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Abstract—In this paper, we analyze applicability of single- and
two-hidden-layer feed-forward artificial neural networks, SLFNs
and TLFNs, respectively, in decoding linear block codes. Based
on the provable capability of SLFNs and TLFNs to approximate
discrete functions, we discuss sizes of the network capable to per-
form maximum likelihood decoding. Furthermore, we propose a
decoding scheme, which use artificial neural networks (ANNs) to
lower the error-floors of low-density parity-check (LDPC) codes.
By learning a small number of error patterns, uncorrectable with
typical decoders of LDPC codes, ANN can lower the error-floor
by an order of magnitude, with only marginal average complexity
incense.
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I. INTRODUCTION

Artificial neural networks (ANNs) are popular mathematical
concept used to solve various complex engineering problems,
related to regression and classification of collected data. ANNs
can be applied without substantial knowledge of the data
(for example dependencies among data samples), why they
are called universal approximators. Topological structure of
feed-forward ANNs provides sufficient degrees of freedom
to represent any continuous function with arbitrary precision.
Early works, like Cybenko’s [1], showed that even single-
hidden-layer feed-forward neural networks (SLFNs) preserve
the universal approximation capability. Approximating discrete
functions with SLFNs can be accomplish with the number
of hidden-layer neurons equal to the number of data samples
of the discrete function [2]. The complexity of SLFNs limits
their applicability, especially given the fact that the worst case
dimension of two-hidden-layer feed-forward neural networks
(TLFNs) is O(

√
M), where M is the number of function

samples, as show by Huang [3]. Incensing the number of
hidden layers potentially reduces the overcall complexity of
the network, however, we are unaware of the formal proof
and limit our discussion to SLFNs and TLFNs.
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The problem of maximum likelihood (ML) decoding, is
a special case of classification problem. However, decoding
of an arbitrary linear block code is not the typical use case
for ANN classification, given the fact that number of classes
(codewords) increases exponentially with length of the code.
In addition, classification error (residual frame error rate)
usually needs to be 10−5 or lower, which is hard to achieve,
when training is performed on a limited set of data. Thus,
most of the relevant work is oriented into improving existing
decoders, by learning (via ANN) specific decoding features.

Belief propagation (BP) decoder can be transformed into
sparse neural network, with small number of learnable
weights, as noticed by Nachmani et al. [4]. Following the
same idea, Lugosch and Gross [5] showed that error-rate of
min-sum decoding can be reduced if parts of the decoder
are organized as neurons of a sparse neural network. In a
more sophisticated approach, Xiao et al. [6] used recurrent
quantified ANN to design finite alphabet iterative decoders
applied for decoding low-density parity-check (LDPC) codes.
Their work showed that the major benefit of employing ANNs
is to increase convergence speed of the iterative decoding.
In another research direction, Liang et al. [7] entangled BP
decoder and convolutional ANN in a decoding loop. After
predefined number of iterations BP transmits codebit decisions
to the ANN, which task is to estimate channel noise and
passed it back to the BP decoder for additional processing.
Although proposed decoding scheme is superior, compared to
the BP decoder, its complexity is high. He in [8] found another
application of ANNs for decoding LDPC codes, where ANN
was used to predict decoding failures and estimate bit positions
for bit-flipping that will hopefully help the min-sum decoder
– the main error correction algorithm in the proposed scheme.
Finally, Buchberger et al. in [9] proposed decimation strategy
(learned via ANN), which enables the min-sum decoder to
perform close to ML decoding bound, for short LDPC codes.

In this paper we examine the applicability of SLFNs and
TLFNs in decoding of linear block codes in general, and
specifically LDPC codes. Based on the provable learning
capability of ANNs we examine the complexity of the network
required to perform ML decoding on binary symmetric chan-
nel (BSC) and compare it with the trellis-based ML decoder.
Furthermore, we show how ANN can be used to lower error-



floors of LDPC codes. Namely, we propose a decoding scheme
in which ANN is used for post-processing, and every time a
iterative LDPC decoder fails to correct channel induced errors,
ANN-based decoder is turned on. Given the fact that the error-
floors of LDPC codes are mostly influenced by uncorrectable
error patterns with lowest weights, and that the number of such
error patterns in usually not high, ANN can be trained to learn
all of them and, consequently, reduce the error-floor by the
order of magnitude, with only marginal increase in complexity
per transmitted codeword. In contrary to [8], where the ANN
learns the decoding features through excessive simulations,
our approach relies on pre-computed trapping set profiles,
which have been studied intensively over the past years [10]–
[13]. Thus, to apply ANN-based post-processor one needs to
collect specific low-weight error patterns, which is feasible
for variety of LDPC codes and decoders, as recently shown
by Raveendran et al. [10].

The rest of the paper is organized as follows. In Section
II preliminaries about LDPC codes and decoders on graphs
are given. Section III is dedicated to performance analysis of
decoding with SLFNs, while we discuss TLFN decoders and
their applicability in reducing error floors of LDPC codes in
Section IV. Concluding remarks are given in Section V.

II. PRELIMINARIES

Consider a binary linear block code (n, k), with code rate
R = k/n, described by its parity check matrix H. Let c =
(c1, c2, . . . , cn) be a valid codeword of the code, transmitted
through BSC with crossover probability p. Receiver collects
sequence r, where Pr{ci = ri} = 1− p, 1 ≤ i ≤ n. The ML
decoder finds the closest valid codeword as

ĉ = argmax
c

P (c|r). (1)

ML decoding can be performed on trellis structure, con-
structed based on H. States of a trellis at depth t, 0 ≤ t ≤ n
are formed as follows

S0 = 0,

St = St−1 + ctht =
t∑

i=1

ciht, t = 1, 2, . . . , n,

where ht corresponds to the t-th column of H. A trellis path
(among total 2k paths) corresponds to a codeword of the code.
There are at most 2n−k states at every trellis depth. Running
Viterbi algorithm on the described trellis solves Eq. (1).

Decoders of LDPC codes are commonly run on bipartite
graphs, called Tanner graphs, in order to exploit sparsity of
H. A bipartite graph is G = (V ∪ C,E), where V =
{v1, v2, . . . , vn} is a set n of variable nodes (columns of
H), C = {c1, c2, . . . , cm} is a set of m check nodes (rows
of H). An edge e ∈ E connects vi and cj (e = (vi, cj))
iff hi,j = 1. We denote a set of neighbours of a node
x ∈ (V ∪C) as N (x), which cardinality |N (x)| is called the
degree of the node x. Specially, average degree of variable
nodes is denoted by γ̂. An iterative decoder D is defined as 5-
tuple D = (M,Y,Φ,Ψ, Φ̂), where M and Y denote internal

message and channel alphabets, respectably. Update functions
implemented in variable and check nodes are Φ and Ψ, respec-
tively, while Φ̂ is bit decision function. A decoding iteration
corresponds to message exchange between all neighbouring
nodes in Tanner graph, and thus, during the `-th iteration a
variable v sends message to its neighbour c, µ(`)

v→c and receives
from the opposite direction ν(`)c→v . Messages are calculated as
µ
(`)
v→c = Φ(n(`−1), rv) and ν

(`)
c→v = Ψ(m(`)), where n(`) =

ν
(`−1)
N (c)\v→v and m(`) = µ

(`)
N (v)\c→c. The decoder is run for

Niter iterations. By varying alphabets and update node func-
tions, distinct decoders with various complexity-performance
tradeoffs can be constructed. For example, Gallager-A/B is
considered to be low a complexity solution, while offset min-
sum decoder has high error correction capability.

III. DECODING LINEAR BLOCK CODES WITH SLFNS

A codeword ci of linear block code can be projected to a
line and seen as a decimal number c(d)i ∈ [0, 1]. Analogously,
at channel output decimal number r(d) ∈ I in range I = [0, 1]

can appear. The distance between two channel outputs r(d)i i
r
(d)
j satisfies |r(d)i − r

(d)
j | ≥ 1/2n. The decoding is equivalent

to a classification problem in which I is divided to 2k disjoint
measurable intervals P1, P2, ..., P2k . Note that Pi may not be
continuous. The decoder can be represented as a function f

f(x) = c
(d)
i , if x ∈ Pi.

Consider feed-forward ANN with a single hidden layer
constructed to mimic f(x). The neural network is a finite
linear combination of the form

G(x) =
M∑
j=1

αjσ(wjx+ θj),

where αj , wj and θj are fixed real numbers, and σ(·) is any
continuous function satisfying

σ(t) =

{
1, if t→∞
0, if t→ −∞.

Let FERML be frame error rate (FER) of the ML decoder.
The following theorem shows that previously defined ANN
can mimic ML decoder with negligible error.

There exists artificial neural network G(x), which produce
frame error rate FERANN , and under the assumption of
uniformly transmitted codewords, satisfies

|FERANN − FERML| ≤ p(1− p)n−1/2k.

Proof: By Cybenko’s theorem [1] we know that exist
network G(x) and interval D ⊂ I for which |G(x)−f(x)| < ε
for all x ∈ D, for any arbitrary ε. Furthermore, Lesbegue
measure of D is m(D) ≥ 1 − ε. This means that neural
network can classify almost all inputs in almost all x domain.
Note that decoding on BSC is less rigorous – it only requires
classification on a set with discrete inputs values. For all
ε < 1/2(k−2), G(x) will successfully classify every received
sequence from the channel x ∈ D, since the network will
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give the result closes to value (codeword) produced by the
ML decoder. Given the fact that, Cybenko’s theorem does not
guarantee the locations of interval D, it is possible that outside
D exists discrete points, which will be incorrectly classified.
It follows that, under the same condition for ε < 1/2(k−2),
at most one such point exists. It is reasonable to assume
that if a valid codeword remains outside of D, it presence
can be detected by the simple syndrome checker, meaning
that the ANN will not be used. The highest discrepancy
between FERANN and FERML will be observed when
outside of D remains a number closest to a valid codeword c′,
denoted by x′. Probability that channel creates such sequence
is P (c′)P (x′|c′) = p(1 − p)(n−1)/2k. Note that x′ can be
observed even if codewords other than c′ are transmitted;
however, in those cases ML decoder will also fail to correctly
decode the codeword.

The following theorem reveals the number of neurons that
a SLFN should have, in order to learn the ML decoding.

There exists SLFN, with 2n−2k neurons, that can learn the
ML decoding.

Proof: Proof follows directly from [2], where it was shown
that every one-dimensional discrete function with M samples
can be accurately represented by 2-layer neural network with
exactly 2M + 1 weights and ReLu activation function in each
node of the hidden layer. The number of nodes is the network
is equal to M . In order to learn the ML decoding the SLFN
needs to learn all M = 2n − 2k error patterns.

The previous theorem showed that in case of the SLFN, the
number of required neurons grows linearly with the size of
training sample set. If we aim to learn the ML decoder, the
complexity of the network is O(2n), where n denotes length of
the code. We next compare the complexity of neural network,
with trellis-based decoder. Given the fact that complexity of
either ANN and trellis-based decoder is proportional to the
number of branches on the graph, we compare two decoding
approaches in terms of total graph branches. The ML decoder
requires at most 2(n−k)+1n branches, thus, based on Theorem
2, the total number of error patterns correctable by the SLFN,
E, must satisfy E < 2n−k+logn, if we want to achieve
complexity reduction, compared to trellis-based decoder. It
follows that if we want to learn the complete space of 2n

samples, it needs to be satisfied k < log n. For higher code
rates, we need to reduce the number of training samples.

IV. DECODING LINEAR BLOCK CODES WITH TLFNS

In this section we examine the possibility of employing
TLFNs for the problem of decoding linear block codes. The
main advantage of TLFNs is that they can be constructed with
smaller total number of nodes, compared to SLFNs with the
same learning capabilities. Namely, Huang [3] has shown that
to learn E input samples, it is possible to construct network
with one output node and L1 and L2 nodes in the first and
the second hidden layers, respectively,

L1 =
√

3E + 2
√
E/3, L2 =

√
E/3.

Thus, total number of branches in the TLFN is equal to

L1 + L1 × L2 + L2 =
4

3
E +

√
E(
√

3 +
2√
3

) ≈ 4

3
E.

Compared to the SLFN, the TLFN has approximately 33%
less branches. However, for majority of significant linear block
codes, trellis-based structure appears to be less complex.

Nevertheless, ANNs can be useful if the number of training
samples is small, which means that we can train the ANN
to correct only portion of error patterns, while majority of
error patterns is corrected by the other, less complex decoder.
Iterative decoders D of LDPC codes correct majority of errors,
but fails to correct specific error patterns, that correspond to
trapping sets of nodes on Tanner graphs. Trapping sets de-
termine the code performance when channel error probability
is low, i.e., we say that the decoder operates in the error-
floor region. A trapping set is defied as a subgraph, which
contains all the errors in the received sequence. However, all
the variable nodes in the trapping set may not be erroneous.
Trapping sets depend on the code structure and on the decod-
ing rules. The biggest influence on code performance have the
uncorrectable error patterns with lowest weights. If we denote
by t the weight of the lowest uncorrectable pattern, FER in
the error-floor region can be approximated by [14]

FER ≈ elog ct+t log p,

where ct represents the number of weight-t error patterns that
cannot be corrected by D.

Numerous methods are proposed to determine the numbers
t and ct, and usually ct �

(
n
t

)
. It follows that ct error patterns

can be corrected by the ANN, with relatively small number
of nodes. Thus, we propose decoding approach in which the
sequence received from the channel is decoded by D, and in
a case of decoding failure the output of D is sent to the ANN,
previously trained on a set of uncorrectable error patterns
Bt. The cardinality of the training set depends on the code
structure and decoder type. In some cases iterative decoding
converges to a fixed trapping set, i.e., after some iteration all
messages exchanged by nodes in the Tanner graph do not
change. For example, when Margulis code is coupled with
Gallager-B decoder, all weight-4 uncorrectable error patterns
will cause the decoder to be stuck in a fixed trapping set.
For such cases, to eliminate lowest-weight error patterns, the
cardinality of the training set is |Bt| = ct. For other cases in
is possible that decoding process oscillate between erroneous
states. This means that to correct an error pattern, ANN needs
to learn all the possible outcomes of D that correspond to
that error pattern. Thus, the cardinality of the training set is
bigger than ct, and can be determine after careful enumeration.
All in all, after ANN-based decoding FER is reduced to
exp(log ct+1 + (t+ 1) log p).

It should be emphasized that the average number of channel
errors per a codeword is pn, which is usually much larger than
t. This means that weight-t error patterns are rare, and do
not directly influence the code performance. However, during
the decoding error patterns with larger weights are reduced
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TABLE I: Complexity increase for different LDPC codes.

Code Decoder n R t ct |Bt| ct+1 ψ for FER = 10−5

C1-QC [10] Offset min-sum 18432 0.903 4 19232 19232 15712 0.0015%
C2-Tanner [11] Gallager-A/B 155 0.4 3 155 310 456 0.007%
C3-MacKay [12] Gallager-A/B 1008 0.5 3 179 193 1215 0.00008%
C4-MacKay [12] Gallager-A/B 816 0.5 3 173 212 1372 0.00008%
C5-Margulis [12] Gallager-A/B 2640 0.5 4 1320 1320 11088 0.0001%
C6-QC [12] Gallager-A/B 900 0.5 3 50 100 675 0.000012%
C7-QC [13] Gallager-A 200 0.5 3 1434 2868 N/A 0.0015%
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Fig. 1: Performance of ANN-based decoder (C5 code).

to weight-t error patterns. This is the reason why we do not
send sequence received from the channel to the ANN decoder,
rather the output produced by D.

Proposed serial concatenation of D and ANN decoder, dra-
matically increase the worst case complexity of the decoding.
However, we argue that the average complexity, determined
by the average number of graph branches, is only marginally
increased. The average number of used graph branches can be
calculated as follows

Nb,avg = Niterγ̄n+ FERT ×
[4

3
|Bt|+

√
|Bt|(
√

3 +
2√
3

)
]
,

where the first term represents the contribution of D, and the
second the average complexity of the ANN decoder, while
FERT denotes FER without employment of the ANN. We
can also define the relative complexity increase ψ as

ψ = (Nb,avg/(Niterγ̄n)− 1)× 100%.

We next examine complexity increase for different codes
and D decoders. This is illustrated in Table I. At this point
we do not provide a detail description of our example codes,
but refer to referent works for more details. The average
complexity of the proposed decoding approach is negligibly
higher, if we aim to correct low-weight error patterns. On the
other hand, adding ANN reduces the error rate for an order of
magnitude, in the error-floor region. For example, for code C1

and p = 0.01, eliminating ct = 4 error patterns lowers error
rate from FER ≈ 1.9× 10−4 to FER ≈ 1.4× 10−5.

To further illustrate the benefit of ANN-enhanced decoders,
we conducted Monte Carlo simulation and evaluate the per-
formance of C5-Margulis code. The results of the simulation

are presented in Fig. 1. We observed that applying ANN to
correct residual weight-4 error patterns reduces the error floor
of Margulis code by the order of magnitude.

V. CONCLUSION

In this paper we examined possibility of using TLFNs and
SLFNs in decoding linear block codes. We showed that current
knowledge of TLFNs and SLFNs cannot guarantee perfor-
mance of ML decoding with significantly lower complexity,
than trellis-based decoding. On the other hand, TLFNs can be
efficient post-processing block in decoding LDPC codes and
lower error-floors with small complexity penalty. Future work
will involve more elaborate examination of employing ANNs
in decoding practically significant LDPC codes and possibility
of involving deep neural networks into decoding process.
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