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Abstract—This paper presents two types of concatenated LDPC
coding schemes which are viewed as generalized globally coupled
(GC) LDPC coding schemes in which outer codes serve as the local
codes for correcting local errors and inner codes serve as global
coupling codes to correct global errors. The first type of
concatenated LDPC coding scheme globally couples a finite
geometry (FG) LDPC code as the local code and a finite field (FF)
LDPC code as the global coupling code. This type of global
coupling, called GC-FG/FF-LDPC coupling, combines the distinct
features of both FG- and FF-LDPC codes to achieve low error
rates at a rapid decoding convergence and an error performance
close to the Shannon limit. Decoding of a GC-FG/FF-LDPC code
is carried out in two iterative phases, global/local or local/global. In
the second type of concatenated LDPC coding scheme, both local
and global coupling codes are FF-LDPC codes. If both local and
global coupling codes are constructed from the same finite field
and have the same graphical structures, a GC-FF/FF-LDPC code
can be decoded in one phase or two phases iteratively, otherwise,
it can be decoded in two phases. Construction of GC-FF/FF-LDPC
codes is very flexible in lengths and rates. The proposed two-phase
iterative decoding is practically implementable.

Index Terms—Concatenated coding, finite geometry LDPC
code, finite field LDPC code, global coupling, iterative decoding.

I. INTRODUCTION

DPC codes [1] perform amazingly well with iterative

decoding algorithms based on belief propagation, such as
the sum-product algorithm (SPA) [2] or the min-sum
algorithm (MSA) [3]. However, with iterative decoding, most
LDPC codes have a common severe weakness, known
as the error-floor [4]. For an additive white Gaussian noise
(AWGN) channel, the error-floor of an LDPC code is mostly
caused by an undesirable structure, known as a trapping set [5]
in the Tanner graph of the code based on which the decoding is
carried out.
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Let G be the Tanner graph of a binary LDPC code C given by
the null space of an m x n matrix H over GF(2). For 1 < «
<nand 0 <t <m, a (k, 1) trapping set is a set 7(k, 1) of «
variable nodes (VNs) in G which induces a subgraph of G with
exactly 1 odd-degree check nodes (CNs), and an arbitrary
number of even-degree CNs. The parameter k is called
the size of the trapping set 7(x, T). A trapping set simply
corresponds to an error pattern with k errors which prevents an
iterative LDPC-decoder to converge. For an AWGN channel,
error patterns with small numbers of errors are more probable
than error patterns with larger numbers of errors. Consequently,
with iterative decoding, the most harmful trapping sets are the
trapping sets of small sizes which generally result in high error-
floors. If an LDPC code has a reasonably large minimum
distance and its Tanner graph contains no harmful trapping sets
with sizes smaller than its minimum distance, the code can
achieve a very low error rate without a visible error-floor.

Among all the known classes of LDPC codes, the only
known class of LDPC codes with large minimum distances
whose Tanner graphs contain no trapping sets with sizes smaller
than their minimum distances are LDPC codes constructed
based on finite geometries such as projective and Euclidean [6-
10]. These codes are referred to as finite-geometry (FG) LDPC
codes and they can achieve very low error rates without error-
floors. Iterative decoding of these codes converges rapidly with
a small number of iterations, say 5 to 10. Furthermore, these
codes are cyclic codes and hence their encoding can be
implemented with simple feedback registers in the systematic
form [7].

Besides the FG-LDPC codes, there are many other classes
of structured LDPC codes constructed based on finite fields.
These codes, called finite field (FF) LDPC codes, have a quasi-
cyclic (QC) structure [8-12]. The QC-structure of these codes
simplifies both encoding and decoding implementations. The
construction of FF-LDPC codes is very flexible in lengths and
rates. They, in general, perform very well over an AWGN
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channel in the waterfall region and can achieve relatively low
error-floors. However, their minimum distances are, in general,
much smaller than that of FG-LDPC codes of the same lengths
and rates, and their Tanner graphs do contain small trapping sets
if the column weights of their parity-check matrices are too
small.

This paper presents two types of concatenated LDPC coding
schemes which are viewed as globally coupled (GC) LDPC
coding schemes in which outer codes serve as the local codes
for correcting local errors and inner codes serve as global
coupling codes to correct global errors.

The first type of concatenated LDPC coding scheme globally
couples an FG-LDPC code as the /ocal code and an FF-LDPC
code as the global coupling code. This type of concatenation is
referred to as globally coupled (GC) FG/FF-LDPC coding
scheme. The GC-FG/FF-LDPC coding scheme is devised to
combine the distinct features of both FG- and FF-LDPC codes
to achieve low error rates with a rapid decoding convergence
and an error performance close to the Shannon limit. Decoding
of a GC-FG/FF-LDPC code is carried out in two iterative
phases, global/local or local/global. With the two-phase
iterative decoding, trapping sets that trap a local decoder may
be un-trapped by the global decoder, and conversely, the
trapped global decoder can be un-trapped by the local
decoder(s). As a result, a GC-FG/FF-LDPC code can achieve a
very low error rate without a visible error-floor. Furthermore,
during the global iterative decoding process, the reliability
information of each decoded local codeword is shared by the
others to enhance the overall reliability of all decoded local
codewords. This information sharing among the decoded local
codewords enhances the overall decoding performance of a
GC-FG/FF LDPC code. Even though GC-FG/FF-LDPC codes
have large minimum distances and good trapping set structure,
their construction is limited in lengths and rates.

In the second type of concatenated LDPC coding scheme,
both local and global coupling codes are FF-LDPC codes which
are constructed from finite fields. Such a concatenated LDPC
code is referred to as a GC-FF/FF-LDPC code. If both local and
global coupling codes of a GC-FF/FF-LDPC code are
constructed from the same finite field and have the same
graphical structures, it can be decoded either in one phase or
two phases iteratively, otherwise, it can be decoded in two
phases. Construction of GC-FF/FF-LDPC codes is very flexible
in lengths and rates. Two-phase iterative decoding of a GC-
FG/FF-LDPC code or a GC-FF/FF-LDPC code can be
practically implemented. Examples of concatenated and
globally coupled codes were reported in the literature [13-15].

The rest of the paper is organized as follows. Sections II and
IIT present two types of GC-FG/FF-LDPC codes and
characterize their random error- and erasure-correction
features. Iterative methods for decoding these GC-FG/FF-
LDPC codes in two phases are presented. Section IV presents a
class of GC-FF/FF-LDPC codes in which both local and global
coupling codes are constructed from the finite fields. Section V
concludes this paper with some remarks on possible
applications of GC-FG/FF-LDPC codes.

II. A GC-FG/FF-LDPC CODING SCHEME

In this section, we present a GC-FG/FF-LDPC coding scheme
that combines FG-LDPC codes as local codes and FF-LDPC
codes as global coupling codes to form a class of structured
LDPC codes that possess the distinct features of both the FG-
and the FF-LDPC codes. The codes in this class are called GC-
FG/FF-LDPC codes. Here, we give a brief description of the
FG- and FF-LDPC codes and characterize their distinct
features.

An FG-LDPC code has a large minimum distance and its
Tanner graph contains no small harmful trapping sets and has
large connectivity, it can achieve a very low error rate without
a visible error-floor. Consider a 2-D PG over the field GF(2%),
denoted by PG(2, 2°), where s is a positive integer. The null
space over GF(2) of Hpg gives 2-D PG-LDPC code, denoted
by Cpg, with a minimum distance of at least 2° + 2 which is one
greater than the column weight 2* + 1 of Hpg [6-9]. The Tanner
graph Gpg of Cpg has a girth of at least 6, and contains no
harmful trapping sets with sizes smaller than 2° + 1 [9] and [10].

To construct QC-FF-LDPC code based on finite fields with
a girth of at least 6, consider a finite field GF(q) with g elements
where ¢ is a prime or a power of a prime. With 1 <m, n < g and
primitive element a, let So = {a®, a1, . . ., a'm-1} and S| = {0,
o1, ..., o/n1} be two arbitrary subsets of elements in GF(g) of

size m and n, respectively. We form the following m % n matrix
over GF(g) where 1 is a nonzero element in GF(g):

B(m,n) = [aik + najl] 0sk<m,0sl<n €Y)]

In the matrix B(m, n), all the entries in a row (or a column) are
distinct elements in GF(q); each row (or each column) contains
at most one zero elements; no two rows (or two columns) have
identical entries in any position; and each 2x2 submatrix
of B(m, n) is non-singular (NS) [11], which is referred to as
the 2x2 submatrix (SM) constraint 8, 11, 17, 18] and is the key
structure for constructing QC-FF-LDPC code whose Tanner
graph has a girth of at least 6.

For 0 <i < g - 1, we represent the nonzero field element o in
GF(q) by a circulant permutation matrix (CPM) of size (¢ — 1)
x (g — 1) whose generator (or the top row) has a single 1-
component at the position i. For the zero element 0 = o™, we
represent it by a zero matrix (ZM) of size (g — 1) x (g — 1). This
matrix representation of a field element is called the CPM-
dispersion [8-12], [18].

The construction of a 2 x 2 SM-constrained base matrix using
two subsets So and S1 can be put in a product form as follows:

B*(m,n) = [aikail -] 0sk<m,0sl<n (2)

If we set m =n=¢g— 1 and choose So=S81= {1, a, 02, ..., of
21 then B*(g — 1, ¢ — 1) can be arranged (by row permutation)
asa(q—1)x(qg—1) circulant Bo,.*(q — 1, ¢ — 1) over GF(q),
in which each row is the cyclic-shift of the row above it one
place to the right and the top row is the cyclic-shift of the last

row one place to the right. Any submatrix of B¢,c*(¢ — 1,9 — 1)



can be used as a base matrix to construct a QC-LDPC code
using CPM-dispersion. The resultant code may have a doubly
quasi-cyclic structure [9].

A. Encoding and Code Construction

Let Crg be an (no, ko) binary FG-LDPC code of length no with
dimension ko given by the null space of
an ng X ng circulant Hrg over GF(2) which is the line-point
incidence matrix of the 2-D finite geometry FG(2, 2°) over
GF(2%). Let dp be the minimum distance of Crg. The Tanner
graph Grg of Crg contains no harmful trapping set with a size
smaller than do - 1.

Let ¢ be a positive integer and Crr be a (cno + r, cno) binary
FF-QC-LDPC code of length cng+rand dimension cno,
where r is the number of parity-check symbols of Crr. The
code Crris given by the null space of an RC-constrained A x
(cno + r) parity-check matrix Hpr constructed by the CPM-
dispersion of a base matrix B over a finite field GF(2*) that
satisfies the 2 x 2 SM-constraint. Note that A may be greater
than r if Hrr contains redundant rows. In a concatenation of
these two codes, both codes are put in systematic form.

Letube a sequence of cko binary information symbols.
Encoding of this information sequence consists of two stages,
local and global coupling encodings. First, we
divide u into ¢ subsequences, denoted by uo, uj, ... , Ui, each
consisting of ko information symbols and called a message. For
0<i<c, the message u; is encoded into a
codeword v; of ngp code symbols in the local FG-LDPC
code Crg. Encoding results in ¢ codewords, vo, Vi, ... , Ve,
in Crg, called local codewords. Cascading these ¢ local
codewords, we obtain a sequence v= (Vo, vy, , Ve-1)
of cng code symbols, called a cascaded codeword. This
completes the first stage of encoding, referred to as the local
encoding. There are 2% such cascaded codewords which form

a (cno, cko) linear code of length cno, denoted by Crg casc(c). The
parity-check matrix of Crgcasc(c) is ac X ¢ diagonal array,
denoted by diag(Hrg, Hrg, , Hrg),  with ¢ copies
of Hrg lying on its main diagonal and zeros elsewhere. The
code Crg,easc(c) s called a cascaded code of Crgand the
integer c is called the cascading degree. The minimum distance
and rate of Crg casc(c) are the same as Crg.

In the second stage of encoding, a cascaded
codeword v in Crg,case(c) is encoded into a codeword w = (p, V)
of cng + r code symbols in the global coupling FF-LDPC
code Crr. The codeword w consists of two parts v and p. The
first part v is a cascaded codeword in Crg,cusc(c) and the second
part p consists of r parity-check symbols, which are formed
based on the parity-check matrix Hrr of Crr. These r parity
symbols connect theclocal codewords vg, vi, ... Ve
10f Crginv.

The encoding performed at the second stage is referred to as
global coupling encoding. Local encoding, cascading, and
global coupling encoding result in 2¢0 codewords in Crr in the
form of (p, v). These codewords form a (cno + r, cko) linear
code which is referred to as a GC-FG/FF-LDPC code, denoted
by Cecrorr. We see that the two-stage encoding of a GC-

FG/FF-LDPC code is straightforward and can be easily
implemented.

Based on the formation of Cscrerr, we readily see that a
parity-check matrix of Cgc g rris of the following global form:

Hec ro rr
_ 0 | diag(HFG; HFG; ey HFG) (3)
HFF,left | HFF.Tiyhf

The parity-check matrix Hec re,rrof Cocre rrconsists of two
submatrices, the upper one and the lower one. The upper
submatrix of Hec re rrconsists of two parts. The first part is a
zero-matrix O of size cno X r and the second part is the parity-
check matrix of the cascaded FG-LDPC code Crg, casc(c). The
lower submatrix of Hsc rg rris the parity-check matrix Hgr of
the global coupling FF-LDPC code Crr which consists of two
parts, denoted by Hrr e and Hprp igns, called left and right parts
of Hrr, respectively. The left part Hrr o of Hrr consists of the
first (leftmost) r columns of Hprand the right
part Hrr,rign, of Hrr consists  of  the rightmost cng columns
of Hrr. Note that the global matrix Heergrrconsists
of ¢ disjoint copies of the parity-check matrix Hrg of the local
code Crg, which are globally connected by the parity-check
matrix Hgr of the global coupling FF-LDPC code Crr. It can be
easily checked that a codeword w = (p, v) in Csc g Fr is in the
null space of Hoc 6 rr, i.€., W (Hecrrr)T = 0.

B. Graphical Structure

Let Grg, Grr, and Ggcrorrbe the Tanner graphs of Cre, Crr,
and Cgc ro,Fr, respectively. From (3) and the diagonal structure
of diag(Hrg, Hrg, . . . , Hrg), we readily see that the Tanner
graph Ggcrgrrof the GC-FG/FF-LDPC  code Cocro rr,
consists of ¢ disjoint copies of the Tanner graph Grg of the
local FG-LDPC code Crg, which are globally connected by a
group of global CNs that correspond to rows of the parity-check
matrix Hrr of the global coupling FF-LDPC code Crr.
Hence, Gocrorris a CN-based globally coupled graph
with ¢ identical and disjoint local graphs Grg, which are
connected by the A CNs of the global coupling graph Grr as
shown in Fig. 1.

Local Graphs M M M
GG, tocal

Global coupling graph
GrEcoupling

] Global CNs
() Global Coupling parity-check VNs

CNs of the Local Graphs
VNs of the Local Graphs

Fig. 1. The Global structure of the Tanner graph of
a GC-FG/FF-LDPC code.



Since each local graph Grg in Ggc rg rr 1s the Tanner graph
of the local FG-LDPC code with minimum distance do, it
contains no harmful trapping sets of size smaller than do — 1.
For k <dy- 1, if the global coupling graph Grr contains a
harmful trapping set T of size «, then the k VNs in T either
reside in one local graph or distribute among the ¢ local graphs.
Note some of the VNs in 7 may reside in the subgraph
associated with the left part Hrr o 0f Hrr. For 0 < i <c, let k; be
the number of VNs in T that reside in the i-th local graph Grg,i.
Regardless of the distribution of the k VNs in 7, «;is less
than dy - 1. Hence, the k; VNs will not create harmful trapping
set in the i-th local graph Grg,:.

C. Two-Phase Iterative Decoding

Based on the structure of the GC-FG/FF-LDPC code Cec o Fr,
two iterative decoding methods can be devised to decode the
code. Letrbe the received vector of cng+ rsymbols. We
decode r in two phases. The two-phase decoding can be carried
out in two different manners iteratively: 1) global/local iterative
decoding, and 2) local/global iterative decoding.

With the global/local iterative decoding, we first
decode r based on the parity-check matrix Hpr of the global
coupling FF-LDPC code Crr using a chosen iterative decoding
algorithm. Set the maximum number of global coupling
decoding iterations to le.mw. Decode r based on the chosen
iterative decoding algorithm. At the end of each global coupling
decoding iteration, we check the syndrome Sgr of the decoded
vector x based on Hpr. If Spr= 0, then x is a codeword in Crp.
If Skr # 0, we continue the global coupling decoding until either
the decoded vector xis a codeword in Crror the preset
maximum number /. mqr 0f decoding iterations is reached.

If a codeword win Crris obtained during the global
coupling decoding phase, we remove all the r parity-check
symbols from w. This gives ¢ decoded vectors v¥o, v¥i, ...
, V¥, for the ¢ transmitted local codewords in Crs. For each
decoded vector v¥;, 0 <i<c¢, we compute its syndrome Src,;
based on the parity-check matrix Hrg of the local FG-LDPC
code Crg. If the syndromes of the ¢ decoded vectors are all
zeros, then v¥*o, v¥;, ... , v¥*.;are codewords in Crs. In this
case, we stop the entire decoding process. Then, we remove all
the parity-check symbols from the ¢ decoded local codewords
and deliver the cko decoded information symbols to the user (or
users in multi-user communications). If the syndrome of any of
the ¢ decoded vectors is not zero, the local code decoder is
activated to perform decoding on the decoded vectors whose
syndromes are not zero. These vectors are referred to as failed
local vectors. The decoding algorithm used for decoding the
local code can be the same or different from the one used for
decoding the global coupling FF-LDPC code Ckrr.

For decoding of each failed local vector at the output of the
global coupling decoder, we set the maximum number of local
decoding iterations to jocaimax- If the decoding of all the failed
local vectors is successful, we remove all the parity-check
symbols from all the decoded local codewords and deliver
the cko decoded information symbols to the user(s). If the
decoding of any failed local vector is unsuccessful

after Liocaimax iterations, we switch back to the global coupling
code decoding with the decoded information and the channel
information as input to decode the received vector r again.

We perform the global/local decoding process iteratively
until either the entire decoding is successful, or a preset
maximum number /.. of global/local decoding iterations is
reached. With the global/local decoding of the GC-FG/FF-
LDPC code, the local decoder is used to correct the local
errors that the global coupling decoder fails to correct.

With the above two-phase decoding, no trapping set of
size smaller than d - 1, regardless of the distribution of its VN,
will trap the two-phase decoder of the GC-FG-FF LDPC
code Cgcrorr. If a trapping set of size do - 2 or smaller traps
the global coupling decoder, it will be un-trapped by the local
decoder.

To achieve a good error performance, both inner and outer
decoding algorithms are either the SPA or a properly scaled
MSA. Decoding with the SPA requires real number
multiplications, additions, and comparisons. However, the
MSA requires mainly real additions and comparisons. Since an
optimized scaled MSA performs just as well as the SPA and
requires much less computational complexity, a scaled MSA is
normally preferred for decoding an LDPC code. To reduce the
overall decoding complexity, we may use the reduced-
complexity revolving iterative decoding scheme (RID/MSA)
[16] for decoding the local FG-LDPC. The RID scheme reduces
the decoder complexity without (or with an ignorable)
performance degradation. The decoding is based ona small
submatrix of Hrg that consists of  any/ consecutive
rows of Hgg, even [ = 1.

Note that if the global coupling decoding is successful in an
iteration loop, we can stop the entire decoding process without
checking the syndromes of the decoded local codewords to
determine whether to carry out the outer decoding. This reduces
computational complexity and decoding delay.

Opposite to global/local decoding presented above, we can
decode the GC-FG/FF-LDPC code Cgc re rr, in a reverse order,
i.e., perform local decoding before global coupling decoding in
each global decoding loop. Recall that each globally coupled
codeword in systematic form consists of ¢ local codewords in
cascade followed by r parity-check symbols of the global
coupling FF-LDPC code Crr. Local decoding is carried out as
soon as a local vector of nysymbols corresponding to a
transmitted local codeword is received. The decoding of each
received local vector is based on the local parity-check
matrix Hrg using a chosen iterative decoding algorithm, say the
RID/MSA. If errors spread out among the c received local
vectors and errors in each received local vector do not create
harmful trapping set with a size greater than dy - 2 (very rare),
each local decoding will be successful.

If the local decoding fails to give ¢ correctly decoded local
codewords, the global coupling iterative decoding is then
activated. The rest of the decoding process is the same as the
global/local iterative decoding. The local/global iterative
decoding is effective for correcting local random errors.

Since every codeword in CgcGrrr consists of ¢ outer
codewords in Crg, the global coupling decoding is actually



performed on a collection of ¢ received local codewords jointly.
During the decoding process, the reliability information of each
decoded local codeword is shared by the others to enhance the
overall reliability of all decoded local codewords. This joint-
decoding and information sharing at the global coupling
decoding phase reduce the probability of performing the local
decoding phase and hence make the decoding converge more
quickly. The joint-decoding and information-sharing is the key-
feature of two-phase decoding.

The two-phase iterative decoding can be practically
implemented with local FG-LDPC code Crg implemented
based on the submatrix Hrg of Hocrcrr and the global
coupling code Crr implemented based on the submatrix Hgr of
Hec G rr.

Example 1: In this example, we construct a GC-PG/FF-LDPC
code with the (1057, 813) PG-LDPC code Cpg as the local code
and the (10000, 9600) FF-LDPC code Crr as the global
coupling code.

Consider PG(2, 2°) over GF(2%) which contains 1057 points
and 1057 lines. The line-point incidence matrix of PG(2, 2°) is
a 1057 x 1057 circulant matrix Hpg over GF(2) of rank 244
with both column and row weights 33 which has 813 redundant
rows. The null space over GF(2) of Hpg gives a (33, 33)-regular
(1057, 813) cyclic PG-LDPC code Cpg of length 1057 with a
rate of 0.7691 and minimum distance at least 34, a very large
minimum distance for an LDPC code of such length and rate.
The Tanner graph Gpg of Cpg has girth 6 and contains no
harmful trapping sets of sizes smaller than 33.
Each VN in Gpgis connected to other 1056 VNs
in Gpg by paths of length 2.

To construct FF-LDPC code, assume a is a primitive element
in the prime field GF(101). We form a 4 x 100 base matrix B(4,
100) over GF(101) in the form of (1) [8, 11, 17, 18] using two
subsets So= {0, 1, a, &’} and 1= {1, a, o2, ..., a”}. The
CPM-dispersion of B(4, 100) gives a 4 x 100 array Hrr(4, 100)
of CPMs of size 100 x 100. The array Hr+(4, 100) is a 400 x
10000 matrix over GF(2) with column and row weights of
maximum 4 and 100, respectively, which satisfies the RC-
constraint. The null space of Hrs(4, 100) over GF(2) gives a
binary (4, 100)-regular (10000, 9600) QC-FF-LDPC
code Crp(4, 100) with rate 0.96.

To construct GC-PG/FF-LDPC set the cascading degree ¢ =
9. In construction, an information sequence of 7317 symbols is
divided into 9 messages, each consisting of 813 information
symbols. We first encode these 9 messages into 9 codewords
in Cpg. Next, these 9 local codewords are cascaded to form a
cascaded codeword vof 9513 code symbols. Then, the
cascaded codeword v is extended by adding 87 fill-in zeros to
form a word vey of 9600 symbols.

At the second encoding stage, the extended cascaded
codeword v, is encoded into a codeword w in the global
coupling code Crr. The codeword w consists of 7317
information symbols, 2196 local parity-check symbols, 400
global coupling parity-check symbols, and 87 fill-in zeros. The
above local/global coupling encoding results in a (10000, 7317)
GC-PG/FF-LDPC code Cqc pg.rr with a rate of 0.7317.

To decode Coc ri rr, We use global/local two-phase iterative
decoding. The BER performance of the code over an AWGN
channel decoded using the MSA for the global coupling code
and the local code with Zgc max, Ziocai max and Lnax setto 5,5, and 5,
respectively, is shown in Fig. 2. The scaling factors for
decoding the global coupling and local codes are 0.625 and
0.275. When decoding is switched from a global coupling
decoding phase to a local decoding phase, the 87 fill-in zeros
are removed, conversely, when decoding is switched from a
local decoding phase to a global coupling decoding phase, the
87 fill-in zeros are added back.
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Fig. 2. The BER performance of the GC-PG/FF-LDPC code given in
Example 1.

D. Punctured GC-FG/FF-LDPC Codes

If we remove the submatrices O and Hprs from the global
parity-check matrix Hec s rr given by (3), we obtain a global
matrix H*gcrgrr. The mull space of H*Gororr gives a
punctuated GC-FG/FF-LDPC code. Punctuated codes can also
be constructed by removing some local parity-check matrices.
By puncturing a GC-FG/FF-LDPC code, we obtain globally
coupled LDPC codes of various lengths and rates.

E. GC-FG/FG-LDPC Codes

The main objective of this section is to combine an FG-LDPC
code and an FF-LDPC code to form a GC-FG/FF-LDPC code
that possesses the distinct features of both FG- and FF-LDPC
codes, large minimum distances, no small trapping sets, fast
decoding convergence, and flexibility.

A GC-LDPC code can be constructed using FG-LDPC codes
as both local and global coupling codes. However, with this
construction, we are limited in choice of length and rate of the
global coupling code. For the desired length ny of a local FG-
LDPC code, a desired cascading (or interleaving) degree ¢, a
desired global coupling degree r, and a desired global code rate,
there may not exist for a global coupling FG-LDPC code of
length cno + r. Furthermore, if the length no of the local FG-
LDPC code is not short and the cascading degree c is not small,



the length cno + r of the global coupling FG-code may be very
long. Iterative decoding of a long FG-LDPC based on a large
circulant will be very complex in both hardware and
computations even with the complexity-reduced RID/MSA.
Construction of global coupling EG-LDPC codes can be made
more flexible if we use parallel bundles of lines in the sub-
geometry EG*(2, 2%) [7, 8]. This will not be discussed in this

paper.

III. INTERLEAVED GC-FG/FF CODING SCHECME FOR
CORRECTING ERASURES

A 2-D FG-LDPC code Crc with minimum
distance dj constructed based on the 2-D finite geometry FG(2,
2%) over GF(2%) is very effective in correcting random erasures
over a binary erasure channel (BEC). If the number of erased
code symbols, called erasures, in a received vector is dop — 1 or
less, there is at least one check-sum formed by taking the inner
product of the received vector and a row in the parity-check
matrix Hrg of Crg, which contains one and only one erased
code symbol. By using this check-sum, we can recover the
erased code symbol.

In decoding a received wordr, for each erased code
symbol x in r, we find a row h in Hrc that checks only on this
erased symbol and no other erased symbol in r. Form the check-
sum X = <r, h> which is the inner product of r and h. Set £ =
0. The equation X = 0 contains x as the only unknown. Then,
the erased code symbol x is equal to the modulo-2 sum of the
known code symbols contained in X. The erased symbols
in r can be recovered one at a time using the above process,
called the erasure peeling (EPL) process. Using the EPL
process, Crg is capable of correcting do — 1 or fewer random
erasures.

Let ¢ be a positive integer and vo, Vi,..., V.1 be ¢ codewords
in Crg.  Suppose  we interleave  these ¢ codewords
in Crg symbol by symbol, we obtain an interleaved word y =
(Yo, Y1, --- » ¥n,-1) Which consists of o sections, each containing

¢ code symbols. For 0 <j <ny, the j-th section y; of y consists
of the j-th code symbols from the ¢ codewords vo, vi, ... , V.
1 in Crg. By interleaving each group of ¢ codewords Crg, we
obtain an interleaved FG-LDPC code, denoted by Crg,ineri(C),
where c is referred to as interleaving degree. Let Hrg= [ho h;
.. h,1] be the no x no parity-check matrix of Crg where for 0
<Jj <no, hjis the j-th column of Hrg. For 0<j <np, we form
a c x ¢ diagonal array, denoted by H; = diag(h;, h;, . . . , h)),
with ¢ copies of j-th column h; of Hrg lying on its main
diagonal and zeros elsewhere. Then, the parity-check matrix of
the interleaved ~ FG-LDPC code Crgineri(c)is  the
following cng * cno matrix:

Hpg interi (€) = [H0H1 Hno—l] €))

Suppose an interleaved
transmitted over a BEC. Let y* = (y*o, y*i, .

codeword y in Crginweri(c) 18
.o » ¥Y¥u1) be the
received word with erasures confined indy— 1 or fewer
interleaved sections in y*. To recover the erased code symbols
in y*, we first de-interleave y* into ¢ received words v¥y, v¥y,

., V¥.1, which correspond to the ¢ transmitted codewords
contained iny. De-interleaving of y* distributes the erased
symbols in y* into the ¢ received local words v¥*o, v¥y, ..., v¥.
1, each containing no more than dj -1 erasures. Using the EPL-
algorithm, the erased symbols in each received word v¥;
0<i<c, can be recovered. The maximum number of erasures
confined in dp — 1 interleaved sections, which can be corrected
is c(do—1).

Consider the (33, 33)-regular (1057, 813) PG-LDPC
code Cpg of Example 1. This code has a minimum distance of
34 and its parity-check matrix has an orthogonal structure. With
EPL-decoding, the code can correct 33 or fewer random
erasures. If we interleave this code by a degree ¢ = 100, then the
interleaved code Cpg,iner(100) is capable of correcting erasures
confined in 33 random interleaved sections, each of length 100,
with a maximum of 3300 erasures.

The GC-FG/FF-LDPC coding scheme presented in the
section II can be modified by interleaving every sequence
of ¢ local codewords at the first stage of encoding. This results
in an interleaved GC-FG/FF-LDPC coding scheme which can
be used for error control over an AWGN channel as well as a
BEC channel.

In the first stage of encoding, the ¢ outer codewords v, vi,

.., Ve at the output of the local encoder are interleaved into
codeword y = (Yo, y1, . - . , ¥n,-1) i CrGineri(c). In the second
stage of encoding, y is encoded into a codeword w = (p, y) in
the global coupling FF-LDPC code for transmission. The local
encoding, interleaving, and global coupling encoding result in
an interleaved GC-FG/FF-LDPC code, denoted
by Cec r6,rFiner, With the following parity-check matrix:

0 | HFG,interl (C)

HFF,left | HFF,right

(5)

Hec re printert =

Suppose an interleaved global coupling codeword w = (p, y)
is transmitted. Let w* = (p*, y*) be the received word. In
decoding w*, the decoder first checks whether w* contains
erasures. If it does, the decoder removes the received parity-
check part p* of w* and de-interleaves y* into ¢ received local
words v¥o, v¥i, ... ,v¥.1. Then, the local decoder applies
the EPL process to recover all erased symbols in each received
local word v¥*;, 0<i<c. If all the erased code symbols are
recovered, then decoding stops and the decoder delivers
the cko decoded information symbols to the user(s). If the
number of erased code symbols in any received local word v*;,
exceeds the erasure correction capability dp — 1, the decoder
stops the entire decoding process and declares a decoding
failure. The above decoding of a received word is referred to as
erasure-correcting mode.

If no erasure is found in the received word w* = (p*, y*), the
two-phase global/local (or local/global) iterative decoding as
described in the last section is activated. In decoding, de-
interleaving and interleaving of the decoded local words at the
outputs of the global coupling and local decoders must be
performed before switching from one decoding phase to the
other. Each time at the end of the global coupling decoding



phase, the decoded interleaved word must be de-interleaved
into ¢ decoded local words before the local decoding phase
begins, and each time at the end of the local decoding phase,
the ¢ decoded local words must be interleaved before the global
coupling decoding phase begins. The global coupling
decoding/de-interleaving and the local decoding/interleaving
processes continue iteratively until either all the local
transmitted codewords are successfully decoded or a preset
maximum number of global/local (or local/global) iterations is
reached.

Since the GC-FG/FF- and the interleaved GC-FG/FF-LDPC
codes are combinatorially equivalent, they perform the same
over an AWGN channel if the same local and global decoding
schemes are used. The two types of codes have the same
trapping set structure.

Consider the GC-PG/FF-LDPC code given in Example 1. If
the 9 local codewords at output of the local encoder are
interleaved before adding 87 fill-in zeros and global coupling
encoding, then the resultant interleaved GC-PG/FF-LDPC code
is capable of correcting erasures confined in 33 random
interleaved sections, each of length 9, with a maximum 297
erasures.

The interleaved GC-FG/FF-LDPC coding scheme may find
application for error and erasure control in a compound channel
over which both random errors and erasures may occur.

IV. GLOBAL COUPLED FF/FF-LDPC CODING SCHEME

In the construction of GC-FG/FF-LDPC codes, we use FG-
LDPC codes as local codes and FF-LDPC codes as global
coupling codes. Even though FG-LDPC codes are powerful and
have a good trapping set structure, however, their choices are
limited. Furthermore, since the two types of codes used in the
construction have different structures, the global parity-
check Hgc o rr of a GC-FG/FF code, in general, does not
satisfy the RC-constraint. Hence, a GC-FG/FF-LDPC code
must be decoded separately using a two-phase iterative
decoding, global/local or local/global.

In contrast to FG-LDPC codes, the construction of FF-LDPC
codes is more flexible in lengths and rates. In the construction
of a GC-FF/FF-LDPC code Cgcrrrr, We can either use the
same field to construct both local and global coupling codes or
use two different fields to construct local and global code,
separately. Construction of a  GC-FF/FF-LDPC
code Cgcrrrrbased on a single field, makes it possible to
construct a global parity-check matrix Hgc rr rrthat satisfies
the RC-constraint. Hence, Cgc rrrrcan be decoded globally in
one phase based on the global parity parity-check
matrix Hee rrpr. Of course, Coerrrrcan also be decoded in
two phases similar to decoding of a GC-FG/FF-LDPC code as
described in Section II. If local and global coupling codes are
constructed from two different fields, the global parity-check
matrix Hgcrrrrof the resultant GC-FF/FF-LDPC code, in
general, does not satisfy the RC-constraint. In this case, the
code must be decoded in two phases.

Constructing a GC-FF/FF-LDPC code using two different
fields can be achieved by replacing the local parity-
check matrix Hrg given in (3) with a parity-check

matrix Hyycq rr constructed based on a field different from the
field used in constructing the global coupling matrix Hpr.

In the following, we present a construction of GC-FF/FF-
LDPC codes in which both the local and global coupling LDPC
codes are constructed using the same field. The global parity-
check matrices of these codes satisfy the RC-constraint.

Let mo, m1, no, c and r be 5 positive integers with mo < n.
Construct a (cmo + my) X (cno+r) base
matrix B(cmo + m1, cno + r) over GF(g) in the form of (1) using
two subsets 8o = {a, oL, . . ., am-1} and Sy = {o/0, /1, . . ., or-
1} over GF(q) with sizes ofm=cmo+miandn=cno+r,
respectively, andn<g. The matrix B(cmo+ mi, cno+r)
satisfies the 2 x 2 SM-constraint [12, 17]. Label the rows and
columns of B(cmo + mi, cno + r) from 0 to cmo+m;— 1 and 0
to cng +r—1, respectively. Divide the rows
of B(cmo + mi, cng+r) in toc+ 1 disjoint groups, denoted
by Bo(mo, cno + r), Bi(mo, cno +r), , Be-1(mo, cno +r)
and Bg. (m1, cng+ 7). For 0 </<c, B;(mo, cno+r) consists
of mo consecutive ~ rows of B(cmo+ mi, cno+r),  labeled
from Imoto (I +1)mo—1. The submatrix Be.(m, cno+r)
consists of the lastm rows of B(cmo+ mi, cno+r). For
0<l<e, let Biocar, 1 (mo, no) be an mo X no submatrices
of By(mo, cno + r), which consists of ng consecutive columns
of Bi(mo, cno + r), labeled from /ng to (I + 1)no— 1.

Form the following (cmo+ mi) % (cno+ r) matrix over
GF(q):

Bec rrrr (mo, my,ng, c,7)

[0|diag(Blocal,0 (mo,n0),Biocat,1(Mo.n0),--Biocal,c—1(Mo,N0)) ]
Bgc(my,cng+r)

(6)

The matrix Bocrrpr(mo, mi, no, ¢, ) consists of two
submatrices, the upper and the lower submatrices. The upper
submatrix is a cmo % (cno + r) matrix, which consists of two
parts, where the first part O is a c¢mo X r zero matrix and the
second part diag(Biocas0,(m0, 10), » Biocai,c-1(mo, no))  is
a ¢ x ¢ diagonal array with the ¢ submatrices Biocar0,(20, 10), . .-
, Biocatc-1(mo, no) of size mo % ng lying on its main diagonal and
zeros  elsewhere. The lower  matrix Bg(m1, cno + r)
of Bgc rrrr(mo, mi, no, ¢, r) is my X (cno +r) which globally
connects  the c disjoint  local  matrices, Biocas0,(m0, 10),
ey B[ocal,cJ(mO, I’lo). Hence, BGc,FF,FF(mo, mi, no, C, I”) 1s a
globally coupled matrix over GF(g).

The matrix B rrrr(mo, mi, no, ¢, r) is a submatrix of the
base matrix B(cmo + mi, cno + 7). Dispersing each nonzero
entry in BGCFEFF(mo, mu, no, C, }") into a (q - 1) X (q - 1) CPM
and each zero entry into a (g — 1) x (¢ — 1) ZM, we obtain the
following (cmo + m1) x (cno+ r) array of CPMs and ZMs of

size (q—1) % (g—1):

Hee rrpr(mg, my,ng, c,7)

_ [ocpm | diag(Hyocal,0(Mo,M0) Hiocal,1 (Mo,M0),--Hiocal,c—1(Mo,10)) ]
Hgc(mq,cno+r)

(7



where for 0</<e¢, Hiocari(mo, no)= CPM(Biocq i((mo, 1o)), Oq;m is
acmo(qg— 1)xr(q— 1) zero matrix, and Hg(mi, cno+r) =
CPM(Bg(m1, cng + r)). The array Hec rr, pe(mo, mi, no, ¢, r) is a
(cmo+mi)(qg— 1) x (cno+r)(g— 1) matrix, in which the
submatrix Hg.(m1, cng +r) globally couples ¢ disjoint local
submatrices Hyocar, (10, no), 0<1 < c.

The null space over GF(2) of Hec rrrr(mo, m1, no, ¢, r) gives
a quasi-cyclic (QO) GC-FF/FF-LDPC
code Cqc rrrr(mo, mi, no, c, r) of length (cno + r)(q —1), which
is composed of ¢ local QC-FF-LDPC codes Cicari(mo, o),
0</<c¢, of length cnpand a global coupling QC-FF-LDPC
code Cg(m1, cno +r) of length (cno + r)(¢ — 1). The /-th local
QC-FF-LDPC code Cigeari(mo, no) is given by the null space of
the /-th local parity-check matrix Hyocar i(710, n0) and the global
coupling code Cg(m1, cno + r) is given by the null space over
GF(2) of the global coupling matrix Hec(m1, cng + r).

Encoding of Cqc rr rr(mo, mi, no, ¢, r) consists of two stages.
In the first stage, ¢ messages of equal length (maybe
from c different senders) are encoded into ¢ local codewords of
length no(q — 1) by clocal encoders for the ¢ local codes,
respectively. In the second stage of encoding, the c local
codewords are cascaded into a word v of length cno(g — 1) and
then v is encoded into a global coupling
codeword w in Cg(m1, cng + r) for transmission.

Since the base matrix Bec rrrr(mo, my, ny, ¢, r) satisfies the
2x2 SM-constraint, the global parity-
check matrix Hee e pe(mo, my, ng, ¢, r)  satisfies the RC-
constraint. Hence, the Tanner graph Gec grre(mo, my, ng, ¢, )
of  Cocrrrr(mo, my, no, ¢, ¥) has a girth at least
6. Coe rrrr(mo, my, 1y, ¢, ¥) can be decoded in one phase based
on the entire global matrix Hec rrrr(mo, my, no, ¢, r) using an
iterative algorithm based on belief propagation, say the MSA.
Decoding of Cec rrrr(mo, my, ng, ¢, r) can also be carried out in
two phases similar to decoding a GC-FG/FF-LDPC code to
reduce decoding complexity.

Example 2: In the following, we use the prime field GF(101)
to construct a GC-FF/FF-LDPC code. First, we set mo = m; =
4, n= 32,¢c= 3 andr= 4. Next, we form a 16 x 100
matrix Br<(16, 100) over GF(101) in the form of (1) based on
two subsets So = {0,1, o, 02, ..., 0%} and $1= {1, a, &%, ...,
a”} of GF(101) with n = 1. Label the rows and columns from
0 to 15 and 0 to 99, respectively. Divide the rows of Br(16,
100) in to 4 disjoint groups, Bo(4, 100), Bi(4, 100), B2(4, 100)
and Bg/(4, 100). For 0 </< 3,Bf(4, 100) consists of
4 consecutive rows of Bp(16, 100), labeled from 4/to 4(/ +
1) — 1. The submatrix Bg(4, 100) consists of the last 4 rows
of Br(16, 100). For 0 <7< 3, let Biycai1(4, 32) be a 4 x 32
submatrix of B4, 100) which consists of 32 consecutive
columns of B/(4, 100), labeled from 32/to 32(/+ 1) — 1. Form
the following 16 x 100 matrix over GF(101):

Becrrrr(4,4,32,3,4)

_ [o|diag(Blucal,0 (4,32),Biocat,1(4,32),Biocal2 (4"32))]
Bgc(4,100) ’

The 100 x 100 CPM-dispersion of Boc rrrr(4, 4, 32, 3.4)
gives the following 16 x 100 array of CPMs and ZMs of size
100 x 100:

Hgcrrrr(4,4,32,3,4)
_ Ocpmldiag(Hlocal,O (4: 32): Hlocal,l (41 32)' Hlocal,z (4’: 32))
=1 H,.(4,100) |

which is a 1600 x 10000 matrix over GF(2) with column
weights 4 and 8 and two row weights 32 and 100.

The null space of Hgc rrrr(4, 4, 32, 3, 4) gives a QC-GC-
FF/FF-LDPC code C(,'QFEFF(4, 4, 32, 3, 4) of length 10000 and
rate 0.84, which is composed of 3 local QC-LDPC codes of
length 3200, and a global coupling QC-LDPC code of length
10000. The code can be decoded either in one phase based on
the global parity-check matrix Hee rrrr(4, 4, 32, 3, 4) or in two
phases based on local and global coupling parity-check
matrices, respectively.

The BER performance of Cscrrrr(4, 4, 32, 3, 4) over an
AWGN channel using BPSK signaling decoded in one phase
based on the global matrix Hec prrr(4, 4, 32, 3, 4) with 20 and
100 iterations of the MSA, scaled by a factor 0.275 is shown in
Fig. 3. We see the performance gap between 20 and 100
iterations is very small, about 0.1 dB.

The BER performance of Cgc rrrr(4, 4, 32, 3, 4) decoded
using the global/local two-phase decoding of the MSA
With Lousmax = Linmax = Imax = 5 1s also shown in Fig.3.

We see that one phase decoding and two-phase decoding of
the code give almost the same error performance in the
simulation range. Simulation results show that one-phase
decoding converges slightly faster than two-phase decoding.
However, the implementation of two-phase decoding is
simpler.

-1
10 ——© Shannon limit, R=0.84

Ex. 2-GC-FF/FF(10000,8400),
102 one phase decoding, 20
Ex. 2-GC-FF/FF(10000,8400),
one phase decoding,100

107 _ & .Ex. 3-GC-FF/FF(10000,8400),
one phase decoding,20
Lok _ o .Ex. 3-GC-FF/FF(10000,8400),

one phase decoding,100
Ex. 2-GC-FF(9600,8000),

-4 -
g 107 ¢ Punctured GC-FF/FF-LDPC, 20
GC-FF/FF(10000, 8400),
106 E global/local two-phase decoding
107
108 1
I
-]
107 . )
1 2 3 4 5 6 7 8 9 10
Eb/N0

Fig. 3: The BER performance of the GC-FF/FF-LDPC code
given in Examples 2 and 3.



Remarks: 1f we remove the zero matrix O and the
leftmost » column of Bec(m, cnp+r) from the global base
matrix Bec rr,rr(mo, mi, no, c, 1) given by (6), we obtain a base
matrix Bec rrrr(mo, my, ng, ¢) in the form for constructing a
CN-based GC-FF-LDPC code proposed in [12]. Hence, the
construction of GC-FF/FF-LDPC codes presented above in
concatenated form is a generalization of the construction of
CN-based GC-FF-LDPC codes proposed in [12]. We can also
regard a CN-based GC-FF-LDPC code as a punctured GC-
FF/FF-LDPC code. The performance of the CN-based GC-FF-
LDPC code (punctured GC-FF/FF-LDPC) is shown in Fig. 3

Example 3: In this example, we use the field GF(101) to
constructa 2 x 2 SM-constrained 100 x 100 circulant B.,.*(100,
100) in the form given by (2).

Suppose we take the top 16 rows of B,.*(100, 100) to form a
16 x 100 submatrix B.,*(16, 100). If we replace the base
matrix B(16, 100) in Example 2 by B.,.*(16, 100) and follow
the same global base matrix construction process and
parameters, we obtain the following 16 x 100 global coupled
base matrix over GF(101):

Beyeacrrrr(44,32,3,4)

_ [0|diag(BZyc,local,o(4r32)'BZys,loz:al,1(4'32)'B2yc,local,2(4'32))]
By gc(4,100) :
Following the cyclic structure of B..*(100, 100), we can
readily see that the three local base matrices B* e iocar0(4,
32), B*cyetocari (4, 32), and B¥ociocar2 (4, 32) are identical.
Hence, the null space over GF(2) of the 100 x 100 CPM
dispersion H*,c.6c rr,rr(4, 4, 32, 3, 4) gives a GC-FF/FF-LDPC
code C*..6crrrr(4, 4, 32, 3, 4) which consists of three copies
of a local code of length 3200 connected by a global coupling
code of length 10000.

The BER performance of the GC-FF/FF-
LDPC C*,.6crrrr(4, 4, 32, 3, 4) over an AWGN channel
using BPSK signaling decoded in one phase based on the entire
global matrix H* ¢ 6crrr(4, 4, 32, 3, 4) with 20 and 100
iterations of the MSA, scaled by a factor 0.275 is also shown in
Fig. 3.

V. CONCLUSION AND REMARKS

In this paper, we presented two types of concatenated LDPC
codes viewed as generalized globally coupled LDPC codes in
which the outer and inner codes serve as local and global
coupling codes, respectively. In the construction of a first-type
concatenated LDPC code, a cyclic FG-LDPC code is used as
the local code and a QC-FF-LDPC code is used as the global
coupling code. Such a concatenated LDPC code is referred to
as a GC-FG/FF-LDPC code. In the construction of a second-
type concatenated LDPC code, both local and global coupling
codes are QC-FF-LDPC codes. Such a concatenated LDPC
code is referred to as a GC-FF/FF-LDPC code. A GC-FG/FF-
LDPC code possesses the distinct features of both FG- and FF-
LDPC codes, i.e., large minimum distances, no small trapping

sets, fast decoding convergence, capable of correcting both
random errors and bursts of erasures. Two two-phase iterative
decoding schemes were devised for decoding a GC-FG/FF-
LDPC code, one for correcting random errors over an AWGN
channel, and the other for correcting random bursts of erasures
over a BEC in addition to correcting random errors over an
AWGN channel. A GC-FF/FF-LDPC code constructed based
on a single field can be decoded either in a single phase or in
two phases. The two-phase decoding allows information-
sharing in the decoding of local codewords. In one example, we
also showed that the two-phase decoding performs almost the
same as the one-phase decoding.

The GC-FG/FF-LDPC coding scheme is
quite adaptive for hybrid repeat-request-retransmission, called
HARQ [7]. Various possible retransmission schemes can be
devised depending on the communication environments, the
requirements of reliability, throughput efficiency, and system
complexity. One such possible retransmission scheme is a
retransmission of failed decoded local codewords until all the
transmitted local codewords are successfully decoded or a
preset maximum number of retransmissions is reached.

Since the local FG code is powerful, the frequency of
retransmission-requests is relatively low. Hence, a HARQ
system based on the GC-FG/FF-LDPC coding scheme should
be able to provide high reliability and high throughput
performance.

This direction may deserve further research effort. Finally,
the authors would like to point out that a concatenated FG-FF-
LDPC coding scheme was developed for possible application
in a high-speed underwater fiber optical communication system
[19].
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