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ABSTRACT

Gold nanoparticles are versatile materials for biological applications because their properties can
be modulated by assembling ligands on their surface to form monolayers. However, the
physicochemical properties and behaviors of monolayer-protected nanoparticles in biological
environments are difficult to anticipate because they emerge from the interplay of ligand—ligand
and ligand—solvent interactions that cannot be readily inferred from ligand chemical structure
alone. In this work, we demonstrate that quantitative nanostructure—activity relationship (QNAR)
models can employ descriptors calculated from molecular dynamics simulations to predict
nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics
simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of
simulation-derived descriptors that capture nanoparticle structural and chemical properties in
aqueous solution. We then parameterized QNAR models using interpretable regression algorithms
to predict experimental measurements of nanoparticle octanol-water partition coefficients, zeta
potentials, and cellular uptake obtained from a curated database. These models reveal that
simulation-derived descriptors can accurately predict experimental trends and provide physical
insight into what descriptors are most important for obtaining desired nanoparticle properties or
behaviors in biological environments. Finally, we demonstrate model generalizability by
predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results
demonstrate that QN AR models parameterized with simulation-derived descriptors are accurate,
generalizable computational tools that could be used to guide the design of monolayer-protected

gold nanoparticles for biological applications without laborious trial-and-error experimentation.
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INTRODUCTION

Gold nanoparticles (GNPs) are promising materials for applications including drug
delivery, biosensing, and photothermal therapy because their interactions with biological materials
can be tailored by assembling organic ligands on the GNP surface to form a self-assembled
monolayer (SAM).!* Small GNPs with core diameters less than 10 nm are of particular interest
because this size limits renal clearance from the body.* This size is also commensurate with that
of typical biomolecules (e.g., proteins) and the thickness of the cell membrane, enabling the study
of nano-bio interactions between materials at comparable length scales.® Because such interactions
can be modulated by tailoring the ligand composition of the protecting SAM, substantial effort has
been devoted to understanding how ligand properties impact interactions at the nano—bio interface.
For example, synthetic modification of ligand hydrophobicity has been shown to impact GNP
immune response,’ cellular uptake,’” and binding affinities for proteins® and lipid bilayers’.
Positively charged ligand end groups increase electrostatic interactions between small GNPs and

negatively charged lipid bilayers, resulting in GNP adsorption to, disruption of, or insertion within

10-12 10, 12-14

the bilayer, whereas negatively charged ligand end groups largely promote adsorption.
Zwitterionic ligands have been shown to prevent strong protein adsorption onto the GNP surface,
which could minimize the formation of the protein corona.!'® These studies highlight the structure—
property relationships that have been identified for broad categorizations of ligand properties (e.g.,
cationic vs. anionic vs. zwitterionic). However, many potential ligand chemical structures fit

within these categories. Consequently, engineering small GNPs for targeted nano—bio interactions,

such as selective protein binding or favorable cell uptake, remains challenging because subtle



variations to the gold core size and ligand properties can manifest as substantial changes to GNP

6.10.15-23 wwhich are challenging to predict a priori.>* Experimental exploration of the vast

behavior,
design space of possible GNP compositions is also time-consuming and difficult, in part because
of the challenge in experimentally resolving molecular-level features of GNPs, such as the
complex, non-planar geometries that arise from the interactions between ligands adsorbed to small
GNPs and influence interactions with the surrounding environment.?>2

To complement experimental methods, computational modeling can be used to derive
quantitative nanostructure—activity relationship (QNAR) models for the rational design of GNPs
without extensive trial-and-error experimentation.?’?® QNAR models use numerical parameters
(descriptors) that capture characteristics of GNPs and relate them to the behavior of GNPs in
biological environments. Descriptors typically consist of experimentally measured quantities (e.g.,
size, shape, zeta potentials)?’ or single-molecule descriptors of organic ligands (e.g., constitutional,
topological, electrostatic) that are often used in drug discovery applications.?’ Descriptors are then
related to relevant labels through a variety of machine learning algorithms (e.g., multilinear
regression, support vector machines).?® A key challenge in the development of these models is
determining an appropriate set of descriptors: experimental descriptors are challenging to measure
for a large range of GNPs and single-molecule descriptors do not account for the collective
properties of many organic and inorganic molecules contained within a SAM.?® Recent studies
have sought to address these issues by developing virtual GNP models.*® These models are static
atomistic representations of GNPs consisting of a gold core with chemically specific ligands
randomly placed on the gold core with densities selected to mimic experimental measurements.>°

Virtual GNPs better capture properties such as the gold core size, ligand density, and surface

chemistry than single-molecule descriptors while providing access to molecular-scale information



that is not easily resolved experimentally. Descriptors were developed to capture surface properties
of virtual GNPs and used to develop QNAR models that could predict both biophysiochemical
properties (e.g., log P, zeta potentials) and behaviors emerging from nano—bio interactions (e.g.,

cell uptake, GNP-enzyme binding).3%3

Furthermore, deep learning methods, such as
convolutional neural networks, have been used to analyze virtual GNPs without requiring
descriptor calculations.** However, these static models do not account for changes to SAM
structure that emerge from interactions between ligands and the surrounding solvent environment
that could influence GNP behavior. Moreover, the descriptors developed for virtual GNPs are
challenging to physically interpret and may not generalize to other classes of materials.
Molecular dynamics (MD) simulations are an alternative computational method to gain
atomistic insight into both the structure and dynamics of GNPs in explicit solvent.” 2% 3340 Unlike
virtual GNPs, atomistic MD simulations of GNPs can model the formation of anisotropic
structures that emerge from the interplay of ligand—ligand and ligand—solvent interactions. For
example, GNPs protected by long, nonpolar alkanethiol ligands were experimentally*' and
computationally*>**° found to form bundles, in which ligands align in the same direction due to
preferred interactions between methylene moieties. These bundles dictate how GNPs bind with
one another to minimize solvent-exposed hydrophobic surface area,*® *> how GNPs bend single-
stranded nucleic acids,* and how spatially heterogenous surface properties arise from chemically
homogeneous SAMs.**> These simulations also permit analysis of GNPs in the presence of lipid

bilayers or proteins,” !> 16:20-21, 44-47

allowing for in-depth mechanistic studies that are not possible
with virtual GNPs. While these past studies, along with many other studies of SAM-protected

GNPs,!6: 20-21. 24, 26. 48 have provided useful insights into the interplay of gold core and ligand

selection on SAM properties that influence GNP behavior with other biomolecules, they have



focused primarily on mechanistic studies for a limited subset of GNPs and the integration of MD
simulations with QNAR modeling has yet to be explored.

Based on these observations, we hypothesize that MD simulations can more accurately
capture GNP properties than can static models, potentially improving QNAR predictions of
experimental data. To test this hypothesis, we modeled 154 sub-10-nm GNPs in aqueous solution
using atomistic MD simulations and developed a small library of 25 MD-derived descriptors that
characterize GNP structural and chemical properties. We used two interpretable regression
techniques — least absolute shrinkage and selection operator (LASSO) regression and random
forest (RF) — to develop QNAR models that accept MD-derived descriptors as input and predict
experimental log P, cell uptake, and zeta potentials from Ref. 32. The resulting regression models
accurately predict experimental data based on only a small number of physically interpretable
descriptors that are generalizable to different classes of GNPs or other nanomaterials. We then
identify the most important descriptors that relate to these experimental observables to provide
general guidelines for the design of GNPs. Finally, we show that the RF cell uptake model correctly
generalizes to capture cell uptake trends in a separate dataset consisting of 12 GNPs.!” These
results demonstrate that QNAR models parameterized with simulation-derived descriptors are
computationally efficient tools to predict GNP behavior a priori, thereby enabling the rational

design of bioactive GNPs.

RESULTS AND DISCUSSION

Experimental datasets used to develop QNAR models

To develop QNAR models, we obtained data from a curated database of GNPs that are
protected by either single- or multicomponent SAMs consisting of ligands with the general

structure shown in Figure 1a.3? Ligand backbones and end groups are both varied to provide
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Figure 1. Experimental data used to develop QNAR models. (a) Typical ligand structure
consisting of a sulfur head group, nonpolar backbone, and end group. One or two ligand
components are assembled on the gold core to form a monolayer. (b) Schematics of the three
experimental observables used to characterize gold nanoparticle (GNP) physicochemical
properties and bioactivity. (¢) Number distributions of GNPs labeled with each experimental
observable. The total number of GNPs for each observable is written at the upper right. All
experimental data were taken from Ref. 32.

structural and chemical diversity in the resulting SAMs. The database also includes experimental

data for the core diameter, ligand structure, and ligand surface density of each GNP. We selected



spherical GNPs less than 10 nm in core diameter, resulting in 154 GNPs (including 96 single- and
58 multi-component SAMs) encompassing 105 distinct ligands and core diameters ranging
between 2 and 8.5 nm.

To characterize GNP biophysiochemical properties and behavior in biological
environments, the database includes experimental measurements of GNP octanol-water partition
coefficient (log P) values, uptake into A549 cells, and zeta potentials, although all three values are
not available for all GNPs.?? These three GNP observables are schematically summarized in Figure
1b. Log P quantifies the partitioning of GNPs between n-octanol and water phases; a larger value
of log P indicates that the GNP prefers the octanol phase more than the water phase, suggesting
that the surface is hydrophobic. Log P thus provides information on lipophilicity which can
influence GNP interactions with lipid bilayers.” *¢4° Log P values were determined by measuring
the partitioning of GNPs to the n-octanol and water phases using inductively coupled plasma mass
spectrometry (ICP-MS) after 24 hours of shaking and 3 hours of relaxation (we note that it is
possible that GNPs also partition to the interface between two phases, but this behavior is not

).32 Uptake into A549 cells (a lung epithelial cancer cell

readily captured in the log P measurement
line) measures nonspecific internalization after incubating 50 pg/mL of GNPs for 24 hours and is
quantified by the mass of internalized gold per cell measured via ICP-MS.*? Finally, the zeta
potential in water measures the electric potential of the GNP at the shear plane as determined by
electrophoresis; higher magnitude zeta potential values correspond to colloidally stable GNP
suspensions.’® The zeta potential provides information on electrostatic interactions in biological
environments that can influence the adsorption of proteins, adsorption to the cell membrane, cell

uptake, and cytotoxicity.’!>? Zeta potentials were measured in water at pH 7 using a Malvern

Zetasizer.’?> Figure 1c shows the number distribution of GNPs for the different experimental



values; in total, there are 110 GNPs with log P values, 65 GNPs with cell uptake values, and 102
GNPs with zeta potentials. Values for log P and cell uptake are well-distributed, whereas zeta
potentials are skewed toward negative values. These experimental observables provide
complementary insight into the behavior of GNPs within a biological environment and are thus

suitable labels for developing QNAR models for GNPs intended for biological applications.

Computational workflow to compute MD-derived descriptors of GNP properties

To model the large set of GNPs, we modified our previously developed workflow for constructing
atomistic models of GNPs with desired gold core shapes, sizes, and ligand selection.*® Each GNP
is specified by the diameter of its gold core (modeled as spherical), simplified molecular-input
line-entry (SMILES) strings for each type of ligand in the protecting SAM, and the total number
of ligands in the SAM. Figure 2 summarizes the workflow using GNP1 and GNP288 (GNP
nomenclature follows that of Ref. 32) as representative examples that have distinct gold core sizes
and ligand structures. Ligands within the GNP database? have one of two substructure patterns:
(1) butanethiol (SMILES: SCCCC) and (2) 1,2-dithiolane (SMILES: C1CCSS1). Accordingly, we
positioned ligands on the gold surface by placing an excess of either butanethiol or 1,2-dithiolane
molecules around the gold core and permitting them to self-assemble onto the surface via a strong
sulfur-gold Lennard-Jones (LJ) interaction.*® 3 Adsorbed substructures were replaced with the
desired ligand structures from the database. The resulting GNP was simulated in the presence of
water molecules and sodium or chloride counterions (if necessary) for 50 ns in the NPT ensemble

(vide infra for discussion of convergence within this timeframe). We used this workflow to
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Figure 2. Workflow for modeling GNPs using MD simulations. Each GNP is selected from a
database that specifies the GNP diameter, number of ligands adsorbed on the surface, and SMILES
string for each type of ligand. The diameter and ligand substructure, either butanethiol (SCCCC)
or 1,2-dithiolane (C1CCSS1), were used to initiate simulations in which model substructures
adsorb to the gold core. Excess substructures (green) were removed and adsorbed substructures
(gray) were replaced with the desired ligands. The GNP was then simulated in pure water (cyan)
with sodium or chlorine counterions as needed to ensure charge-neutral systems. This schematic
uses GNP1 and GNP288 as representative examples.

systematically model 154 GNPs and compute MD-derived descriptors. Additional details on the

simulation workflow are included in the Methods and Supporting Information (Figures S1-S2).
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Figure 3. Summary of MD-derived descriptors. (a) List of selected MD-derived descriptors. All
25 descriptors are described in Table S1. (b) Matrix of Pearson’s » values between all pairs of
descriptors. Values are colored based on the absolute value of r; highly correlated pairs are colored
in red, whereas uncorrelated descriptors are blue. Descriptor indexes correspond to Table S1.
Fifteen uncorrelated descriptors were identified after removing one descriptor from each highly
correlated pair (defined as |r| > 0.90). (¢) Three example GNPs with varying core diameters (in
parentheses) and ligand structures. Simulation snapshots are shown without water molecules. (d)
Solvent-accessible-surface area (SASA) and number of ligand—water hydrogen bonds (HBonds)
versus simulation time for the three GNPs.
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We developed a library of 25 physically motivated descriptors that capture structural and
chemical properties of GNPs based on previous studies.>?-31:3%36: 3455 Figyre 3a shows a truncated

list of these descriptors; a full list is available in Table S1. Correlated descriptors were removed
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by computing the Pearson’s » correlation matrix between the 25 descriptors (Figure 3b). A value
of |r| = 1 for a pair of descriptors indicates that they are highly correlated and provide redundant
information. Consequently, one descriptor from each pair of descriptors for which || > 0.90 was
removed, resulting in 15 uncorrelated descriptors (listed in Table S2) suitable for parameterizing
QNAR models. These descriptors capture structural characteristics arising from the interplay of
the gold core and ligand selection that may not be inferred from ligand structure or core diameter
alone. To illustrate this, Figure 3c shows three example GNPs (GNP14, GNP123, and GNP151)
with varying core diameters and ligand structures; the simulation snapshots illustrate the complex
SAM geometries obtained in aqueous solution. Figure 3d plots two representative descriptors —
the solvent-accessible-surface area (SASA) and the number of ligand—water hydrogen bonds
(HBonds) — versus simulation time for each GNP. GNP14 has the smallest core diameter, but it
has approximately the same SASA as GNP123 due to the longer ligand attached on GNP14.
GNP123 has the largest number of ligand—water hydrogen bonds even though the ligand on
GNP123 has fewer oxygen and nitrogen atoms compared to GNP14. These representative results
highlight how MD-derived descriptors can capture non-obvious characteristics that emerge from
the interplay of ligand-ligand and ligand—water interactions. Moreover, they confirm the
convergence of descriptor calculations within reasonably rapid MD timescales (< 50 ns). Details
on descriptor calculations and convergence are included in the Supporting Information and Figures

S3-S5.

ONAR models using MD-derived descriptors accurately predict experimental trends

We sought to develop QNAR models that use the uncorrelated descriptors from Table S2
as input to predict the selected experimental labels (i.e., log P, cell uptake, zeta potential). We

compared LASSO and RF regression algorithms to probe the prediction capabilities of MD-

12
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Figure 4. Prediction accuracy of QNAR models. Parity plots of predicted versus experimental
log P (left), cell uptake (middle), and zeta potential (right) values are shown for LASSO (top) and
random forest (bottom) models. 5-fold cross validation (5-CV) predictions are shown in black and
test set predictions are shown in red. Pearson’s » values that measure correlations between
predicted and experimental values are shown in the upper left with the same color scheme. Units
for all measurements are the same as Figure 1. Experimental data and error bars were taken from
Ref. 32. Predicted values and error bars were estimated using a bagging approach with either 20
LASSO or RF models; the average of the predictions is reported, and the error is estimated by the
standard deviation of the predictions.

derived descriptors. LASSO is a linear regression model that minimizes the residual sum squared
and the sum of the absolute value of the regression weights. Compared to a typical multiple linear
regression model, an advantage of LASSO is its ability to remove descriptors that do not
significantly contribute to the prediction of the experimental observable, which is useful for
identifying the most important descriptors that contribute to predictions. RF is a non-linear model
consisting of an ensemble of decision trees that are each trained using different subsets of the
training data; these trees then collectively vote on a predicted output value. To test the ability of

the models to generalize to unseen data, we held out 20% of the experimental labels as a test set
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and further performed 5-fold cross validation (5-CV) of the remaining training set as further
described in the Methods.

Figure 4 compares predicted and experimental log P, cell uptake, and zeta potential values
for QNAR models trained using LASSO and RF. Both 5-CV and test set predictions are shown
and labeled with the computed value of Pearson’s » as a measure of linear correlation between the
predicted and experimental values. Values of Pearson’s 7 close to 1 indicate that the QNAR model
accurately predicts experimental trends. For log P and cell uptake data sets, the LASSO models
perform well with r > 0.8 for the 5-CV data and slightly diminished test set performance with
r = 0.69. However, the LASSO model performed poorly when predicting zeta potentials with r =
0.64 for 5-CV and r = 0.56 for the test set. Compared to the LASSO models, the nonlinear RF
models improved prediction accuracy for all three data sets based upon comparison of Pearson’s r
for the 5-CV and test set data, with modest improvements obtained for the log P and cell uptake
data sets but substantial improvement for the zeta potential data set (r = 0.85 for the 5-CV data
and r > 0.71 for the test set data). Together, these results show that MD-derived descriptors can
be used to predict experimentally determined GNP properties and cellular uptake across a diverse
set of GNPs using a small set of descriptors (15) compared to the >600 used in prior virtual GNP
studies.*> The QNAR predictions also capture experimental trends even though the GNPs are
modeled in aqueous solution rather than the environments corresponding to the experimental
measurements (e.g., simulations of GNPs interacting with the cell membrane are not required to

predict cell uptake).
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Figure 5. Descriptor importance for the QNAR models. Three most important descriptors for
the log P (left), cell uptake (middle), and zeta potential (right) datasets identified for the random
forest models (Figure 4). Descriptor abbreviations: RMSF is the ligand root-mean-squared
fluctuation; E(NP-S) is the Lennard-Jones (LJ) interaction energy between GNP and solvent;
E(NP-NP) is the LJ interaction energy between GNP ligands; HBond is the number of GNP-water
hydrogen bonds; and A¢ is the electrostatic potential difference between bulk water and the gold
core. Descriptors with the subscript “SASA” are normalized by the solvent-accessible surface area
of the GNP, and descriptors with the subscript “#Lig.” are normalized by the total number of
ligands on the gold core surface.

RMSF,

Analysis of important descriptors

We next sought to identify the descriptors that were most important to the QNAR model
predictions of experimental trends. We quantified descriptor importance using the SHapley
Additive exPlanation (SHAP) method, which was recently introduced as a model-agnostic method
capable of quantifying descriptor importance even for “black box” models, such as deep neural
networks.>® The SHAP method assigns an importance value by comparing model predictions with
and without a descriptor across all possible permutations of descriptor selections, then computing
the Shapley value by averaging the marginal contribution of the descriptor.’” The magnitude of
the Shapley value estimates descriptor importance and the sign indicates if increasing the value of
that descriptor increases (if positive) or decreases (if negative) the value of the model output.’® 3
Additional details on these calculations are provided in the Methods. Given that the usefulness of

descriptor importance analysis depends on model accuracy, we primarily focus on identifying
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important descriptors using the RF models, which outperformed the LASSO models for all three
experimental observables (Figure 4).

Figure 5 shows the three descriptors with the highest importance for the log P, cellular
uptake, and zeta potential (right) datasets using the RF model. For each dataset, a single descriptor
is identified as significantly more important than all other descriptors. These descriptors include
the ligand root-mean-squared-fluctuations normalized by the SASA (RMSFsasa) for the log P
dataset, the number of GNP—water hydrogen bonds normalized by the number of ligands
(HBondsiig.) for the cell uptake dataset, and the GNP—GNP Lennard-Jones interaction energy
normalized by the SASA (E(NP—NP)sasa) for the zeta potential dataset. The same descriptors were
also identified as most important upon performing a second trial of the entire computational
workflow (see Methods and Figure S9). Moreover, the descriptors with the highest importance for
the linear LASSO model are similar with those identified for the nonlinear RF model, subject to
variations in normalization. Specifically, the most important descriptors for the LASSO model
include the unnormalized ligand root-mean-squared-fluctuations (RMSF) for the log P dataset, the
number of GNP—water hydrogen bonds normalized by the SASA (HBondsasa) for the cell uptake
dataset, and the GNP—GNP Lennard-Jones interaction energy normalized by the number of ligands
(E(NP—NP)sLig) for the zeta potential dataset (Figure S6). The similarity of the most important
descriptors for both the linear and nonlinear models in multiple simulation trials suggests the
robustness of their importance.

An advantage of simulation-derived descriptors is that their physical significance can be
readily interpreted to suggest GNP design guidelines or mechanistic hypotheses regarding their
importance. We thus focus on understanding the most important descriptor for each dataset. For

the log P dataset, larger values of log P indicate increased GNP partitioning to the hydrophobic
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octanol phase. Because all simulations were performed in water, the negative importance of
RMSFsasa indicates that larger ligand fluctuations are a signature of a more hydrophilic GNP, in
agreement with our prior work that identified that decreasing ligand fluctuations correspond to
increased surface hydrophobicity.*® Ligand fluctuations are enhanced if water is a good solvent
because a large number of energetically favorable conformations exist, whereas ligands will adopt
a smaller number of conformations that minimize solvent contact if water is a poor solvent. For
the cell uptake dataset, increasing the extent of GNP—water hydrogen bonding implies a decrease
in cellular uptake. We can interpret a large value of this descriptor as reflecting the strong solvation
of the GNP by water, suggesting that adsorption to the lipid bilayer prior to internalization is
unfavorable. Recent work has similarly shown that increasing ligand hydrophobicity — thereby
decreasing favorable interactions with water — promotes both adsorption to lipid bilayers and
cellular internalization,” 1> agreeing with this interpretation. For the zeta potential dataset, it is
expected that a descriptor of the GNP electrostatic potential (Ad, as defined in the Supporting
Information) should be important since the zeta potential is typically used to estimate the effective
charge of a GNP.>% > Surprisingly, the most important descriptor for the zeta potential dataset
quantifies Lennard-Jones interactions between ligands; increasing E(NP—NP)sasa indicates that
such interactions are less favorable. Weaker ligand-ligand interactions indicate less densely
packed monolayers, either due to lower ligand surface densities or reduced ligand clustering, which
could influence the zeta potential due to factors such as counterion condensation or changes to the
titration state of charged ligands.>® Recent simulations have similarly shown that molecular-scale

1.°° However, we caution that the

features beyond charge density impact the zeta potentia
importance of this descriptor may be biased by the imbalanced dataset which predominantly

includes GNPs with negative zeta potentials in the dataset (Figure 1c).
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Model generalizability to unseen datasets

We next tested the ability of the QNAR models to generalize to unseen datasets outside of
the database used for model training. We focused on testing the generalizability of the cell uptake
model because cell uptake is the most biologically relevant experimental measurement and
predicting cell uptake is valuable for drug delivery applications. For this test, we utilized
experimental measurements of cell uptake collected by Jiang et al. for 12 GNPs with core
diameters of 2, 4, and 6 nm that were protected by ligands with four distinct end groups (shown in
Figure 6a).!” Trimethylammonium (TTMA™) and carboxylate (COO") ligands are representative
cationic and anionic ligands, respectively, while the NS* and SN* ligands are zwitterionic. Cell
uptake measurements were performed after the GNPs were incubated with HeLa cells for 3 hours,
and uptake was quantified using ICP-MS.!” Figure 6b shows measurements of cell uptake for these
12 GNPs in human cervical carcinoma (HeLa) cells; all experimental data were taken from Ref.
17 and converted to the same units used for the cell uptake models in Figure 1c (see Table S3). In
these units, GNPs with TTMA" ligands were found to have increased cell uptake compared to the
other GNPs and increasing the GNP size from 2 nm to 6 nm generally increased cell uptake for all
GNPs, although we note that the actual number of GNPs per cell decreases with increasing size
for GNPs with COO", NS* and SN* ligands.!” These trends emerge from changes in the endocytic

pathways as a function of GNP size and surface properties.'’
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Figure 6. Generalizability of the cell uptake model to an unseen dataset. (a) Ligand structure
with four end group chemistries. (b) Cell uptake of 12 GNPs with core diameters of 2, 4, and 6 nm
and ligand structures from (a). Cell uptake values and errors were taken from experimental
measurements in Ref. 17 and converted to the same units as Figure 1c¢ (see Table S3). (¢) Predicted
versus experimental cell uptake values using a RF algorithm trained with 15 uncorrelated
descriptors as input and 65 cell uptake labels from Figure 1¢ as output. Predicted values and error
bars were estimated using a bagging approach with 20 RF models; the average of the predictions
is reported, and the error is estimated by the standard deviation of the predictions. Pearson’s r
between predicted and experimental values using all 12 GNPs is shown in the lower right. The
black dashed line shows the best fit line as a guide. The simulation snapshot illustrates a 6 nm
GNP with TTMA" ligands.
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Given that the RF model accurately related MD-derived descriptors to cell uptake in A549
cells (Figure 4), we trained a RF model on these 65 cell uptake measurements (Figure 1¢). We then
performed MD simulations of the 12 GNPs from Ref. 17 using the workflow in Figure 2, calculated
the same uncorrelated descriptors required as input for the trained QNAR model, and utilized the
QNAR model to predict cell uptake. We note that the experimental cell uptake measurements used
for model training and testing utilized different cell lines (A549 cells in Ref. 32 versus HeLa cells
in Ref. 17) and initial GNP concentrations (50 pg/mL in Ref. 32 versus ~1.2 pg/mL in Ref. 17).
Hence, we do not expect the models trained with the data from Figure 1c to quantitatively predict
cell uptake values from Figure 6b; rather, the trained RF model should capture qualitative cell
uptake trends. Figure 6¢ shows the predicted versus experimental cell uptake for the 12 GNPs
using the trained RF model. Pearson’s » between predicted and experimental values is high (» =
0.90) and comparable to the value obtained for the original data set (Figure 4). The RF model also
correctly predicts that the 6 nm GNP with TTMA™ ligands (simulation snapshot in Figure 6¢) has
the highest cell uptake. The magnitude of the predicted cell uptake is lower than the experimental
values, but this quantitative disagreement likely reflects differences in experimental conditions as
noted above. We further tested the generalizability of the LASSO model to these 12 GNPs (Figure
S7), which performed poorly with » =-0.06. The improved performance of the nonlinear RF model
compared to the linear LASSO model is consistent with Figure 4. Together, these results indicate
that the RF model generalizes well to a different cell uptake data set, suggesting that it may be a
general tool for GNP design. Notably, the RF model can capture experimental trends despite
differences in cell line and uptake mechanisms,!” suggesting that GNP features related to cell

uptake (e.g., hydrogen bonding) are generally important for internalization into cells.
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CONCLUSIONS

In this work, we modeled 154 SAM-protected GNPs in aqueous solution using atomistic
MD simulations, computed a set of 15 uncorrelated simulation-derived descriptors, and
parameterized QNAR models to relate these descriptors to experimentally measured log P, cell
uptake, and zeta potential values. The MD simulation approach enables the calculation of
descriptors that capture structural and chemical features of GNPs that emerge from the interplay
of ligand-ligand, ligand—core, and ligand—water interactions in aqueous solution, thereby
quantifying non-obvious, cooperative behaviors that may not be readily predicted based on single-
molecule descriptors or descriptors based on static models of GNPs.*? ** We found that QNAR
models trained with both LASSO and RF regression algorithms accurately related simulation-
derived descriptors to experimental measurements. The small set of descriptors further permitted
analysis of descriptor importance to reveal that ligand fluctuations and hydrogen bonding are key
indicators of octanol partitioning and cellular uptake, suggesting general GNP design guidelines.
We further showed that the RF model could predict the uptake of 12 additional GNPs in a different
cell line, highlighting its generalizability.

Together, these results demonstrate that the combination of MD simulations and data-
centric regression analysis can predict the impact of GNP composition on corresponding
physicochemical properties and biological behavior. Similar QNAR models were also obtained
from shorter simulations (Figure S8), even if descriptors were not fully converged, suggesting that
the computational protocol could be utilized for high-throughput GNP screening. We also
highlight that the descriptors employed in this work do not depend on GNP-specific information
(e.g., ligand chemical structure or core composition), but rather reflect structural and chemical

properties that are materials agonistic (e.g., hydrogen bonding) and thus could more broadly
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generalize to other classes of nanomaterials. Another benefit of modeling GNPs with MD is that

their interactions with biomolecules could be further interrogated by modeling GNPs in the

9, 11, 16, 44, 47 5

presence of a lipid bilayer or proteins,* enabling the calculation of additional
environment-specific descriptors or complementary mechanistic investigations. Future work will
also explore the ability of deep learning models to automatically extract features from the extensive
data available within MD trajectories to improve prediction accuracy without predefining

descriptors.%-6!

METHODS
Nanoparticle simulation workflow

SAM-coated GNPs were constructed using a self-assembly approach described
previously’® and further detailed in the Supporting Information. Each gold core was modeled by
cutting a spherical region from the bulk gold face-centered cubic lattice; faceting was ignored for
simplicity and because prior studies have suggested that such facets do not substantially influence
SAM structure.*® Either butanethiol (SMILES: SCCCC) or 1,2-dithiolane (SMILES: C1CCSS1)
ligand substructures were self-assembled onto the spherical gold core as shown in Figure 2.
Adsorbed substructures were then replaced by desired ligands. Adsorbed ligands were randomly
removed to match the number of ligands listed in the database; if the listed number of ligands was
larger than the number of adsorbed ligands, then all adsorbed ligands were used. This approach
led to reasonable ligand surface densities (see Figure S1). Atomic clashes were eliminated using a
short 4 ps NV'T simulation with harmonic restraints applied to extend the last heavy atom of each
atom away from the gold surface with all interactions turned off. Van der Waals interactions were
then slowly reintroduced in a series of energy minimization steps as illustrated in Figure S2. The

system was then solvated with water, and, for charged systems, water molecules were replaced
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with sodium or chlorine counterions to ensure charge neutrality. All subsequent simulations were
performed at 300 K and 1 bar. A 1 ns NPT equilibration simulation was performed with the
temperature controlled by the velocity-rescale thermostat and the pressure controlled by the
Berendsen barostat, then a 50 ns NPT production simulation was performed with the same
thermostat and the pressure controlled by the Parrinello-Rahman thermostat. The last 40 ns of
simulation data were used to compute descriptors. This time was sufficient time for descriptors to

converge (Figures S4 and S5).

Simulation parameters

In all simulations, Verlet lists were generated using a 1.2 nm neighbor list cutoff. Van der
Waals interactions were modeled with a Lennard-Jones potential with a 1.2 nm cutoff that was
smoothly shifted to zero between 1.0 and 1.2 nm. Electrostatic interactions were calculated using
the smooth particle mesh Ewald method with a short-range cutoff of 1.2 nm, grid spacing of 0.12
nm, and fourth-order interpolation. Bonds were constrained using the LINCS algorithm. Periodic
boundary conditions were enabled in all directions. A rhombic dodecahedron simulation box
geometry was used to maximize computational efficiency given the approximately spherical
symmetry of the GNP systems. Ligand atoms were modeled with the CGenFF/CHARMM36
forcefield (July 2020 version),%2** gold atoms were modeled with the Interface force field,®> and
water molecules were modeled using the TIP3P model. All MD simulations were performed using

Gromacs 2016° using the leapfrog integrator with a 2-fs timestep.

Computing MD-derived descriptors

All MD-derived descriptors were generated with a combination of in-house Python

(MDTraj%” and MDAnalysis®®) and Gromacs analysis tools.®® The full list of the 25 MD-derived
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descriptors computed are tabulated in Table S1. The 15 uncorrelated descriptors shown in Table

S2 were used to train the QNAR models.

ONAR model training
LASSO and RF algorithms were used to train QNAR models relating MD-derived

descriptors to experimental labels. Each experimental dataset was randomly divided into training
(80% of the original dataset) and test sets (20% of the original dataset). The training sets were used
to train model parameters and the test sets were used to evaluate model accuracy. Five-fold cross
validation was performed to evaluate the generalizability of the models to unseen data within the
training set. In this approach, 80% of the training set was used to train the model and the remaining
20% (not used in model training) was used to validate model predictions. Validation set predictions
are reported in Figure 4. This approach was repeated five times such that each GNP was included
in the validation set once. When predicting the test set, the models were trained using all the
training data. All descriptor values were standardized by subtracting the mean and dividing by the
standard deviation so that they could be compared on the same magnitude. A single
hyperparameter for each LASSO model was tuned using 5-fold cross validation as described in
the Supporting Information (Figure S11). 500 trees were arbitrarily selected as a hyperparameter
for the RF models. To estimate prediction errors, a bagging approach was implemented when
training each QNAR model. In this approach, 20 LASSO or RF algorithms were trained by
randomly sampling the training data with replacement following the procedure describe above.
The average prediction of the twenty models is reported in the Results above, and the prediction
error is estimated by the standard deviation of the predictions.

To test model robustness, the entire simulation workflow (starting from the self-assembly

simulations) was repeated for a second trial. The second trial was performed with a shorter
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simulation time of 20 ns per GNP with the last 10 ns used for MD-derived descriptor calculations.
QNAR models trained using data from the second trial performed similarly to QNAR models
trained using data from the longer 50 ns GNP—water simulations (reported in Figure 4), confirming
robustness in the computational workflow and suggesting that a shorter simulation time could be
used to obtain accurate predictions even if the MD-derived descriptors are not fully converged

(Figure S8-S10).

Descriptor importance analysis

Descriptor importance was determined using the SHAP method.*” For each descriptor, the
average magnitude of the Shapley values across all instances is reported and the sign of the
descriptor importance is determined by the sign of the Pearson’s  value between the Shapley and
descriptor values. To estimate the accuracy of the resulting importance values, we implemented a
bootstrapping procedure by re-training the LASSO and RF models with 90% of the training set
(randomly sampled without replacement) and computing corresponding importance values.® This
procedure was iterated ten times to obtain the average and standard deviation of importance values

across these trials.
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