

∑N
i=1

yi  

C - Accuracy and error rate Accuracy =
TP + TN

TP + TN + FP + FN
, Errorrate = 1 −Accuracy  

C - Precision and recall Precision =
TP

TP + FP
, Recall =

TP
TP + FN  

C - F1-Score and FBeta-Score Fβ =
(1 + β) × Precision × Recall

β2 × Precision + Recall
, F1 = Fβ=1 =

2 × Precision × Recal
Precision + Recal  

C - AUC (Area Under the Curve) and ROC (Receiver 
Operating Characteristic) curve 

ROC is a plot of the true positive (TP) rate against the false positive (FP) rate for various threshold values. AUC is the area 
under the ROC curve.  

C - Confusion matrix Tabular representation of the predictions for each class against the ground truth values. 
P - Prediction Interval Coverage Probability (PICP) 

PICP =
1
N

∑N
i=1

ci, Ci =

{
yi = 1, ifyi ∈ [Li, Ui]

yi = 0, otherwise PICP gives an indication of the number of measurements that fall within the 

prediction intervals.  
P - Coverage Width Criterion (CWC) 

CWC = PINMW + γ(PICP)e−η(PICP−μ)PINMW =
1

N∙R
∑N

i=1
(Ui − Li)

2, γ(PICP) =

{
0, ifPICP ≥ μ
1, otherwise μ is the nominal confidence 

level and its value can be determined based on the confidence level (1 −α)% associated with the PIs.CWC provides an 
evaluation of the prediction intervals between two conflicting viewpoints, correctness represented by the prediction 
interval coverage probability (PICP) and sharpness represented by the prediction interval normalized mean width 
(PINMW)  

P-Continuous Ranked Probability Score (CRPS) CPRS(F, y) = −
∫ ∞

−∞ (F(Y) − l{Y ≥ y} )
2dYCPRS(F, y) =

1
2
EF|Y −Y’| −EF|Y − y|CRPS is defined as the integral of the Brier 

scores for the associated binary probability forecasts at all real-valued thresholds. It provides a measure of the discrepancy 
between the predictive distribution and a single observation taking into account the distribution’s sharpness. Y and Y’ are 
independent copies of a random variable with distribution function F and finite first moment.  

yObserved value 
N Number of observations 
R Range of observed values 
FN False negative 
TN True negative  

ŷ Predicted value 
U, L Lower and upper bound of prediction interval 
FP False positive 
TP True positive 
F Cumulative distribution function (CDF) of random variableY   
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short-term predictions of occupancy in residential buildings. Likewise, 
F1-score has been used to evaluate predictions of human mobility pre
diction [192], user’s next point of interest [193], and dwelling times 
[194]. 

Although Probabilistic predictive models of occupancy are often 
proposed to more realistically account for occupant behavior’s sto
chastic nature, it is somewhat surprising that probabilistic predictions 
are often simplified and evaluated similarly to deterministic forecasts. 
Ideally, the probabilistic predictions should have a high coverage of 
measured values (correctness) but still correctly represent measurement 
variability (informativeness). The CWC and the CRPS are examples of 
two metrics illustrated in Table 2 that considers both the correctness and 
informativeness of the prediction intervals. 

4. Future opportunities 

This section answers the following research question: What are the 
potential future research directions for building design, operation, and 
policies at a community level, with enhanced data sources and modeling 
methods from other domains? In other words, how can we bridge the 
data source and methodology gap between building science and beyond. 
We will discuss this in the following 3 opportunities. 

4.1. Opportunity 1. District heating and cooling system design and 
operation 

From current review, occupant behavior has been introduced for 
district heating and cooling system design and operation. However, 
current research mainly focuses on community scale, with a simplified 
occupancy profile. With the increasing needs of energy efficiency/flex
ibility, and the desire to integrate low-temperature heat resources, 5th 
generation district heating and cooling (5GDHC) technology has been 
recently proposed. This technology is characterized by low temperature 
supply (i.e. close to ground temperature), bi-directional operation (i.e. 
providing simultaneous heating and cooling services), decentralized 
energy flows (i.e. enabling multiple heat sources and heat sinks in the 
network), and heat sharing (i.e. recovering waste heat and sharing with 
different users [196]). 5GDHC technology has moved to a consumer/ 
prosumer-centric perspective, where occupant behavior plays an 
important role. However, at the moment, it rarely considers different 
occupant behavior profiles in the modeling of energy flows of different 
players/agents (e.g. data centers, shopping malls, and residential 
buildings). The implementation of 5GDHC will trigger the heating/ 
cooling sharing in a local energy market, and this will influence occu
pant behavior and thus buildings demand profiles, when energy needs of 
one building can be balanced with the surplus of another. Further, the 
local energy supply will be influenced, because less heating or cooling 
will be needed from the infrastructure. Potential agent-based models 
and reinforcement learning models can be applied for the simulation of 
5GDHC’s design and operation. What’s more, the condition of climate 
change has higher requirement for the energy use and carbon emission, 
where the insight of variety of occupant behavior and the prediction 
result of occupant behavior are significant for system design and oper
ation to combine with the renewable resources. This can be foreseen as 
an essential opportunity for future research. 

4.2. Opportunity 2. Grid-interactive community energy planning and 
management 

Traditional community energy planning and management considers 
urban land use and infrastructure-level energy management [96]. 
Future smart communities, with connected buildings, increasing pene
tration of distributed energy resources (DERs), electric vehicles (EVs), 
battery energy storage systems (BESS), and blockchain-enabled peer-to- 
peer (P2P) energy trading at the individual building level, require an 
optimal and distributed coordination of a cluster of buildings, DERs, and 

smart grid while considering human behavior and mobility. In addition, 
such communities should provide load flexibility and demand side 
management to the grid. Unfortunately, existing measurement of 
occupant behavior is not cost effective and scalable at a community and 
urban scale. Lack of knowledge and capability of modeling occupant 
behavior impedes further load flexibility and demand benefits from the 
aforementioned urban scale energy systems. The development and 
engagement of smart meters and social media have opened up a new 
paradigm for community energy planning and underscore the need for a 
holistic engineering framework to model a new energy infrastructure of 
a community. However, optimal energy planning studies at the com
munity level that take into account smart meters, connected buildings, 
energy trading, social media, and human behavior data are still rare, and 
could be future research opportunities. 

4.3. Opportunity 3: Resilient building and community design 

The concept of resilience is gaining increasing interest in the built 
environment in response to disaster management and the recent COVID- 
19 pandemic, which has transformed the manner in which we live and 
interact in the built environment [197]. While still filled with un
certainties, the pandemic has highlighted once more the need to incor
porate resilience concepts into urban planning and management which 
are crucial in mitigating the impacts of disasters and unforeseeable 
events. Originating from the study of ecological systems, resilience is 
defined as a system’s ability to persist and absorb changes and distur
bances [198]. For technical systems, it is the ability of a system to 
withstand and fulfill its functional requirements and recover to the ex
pected performance requirements during and after the occurrence of an 
unforeseeable and disruptive event [199]. The wealth of available data 
and the many data-driven models are proving to be useful tools to su
pervise the functioning of an urban system (e.g., [200]), to fast detect 
occurrence of unforeseeable events (e.g., a terrorist attack [201]), and 
monitor the propagation of disruptive events (e.g., the spread of infec
tious diseases [202]). However, it is difficult for these models to consider 
the spatial–temporal relationships between humans and buildings 
[203]. For example, models considering human behavior and infectious 
disease transmission have mostly been for a single space within a 
building [202]. To improve resilience, cities need systems that can fast 
detect anomalies due to disruptive events, flexibly adapt to new condi
tions, and provide effective emergency response to recover a minimum 
functionality level. Knowledge of real-time human mobility, building 
occupancy, and energy use provides the ability to simulate different 
interventions and evaluate their effectiveness in reducing the impact of 
disruptive events like infectious disease outbreaks, heatwaves, flooding, 
and earthquakes. From this review, we found significant differences in 
modeling methods and data requirements in the field of building science 
compared to disciplines such as transportation, epidemiology, disaster 
management and social recommendation systems. Integrating mea
surements of human mobility, building occupancy, and energy uses with 
mathematical models of infection spread or local climate alteration 
shows promise and presents future research opportunities. 

To reinvigorate life in cities post-pandemic, a major overhaul in 
designing and repurposing buildings and public spaces is required. 
Indeed, the traditional spaces inside a house showed to be unsuitable 
and even the role and functions of an apartment in a post-pandemic 
society need to be rediscussed to increase resilience by properly inte
grating smart working and educational needs, spaces for physical exer
cise, and outdoor or semi-outdoor spaces, like balconies and terraces, as 
buffer zones for mental and social well-being [204]. Furthermore, the 
citizens as a key stakeholder in cities need to be involved in the decision- 
making process. Participatory design and large scale citizen science 
projects [205] could be explored to involve humans in the loop, both to 
empower citizens as well as to involve the “wisdom of the crowds” in the 
algorithmic-driven society [206]. Taken together, this review suggests 
that the integration between different modeling methods taking into 
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consideration data sources at varying spatial and temporal resolutions 
would be a fruitful area for future work. 

5. Conclusion 

Based on a comprehensive review of urban scale occupant behavior 
modeling methods used in Building Science and other domains, it can be 
concluded that: 1) urban scale building applications still rely on 
modeling occupant behavior at the individual building level, not at the 
urban scale; 2) emerging data sources and methodologies in trans
portation, epidemiology, disaster management, and marketing/promo
tion domains can potentially meet the modeling requirement of building 
applications discussed in this paper. 

Advanced modeling approaches employed in other domains such as 
reinforcement learning, social/network modeling, and agent-based 
modeling have proven to be capable of learning and predicting the 
behavior of people across physical and digital (cyber) spaces. These 
methods may be adapted to building scale applications to learn not only 
human mobility patterns, but also their behaviors and interactions with 
buildings and each other within buildings. Among those modeling 
methods, neural networks and graphical network analysis have gained 
much attention and shown promising results. This paper also summa
rized common performance evaluation metrics that can be adopted to 
evaluate the accuracy of models in the building science. 

Given the capabilities of new modeling methods and approaches, this 
paper discusses three research opportunities including new district 
heating and cooling system design and operation, grid-interactive 
community energy planning and management, and resilient building 
and community design. All three areas conclude that a more accurate 
and detailed modeling of occupant behavior that considers demographic 
information, behavior changes, and social network analysis will trans
form traditional building design and operation, and open up a new 
paradigm for future research. 
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