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ABSTRACT 

Gold nanoparticles are versatile materials for biological applications because their properties can 

be modulated by assembling ligands on their surface to form monolayers. However, the 

physicochemical properties and behaviors of monolayer-protected nanoparticles in biological 

environments are difficult to anticipate because they emerge from the interplay of ligand–ligand 

and ligand–solvent interactions that cannot be readily inferred from ligand chemical structure 

alone. In this work, we demonstrate that quantitative nanostructure–activity relationship (QNAR) 

models can employ descriptors calculated from molecular dynamics simulations to predict 

nanoparticle properties and cellular uptake. We performed atomistic molecular dynamics 

simulations of 154 monolayer-protected gold nanoparticles and calculated a small library of 

simulation-derived descriptors that capture nanoparticle structural and chemical properties in 

aqueous solution. We then parameterized QNAR models using interpretable regression algorithms 

to predict experimental measurements of nanoparticle octanol–water partition coefficients, zeta 

potentials, and cellular uptake obtained from a curated database. These models reveal that 

simulation-derived descriptors can accurately predict experimental trends and provide physical 

insight into what descriptors are most important for obtaining desired nanoparticle properties or 

behaviors in biological environments. Finally, we demonstrate model generalizability by 

predicting cell uptake trends for 12 nanoparticles not included in the original data set. These results 

demonstrate that QNAR models parameterized with simulation-derived descriptors are accurate, 

generalizable computational tools that could be used to guide the design of monolayer-protected 

gold nanoparticles for biological applications without laborious trial-and-error experimentation.  
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INTRODUCTION 

Gold nanoparticles (GNPs) are promising materials for applications including drug 

delivery, biosensing, and photothermal therapy because their interactions with biological materials 

can be tailored by assembling organic ligands on the GNP surface to form a self-assembled 

monolayer (SAM).1-3 Small GNPs with core diameters less than 10 nm are of particular interest 

because this size limits renal clearance from the body.4 This size is also commensurate with that 

of typical biomolecules (e.g., proteins) and the thickness of the cell membrane, enabling the study 

of nano–bio interactions between materials at comparable length scales.5 Because such interactions 

can be modulated by tailoring the ligand composition of the protecting SAM, substantial effort has 

been devoted to understanding how ligand properties impact interactions at the nano–bio interface. 

For example, synthetic modification of ligand hydrophobicity has been shown to impact GNP 

immune response,6 cellular uptake,7 and binding affinities for proteins8 and lipid bilayers9. 

Positively charged ligand end groups increase electrostatic interactions between small GNPs and 

negatively charged lipid bilayers, resulting in GNP adsorption to, disruption of, or insertion within 

the bilayer,10-12 whereas negatively charged ligand end groups largely promote adsorption.10, 12-14 

Zwitterionic ligands have been shown to prevent strong protein adsorption onto the GNP surface, 

which could minimize the formation of the protein corona.15 These studies highlight the structure–

property relationships that have been identified for broad categorizations of ligand properties (e.g., 

cationic vs. anionic vs. zwitterionic). However, many potential ligand chemical structures fit 

within these categories. Consequently, engineering small GNPs for targeted nano–bio interactions, 

such as selective protein binding or favorable cell uptake, remains challenging because subtle 
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variations to the gold core size and ligand properties can manifest as substantial changes to GNP 

behavior,6, 10, 15-23 which are challenging to predict a priori.24 Experimental exploration of the vast 

design space of possible GNP compositions is also time-consuming and difficult, in part because 

of the challenge in experimentally resolving molecular-level features of GNPs, such as the 

complex, non-planar geometries that arise from the interactions between ligands adsorbed to small 

GNPs and influence interactions with the surrounding environment.25-26 

To complement experimental methods, computational modeling can be used to derive 

quantitative nanostructure–activity relationship (QNAR) models for the rational design of GNPs 

without extensive trial-and-error experimentation.27-28 QNAR models use numerical parameters 

(descriptors) that capture characteristics of GNPs and relate them to the behavior of GNPs in 

biological environments. Descriptors typically consist of experimentally measured quantities (e.g., 

size, shape, zeta potentials)27 or single-molecule descriptors of organic ligands (e.g., constitutional, 

topological, electrostatic) that are often used in drug discovery applications.29 Descriptors are then 

related to relevant labels through a variety of machine learning algorithms (e.g., multilinear 

regression, support vector machines).28 A key challenge in the development of these models is 

determining an appropriate set of descriptors: experimental descriptors are challenging to measure 

for a large range of GNPs and single-molecule descriptors do not account for the collective 

properties of many organic and inorganic molecules contained within a SAM.28 Recent studies 

have sought to address these issues by developing virtual GNP models.30 These models are static 

atomistic representations of GNPs consisting of a gold core with chemically specific ligands 

randomly placed on the gold core with densities selected to mimic experimental measurements.30 

Virtual GNPs better capture properties such as the gold core size, ligand density, and surface 

chemistry than single-molecule descriptors while providing access to molecular-scale information 
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that is not easily resolved experimentally. Descriptors were developed to capture surface properties 

of virtual GNPs and used to develop QNAR models that could predict both biophysiochemical 

properties (e.g., log P, zeta potentials) and behaviors emerging from nano–bio interactions (e.g., 

cell uptake, GNP-enzyme binding).30-33 Furthermore, deep learning methods, such as 

convolutional neural networks, have been used to analyze virtual GNPs without requiring 

descriptor calculations.34 However, these static models do not account for changes to SAM 

structure that emerge from interactions between ligands and the surrounding solvent environment 

that could influence GNP behavior. Moreover, the descriptors developed for virtual GNPs are 

challenging to physically interpret and may not generalize to other classes of materials. 

Molecular dynamics (MD) simulations are an alternative computational method to gain 

atomistic insight into both the structure and dynamics of GNPs in explicit solvent.9, 26, 35-40 Unlike 

virtual GNPs, atomistic MD simulations of GNPs can model the formation of anisotropic 

structures that emerge from the interplay of ligand–ligand and ligand–solvent interactions. For 

example, GNPs protected by long, nonpolar alkanethiol ligands were experimentally41 and 

computationally35-40 found to form bundles, in which ligands align in the same direction due to 

preferred interactions between methylene moieties. These bundles dictate how GNPs bind with 

one another to minimize solvent-exposed hydrophobic surface area,38, 42 how GNPs bend single-

stranded nucleic acids,43 and how spatially heterogenous surface properties arise from chemically 

homogeneous SAMs.35 These simulations also permit analysis of GNPs in the presence of lipid 

bilayers or proteins,9, 11, 16, 20-21, 44-47 allowing for in-depth mechanistic studies that are not possible 

with virtual GNPs. While these past studies, along with many other studies of SAM-protected 

GNPs,16, 20-21, 24, 26, 48 have provided useful insights into the interplay of gold core and ligand 

selection on SAM properties that influence GNP behavior with other biomolecules, they have 
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focused primarily on mechanistic studies for a limited subset of GNPs and the integration of MD 

simulations with QNAR modeling has yet to be explored. 

Based on these observations, we hypothesize that MD simulations can more accurately 

capture GNP properties than can static models, potentially improving QNAR predictions of 

experimental data. To test this hypothesis, we modeled 154 sub-10-nm GNPs in aqueous solution 

using atomistic MD simulations and developed a small library of 25 MD-derived descriptors that 

characterize GNP structural and chemical properties. We used two interpretable regression 

techniques — least absolute shrinkage and selection operator (LASSO) regression and random 

forest (RF) — to develop QNAR models that accept MD-derived descriptors as input and predict 

experimental log P, cell uptake, and zeta potentials from Ref. 32. The resulting regression models 

accurately predict experimental data based on only a small number of physically interpretable 

descriptors that are generalizable to different classes of GNPs or other nanomaterials. We then 

identify the most important descriptors that relate to these experimental observables to provide 

general guidelines for the design of GNPs. Finally, we show that the RF cell uptake model correctly 

generalizes to capture cell uptake trends in a separate dataset consisting of 12 GNPs.17 These 

results demonstrate that QNAR models parameterized with simulation-derived descriptors are 

computationally efficient tools to predict GNP behavior a priori, thereby enabling the rational 

design of bioactive GNPs. 

RESULTS AND DISCUSSION 

Experimental datasets used to develop QNAR models 

To develop QNAR models, we obtained data from a curated database of GNPs that are 

protected by either single- or multicomponent SAMs consisting of ligands with the general 

structure shown in Figure 1a.32 Ligand backbones and end groups are both varied to provide  
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Figure 1. Experimental data used to develop QNAR models. (a) Typical ligand structure 

consisting of a sulfur head group, nonpolar backbone, and end group. One or two ligand 

components are assembled on the gold core to form a monolayer. (b) Schematics of the three 

experimental observables used to characterize gold nanoparticle (GNP) physicochemical 

properties and bioactivity. (c) Number distributions of GNPs labeled with each experimental 

observable. The total number of GNPs for each observable is written at the upper right. All 

experimental data were taken from Ref. 32. 

 

structural and chemical diversity in the resulting SAMs. The database also includes experimental 

data for the core diameter, ligand structure, and ligand surface density of each GNP. We selected 
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spherical GNPs less than 10 nm in core diameter, resulting in 154 GNPs (including 96 single- and 

58 multi-component SAMs) encompassing 105 distinct ligands and core diameters ranging 

between 2 and 8.5 nm. 

To characterize GNP biophysiochemical properties and behavior in biological 

environments, the database includes experimental measurements of GNP octanol–water partition 

coefficient (log P) values, uptake into A549 cells, and zeta potentials, although all three values are 

not available for all GNPs.32 These three GNP observables are schematically summarized in Figure 

1b. Log P quantifies the partitioning of GNPs between n-octanol and water phases; a larger value 

of log P indicates that the GNP prefers the octanol phase more than the water phase, suggesting 

that the surface is hydrophobic. Log P thus provides information on lipophilicity which can 

influence GNP interactions with lipid bilayers.9, 46, 49 Log P values were determined by measuring 

the partitioning of GNPs to the n-octanol and water phases using inductively coupled plasma mass 

spectrometry (ICP-MS) after 24 hours of shaking and 3 hours of relaxation (we note that it is 

possible that GNPs also partition to the interface between two phases, but this behavior is not 

readily captured in the log P measurement).32 Uptake into A549 cells (a lung epithelial cancer cell 

line) measures nonspecific internalization after incubating 50 µg/mL of GNPs for 24 hours and is 

quantified by the mass of internalized gold per cell measured via ICP-MS.32 Finally, the zeta 

potential in water measures the electric potential of the GNP at the shear plane as determined by 

electrophoresis; higher magnitude zeta potential values correspond to colloidally stable GNP 

suspensions.50 The zeta potential provides information on electrostatic interactions in biological 

environments that can influence the adsorption of proteins, adsorption to the cell membrane, cell 

uptake, and cytotoxicity.51-52 Zeta potentials were measured in water at pH 7 using a Malvern 

Zetasizer.32 Figure 1c shows the number distribution of GNPs for the different experimental 
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values; in total, there are 110 GNPs with log P values, 65 GNPs with cell uptake values, and 102 

GNPs with zeta potentials. Values for log P and cell uptake are well-distributed, whereas zeta 

potentials are skewed toward negative values. These experimental observables provide 

complementary insight into the behavior of GNPs within a biological environment and are thus 

suitable labels for developing QNAR models for GNPs intended for biological applications. 

 

Computational workflow to compute MD-derived descriptors of GNP properties 

To model the large set of GNPs, we modified our previously developed workflow for constructing 

atomistic models of GNPs with desired gold core shapes, sizes, and ligand selection.36 Each GNP 

is specified by the diameter of its gold core (modeled as spherical), simplified molecular-input 

line-entry (SMILES) strings for each type of ligand in the protecting SAM, and the total number 

of ligands in the SAM. Figure 2 summarizes the workflow using GNP1 and GNP288 (GNP 

nomenclature follows that of Ref. 32) as representative examples that have distinct gold core sizes 

and ligand structures. Ligands within the GNP database32 have one of two substructure patterns: 

(1) butanethiol (SMILES: SCCCC) and (2) 1,2-dithiolane (SMILES: C1CCSS1). Accordingly, we 

positioned ligands on the gold surface by placing an excess of either butanethiol or 1,2-dithiolane 

molecules around the gold core and permitting them to self-assemble onto the surface via a strong 

sulfur–gold Lennard-Jones (LJ) interaction.36, 53 Adsorbed substructures were replaced with the 

desired ligand structures from the database. The resulting GNP was simulated in the presence of 

water molecules and sodium or chloride counterions (if necessary) for 50 ns in the NPT ensemble 

(vide infra for discussion of convergence within this timeframe). We used this workflow to  
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Figure 2. Workflow for modeling GNPs using MD simulations. Each GNP is selected from a 

database that specifies the GNP diameter, number of ligands adsorbed on the surface, and SMILES 

string for each type of ligand. The diameter and ligand substructure, either butanethiol (SCCCC) 

or 1,2-dithiolane (C1CCSS1), were used to initiate simulations in which model substructures 

adsorb to the gold core. Excess substructures (green) were removed and adsorbed substructures 

(gray) were replaced with the desired ligands. The GNP was then simulated in pure water (cyan) 

with sodium or chlorine counterions as needed to ensure charge-neutral systems. This schematic 

uses GNP1 and GNP288 as representative examples. 

 

systematically model 154 GNPs and compute MD-derived descriptors. Additional details on the 

simulation workflow are included in the Methods and Supporting Information (Figures S1-S2). 
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Figure 3. Summary of MD-derived descriptors. (a) List of selected MD-derived descriptors. All 

25 descriptors are described in Table S1. (b) Matrix of Pearson’s r values between all pairs of 

descriptors. Values are colored based on the absolute value of r; highly correlated pairs are colored 

in red, whereas uncorrelated descriptors are blue. Descriptor indexes correspond to Table S1. 

Fifteen uncorrelated descriptors were identified after removing one descriptor from each highly 

correlated pair (defined as |𝑟| > 0.90). (c) Three example GNPs with varying core diameters (in 

parentheses) and ligand structures. Simulation snapshots are shown without water molecules. (d) 

Solvent-accessible-surface area (SASA) and number of ligand–water hydrogen bonds (HBonds) 

versus simulation time for the three GNPs.  

 

We developed a library of 25 physically motivated descriptors that capture structural and 

chemical properties of GNPs based on previous studies.30-31, 33, 36, 54-55 Figure 3a shows a truncated 

list of these descriptors; a full list is available in Table S1. Correlated descriptors were removed 
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by computing the Pearson’s r correlation matrix between the 25 descriptors (Figure 3b). A value 

of |𝑟| ≈ 1 for a pair of descriptors indicates that they are highly correlated and provide redundant 

information. Consequently, one descriptor from each pair of descriptors for which |𝑟| > 0.90 was 

removed, resulting in 15 uncorrelated descriptors (listed in Table S2) suitable for parameterizing 

QNAR models. These descriptors capture structural characteristics arising from the interplay of 

the gold core and ligand selection that may not be inferred from ligand structure or core diameter 

alone. To illustrate this, Figure 3c shows three example GNPs (GNP14, GNP123, and GNP151) 

with varying core diameters and ligand structures; the simulation snapshots illustrate the complex 

SAM geometries obtained in aqueous solution. Figure 3d plots two representative descriptors — 

the solvent-accessible-surface area (SASA) and the number of ligand–water hydrogen bonds 

(HBonds) — versus simulation time for each GNP. GNP14 has the smallest core diameter, but it 

has approximately the same SASA as GNP123 due to the longer ligand attached on GNP14. 

GNP123 has the largest number of ligand–water hydrogen bonds even though the ligand on 

GNP123 has fewer oxygen and nitrogen atoms compared to GNP14. These representative results 

highlight how MD-derived descriptors can capture non-obvious characteristics that emerge from 

the interplay of ligand–ligand and ligand–water interactions. Moreover, they confirm the 

convergence of descriptor calculations within reasonably rapid MD timescales (< 50 ns). Details 

on descriptor calculations and convergence are included in the Supporting Information and Figures 

S3-S5. 

 

QNAR models using MD-derived descriptors accurately predict experimental trends 

We sought to develop QNAR models that use the uncorrelated descriptors from Table S2 

as input to predict the selected experimental labels (i.e., log P, cell uptake, zeta potential). We 

compared LASSO and RF regression algorithms to probe the prediction capabilities of MD- 
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Figure 4. Prediction accuracy of QNAR models. Parity plots of predicted versus experimental 

log P (left), cell uptake (middle), and zeta potential (right) values are shown for LASSO (top) and 

random forest (bottom) models. 5-fold cross validation (5-CV) predictions are shown in black and 

test set predictions are shown in red. Pearson’s r values that measure correlations between 

predicted and experimental values are shown in the upper left with the same color scheme. Units 

for all measurements are the same as Figure 1. Experimental data and error bars were taken from 

Ref. 32. Predicted values and error bars were estimated using a bagging approach with either 20 

LASSO or RF models; the average of the predictions is reported, and the error is estimated by the 

standard deviation of the predictions. 

 

derived descriptors. LASSO is a linear regression model that minimizes the residual sum squared 

and the sum of the absolute value of the regression weights. Compared to a typical multiple linear 

regression model, an advantage of LASSO is its ability to remove descriptors that do not 

significantly contribute to the prediction of the experimental observable, which is useful for 

identifying the most important descriptors that contribute to predictions. RF is a non-linear model 

consisting of an ensemble of decision trees that are each trained using different subsets of the 

training data; these trees then collectively vote on a predicted output value. To test the ability of 

the models to generalize to unseen data, we held out 20% of the experimental labels as a test set 
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and further performed 5-fold cross validation (5-CV) of the remaining training set as further 

described in the Methods. 

Figure 4 compares predicted and experimental log P, cell uptake, and zeta potential values 

for QNAR models trained using LASSO and RF. Both 5-CV and test set predictions are shown 

and labeled with the computed value of Pearson’s r as a measure of linear correlation between the 

predicted and experimental values. Values of Pearson’s r close to 1 indicate that the QNAR model 

accurately predicts experimental trends. For log P and cell uptake data sets, the LASSO models 

perform well with 𝑟 > 0.8 for the 5-CV data and slightly diminished test set performance with 

𝑟 ≥ 0.69. However, the LASSO model performed poorly when predicting zeta potentials with 𝑟 =

0.64 for 5-CV and 𝑟 = 0.56 for the test set. Compared to the LASSO models, the nonlinear RF 

models improved prediction accuracy for all three data sets based upon comparison of Pearson’s r 

for the 5-CV and test set data, with modest improvements obtained for the log P and cell uptake 

data sets but substantial improvement for the zeta potential data set (𝑟 ≥ 0.85 for the 5-CV data 

and 𝑟 ≥ 0.71 for the test set data). Together, these results show that MD-derived descriptors can 

be used to predict experimentally determined GNP properties and cellular uptake across a diverse 

set of GNPs using a small set of descriptors (15) compared to the >600 used in prior virtual GNP 

studies.32 The QNAR predictions also capture experimental trends even though the GNPs are 

modeled in aqueous solution rather than the environments corresponding to the experimental 

measurements (e.g., simulations of GNPs interacting with the cell membrane are not required to 

predict cell uptake).  
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Figure 5. Descriptor importance for the QNAR models. Three most important descriptors for 

the log P (left), cell uptake (middle), and zeta potential (right) datasets identified for the random 

forest models (Figure 4). Descriptor abbreviations: RMSF is the ligand root-mean-squared 

fluctuation; E(NP–S) is the Lennard-Jones (LJ) interaction energy between GNP and solvent; 

E(NP–NP) is the LJ interaction energy between GNP ligands; HBond is the number of GNP-water 

hydrogen bonds; and  is the electrostatic potential difference between bulk water and the gold 

core. Descriptors with the subscript “SASA” are normalized by the solvent-accessible surface area 

of the GNP, and descriptors with the subscript “#Lig.” are normalized by the total number of 

ligands on the gold core surface. 

 

Analysis of important descriptors 

We next sought to identify the descriptors that were most important to the QNAR model 

predictions of experimental trends. We quantified descriptor importance using the SHapley 

Additive exPlanation (SHAP) method, which was recently introduced as a model-agnostic method 

capable of quantifying descriptor importance even for “black box” models, such as deep neural 

networks.56 The SHAP method assigns an importance value by comparing model predictions with 

and without a descriptor across all possible permutations of descriptor selections, then computing 

the Shapley value by averaging the marginal contribution of the descriptor.57 The magnitude of 

the Shapley value estimates descriptor importance and the sign indicates if increasing the value of 

that descriptor increases (if positive) or decreases (if negative) the value of the model output.56, 58 

Additional details on these calculations are provided in the Methods. Given that the usefulness of 

descriptor importance analysis depends on model accuracy, we primarily focus on identifying 
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important descriptors using the RF models, which outperformed the LASSO models for all three 

experimental observables (Figure 4). 

Figure 5 shows the three descriptors with the highest importance for the log P, cellular 

uptake, and zeta potential (right) datasets using the RF model. For each dataset, a single descriptor 

is identified as significantly more important than all other descriptors. These descriptors include 

the ligand root-mean-squared-fluctuations normalized by the SASA (RMSFSASA) for the log P 

dataset, the number of GNP–water hydrogen bonds normalized by the number of ligands 

(HBond#Lig.) for the cell uptake dataset, and the GNP–GNP Lennard-Jones interaction energy 

normalized by the SASA (E(NP–NP)SASA) for the zeta potential dataset. The same descriptors were 

also identified as most important upon performing a second trial of the entire computational 

workflow (see Methods and Figure S9). Moreover, the descriptors with the highest importance for 

the linear LASSO model are similar with those identified for the nonlinear RF model, subject to 

variations in normalization. Specifically, the most important descriptors for the LASSO model 

include the unnormalized ligand root-mean-squared-fluctuations (RMSF) for the log P dataset, the 

number of GNP–water hydrogen bonds normalized by the SASA (HBondSASA) for the cell uptake 

dataset, and the GNP–GNP Lennard-Jones interaction energy normalized by the number of ligands 

(E(NP–NP)#Lig.) for the zeta potential dataset (Figure S6). The similarity of the most important 

descriptors for both the linear and nonlinear models in multiple simulation trials suggests the 

robustness of their importance.  

An advantage of simulation-derived descriptors is that their physical significance can be 

readily interpreted to suggest GNP design guidelines or mechanistic hypotheses regarding their 

importance. We thus focus on understanding the most important descriptor for each dataset. For 

the log P dataset, larger values of log P indicate increased GNP partitioning to the hydrophobic 
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octanol phase. Because all simulations were performed in water, the negative importance of 

RMSFSASA indicates that larger ligand fluctuations are a signature of a more hydrophilic GNP, in 

agreement with our prior work that identified that decreasing ligand fluctuations correspond to 

increased surface hydrophobicity.35 Ligand fluctuations are enhanced if water is a good solvent 

because a large number of energetically favorable conformations exist, whereas ligands will adopt 

a smaller number of conformations that minimize solvent contact if water is a poor solvent. For 

the cell uptake dataset, increasing the extent of GNP–water hydrogen bonding implies a decrease 

in cellular uptake. We can interpret a large value of this descriptor as reflecting the strong solvation 

of the GNP by water, suggesting that adsorption to the lipid bilayer prior to internalization is 

unfavorable. Recent work has similarly shown that increasing ligand hydrophobicity — thereby 

decreasing favorable interactions with water — promotes both adsorption to lipid bilayers and 

cellular internalization,9, 15 agreeing with this interpretation. For the zeta potential dataset, it is 

expected that a descriptor of the GNP electrostatic potential (, as defined in the Supporting 

Information) should be important since the zeta potential is typically used to estimate the effective 

charge of a GNP.50, 59 Surprisingly, the most important descriptor for the zeta potential dataset 

quantifies Lennard-Jones interactions between ligands; increasing E(NP–NP)SASA indicates that 

such interactions are less favorable. Weaker ligand–ligand interactions indicate less densely 

packed monolayers, either due to lower ligand surface densities or reduced ligand clustering, which 

could influence the zeta potential due to factors such as counterion condensation or changes to the 

titration state of charged ligands.59 Recent simulations have similarly shown that molecular-scale 

features beyond charge density impact the zeta potential.59 However, we caution that the 

importance of this descriptor may be biased by the imbalanced dataset which predominantly 

includes GNPs with negative zeta potentials in the dataset (Figure 1c).  



 18 

Model generalizability to unseen datasets 

We next tested the ability of the QNAR models to generalize to unseen datasets outside of 

the database used for model training. We focused on testing the generalizability of the cell uptake 

model because cell uptake is the most biologically relevant experimental measurement and 

predicting cell uptake is valuable for drug delivery applications. For this test, we utilized 

experimental measurements of cell uptake collected by Jiang et al. for 12 GNPs with core 

diameters of 2, 4, and 6 nm that were protected by ligands with four distinct end groups (shown in 

Figure 6a).17 Trimethylammonium (TTMA+) and carboxylate (COO-) ligands are representative 

cationic and anionic ligands, respectively, while the NS± and SN± ligands are zwitterionic. Cell 

uptake measurements were performed after the GNPs were incubated with HeLa cells for 3 hours, 

and uptake was quantified using ICP-MS.17 Figure 6b shows measurements of cell uptake for these 

12 GNPs in human cervical carcinoma (HeLa) cells; all experimental data were taken from Ref. 

17 and converted to the same units used for the cell uptake models in Figure 1c (see Table S3). In 

these units, GNPs with TTMA+ ligands were found to have increased cell uptake compared to the 

other GNPs and increasing the GNP size from 2 nm to 6 nm generally increased cell uptake for all 

GNPs, although we note that the actual number of GNPs per cell decreases with increasing size 

for GNPs with COO-, NS± and SN± ligands.17 These trends emerge from changes in the endocytic 

pathways as a function of GNP size and surface properties.17 
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Figure 6. Generalizability of the cell uptake model to an unseen dataset. (a) Ligand structure 

with four end group chemistries. (b) Cell uptake of 12 GNPs with core diameters of 2, 4, and 6 nm 

and ligand structures from (a). Cell uptake values and errors were taken from experimental 

measurements in Ref. 17 and converted to the same units as Figure 1c (see Table S3). (c) Predicted 

versus experimental cell uptake values using a RF algorithm trained with 15 uncorrelated 

descriptors as input and 65 cell uptake labels from Figure 1c as output. Predicted values and error 

bars were estimated using a bagging approach with 20 RF models; the average of the predictions 

is reported, and the error is estimated by the standard deviation of the predictions. Pearson’s r 

between predicted and experimental values using all 12 GNPs is shown in the lower right. The 

black dashed line shows the best fit line as a guide. The simulation snapshot illustrates a 6 nm 

GNP with TTMA+ ligands. 
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Given that the RF model accurately related MD-derived descriptors to cell uptake in A549 

cells (Figure 4), we trained a RF model on these 65 cell uptake measurements (Figure 1c). We then 

performed MD simulations of the 12 GNPs from Ref. 17 using the workflow in Figure 2, calculated 

the same uncorrelated descriptors required as input for the trained QNAR model, and utilized the 

QNAR model to predict cell uptake. We note that the experimental cell uptake measurements used 

for model training and testing utilized different cell lines (A549 cells in Ref. 32 versus HeLa cells 

in Ref. 17) and initial GNP concentrations (50 µg/mL in Ref. 32 versus ~1.2 µg/mL in Ref. 17). 

Hence, we do not expect the models trained with the data from Figure 1c to quantitatively predict 

cell uptake values from Figure 6b; rather, the trained RF model should capture qualitative cell 

uptake trends. Figure 6c shows the predicted versus experimental cell uptake for the 12 GNPs 

using the trained RF model. Pearson’s r between predicted and experimental values is high (r = 

0.90) and comparable to the value obtained for the original data set (Figure 4). The RF model also 

correctly predicts that the 6 nm GNP with TTMA+ ligands (simulation snapshot in Figure 6c) has 

the highest cell uptake. The magnitude of the predicted cell uptake is lower than the experimental 

values, but this quantitative disagreement likely reflects differences in experimental conditions as 

noted above. We further tested the generalizability of the LASSO model to these 12 GNPs (Figure 

S7), which performed poorly with r = -0.06. The improved performance of the nonlinear RF model 

compared to the linear LASSO model is consistent with Figure 4. Together, these results indicate 

that the RF model generalizes well to a different cell uptake data set, suggesting that it may be a 

general tool for GNP design. Notably, the RF model can capture experimental trends despite 

differences in cell line and uptake mechanisms,17 suggesting that GNP features related to cell 

uptake (e.g., hydrogen bonding) are generally important for internalization into cells.  
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CONCLUSIONS 

In this work, we modeled 154 SAM-protected GNPs in aqueous solution using atomistic 

MD simulations, computed a set of 15 uncorrelated simulation-derived descriptors, and 

parameterized QNAR models to relate these descriptors to experimentally measured log P, cell 

uptake, and zeta potential values. The MD simulation approach enables the calculation of 

descriptors that capture structural and chemical features of GNPs that emerge from the interplay 

of ligand–ligand, ligand–core, and ligand–water interactions in aqueous solution, thereby 

quantifying non-obvious, cooperative behaviors that may not be readily predicted based on single-

molecule descriptors or descriptors based on static models of GNPs.32, 34 We found that QNAR 

models trained with both LASSO and RF regression algorithms accurately related simulation-

derived descriptors to experimental measurements. The small set of descriptors further permitted 

analysis of descriptor importance to reveal that ligand fluctuations and hydrogen bonding are key 

indicators of octanol partitioning and cellular uptake, suggesting general GNP design guidelines. 

We further showed that the RF model could predict the uptake of 12 additional GNPs in a different 

cell line, highlighting its generalizability.  

Together, these results demonstrate that the combination of MD simulations and data-

centric regression analysis can predict the impact of GNP composition on corresponding 

physicochemical properties and biological behavior. Similar QNAR models were also obtained 

from shorter simulations (Figure S8), even if descriptors were not fully converged, suggesting that 

the computational protocol could be utilized for high-throughput GNP screening. We also 

highlight that the descriptors employed in this work do not depend on GNP-specific information 

(e.g., ligand chemical structure or core composition), but rather reflect structural and chemical 

properties that are materials agonistic (e.g., hydrogen bonding) and thus could more broadly 
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generalize to other classes of nanomaterials. Another benefit of modeling GNPs with MD is that 

their interactions with biomolecules could be further interrogated by modeling GNPs in the 

presence of a lipid bilayer9, 11, 16, 44, 47 or proteins,45 enabling the calculation of additional 

environment-specific descriptors or complementary mechanistic investigations. Future work will 

also explore the ability of deep learning models to automatically extract features from the extensive 

data available within MD trajectories to improve prediction accuracy without predefining 

descriptors.60-61 

METHODS 

Nanoparticle simulation workflow 

SAM-coated GNPs were constructed using a self-assembly approach described 

previously36 and further detailed in the Supporting Information. Each gold core was modeled by 

cutting a spherical region from the bulk gold face-centered cubic lattice; faceting was ignored for 

simplicity and because prior studies have suggested that such facets do not substantially influence 

SAM structure.36 Either butanethiol (SMILES: SCCCC) or 1,2-dithiolane (SMILES: C1CCSS1) 

ligand substructures were self-assembled onto the spherical gold core as shown in Figure 2. 

Adsorbed substructures were then replaced by desired ligands. Adsorbed ligands were randomly 

removed to match the number of ligands listed in the database; if the listed number of ligands was 

larger than the number of adsorbed ligands, then all adsorbed ligands were used. This approach 

led to reasonable ligand surface densities (see Figure S1). Atomic clashes were eliminated using a 

short 4 ps NVT simulation with harmonic restraints applied to extend the last heavy atom of each 

atom away from the gold surface with all interactions turned off. Van der Waals interactions were 

then slowly reintroduced in a series of energy minimization steps as illustrated in Figure S2. The 

system was then solvated with water, and, for charged systems, water molecules were replaced 
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with sodium or chlorine counterions to ensure charge neutrality. All subsequent simulations were 

performed at 300 K and 1 bar. A 1 ns NPT equilibration simulation was performed with the 

temperature controlled by the velocity-rescale thermostat and the pressure controlled by the 

Berendsen barostat, then a 50 ns NPT production simulation was performed with the same 

thermostat and the pressure controlled by the Parrinello-Rahman thermostat. The last 40 ns of 

simulation data were used to compute descriptors. This time was sufficient time for descriptors to 

converge (Figures S4 and S5). 

 

Simulation parameters 

In all simulations, Verlet lists were generated using a 1.2 nm neighbor list cutoff. Van der 

Waals interactions were modeled with a Lennard-Jones potential with a 1.2 nm cutoff that was 

smoothly shifted to zero between 1.0 and 1.2 nm. Electrostatic interactions were calculated using 

the smooth particle mesh Ewald method with a short-range cutoff of 1.2 nm, grid spacing of 0.12 

nm, and fourth-order interpolation. Bonds were constrained using the LINCS algorithm. Periodic 

boundary conditions were enabled in all directions. A rhombic dodecahedron simulation box 

geometry was used to maximize computational efficiency given the approximately spherical 

symmetry of the GNP systems. Ligand atoms were modeled with the CGenFF/CHARMM36 

forcefield (July 2020 version),62-64 gold atoms were modeled with the Interface force field,65 and 

water molecules were modeled using the TIP3P model. All MD simulations were performed using 

Gromacs 201666 using the leapfrog integrator with a 2-fs timestep. 

  

Computing MD-derived descriptors 

All MD-derived descriptors were generated with a combination of in-house Python 

(MDTraj67 and MDAnalysis68) and Gromacs analysis tools.66 The full list of the 25 MD-derived 
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descriptors computed are tabulated in Table S1. The 15 uncorrelated descriptors shown in Table 

S2 were used to train the QNAR models. 

 

QNAR model training 

LASSO and RF algorithms were used to train QNAR models relating MD-derived 

descriptors to experimental labels. Each experimental dataset was randomly divided into training 

(80% of the original dataset) and test sets (20% of the original dataset). The training sets were used 

to train model parameters and the test sets were used to evaluate model accuracy. Five-fold cross 

validation was performed to evaluate the generalizability of the models to unseen data within the 

training set. In this approach, 80% of the training set was used to train the model and the remaining 

20% (not used in model training) was used to validate model predictions. Validation set predictions 

are reported in Figure 4. This approach was repeated five times such that each GNP was included 

in the validation set once. When predicting the test set, the models were trained using all the 

training data. All descriptor values were standardized by subtracting the mean and dividing by the 

standard deviation so that they could be compared on the same magnitude. A single 

hyperparameter for each LASSO model was tuned using 5-fold cross validation as described in 

the Supporting Information (Figure S11). 500 trees were arbitrarily selected as a hyperparameter 

for the RF models. To estimate prediction errors, a bagging approach was implemented when 

training each QNAR model. In this approach, 20 LASSO or RF algorithms were trained by 

randomly sampling the training data with replacement following the procedure describe above. 

The average prediction of the twenty models is reported in the Results above, and the prediction 

error is estimated by the standard deviation of the predictions. 

To test model robustness, the entire simulation workflow (starting from the self-assembly 

simulations) was repeated for a second trial. The second trial was performed with a shorter 



 25 

simulation time of 20 ns per GNP with the last 10 ns used for MD-derived descriptor calculations. 

QNAR models trained using data from the second trial performed similarly to QNAR models 

trained using data from the longer 50 ns GNP–water simulations (reported in Figure 4), confirming 

robustness in the computational workflow and suggesting that a shorter simulation time could be 

used to obtain accurate predictions even if the MD-derived descriptors are not fully converged 

(Figure S8-S10). 

 

Descriptor importance analysis 

 Descriptor importance was determined using the SHAP method.57 For each descriptor, the 

average magnitude of the Shapley values across all instances is reported and the sign of the 

descriptor importance is determined by the sign of the Pearson’s r value between the Shapley and 

descriptor values. To estimate the accuracy of the resulting importance values, we implemented a 

bootstrapping procedure by re-training the LASSO and RF models with 90% of the training set 

(randomly sampled without replacement) and computing corresponding importance values.69 This 

procedure was iterated ten times to obtain the average and standard deviation of importance values 

across these trials.  
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