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Abstract—This paper presents two types of concatenated LDPC 

coding schemes which are viewed as generalized globally coupled 

(GC) LDPC coding schemes in which outer codes serve as the local 

codes for correcting local errors and inner codes serve as global 

coupling codes to correct global errors. The first type of 

concatenated LDPC coding scheme globally couples a finite 

geometry (FG) LDPC code as the local code and a finite field (FF) 

LDPC code as the global coupling code. This type of global 

coupling, called GC-FG/FF-LDPC coupling, combines the distinct 

features of both FG- and FF-LDPC codes to achieve low error 

rates at a rapid decoding convergence and an error performance 

close to the Shannon limit. Decoding of a GC-FG/FF-LDPC code 

is carried out in two iterative phases, global/local or local/global. In 

the second type of concatenated LDPC coding scheme, both local 

and global coupling codes are FF-LDPC codes. If both local and 

global coupling codes are constructed from the same finite field 

and have the same graphical structures, a GC-FF/FF-LDPC code 

can be decoded in one phase or two phases iteratively, otherwise, 

it can be decoded in two phases. Construction of GC-FF/FF-LDPC 

codes is very flexible in lengths and rates. The proposed two-phase 

iterative decoding is practically implementable. 

 
Index Terms—Concatenated coding, finite geometry LDPC 

code, finite field LDPC code, global coupling, iterative decoding.  

 

I. INTRODUCTION 

DPC codes [1] perform amazingly well with iterative 

decoding algorithms based on belief propagation, such as 

the sum-product algorithm (SPA) [2] or the min-sum 

algorithm (MSA) [3]. However, with iterative decoding, most 

LDPC codes have a common severe weakness, known 

as the error-floor [4]. For an additive white Gaussian noise 

(AWGN) channel, the error-floor of an LDPC code is mostly 

caused by an undesirable structure, known as a trapping set [5] 

in the Tanner graph of the code based on which the decoding is 

carried out.  
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Let G be the Tanner graph of a binary LDPC code C given by 

the null space of an m × n matrix H over GF(2). For 1 ≤ κ 

≤ n and 0 ≤ τ ≤ m, a (κ, τ) trapping set is a set T(κ, τ) of κ 

variable nodes (VNs) in G which induces a subgraph of G with 

exactly τ odd-degree check nodes (CNs), and an arbitrary 

number of even-degree CNs. The parameter κ is called 

the size of the trapping set T(κ, τ). A trapping set simply 

corresponds to an error pattern with κ errors which prevents an 

iterative LDPC-decoder to converge. For an AWGN channel, 

error patterns with small numbers of errors are more probable 

than error patterns with larger numbers of errors. Consequently, 

with iterative decoding, the most harmful trapping sets are the 

trapping sets of small sizes which generally result in high error-

floors. If an LDPC code has a reasonably large minimum 

distance and its Tanner graph contains no harmful trapping sets 

with sizes smaller than its minimum distance, the code can 

achieve a very low error rate without a visible error-floor. 

Among all the known classes of LDPC codes, the only 

known class of LDPC codes with large minimum distances 

whose Tanner graphs contain no trapping sets with sizes smaller 

than their minimum distances are LDPC codes constructed 

based on finite geometries such as projective and Euclidean [6-

10]. These codes are referred to as finite-geometry (FG) LDPC 

codes and they can achieve very low error rates without error-

floors. Iterative decoding of these codes converges rapidly with 

a small number of iterations, say 5 to 10. Furthermore, these 

codes are cyclic codes and hence their encoding can be 

implemented with simple feedback registers in the systematic 

form [7].  

   Besides the FG-LDPC codes, there are many other classes 

of structured LDPC codes constructed based on finite fields. 

These codes, called finite field (FF) LDPC codes, have a quasi-

cyclic (QC) structure [8-12]. The QC-structure of these codes 

simplifies both encoding and decoding implementations. The 

construction of FF-LDPC codes is very flexible in lengths and 

rates. They, in general, perform very well over an AWGN 
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channel in the waterfall region and can achieve relatively low 

error-floors. However, their minimum distances are, in general, 

much smaller than that of FG-LDPC codes of the same lengths 

and rates, and their Tanner graphs do contain small trapping sets 

if the column weights of their parity-check matrices are too 

small. 

    This paper presents two types of concatenated LDPC coding 

schemes which are viewed as globally coupled (GC) LDPC 

coding schemes in which outer codes serve as the local codes 

for correcting local errors and inner codes serve as global 

coupling codes to correct global errors. 

The first type of concatenated LDPC coding scheme globally 

couples an FG-LDPC code as the local code and an FF-LDPC 

code as the global coupling code. This type of concatenation is 

referred to as globally coupled (GC) FG/FF-LDPC coding 

scheme. The GC-FG/FF-LDPC coding scheme is devised to 

combine the distinct features of both FG- and FF-LDPC codes 

to achieve low error rates with a rapid decoding convergence 

and an error performance close to the Shannon limit. Decoding 

of a GC-FG/FF-LDPC code is carried out in two iterative 

phases, global/local or local/global. With the two-phase 

iterative decoding, trapping sets that trap a local decoder may 

be un-trapped by the global decoder, and conversely, the 

trapped global decoder can be un-trapped by the local 

decoder(s). As a result, a GC-FG/FF-LDPC code can achieve a 

very low error rate without a visible error-floor. Furthermore, 

during the global iterative decoding process, the reliability 

information of each decoded local codeword is shared by the 

others to enhance the overall reliability of all decoded local 

codewords.  This information sharing among the decoded local 

codewords enhances the overall decoding performance of a 

GC-FG/FF LDPC code. Even though GC-FG/FF-LDPC codes 

have large minimum distances and good trapping set structure, 

their construction is limited in lengths and rates. 

    In the second type of concatenated LDPC coding scheme, 

both local and global coupling codes are FF-LDPC codes which 

are constructed from finite fields. Such a concatenated LDPC 

code is referred to as a GC-FF/FF-LDPC code. If both local and 

global coupling codes of a GC-FF/FF-LDPC code are 

constructed from the same finite field and have the same 

graphical structures, it can be decoded either in one phase or 

two phases iteratively, otherwise, it can be decoded in two 

phases. Construction of GC-FF/FF-LDPC codes is very flexible 

in lengths and rates. Two-phase iterative decoding of a GC-

FG/FF-LDPC code or a GC-FF/FF-LDPC code can be 

practically implemented. Examples of concatenated and 

globally coupled codes were reported in the literature [13-15]. 

   The rest of the paper is organized as follows. Sections II and 

III present two types of GC-FG/FF-LDPC codes and 

characterize their random error- and erasure-correction 

features. Iterative methods for decoding these GC-FG/FF-

LDPC codes in two phases are presented. Section IV presents a 

class of GC-FF/FF-LDPC codes in which both local and global 

coupling codes are constructed from the finite fields. Section V 

concludes this paper with some remarks on possible 

applications of GC-FG/FF-LDPC codes. 

II. A GC-FG/FF-LDPC CODING SCHEME 

In this section, we present a GC-FG/FF-LDPC coding scheme 

that combines FG-LDPC codes as local codes and FF-LDPC 

codes as global coupling codes to form a class of structured 

LDPC codes that possess the distinct features of both the FG- 

and the FF-LDPC codes. The codes in this class are called GC-

FG/FF-LDPC codes. Here, we give a brief description of the 

FG- and FF-LDPC codes and characterize their distinct 

features. 

An FG-LDPC code has a large minimum distance and its 

Tanner graph contains no small harmful trapping sets and has 

large connectivity, it can achieve a very low error rate without 

a visible error-floor. Consider a 2-D PG over the field GF(2s), 

denoted by PG(2, 2s), where s is a positive integer. The null 

space over GF(2) of HPG gives 2-D PG-LDPC code, denoted 

by CPG, with a minimum distance of at least 2s + 2 which is one 

greater than the column weight 2s + 1 of HPG [6-9]. The Tanner 

graph GPG of CPG has a girth of at least 6, and contains no 

harmful trapping sets with sizes smaller than 2s + 1 [9] and [10]. 

To construct QC-FF-LDPC code based on finite fields with 

a girth of at least 6, consider a finite field GF(q) with q elements 

where q is a prime or a power of a prime. With 1 ≤ m, n ≤ q and 

primitive element α, let S0 = {αi0, αi1, . . . , αim-1} and S1 = {αj
0, 

αj1, . . . , αjn-1} be two arbitrary subsets of elements in GF(q) of 

size m and n, respectively. We form the following m × n matrix 

over GF(q) where η is a nonzero element in GF(q): 

 𝐁(𝑚, 𝑛) = [𝛼𝑖𝑘 + 𝜂𝛼𝑗𝑙] 0≤𝑘<𝑚,0≤𝑙<𝑛                 (1) 

 

In the matrix B(m, n), all the entries in a row (or a column) are 

distinct elements in GF(q); each row (or each column) contains 

at most one zero elements; no two rows (or two columns) have 

identical entries in any position; and each 2×2 submatrix 

of B(m, n) is non-singular (NS) [11], which is referred to as 

the 2×2 submatrix (SM) constraint [8, 11, 17, 18] and is the key 

structure for constructing QC-FF-LDPC code whose Tanner 

graph has a girth of at least 6. 

    For 0 ≤ i < q – 1, we represent the nonzero field element αi in 

GF(q) by a circulant permutation matrix (CPM) of size (q – 1) 

× (q – 1) whose generator (or the top row) has a single 1-

component at the position i. For the zero element 0 = α-∞, we 

represent it by a zero matrix (ZM) of size (q – 1) × (q – 1). This 

matrix representation of a field element is called the CPM-

dispersion [8-12], [18].  

The construction of a 2 × 2 SM-constrained base matrix using 

two subsets S0 and S1 can be put in a product form as follows: 

 𝐁∗(𝑚, 𝑛) = [𝛼𝑖𝑘𝛼𝑖𝑙 − 𝜂] 0≤𝑘<𝑚,0≤𝑙<𝑛                  (2) 

                         

If we set m = n = q – 1 and choose S0 = S1 = {1, α, α2, . . . , αq-

2}, then B*(q – 1, q – 1) can be arranged (by row permutation) 

as a (q – 1) × (q – 1) circulant Bcyc*(q – 1, q – 1) over GF(q), 

in which each row is the cyclic-shift of the row above it one 

place to the right and the top row is the cyclic-shift of the last 

row one place to the right. Any submatrix of Bcyc*(q – 1, q – 1) 



 

 

3 

can be used as a base matrix to construct a QC-LDPC code 

using CPM-dispersion. The resultant code may have a doubly 

quasi-cyclic structure [9]. 

A. Encoding and Code Construction 

Let CFG be an (n0, k0) binary FG-LDPC code of length n0 with 

dimension k0 given by the null space of 

an n0 × n0 circulant HFG over GF(2) which is the line-point 

incidence matrix of the 2-D finite geometry FG(2, 2s) over 

GF(2s). Let d0 be the minimum distance of CFG. The Tanner 

graph GFG of CFG contains no harmful trapping set with a size 

smaller than d0 - 1. 

    Let c be a positive integer and CFF be a (cn0 + r, cn0) binary 

FF-QC-LDPC code of length cn0 + r and dimension cn0, 

where r is the number of parity-check symbols of CFF. The 

code CFF is given by the null space of an RC-constrained λ × 

(cn0 + r) parity-check matrix HFF constructed by the CPM-

dispersion of a base matrix B over a finite field GF(2s) that 

satisfies the 2 × 2 SM-constraint. Note that λ may be greater 

than r if HFF contains redundant rows. In a concatenation of 

these two codes, both codes are put in systematic form. 

    Let u be a sequence of ck0 binary information symbols. 

Encoding of this information sequence consists of two stages, 

local and global coupling encodings. First, we 

divide u into c subsequences, denoted by u0, u1, … , uc-1, each 

consisting of k0 information symbols and called a message. For 

0≤ i < c, the message ui is encoded into a 

codeword vi of n0 code symbols in the local FG-LDPC 

code CFG. Encoding results in c codewords, v0, v1, … , vc-1, 

in CFG, called local codewords. Cascading these c local 

codewords, we obtain a sequence v = (v0, v1, … , vc-1) 

of cn0 code symbols, called a cascaded codeword. This 

completes the first stage of encoding, referred to as the local 

encoding. There are 2ck0 such cascaded codewords which form 

a (cn0, ck0) linear code of length cn0, denoted by CFG,casc(c). The 

parity-check matrix of CFG,casc(c) is a c × c diagonal array, 

denoted by diag(HFG, HFG, … , HFG), with c copies 

of HFG lying on its main diagonal and zeros elsewhere.  The 

code CFG,casc(c) is called a cascaded code of CFG and the 

integer c is called the cascading degree. The minimum distance 

and rate of CFG,casc(c) are the same as CFG. 

   In the second stage of encoding, a cascaded 

codeword v in CFG,casc(c) is encoded into a codeword w = (p, v) 

of cn0 + r code symbols in the global coupling FF-LDPC 

code CFF . The codeword w consists of two parts v and p. The 

first part v is a cascaded codeword in CFG,casc(c) and the second 

part p consists of r parity-check symbols, which are formed 

based on the parity-check matrix HFF of CFF. These r parity 

symbols connect the c local codewords v0, v1, … , vc-

1 of CFG in v.  

The encoding performed at the second stage is referred to as 

global coupling encoding. Local encoding, cascading, and 

global coupling encoding result in 2ck0 codewords in CFF in the 

form of (p, v). These codewords form a (cn0 + r, ck0) linear 

code which is referred to as a GC-FG/FF-LDPC code, denoted 

by CGC,FG,FF.  We see that the two-stage encoding of a GC-

FG/FF-LDPC code is straightforward and can be easily 

implemented.  

   Based on the formation of CGC,FG,FF, we readily see that a 

parity-check matrix of CGC,FG,FF is of the following global form: 

 𝐇𝐺𝐶,𝐹𝐺,𝐹𝐹= [    𝐎           |   𝑑𝑖𝑎𝑔(𝐇𝐹𝐺 , 𝐇𝐹𝐺 , … , 𝐇𝐹𝐺)       𝐇𝐹𝐹,𝑙𝑒𝑓𝑡   |            𝐇𝐹𝐹,𝑟𝑖𝑔ℎ𝑡                               ]          (3) 

  

  

The parity-check matrix HGC,FG,FF of CGC,FG,FF consists of two 

submatrices, the upper one and the lower one. The upper 

submatrix of HGC,FG,FF consists of two parts. The first part is a 

zero-matrix O of size cn0 × r and the second part is the parity-

check matrix of the cascaded FG-LDPC code CFG,casc(c). The 

lower submatrix of HGC,FG,FF is the parity-check matrix HFF of 

the global coupling FF-LDPC code CFF which consists of two 

parts, denoted by HFF,left and HFF,right, called left and right parts 

of HFF, respectively. The left part HFF,left of HFF consists of the 

first (leftmost) r columns of HFF and the right 

part HFF,right of HFF consists of the rightmost cn0 columns 

of HFF. Note that the global matrix HGC,FG,FF consists 

of c disjoint copies of the parity-check matrix HFG of the local 

code CFG, which are globally connected by the parity-check 

matrix HFF of the global coupling FF-LDPC code CFF. It can be 

easily checked that a codeword w = (p, v) in CGC,FG,FF  is in the 

null space of HGC,FG,FF , i.e., w∙(HGC,FG,FF )T = 0. 

B. Graphical Structure 

Let GFG, GFF, and GGC,FG,FF be the Tanner graphs of CFG, CFF, 

and CGC,FG,FF, respectively. From (3) and the diagonal structure 

of diag(HFG, HFG, . . . , HFG), we readily see that the Tanner 

graph GGC,FG,FF of the GC-FG/FF-LDPC code CGC,FG,FF, 

consists of c disjoint copies of the Tanner graph GFG of the 

local FG-LDPC code CFG, which are globally connected by a 

group of global CNs that correspond to rows of the parity-check 

matrix HFF of the global coupling FF-LDPC code CFF. 

Hence, GGC,FG,FF is a CN-based globally coupled graph 

with c identical and disjoint local graphs GFG, which are 

connected by the λ CNs of the global coupling graph GFF as 

shown in Fig. 1. 

   
Fig. 1. The Global structure of the Tanner graph of 

a GC-FG/FF-LDPC code. 
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    Since each local graph GFG in GGC,FG,FF  is the Tanner graph 

of the local FG-LDPC code with minimum distance d0, it 

contains no harmful trapping sets of size smaller than d0 – 1. 

For κ < d0 - 1, if the global coupling graph GFF contains a 

harmful trapping set T of size κ, then the κ VNs in T either 

reside in one local graph or distribute among the c local graphs. 

Note some of the VNs in T may reside in the subgraph 

associated with the left part HFF,left of HFF. For 0 ≤ i < c, let κi be 

the number of VNs in T that reside in the i-th local graph GFG,i. 

Regardless of the distribution of the κ VNs in T, κi is less 

than d0 - 1. Hence, the κi VNs will not create harmful trapping 

set in the i-th local graph GFG,i. 

 

C. Two-Phase Iterative Decoding 

Based on the structure of the GC-FG/FF-LDPC code CGC,FG,FF, 

two iterative decoding methods can be devised to decode the 

code. Let r be the received vector of cn0 + r symbols. We 

decode r in two phases. The two-phase decoding can be carried 

out in two different manners iteratively: 1) global/local iterative 

decoding, and 2) local/global iterative decoding. 

    With the global/local iterative decoding, we first 

decode r based on the parity-check matrix HFF of the global 

coupling FF-LDPC code CFF using a chosen iterative decoding 

algorithm. Set the maximum number of global coupling 

decoding iterations to Igc,max. Decode r based on the chosen 

iterative decoding algorithm. At the end of each global coupling 

decoding iteration, we check the syndrome SFF of the decoded 

vector x based on HFF. If SFF = 0, then x is a codeword in CFF. 

If SFF ≠ 0, we continue the global coupling decoding until either 

the decoded vector x is a codeword in CFF or the preset 

maximum number Igc,max of decoding iterations is reached. 

    If a codeword w in CFF is obtained during the global 

coupling decoding phase, we remove all the r parity-check 

symbols from w. This gives c decoded vectors v*0, v*1, … 

, v*c-1 for the c transmitted local codewords in CFG. For each 

decoded vector v*i, 0 ≤ i < c, we compute its syndrome SFG,i 

based on the parity-check matrix HFG of the local FG-LDPC 

code CFG. If the syndromes of the c decoded vectors are all 

zeros, then v*0, v*1, … , v*c-1 are codewords in CFG. In this 

case, we stop the entire decoding process. Then, we remove all 

the parity-check symbols from the c decoded local codewords 

and deliver the ck0 decoded information symbols to the user (or 

users in multi-user communications). If the syndrome of any of 

the c decoded vectors is not zero, the local code decoder is 

activated to perform decoding on the decoded vectors whose 

syndromes are not zero. These vectors are referred to as failed 

local vectors. The decoding algorithm used for decoding the 

local code can be the same or different from the one used for 

decoding the global coupling FF-LDPC code CFF. 

    For decoding of each failed local vector at the output of the 

global coupling decoder, we set the maximum number of local 

decoding iterations to Ilocal,max. If the decoding of all the failed 

local vectors is successful, we remove all the parity-check 

symbols from all the decoded local codewords and deliver 

the ck0 decoded information symbols to the user(s). If the 

decoding of any failed local vector is unsuccessful 

after Ilocal,max iterations, we switch back to the global coupling 

code decoding with the decoded information and the channel 

information as input to decode the received vector r again. 

    We perform the global/local decoding process iteratively 

until either the entire decoding is successful, or a preset 

maximum number Imax of global/local decoding iterations is 

reached. With the global/local decoding of the GC-FG/FF-

LDPC code, the local decoder is used to correct the local 

errors that the global coupling decoder fails to correct. 

    With the above two-phase decoding, no trapping set of 

size smaller than d0 - 1, regardless of the distribution of its VNs, 

will trap the two-phase decoder of the GC-FG-FF LDPC 

code CGC,FG,FF. If a trapping set of size d0 - 2 or smaller traps 

the global coupling decoder, it will be un-trapped by the local 

decoder. 

    To achieve a good error performance, both inner and outer 

decoding algorithms are either the SPA or a properly scaled 

MSA. Decoding with the SPA requires real number 

multiplications, additions, and comparisons. However, the 

MSA requires mainly real additions and comparisons. Since an 

optimized scaled MSA performs just as well as the SPA and 

requires much less computational complexity, a scaled MSA is 

normally preferred for decoding an LDPC code. To reduce the 

overall decoding complexity, we may use the reduced-

complexity revolving iterative decoding scheme (RID/MSA) 

[16] for decoding the local FG-LDPC. The RID scheme reduces 

the decoder complexity without (or with an ignorable) 

performance degradation. The decoding is based on a small 

submatrix of HFG that consists of any l consecutive 

rows of HFG, even l = 1.   

    Note that if the global coupling decoding is successful in an 

iteration loop, we can stop the entire decoding process without 

checking the syndromes of the decoded local codewords to 

determine whether to carry out the outer decoding. This reduces 

computational complexity and decoding delay. 

    Opposite to global/local decoding presented above, we can 

decode the GC-FG/FF-LDPC code CGC,FG,FF, in a reverse order, 

i.e., perform local decoding before global coupling decoding in 

each global decoding loop. Recall that each globally coupled 

codeword in systematic form consists of c local codewords in 

cascade followed by r parity-check symbols of the global 

coupling FF-LDPC code CFF. Local decoding is carried out as 

soon as a local vector of n0 symbols corresponding to a 

transmitted local codeword is received. The decoding of each 

received local vector is based on the local parity-check 

matrix HFG using a chosen iterative decoding algorithm, say the 

RID/MSA. If errors spread out among the c received local 

vectors and errors in each received local vector do not create 

harmful trapping set with a size greater than d0 - 2 (very rare), 

each local decoding will be successful. 

    If the local decoding fails to give c correctly decoded local 

codewords, the global coupling iterative decoding is then 

activated. The rest of the decoding process is the same as the 

global/local iterative decoding. The local/global iterative 

decoding is effective for correcting local random errors. 

    Since every codeword in CGC,GF,FF  consists of c outer 

codewords in CFG, the global coupling decoding is actually 
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the length cn0 + r of the global coupling FG-code may be very 

long. Iterative decoding of a long FG-LDPC based on a large 

circulant will be very complex in both hardware and 

computations even with the complexity-reduced RID/MSA. 

Construction of global coupling EG-LDPC codes can be made 

more flexible if we use parallel bundles of lines in the sub-

geometry EG*(2, 2s) [7, 8]. This will not be discussed in this 

paper. 

III. INTERLEAVED GC-FG/FF CODING SCHECME FOR 

CORRECTING ERASURES 

A 2-D FG-LDPC code CFG with minimum 

distance d0 constructed based on the 2-D finite geometry FG(2, 

2s) over GF(2s) is very effective in correcting random erasures 

over a binary erasure channel (BEC). If the number of erased 

code symbols, called erasures, in a received vector is d0 – 1 or 

less, there is at least one check-sum formed by taking the inner 

product of the received vector and a row in the parity-check 

matrix HFG of CFG, which contains one and only one erased 

code symbol. By using this check-sum, we can recover the 

erased code symbol. 

    In decoding a received word r, for each erased code 

symbol x in r, we find a row h in HFG that checks only on this 

erased symbol and no other erased symbol in r. Form the check-

sum Σ = <r, h> which is the inner product of r and h. Set Σ = 

0. The equation Σ = 0 contains x as the only unknown. Then, 

the erased code symbol x is equal to the modulo-2 sum of the 

known code symbols contained in Σ. The erased symbols 

in r can be recovered one at a time using the above process, 

called the erasure peeling (EPL) process. Using the EPL 

process, CFG is capable of correcting d0 – 1 or fewer random 

erasures. 

      Let c be a positive integer and v0, v1,…, vc-1 be c codewords 

in CFG. Suppose we interleave these c codewords 

in CFG symbol by symbol, we obtain an interleaved word y = 

(y0, y1, … , yn
0
-1) which consists of n0 sections, each containing 

c code symbols. For 0 ≤ j < n0, the j-th section yj of y consists 

of the j-th code symbols from the c codewords v0, v1, … , vc-

1 in CFG. By interleaving each group of c codewords CFG, we 

obtain an interleaved FG-LDPC code, denoted by CFG,interl(c), 

where c is referred to as interleaving degree. Let HFG = [h0 h1 

… hn0-1] be the n0 × n0 parity-check matrix of CFG where for 0 

≤ j < n0, hj is the j-th column of HFG.  For 0≤ j < n0, we form 

a c × c diagonal array, denoted by Hj = diag(hj, hj, . . . , hj), 

with c copies of j-th column hj of HFG lying on its main 

diagonal and zeros elsewhere. Then, the parity-check matrix of 

the interleaved FG-LDPC code CFG,interl(c) is the 

following cn0 × cn0 matrix: 

 𝐇𝐹𝐺,𝑖𝑛𝑡𝑒𝑟𝑙(𝑐) = [𝐇0𝐇1 … 𝐇𝑛0−1]                            (4) 

  

     Suppose an interleaved codeword y in CFG,interl(c) is 

transmitted over a BEC. Let y* = (y*0, y*1, … , y*n
0
-1)  be the 

received word with erasures confined in d0 – 1 or fewer 

interleaved sections in y*. To recover the erased code symbols 

in y*, we first de-interleave y* into c received words v*0, v*1, 

… , v*c-1, which correspond to the c transmitted codewords 

contained in y. De-interleaving of y* distributes the erased 

symbols in y* into the c received local words v*0, v*1, … , v*c-

1, each containing no more than d0 -1 erasures. Using the EPL-

algorithm, the erased symbols in each received word v*i, 

0≤ i < c, can be recovered. The maximum number of erasures 

confined in d0 – 1 interleaved sections, which can be corrected 

is c(d0 – 1). 

    Consider the (33, 33)-regular (1057, 813) PG-LDPC 

code CPG of Example 1. This code has a minimum distance of 

34 and its parity-check matrix has an orthogonal structure. With 

EPL-decoding, the code can correct 33 or fewer random 

erasures. If we interleave this code by a degree c = 100, then the 

interleaved code CPG,interl(100) is capable of correcting erasures 

confined in 33 random interleaved sections, each of length 100, 

with a maximum of 3300 erasures. 

    The GC-FG/FF-LDPC coding scheme presented in the 

section II can be modified by interleaving every sequence 

of c local codewords at the first stage of encoding. This results 

in an interleaved GC-FG/FF-LDPC coding scheme which can 

be used for error control over an AWGN channel as well as a 

BEC channel. 

    In the first stage of encoding, the c outer codewords v0, v1, 

… , vc-1 at the output of the local encoder are interleaved into 

codeword y = (y0, y1, . . . , yn0-1) in CFG,interl(c). In the second 

stage of encoding, y is encoded into a codeword w = (p, y) in 

the global coupling FF-LDPC code for transmission. The local 

encoding, interleaving, and global coupling encoding result in 

an interleaved GC-FG/FF-LDPC code, denoted 

by CGC,FG,FF,interl, with the following parity-check matrix: 

 𝐇𝐺𝐶,𝐹𝐺,𝐹𝐹,𝑖𝑛𝑡𝑒𝑟𝑙 = [    𝐎            |  𝐇𝐹𝐺,𝑖𝑛𝑡𝑒𝑟𝑙(𝑐)     𝐇𝐹𝐹,𝑙𝑒𝑓𝑡    |  𝐇𝐹𝐹,𝑟𝑖𝑔ℎ𝑡             ]            (5) 

  

    Suppose an interleaved global coupling codeword w = (p, y) 

is transmitted. Let w* = (p*, y*) be the received word. In 

decoding w*, the decoder first checks whether w* contains 

erasures. If it does, the decoder removes the received parity-

check part p* of w* and de-interleaves y* into c received local 

words v*0, v*1, … , v*c-1. Then, the local decoder applies 

the EPL process to recover all erased symbols in each received 

local word v*i, 0≤ i < c. If all the erased code symbols are 

recovered, then decoding stops and the decoder delivers 

the ck0 decoded information symbols to the user(s). If the 

number of erased code symbols in any received local word v*i, 

exceeds the erasure correction capability d0 – 1, the decoder 

stops the entire decoding process and declares a decoding 

failure. The above decoding of a received word is referred to as 

erasure-correcting mode. 

   If no erasure is found in the received word w* = (p*, y*), the 

two-phase global/local (or local/global) iterative decoding as 

described in the last section is activated. In decoding, de-

interleaving and interleaving of the decoded local words at the 

outputs of the global coupling and local decoders must be 

performed before switching from one decoding phase to the 

other.  Each time at the end of the global coupling decoding 
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phase, the decoded interleaved word must be de-interleaved 

into c decoded local words before the local decoding phase 

begins, and each time at the end of the local decoding phase, 

the c decoded local words must be interleaved before the global 

coupling decoding phase begins. The global coupling 

decoding/de-interleaving and the local decoding/interleaving 

processes continue iteratively until either all the local 

transmitted codewords are successfully decoded or a preset 

maximum number of global/local (or local/global) iterations is 

reached. 

    Since the GC-FG/FF- and the interleaved GC-FG/FF-LDPC 

codes are combinatorially equivalent, they perform the same 

over an AWGN channel if the same local and global decoding 

schemes are used. The two types of codes have the same 

trapping set structure. 

    Consider the GC-PG/FF-LDPC code given in Example 1. If 

the 9 local codewords at output of the local encoder are 

interleaved before adding 87 fill-in zeros and global coupling 

encoding, then the resultant interleaved GC-PG/FF-LDPC code 

is capable of correcting erasures confined in 33 random 

interleaved sections, each of length 9, with a maximum 297 

erasures. 

   The interleaved GC-FG/FF-LDPC coding scheme may find 

application for error and erasure control in a compound channel 

over which both random errors and erasures may occur. 

IV. GLOBAL COUPLED FF/FF-LDPC CODING SCHEME 

In the construction of GC-FG/FF-LDPC codes, we use FG-

LDPC codes as local codes and FF-LDPC codes as global 

coupling codes. Even though FG-LDPC codes are powerful and 

have a good trapping set structure, however, their choices are 

limited. Furthermore, since the two types of codes used in the 

construction have different structures, the global parity-

check HGC,FG,FF  of a GC-FG/FF code, in general, does not 

satisfy the RC-constraint. Hence, a GC-FG/FF-LDPC code 

must be decoded separately using a two-phase iterative 

decoding, global/local or local/global. 

    In contrast to FG-LDPC codes, the construction of FF-LDPC 

codes is more flexible in lengths and rates. In the construction 

of a GC-FF/FF-LDPC code CGC,FF,FF, we can either use the 

same field to construct both local and global coupling codes or 

use two different fields to construct local and global code, 

separately.  Construction of a GC-FF/FF-LDPC 

code CGC,FF,FF based on a single field, makes it possible to 

construct a global parity-check matrix HGC,FF,FF that satisfies 

the RC-constraint. Hence, CGC,FF,FF can be decoded globally in 

one phase based on the global parity parity-check 

matrix HGC,FF,FF. Of course, CGC,FF,FF can also be decoded in 

two phases similar to decoding of a GC-FG/FF-LDPC code as 

described in Section II. If local and global coupling codes are 

constructed from two different fields, the global parity-check 

matrix HGC,FF,FF of the resultant GC-FF/FF-LDPC code, in 

general, does not satisfy the RC-constraint. In this case, the 

code must be decoded in two phases. 

    Constructing a GC-FF/FF-LDPC code using two different 

fields can be achieved by replacing the local parity-

check matrix HFG given in (3) with a parity-check 

matrix Hlocal,FF constructed based on a field different from the 

field used in constructing the global coupling matrix HFF. 

    In the following, we present a construction of GC-FF/FF-

LDPC codes in which both the local and global coupling LDPC 

codes are constructed using the same field. The global parity-

check matrices of these codes satisfy the RC-constraint. 

   Let m0, m1, n0, c and r be 5 positive integers with m0 < n0. 

Construct a (cm0 + m1) × (cn0 + r) base 

matrix B(cm0 + m1, cn0 + r) over GF(q) in the form of (1) using 

two subsets S0 = {αi0, αi1, . . . , αim-1} and S1 = {αj0, αj1, . . . , αjn-

1} over GF(q) with sizes of m = cm0 + m1 and n = cn0 + r , 

respectively, and n ≤ q. The matrix B(cm0 + m1, cn0 + r) 

satisfies the 2 × 2 SM-constraint [12, 17]. Label the rows and 

columns of B(cm0 + m1, cn0 + r) from 0 to cm0 + m1 – 1 and 0 

to cn0 + r –1, respectively. Divide the rows 

of B(cm0 + m1, cn0 + r ) in to c + 1 disjoint groups, denoted 

by B0(m0, cn0 + r), B1(m0, cn0 + r), … , Bc-1(m0, cn0 + r) 

and Bgc (m1, cn0 + r).  For 0 ≤ l < c, Bl (m0, cn0 + r) consists 

of m0 consecutive rows of B(cm0 + m1, cn0 + r ), labeled 

from lm0 to (l +1)m0 –1. The submatrix Bgc(m1, cn0 + r) 

consists of the last m1 rows of B(cm0 + m1, cn0 + r ).  For 

0≤ l < c, let Blocal,l,(m0, n0) be an m0 × n0 submatrices 

of Bl(m0, cn0 + r), which consists of n0 consecutive columns 

of Bl(m0, cn0 + r), labeled from ln0 to (l + 1)n0 – 1. 

    Form the following (cm0 + m1) × (cn0 + r) matrix over 

GF(q): 

 

   𝐁𝑮𝑪,𝑭𝑭,𝑭𝑭(𝑚0, 𝑚1, 𝑛0, c, 𝑟) 

 

            = [𝐎|diag(𝐁𝑙𝑜𝑐𝑎𝑙,0(𝑚0,𝑛0),𝐁𝑙𝑜𝑐𝑎𝑙,1(𝑚0,𝑛0),…,𝐁𝑙𝑜𝑐𝑎𝑙,𝑐−1(𝑚0,𝑛0))𝐁𝑔𝑐(𝑚1,𝑐𝑛0+𝑟)  ]       

(6) 

                                                       

 The matrix BGC,FF,FF(m0, m1, n0, c, r) consists of two 

submatrices, the upper and the lower submatrices. The upper 

submatrix is a cm0 × (cn0 + r) matrix, which consists of two 

parts, where the first part O is a cm0 × r zero matrix and the 

second part diag(Blocal,0,(m0, n0), … , Blocal,c-1(m0, n0)) is 

a c × c diagonal array with the c submatrices Blocal,0,(m0, n0), … 

, Blocal,c-1(m0, n0) of size m0 × n0 lying on its main diagonal and 

zeros elsewhere. The lower matrix Bgc(m1, cn0 + r) 

of BGC,FF,FF(m0, m1, n0, c, r) is m1 × (cn0 + r) which globally 

connects the c disjoint local matrices, Blocal,0,(m0, n0), 

…, Blocal,c-1(m0, n0). Hence, BGC,FF,FF(m0, m1, n0, c, r) is a 

globally coupled matrix over GF(q). 

    The matrix BGC,FF,FF(m0, m1, n0, c, r) is a submatrix of the 

base matrix B(cm0 + m1, cn0 + r ). Dispersing each nonzero 

entry in BGC,FF,FF(m0, m1, n0, c, r) into a (q – 1) × (q – 1) CPM 

and each zero entry into a (q – 1) × (q – 1) ZM, we obtain the 

following (cm0 + m1) × (cn0 + r) array of CPMs and ZMs of 

size (q – 1) × (q – 1): 

 

 𝐇𝑮𝑪,𝑭𝑭,𝑭𝑭(𝑚0, 𝑚1, 𝑛0, c, 𝑟) 

       = [𝐎𝑐𝑝𝑚 | diag(𝐇𝑙𝑜𝑐𝑎𝑙,0(𝑚0,𝑛0),𝐇𝑙𝑜𝑐𝑎𝑙,1(𝑚0,𝑛0),…,𝐇𝑙𝑜𝑐𝑎𝑙,𝑐−1(𝑚0,𝑛0))𝐇𝑔𝑐(𝑚1,𝑐𝑛0+𝑟)  ] 

(7) 
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Remarks:   If we remove the zero matrix O and the 

leftmost r column of Bgc(m1, cn0 + r) from the global base 

matrix BGC,FF,FF(m0, m1, n0, c, r) given by (6), we obtain a base 

matrix BGC,FF,FF(m0, m1, n0, c) in the form for constructing a 

CN-based GC-FF-LDPC code proposed in [12]. Hence, the 

construction of GC-FF/FF-LDPC codes presented above in 

concatenated form is a generalization of the construction of 

CN-based GC-FF-LDPC codes proposed in [12]. We can also 

regard a CN-based GC-FF-LDPC code as a punctured GC-

FF/FF-LDPC code. The performance of the CN-based GC-FF-

LDPC code (punctured GC-FF/FF-LDPC) is shown in Fig. 3 

 

Example 3: In this example, we use the field GF(101) to 

construct a 2 × 2 SM-constrained 100 × 100 circulant Bcyc*(100, 

100) in the form given by (2).  

Suppose we take the top 16 rows of Bcyc*(100, 100) to form a 

16 × 100 submatrix Bcyc*(16, 100). If we replace the base 

matrix B(16, 100) in Example 2 by Bcyc*(16, 100) and follow 

the same global base matrix construction process and 

parameters, we obtain the following 16 × 100 global coupled 

base matrix over GF(101): 

 

     𝐁𝒄𝒚𝒄,𝑮𝑪,𝑭𝑭,𝑭𝑭∗ (4, 4, 32, 3,4) 

 

           = [𝐎|diag(𝐁𝑐𝑦𝑐,𝑙𝑜𝑐𝑎𝑙,0∗ (4,32),𝐁𝑐𝑦𝑐,𝑙𝑜𝑐𝑎𝑙,1∗ (4,32),𝐁𝑐𝑦𝑐,𝑙𝑜𝑐𝑎𝑙,2∗ (4,32))𝐁𝑐𝑦𝑐,𝑔𝑐∗ (4,100) ]. 

 

   Following the cyclic structure of Bcyc*(100, 100), we can 

readily see that the three local base matrices B*cyc,local,0(4, 

32), B*cyc,local,1 (4, 32), and B*cyc,local,2 (4, 32) are identical. 

Hence, the null space over GF(2) of the 100 × 100 CPM 

dispersion H*cyc,GC,FF,FF(4, 4, 32, 3, 4) gives a GC-FF/FF-LDPC 

code C*cyc,GC,FF,FF(4, 4, 32, 3, 4) which consists of three copies 

of a local code of length 3200 connected by a global coupling 

code of length 10000. 

    The BER performance of the GC-FF/FF-

LDPC C*cyc,GC,FF,FF(4, 4, 32, 3, 4) over an AWGN channel 

using BPSK signaling decoded in one phase based on the entire 

global matrix H*cyc,GC,FF,FF(4, 4, 32, 3, 4) with 20 and 100 

iterations of the MSA, scaled by a factor 0.275 is also shown in 

Fig. 3.  

V. CONCLUSION AND REMARKS 

In this paper, we presented two types of concatenated LDPC 

codes viewed as generalized globally coupled LDPC codes in 

which the outer and inner codes serve as local and global 

coupling codes, respectively. In the construction of a first-type 

concatenated LDPC code, a cyclic FG-LDPC code is used as 

the local code and a QC-FF-LDPC code is used as the global 

coupling code. Such a concatenated LDPC code is referred to 

as a GC-FG/FF-LDPC code.  In the construction of a second-

type concatenated LDPC code, both local and global coupling 

codes are QC-FF-LDPC codes. Such a concatenated LDPC 

code is referred to as a GC-FF/FF-LDPC code. A GC-FG/FF-

LDPC code possesses the distinct features of both FG- and FF-

LDPC codes, i.e., large minimum distances, no small trapping 

sets, fast decoding convergence, capable of correcting both 

random errors and bursts of erasures. Two two-phase iterative 

decoding schemes were devised for decoding a GC-FG/FF-

LDPC code, one for correcting random errors over an AWGN 

channel, and the other for correcting random bursts of erasures 

over a BEC in addition to correcting random errors over an 

AWGN channel. A GC-FF/FF-LDPC code constructed based 

on a single field can be decoded either in a single phase or in 

two phases. The two-phase decoding allows information-

sharing in the decoding of local codewords. In one example, we 

also showed that the two-phase decoding performs almost the 

same as the one-phase decoding. 

The GC-FG/FF-LDPC coding scheme is 

quite adaptive for hybrid repeat-request-retransmission, called 

HARQ [7]. Various possible retransmission schemes can be 

devised depending on the communication environments, the 

requirements of reliability, throughput efficiency, and system 

complexity. One such possible retransmission scheme is a 

retransmission of failed decoded local codewords until all the 

transmitted local codewords are successfully decoded or a 

preset maximum number of retransmissions is reached.   

   Since the local FG code is powerful, the frequency of 

retransmission-requests is relatively low. Hence, a HARQ 

system based on the GC-FG/FF-LDPC coding scheme should 

be able to provide high reliability and high throughput 

performance.  

This direction may deserve further research effort.  Finally, 

the authors would like to point out that a concatenated FG-FF-

LDPC coding scheme was developed for possible application 

in a high-speed underwater fiber optical communication system 

[19]. 
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