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Oscillatory squeeze flow rheometry (OSFR) is a technique for measuring fluid viscosity and linear viscoelasticity
between oscillating parallel plates. While several corrections to the basic viscous flow model for OSFR have been
considered (e.g., due to inertial effects), the role of surface tension remains largely unexplored. The present work
revisits the classical liquid bridge problem subject to an oscillatory squeeze flow and considers the role of viscosity
and surface tension on the dynamic force exerted by the liquid on the supporting plates. Using a combination of
theory and experiment, we show that the (dimensionless) force collapses onto a master curve when plotted against a
modified capillary number (measuring the relative importance of viscosity and surface tension) and that this prediction
is robust over wide range of strain amplitudes and aspect ratios. In doing so, we also demonstrate the ability of OSFR
to measure surface-tension forces with reasonably high resolution. We test this capability for several low-viscosity
fluids, demonstrating that, with current instrumentation and protocol, OSFR can measure surface tension to within 20%
relative error. Finally, we provide an operating diagram that demarcates the regimes in which either viscosity or surface
tension can be ignored in OSFR measurements. The results of this study may be used to further develop OSFR as a

tool for measuring dynamical surface phenomena, in additional to bulk viscoelasticity.

I. INTRODUCTION

Squeeze flows frequently occur in engineering practice, as
in compression molding and motor bearing lubrication, as
well as in biological systems, most notably in the synovial
fluid within the knee joint. Oscillatory squeeze flow rheome-
try (OSFR) has received recent attention as a method for prob-
ing the linear viscoelastic behavior of non-Newtonian fluids in
inhomogeneous (mixed) flows.! The method involves plac-
ing a small sample of fluid (typically 10-100 microliters in
volume) between two parallel plates; the top plate oscillates
vertically along its axis while the stationary base plate mea-
sures the axial force exerted by the liquid. The newest im-
plementation of OSFR uses a filament stretching rheometer
(FSR), which enables simultaneous measurement of the radial
deformation of the liquid bridge.® Whereas traditional FSR
measurements are designed for nonlinear extensional rheol-
ogy, an FSR used in OSFR mode can additionally extract
the linear viscoelastic response of a liquid undergoing mixed
squeeze flow.

In interpreting OSFR measurements, several factors includ-
ing fluid inertia must be painstakingly taken into account®’8
while others, including gravity and surface tension, are typ-
ically ignored.! The neglect of surface tension in OSFR is a
valid assumption when the sample is sufficiently viscous (or
viscoelastic) and the frequency of oscillation is high enough
such that the force measured at the base plate can be attributed
entirely to the deformation of the bulk fluid. However, in cir-
cumstances where either the frequency of oscillation or the
viscosity of the fluid sample are not appreciably large, the
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surface-tension force cannot be neglected — in some cases, it
can even become the dominant effect. This raises the issue of
modeling the nonlinear capillary response of a liquid bridge
undergoing axial oscillation and de-convolving this response
from the viscoelasticity of the bulk fluid.

Numerous studies have examined the role of surface ten-
sion in extensional rheometry (e.g., traditional FSR)*~'* and
shear rheometry.!>~!® Capillary effects in static liquid bridges
are well established'®* and relate to the force of adhesion
between two substrates.3 Pitois, Moucheront, and Chateau 3°
extended these static analyses by considering the influence of
viscosity on the dynamic, albeit steady, force of adhesion be-
tween two substrates separating at constant velocity.

By comparison, the literature on oscillating liquid bridges
is relatively sparse, and very few studies have considered
capillary effects in OSFR. Anna and McKinley *’ considered
the influence of an oscillatory pre-squeezing flow on exten-
sional FSR measurements, but neglected surface tension in
their analysis. Montanero and coworkers3!*3#! have pub-
lished several studies investigating the surface tension and
shape dynamics of liquid bridges in oscillation, including the
effect of surfactants*>*3 and surface shear viscosity.** How-
ever, in these studies the force exerted on the base plate was
not reported, precluding a direct application to OSFR mea-
surements. Valsamis and coworkers*> modeled an oscillat-
ing liquid bridge as a spring-dashpot system (a Kelvin-Voigt
arrangement) in order to extract “effective” material proper-
ties from experiments and simulations. Unfortunately, the re-
sults from their experiments, as well as the model used for the
surface-tension force, are not particularly easy to interpret. In
particular, it is not obvious how the measured force depends
on experimentally controlled parameters such as the volume
of the fluid sample or the amplitude and frequency of oscilla-
tion. This is the focus of the present study.
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There are two principal reasons for which one would care
to quantify surface-tension effects in OSFR. Firstly, surface
tension can emerge as an unwanted artifact in measurements
of viscometric functions for fluids of low to moderate viscos-
ity. Naturally, one might expect this “contamination by sur-
face tension” to be minimized for large values of the capillary
number Ca = L®Ry/y, where u is the Newtonian or zero-
shear-rate viscosity, @ is the angular frequency, Ry is the ra-
dius of the top and bottom plate, and 7 is the surface tension.
However, this criterion Ca >> 1 does not elucidate the sensi-
tivity of the surface-tension force to the height of the bridge
or the applied axial strain, both of which are expected to have
a significant effect.

A second reason would be to use OSFR to measure surface
tension and, more generally, the dynamical surface properties
of fluids. In this application, OSFR could become a technique
similar to the oscillating bubble method, with the novel ad-
vantage of using a cylindrical geometry instead of a spherical
one. Pertinent applications of such a technique include the
measurement of the stiffness of surface-oxide layers in liquid
metals*® as well as the kinetics of surfactant adsorption onto
a cylindrical liquid column.*’

Rather than focus on complicated systems such as these,
however, our aim in the present study is to quantify the effect
of surface tension for oscillating bridges of simple, Newto-
nian liquids with constant surface tension. Our motivation is
to determine an operating space in which surface-tension ef-
fects can either be ignored entirely or properly included in
data analysis. To this end, we have employed a combination
of analytical theory, numerical simulations, and experiments
with a commercial FSR and fluids of widely varying viscos-
ity to elucidate the OSFR response over a large range of Ca.
In undertaking this study, we had two key objectives in mind.
First, to provide the minimal theoretical model necessary for
interpreting surface-tension effects in OSFR measurements.
Such a model ideally should make explicit the dependence of
the measured force on experimentally controlled parameters
and, if possible, be expressed in closed analytical form in fa-
vor of purely numerical results. Our secondary objective is
to assess the ability of OSFR to infer surface tension in cases
where it is unknown and quantify the uncertainty of such mea-
surements. The latter is a key step if one hopes to extend the
capabilities of OSFR to measure the surface properties of lig-
uids as a function of time.

Our study is novel in several respects. First, we have val-
idated theoretical predictions of OSFR over a range of cap-
illary numbers not previously investigated, using both exper-
iments and numerical simulations. In particular, our exper-
imental work demonstrates the ability of OSFR to measure
surface-tension forces with negligible contribution from vis-
cous stresses, which has hitherto never been demonstrated.
Our numerical work highlights the range of applicability of
analytical theory and the breakdown of certain simplifying
assumptions. Second, by critically analyzing the two lim-
iting regimes of low- and high-viscosity fluids, we are able
to develop an analytical prediction for the primary harmonic
mode of the force response that spans these two regimes with
quantitative accuracy. In this sense, our theoretical work uni-
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FIG. 1. (a) Schematic of the OSFR geometry and (b) the associated
plate height and velocity. At time ¢ = 0, the film is a cylindrical
column of initial height Hy and radius R(, with aspect ratio A =
Hy/(2Ry). During squeeze flow, the height and radius are deformed
to H(r) and R(z,t), respectively.

fies and extends previously developed models for OSFR, and
illustrates key differences in the force response due to sur-
face and bulk stresses. Finally, we have identified and imple-
mented several key factors to ensure accurate force measure-
ments of low fluid viscosities (low capillary numbers). These
newfound insights will enable future development of instru-
mentation for measuring interfacial phenomena using liquid
bridges. We envision such tools will be particularly useful
for measuring interfacial properties of liquid metals, whose
material-response functions are often dominated by the prop-
erties of stiff surface oxide layers.*

The remainder of the article is organized as follows. In
§II, we present the governing theory for interpreting OSFR
measurements, including the effect of surface tension. In §11I,
we compare our theoretical predictions to experiments using a
commercial FSR in OSFR mode, and quantify the uncertainty
in using the technique to measure surface tension. A discus-
sion of our results is presented in §IV. Concluding remarks
are given in §V.

Il. THEORY

A schematic of the OSFR geometry is presented in Fig. 1.
A Newtonian fluid (density p, viscosity u, surface tension %)
is sandwiched between two plates of radius Ry, initially sep-
arated by a distance Hy. The bottom plate is held in a fixed
position, while the top plate oscillates sinusoidally with an
angular frequency @ and amplitude €Hj so that the instanta-
neous plate-plate separation at time ¢ is

H(t) = Hy[1 +¢esin(wt)]. (D

The force F(t) is measured at the bottom plate as a function
of time. Neglecting the effects of inertia, gravity, and sur-
face tension, one expects a perfectly viscous response from
the squeeze flow of a Newtonian liquid. A lubrication analysis
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of the squeeze flow yields the classical Stefan equation,>#8->!
3muRY dH
Ft)= =550 )

which relates the measured force F(¢) to the controlled height
H (t) through the viscosity u.

Several extensions of the Stefan equation (2) that have been
discussed in the literature account for viscoelasticity, fluid
inertia, and extensional flow. In the limit of small strains
(€ < 1), Pipkin’s correspondence principle® can be used to
transform Eq. (2) into a relation governing the response of a
linearly viscoelastic material.*%%>3 Inertial effects contribute
an O(Re) correction to Eq. (2),%>* where Re = pwHZ/ is
the Reynolds number, and are typically negligible for fluids of
high viscosity (e.g., polymeric liquids). Spiegelberg, Ables,
and McKinley>! and later Wingstrand et al.> determined cor-
rections to the Stefan equation due to extensional flow. The
relative importance of extension compared to shear augments
Eq. (2) by a factor (1 +8A?) [cf. Eq. (42) in Wingstrand
et al. ], where A = Hy/(2Ry) is the aspect ratio of the unde-
formed liquid bridge. The latter results in the corrected Stefan
equation,

Fr) = 3)

3muUR} | 2H;\ dH
2H?3 ( > dr’
which neglects the effects of viscoelasticity and inertia.
As was discussed in §I, additional hydrostatic correc-
tions due to gravity and surface tension are typically omit-
ted in the Stefan equation. Respectively, these effects be-
come relevant at small values of the inverse gravity number
Gr ! = puw/(pgHy) and capillary number Ca = u®Ry/y. We
have shown independently that gravitational effects do not
significantly influence OSFR under most reasonable operat-
ing conditions (data available in the Supplemental Material,
§S.3), with the main change being a static (time-independent)
change to the force. Below, we show this is not the case
for surface tension, which exhibits a non-trivial static and dy-
namic response.

A. Thin-film, small-strain limit

It is instructive to first consider the effect of surface tension
in the small-strain, small-aspect-ratio limit of OSFR (¢ < 1,
A? < 1), which corresponds to the weak oscillatory defor-
mation of a thin, cylindrical liquid bridge. In what follows,
axisymetrical cylindrical coordinates (r,z) are conveniently
adopted, with r denoting the radial coordinate and z the ax-
ial coordinate (see Fig. 1). Inertial and gravitational effects
will be neglected.

We begin by analyzing the kinematics of the flow. Phan-
Thien*® and others>>! derived the following incompressible
velocity field for oscillatory squeeze flow [cf. Egs. (18)-(19)

in Phan-Thien 49]:
3rz z \dH
t)=——|1—— | — 4
ur(r7Za ) Hg( H()) ) ( a)

dr

ZZ) dﬂ, (4b)
Hy

uZ(r7Z)t) = dt

2
Z<3_
Hg
which is asymptotically valid for € << 1 and A? < 1. The
above velocity field determines how the free surface r =
R(z,t) evolves in time. Within the framework of small de-
formations from a cylindrical bridge of radius Ry, we have
R =~ Ry and the kinematic condition at the free surface simpli-
fies to

JdR

—- = ur(Ro,z,1
5 = Ur(Ro,z.1)

_ 3ROZ 1 S %
N H; HZ? Hy /) dt
Here, u, has been transferred to the undeformed surface r =

Ry, incurring small errors of O(g2) and O(A*). Integrating
Eq. (5) in time subject to the initial condition,

R =Ry, (6)

by Eq. (4a). 5

att=0:

yields the parabolic shape profile,

weo-nf (i) () o

This expression is linear in H(¢) and thus predicts a sinusoidal
shape response that is exactly in-phase with the plate-plate
separation [cf. Eq. (1)].

Next, the liquid pressure p(r,r) generated by the viscous
shearing forces must be determined. According to classical
lubrication theory,> the pressure obeys the Reynolds lubrica-
tion equation,

1 0 0 12
ror (r8lr)> H‘g ue(r; Hos 1)

12u dH
= —— byEq. (4b 8

H? dr y Eq. (4b), @®)
where we have approximated H ~ Hj on the right-hand side.
Equation (8) may be integrated with respect to r, subject to
the symmetry condition at the centerline,

ap
or
as well as a boundary condition at the surface r = Ry of the
undeformed bridge. In typical analyses of OSFR,>* one sets
p(Ro,t) equal to the ambient pressure at the edge of the liquid,
which neglects the capillary pressure jump due to surface ten-
sion. Here, we account for this jump in pressure by linearizing
the curvature of the free surface for small deformations:

1 J°R
— . 9b
P= 7( Ry, 92 ) (9b)
Thus, the effect of surface tension y emerges in the pressure
boundary condition (9b) at the free surface. Since the axial

curvature d2R/dz? is independent of z according to Eq. (7),
then Egs. (8)-(9) may be straightforwardly integrated to yield

( t)— i_azl
pr’ —Y RO aZ2

atr=0: =0, (9a)

atr=Ryp:

3udH

2 2
CH At o Ro=r)
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—yl— -0 () [ - 2SR -A). (1
Y[RO H (Ho )] H ar Ro=r)- (10)

The second term on the right-hand side of (10) is the cosinu-
soidal (out-of-phase) pressure response for oscillatory squeez-
ing of a viscous liquid [see also Eq. (21) of Phan-Thien*° and
Eq. (29) of Spiegelberg, Ables, and McKinley>']. The first
term is a correction due to the capillary pressure jump, which
consists of a constant part that is proportional to the azimuthal
curvature 1/Ry as well as a sinusoidal (in-phase) part that is
proportional to the axial curvature 9R/dz>.

With the pressure determined by Eq. (10), the force F () on
the bottom plate may now be calculated. This force consists
of two contributions: a “bulk” contribution given by the inte-
gral of the axial stress over the bottom plate, and a “surface”
contribution given by the surface-tension force at the edge of
the plate. To leading order in € and A?, one finds

Ro
F(t)= —27'[/ rp(r,t)dr+2myRg
0

YR [1+6R%(H 1>+
= YRy 20 (2
H? \ Hy

Clearly, the last term in Eq. (11) is the classical Stefan result
[cf. Eq. (2)] simplified to the small-strain limit, H =~ Hy. The
additional terms are corrections due to surface tension. After
inserting Eq. (1) for H(¢) and introducing the dimensionless
variables 7 = ot and .% = F/(7tyRy), one obtains the non-
dimensionalized equation,

3uR} dH
2YHg dr

]. (11)

F(1)=1+ %(S/Az) (sint+ %Cacos 7), (12)

where, as a reminder, € is the axial strain amplitude, A =
Hy/(2Ry) is the aspect ratio, and Ca = @R/ is the cap-
illary number.

Equation (12) is the dimensionless linear-response function
for OSFR measurements of a Newtonian fluid with constant
surface tension. The viscous (loss) terms scales linearly with
the capillary number Ca, as expected. The elastic (storage)
term arises due to surface tension; in particular, it is the axial
curvature d>R/dz* that gives the sinusoidal response. The
primary harmonic of the response function can be computed
by taking the finite Fourier transform,

27
| = %/0 F(1)e Tdr = 3(e/iA?) (1 + }iCa), (13)
for which the circuit analog is a spring (capacitor) and a dash-
pot (resistor) arranged in parallel (i.e., a Kelvin-Voigt model).
A similar mechanical model was applied by Valsamis, Mas-
trangeli, and Lambert® to describe their experiments.

To benchmark the accuracy of the thin-film, small-
strain model, we numerically simulated the full OSFR re-
sponse using the finite element method (FEM) in COMSOL
Multiphysics® (Version 5.5). In our FEM simulations, the
coupled Navier-Stokes equations and free-surface deforma-
tion were posed and solved using the Laminar Two-Phase
Flow and Moving Mesh interfaces. Briefly, the axisymmet-
ric liquid film was represented by a rectangle in the rz plane

and discretized using triangular elements (the mesh spacing
was refined as needed, depending on the strain amplitude and
aspect ratio, to achieve convergent and accurate results). For
a given parameter set, a time-dependent study was run using
the backward differentiation formula (BDF) for time stepping.
The absolute tolerance of the time-dependent solver was set
to 10~* and applied to the (scaled) velocity field in the spa-
tial configuration. At each time point, the force on the bottom
plate was computed by applying a numerical quadrature and
Fourier-transformed in time to obtain the first harmonic re-
sponse.

Fig. 2 compares the predictions of Eq. (12) against our
FEM simulations. In this figure, we have fixed the strain am-
plitude € = 10% and aspect ratio A = 1/8, which are typical
parameters for the experiments presented in §III. Two val-
ues of the capillary number are shown [Ca = 120 (Fig. 2a)
and Ca = 0.012 (Fig. 2b)] to isolate the viscous- and surface-
tension-dominated contributions to the force. Although the
qualitative features of the response — phase and approximate
amplitude — are well captured by the the thin-film, small-strain
model in the large- and small-Ca regimes, quantitative dis-
crepancies exist due to nonlinear effects. These discrepancies
vanish as the applied strain € tends to zero, but, as will be dis-
cussed further in §III, this typically results in poor signal-to-
noise ratios in experiments. Accounting for nonlinear effects
— i.e., relaxing the constraints placed on € and A — results
in the green solid curves in Fig. 2, which quantitatively agree
with the FEM-simulated response. These effects are discussed
in detail in the next section.

B. Finite-€ and A effects

In the previous section, a linear-response model for the
dimensionless force .%(t) was derived by assuming small
strains and small aspect ratios, € < 1 and A? < 1. This
derivation resulted in Eq. (12) and its Fourier transform
(13). On comparing this model to a high-fidelity simulation of
OSFR using FEM, quantitative discrepancies were identified
(Fig. 2). The objective of this section is to rectify those dis-
crepancies by going beyond the thin-film, small-strain regime.

1. Viscous regime (Ca > 1)

We first revisit the well-studied!-2#33-5657 regime of large
Ca, for which the force response is dominated by viscous ef-
fects. In the thin-film, small-strain limit, these effects are cap-
tured by the last term in Eq. (12) or, in terms of dimensional
variables, Eq. (11). Two obvious improvements can be made
to the large-Ca prediction of OSFR:

e Accounting for finite-€ effects. These amount to replac-
ing Hi with H? in the denominator of the last term in
Eq. (11). The result is equivalent to the Stefan expres-
sion (2).

e Accounting for finite-A effects. Wingstrand ez al. > [Eq.
(42)] showed that a weak extensional contribution to the
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FIG. 2. Dimensionless force % (1) plotted against dimensionless
time 7 for one period of oscillation. (a) Viscous response for Ca =
120. (b) Elastic (surface-tension) response for Ca = 0.012. The other
parameters are € = 10% and A = 1/8. Blue markers show the “ex-
act” prediction by FEM; red dashed curves show the linear response
predicted by Eq. (11); green solid curves show the full nonlinear re-
sponse. In (), light black curves show successive approximations
of the nonlinear (capillary-statics) model by a small-€ expansion [cf.

Eq. (21)].

shear-dominated flow augments the Stefan result by a
factor (14 8A?). The corrected expression is given by

Eq. (3).

When these two effects are considered, one obtains the fol-
lowing expression — the so-called “lubrication model” — for
the dimensionless force in the limit as Ca — o:

F(1) = gCa(“;éAz) :

which is plotted in Fig. 2a (green curve). This expression
clearly captures the nonlinear temporal response in the vis-
cous regime, Ca > 1. Upon Fourier transformation (consid-
ering again only the primary harmonic), Eq. (14) becomes

1+8A2 £
_ 3
Fi=te (U ) ()

= 3Ca(e/A%) (1+8A%) (143> + Vet + .

ECOST

14
1+e€sint)3’ (14

), (15)

where the last expression is a power series in £€2. Obviously,
higher harmonics (%, %3, etc.) are also included in the full
nonlinear expression (14). However, these terms are appre-
ciably weaker by successive powers of € and, for our present
purpose, not of immediate interest.

The amplitude |.%#|, as given by Eq. (15), is plotted in
Fig. 3 against the strain amplitude € for three different as-
pect ratios A = 1/10, 1/8, and 1/6. Also shown are results

OoFEM, A =1/10 —lubrication model, 4 =1/10
x FEM, A =1/8 - -lubrication model, 4 =1/8
*FEM, A =1/6 - lubrication model, 4 =1/6
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FIG. 3. Primary harmonic amplitude of the force plotted against
the strain amplitude € at three different aspect ratios A for a high-
viscosity fluid (Ca = 120). The lubrication model is given by Eq.
(15). Although the force is approximately linear up to strains of
around 20%, the slope is modified from the thin-film, small-strain
model due to finite-A effects.

from FEM simulations, which show excellent agreement and
demonstrate the validity of the lubrication model over a wide
range of strain amplitudes and aspect ratios. Figure 3 clearly
indicates a near-linear dependence of |.%| on ¢ for the range
of strain amplitudes shown. The quantitative differences for
different values of A are due to the prefactor (1+8A?) intro-
duced in Eq. (3). By comparison, finite-€ corrections provide
only a minor improvement.

The lubrication model presented above for OSFR at large
Ca is well established in the existing literature. In the next
section, we consider the opposite limit (Ca — 0) and the effect
of surface tension on OSFR.

2. Capillary-statics regime (Ca < 1)

For small Ca, viscous stresses are unimportant to the
squeeze flow and the force response is dominated by surface
tension. Figure 2b clearly shows that the linearized model (a
pure sinusoid) does not capture the full temporal response of
OSFR at small Ca. Geometric nonlinearities emerge because
the squeezing motion of a thin film generates large changes
in surface curvature. This can be deduced by examining the
parabolic model for R(z,t) [Eq. (7)] and the axial curvature
9*R/97* = 6(Ro/H3)(H — Hy). For small € and A, the axial
curvature scales as 2R /dz> ~ €/A’Ry, which is small com-
pared to the azimuthal curvature 1/R only if € < A%. This
is a severe restriction to place on the strain amplitude to en-
sure “small” deformations. For even modest strains, the axial
curvature can be on equal footing with (or larger than) the az-
imuthal curvature. Moreover, small changes in liquid height,
which naturally occur during a period of oscillation, result in
large changes in axial curvature that, in turn, can overwhelm
the azimuthal curvature. In other words, the “near-cylinder”
assumption is not uniformly valid for all times.
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The key approximation that leads to the failure of the thin-
film, small-strain model at small Ca is the linearization (9b)
of the stress boundary condition. The exact expression in the
“static limit” (Ca — 0) is the Young-Laplace equation of cap-
illarity,

_ 1 - aZR/aZQ

which is a nonlinear differential equation for R(z,¢). To obtain
the force on the bottom plate, Eq. (16) is first rearranged to
form a total derivative:®

oF 0 5 21YR
— = |"™Rp+—F—r—e——=|=0
9z 8z< e \/1+(8R/8z)2>

The first integral of this expression, evaluated at z = 0, gives
the desired force:

a7

27tYRy
V1+(0R/32)? =0

which depends only upon time ¢ as p(¢) is spatially uniform
in the static limit. Both p(¢) and R(z,7) depend only para-
metrically on time through the position — but not the velocity
— of the upper plate. This temporal dependence is expressed
through the boundary conditions,

F(t) = —TmR3p+ (18)

atz=0, H(t) : R =Ry, (19a)
which together with the fixed-volume constraint,
H(r)
/ 7IR* dz = mR3Ho, (19b)
0

completely specify the solution for R(z,t), p(¢), and F (t).
Gillette and Dyson ' and others®®>? derived a closed-form,
though cumbersome, solution of Eqgs. (16)-(19) in terms of
elliptic integrals. A more direct solution procedure is to nu-
merically integrate Egs. (16)-(19) using the shooting method,

J

F (1) = 14 3(e/A2)(1 - 2A2 4 )sint— 28 (e2 /A2) (1

344 2, 94 44 3y 34749 (4 44 2 2, 16,
— B3 /AN (1= 1562 4 S A% 4 ysind T IO (64 A% (1 - HBA2 4 1

37,179 (85//\6)(1 _ %A2+ 5,935,411A4

which is now the standard method for solving the axisymmet-
ric Young-Laplace equation. We have applied this method for
a range of strain amplitudes € and aspect ratios A to calcu-
late force F'(t) over one period of oscillation (details of our
shooting scheme can be found in the Supplemental Material,
§S.1 A). To obtain the dimensionless force, we divide Eq. (18)
through by 7tyR( and obtain

F (1) = —x(1)+2cos o (1), (20)

where ¥ = Rop/7 is the dimensionless pressure and cos oy =
1/y/14 (dR/0z)?|,— is the cosine of the liquid contact angle
at the edge of the plate. To arrive at the linearized form [Eq.
(11)], one need only make the near-cylinder approximation
cosOp ~ 1.

Numerical evaluation of Eq. (20) gives the “exact” tempo-
ral response in the small-Ca limit, as shown in Fig. 2b via
comparison to our FEM simulations of the squeeze flow at
small, but finite, Ca. However, for the purpose of facile in-
terpretation of OSFR measurements, it is desirable to have
an analytical model of the surface-tension response in lieu
of tabulated numerical results. Valsamis, Mastrangeli, and
Lambert* derived analytical approximations of the surface-
tension force by modeling an azimuthal section of the free
surface as either a parabola or a circular arc (the circular arc
providing the more accurate prediction). The resulting expres-
sions, which depend upon the instantaneous edge angle ay(7)
and height H(t), do not clearly reflect the dependence on the
strain amplitude € and aspect ratio A, which are the primary
control parameters in an experiment. Below, we adopt an al-
ternative approach that builds upon the thin-film, small-strain
analysis of §ITA.

Rather than posit an ansatz for the free-surface shape, we
have developed a series of successive approximations to Egs.
(16)-(19) in powers of € and A2. The mathematical details of
our perturbation analysis can be found in Appendix A. The
main results of this analysis are double power-series expan-
sions for the dimensionless force,

2 42 .2
— 35 A"+ )sin" 1

+ 32800 98,175

and the first peak in its Fourier transform,
Fi

35,340

These expansions exhibit the correct limiting behavior as
£,A% = 0. As compared to the lubrication model for .%; [Eq.

= 3(e/iAN)[(1- A2+ ) = 3 (2/A%)(1
+w(84//\4)(1_%/&2+

462 44 .4
_’495/\ +---)sin" 7
1,457,962 4 6 .5
_5’221’125/\ —|—~~-)sm T4, 1)
1556 A2 , 94 A4
— T A AT )
5935411 4 1457962 x6 ,  \ .,
w15 A~ sorsA T )+ (22)

(

(15)], the capillary-statics model (22) clearly exhibits a more
complex and convoluted dependence on € and A%. Indeed,
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the perturbation series (21)-(22) converge slowly if the ratio
€/A? is not O(1), restricting direct application of the series
to weakly nonlinear deformations. This can be clearly seen in
Fig. 2b, where several truncations of Eq. (21) are plotted (as
thin, black curves) and exhibit significant deviations from the
exact solution during either the compression or the extension
cycle of one full period. In particular, significant errors in ex-
tension, but not compression, occur when an odd number of
terms is retained in the expansion (21). When instead an even
number of terms is used, then the accuracy in extension is im-
proved while the compression mode deviates from the exact
solution.

The global accuracy of the Fourier-transformed series (22)
can be considerably improved by recasting it in an alterna-
tive form.®’ For a reasonable range of € and A, the following
rational-fraction representation is particularly useful:

1-2A2 4+
1+ 8L (e2/A2)(1 - BlEA2 4.

T = 3(e/iA?)

(23)

where the higher-order terms have been omitted for simplicity.
One can readily verify that Eq. (23) degenerates to (22) in the
double limit as £, A> — 0 while keeping the ratio £/A? finite.
However, Eq. (23) has the additional benefit of remaining
bounded as A2 — O for any (finite) €. This is an important
advantage for thin films, for which A? is typically small.

OFEM, A =1/10 —capillary-statics model, 4 = 1/10

xFEM, A =1/8 - -capillary-statics model, 4 =1/8
*FEM, A =1/6 - capillary-statics model, 4 = 1/6
0.2
Ca<<1
0.151
&
& 01f
<
<™
0.05¢ == al-fraction approximant |
() L L L
0 0.05 0.1 0.15 0.2

FIG. 4. Primary harmonic amplitude of the force plotted against
the strain amplitude € at three different aspect ratios A for a low-
viscosity fluid (Ca = 0.012). The capillary-statics model is given by
the numerical solution of Egs. (16)-(19).

Figure 4 compares the rational-fraction approximant (23) to
FEM simulations of the squeeze flow at small Ca as well as
a direct numerical solution of Egs. (16)-(20) via the shooting
method. The analytical approximation, though highly simpli-
fied, exhibits reasonable agreement with the numerical results
up to strains € = 20% and, most significantly, gives the first
“weakly nonlinear” correction at small, but finite, €. In the
double limit as £,A2 — 0, the bracketed term in Eq. (23)
simplifies to unity and we recover the first term in the thin-
film, small-strain model [Eq. (13)], also indicated in Fig. 4.

Clearly, the primary force amplitude is nonlinear in the strain
amplitude, a marked departure from the viscous-dominated,
lubrication model [cf. Fig. 3].

C. Refined model

We now have two models for the linear OSFR response —
i.e., the coefficient .%] of the primary force harmonic — that
properly take into account finite-£ and A? effects at either
large or small Ca. As it is desirable to develop a model for
any Ca, we take as a first approximation a simple superposi-
tion of Egs. (15) and (23):

T~ 3(e/iA?) (fo + 1iCafs) (24a)
where
14 8AZ2
foo = ey (24b)
_ %AZ
fo~ (24¢)
1+ 3 (e2/A2)(1 - B14A2)

are prefactors that capture the appropriate finite- and A? ef-
fects in either limit of Ca. Clearly, the unified model [Eq.
(24)] degenerates to the thin-film, small-strain model [Eq.
(13)] in the double limit as £,A% — 0.

We wish to emphasize that the last expression [Eq. (24c)]
is an approximation for small strains and moderately small
aspect ratios. Table I compares Eq. (24c¢) to the “exact” nu-
merical value of f; for a reasonable range of strains and as-
pect ratios. The relative error in the approximation decreases
considerably as € or A is decreased while keeping the ra-
tio €/A? = O(1). However, this approximation breaks down
(large relative errors) when €/A% > 1, as indicated by the
third and sixth columns of Table I. The reason for this increase
in error can be traced to the ascending sequence of terms in
Eq. (22), which are omitted in Eq. (23), that scale with
increasing powers of £/A2. When £/A? > 1, these terms
are non-negligible and an infinite number of terms must be
summed to reproduce the exact result for the capillary force.
Physically, this breakdown results from the large axial cur-
vatures that can occur when a very thin film (small A?) is
strained significantly enough (& > A?) such that it is no longer
nearly cylindrical.

To assess the validity of Eq. (24), Fig. 5 plots the rescaled
force amplitude, | Z}| = $A2|F|/efo, against a rescaled
capillary number, Ca* = %Cafoo/ fo, including results from
FEM simulations. The master curve predicted by Eq. (24a)
collapses the numerical data reasonably well and correctly
predicts the transition between the capillary-statics and vis-
cous regimes at Ca* = 1. Only slight deviations from the exact
results are observed in the capillary-statics regime (Ca* — 0)
for extremely small aspect ratios and moderately small strains
(A =1/20, € = 10%). This error is directly attributed to the
approximation made in Eq. (24c); according to Table I, the
relative error in fj for A = 1/20, € = 10% is about —17%. For
larger aspect ratios in the range 1/8-1/5, which are more con-
sistent with experimental measurements, this error decreases
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fo

€ A £ //\2 exact approx. rel. error (%)
0.001 120 04 0.99881  0.99881 —0.0005

1/8 0.064 099372  0.99373 0.0005

1/5 0.2 0.98399  0.98399 0.0005
0.1 1720 40 0.40946  0.33841 —17

1/8 6.4 0.79637  0.79436  —0.25

1/5 2.5 0.92616 093397 —0.84
0.2 1720 80 0.18706  0.11342 -39

1/8 12.8 0.52365 049588 —53

1/5 5 0.76313  0.81037 6.2

TABLE I. Comparison of the “exact” numerical result for fj to its
rational-fraction approximant, Eq. (24c), for a selection of strains
and aspect ratios.

oFEM, A= 1/20, ¢ = 0.1%
«FEM, A = 1/20, ¢ = 10%
3| *FEM, A =1/8, e = 0.1%
oFEM, 4 =1/8, ¢ = 10%
—refined model, all A and e

-1 " L .
10
10 107 10° 10
Ca* = iCafoo/fo

2

FIG. 5. Master curve plotting the rescaled force amplitude,
|Zf| = %A2 Z1|/€fo, against a rescaled capillary number, Ca* =
%Cafw/fo. The solid curve is given by Eq. (24a).

considerably. This gives us confidence in applying Eqs. (24)
towards the interpretation of experimental measurements, pre-
sented in the following section.

Il. EXPERIMENTS
A. Materials and methods

OSFR experiments were carried out on a commercial fil-
ament stretching rheometer (VADER 1000, Rheo Filament).
Six test fluids (water, ethylene glycol, glycerol, polybutenes,
silicone oil, and polyisoprene) were chosen to span a large
range of Ca. The relevant physical properties of the fluids
are presented in Table II. (Further details on the test fluids
and shear measurements can be found in the Supplemental
Material, §S.2 A). All fluids exhibited Newtonian behavior
except polyisoprene, which shows shear-thinning behavior at
high frequencies/rates. For polyisoprene, an average viscos-

Fluid p (kg/m3) u (Pas) ¥ (mN/m)
Water 998 0.00094 72.0
Ethylene Glycol 1100 0.016 47.3
Glycerol 1261F 0.86 53.0
Polybutenes 8907 31 224
Silicone Oil 9717 100 35.0
Polyisoprene 920f 210£30 31.0%

TABLE II. Physical properties of the experimental test fluids ( ob-
tained from the supplier; I obtained from van Krevelen and Te Ni-
jenhuis o1).

ity in the relevant frequency/rate range, 0.1 s~! < < 20571,
is reported in Table II (here, 7 is the shear rate). The error
bars in the viscosity represent the standard deviation. Due to
challenges in obtaining measurements of the surface tension
of polyisoprene, data from van Krevelen and Te Nijenhuis ©!
were used.

The VADER 1000 is equipped with matching stainless steel
top and bottom plates with a diameter 2Ry = 6 mm or 8 mm.
Plates with smooth surfaces and sharp edges were used in
order to promote full wetting and pinning of the fluid to the
edge of the plates. The radius Rpq(¢) of the midplane of the
liquid bridge is measured using a laser sheet, and the force
F(t) is measured by a strain-gauge load cell on which the
bottom plate is mounted. A sinusoidal displacement of the
top plate is prescribed by the VADER controller: Hge(f) =
Hy[1+ €sin(wr)], where € is the strain amplitude and @ is
frequency in rad/s, as shown in Fig. 1. The VADER 1000 out-
puts the prescribed height Hy(f) and actual height H(¢) as a
function of time. The output was analyzed to confirm agree-
ment between the prescribed and actual height displacements.
In all cases, sinusoidal motions were observed.

B. Experimental protocol

Prior to each experiment, the plates are carefully adjusted
(by eye) to ensure they are parallel. The height measurement
is zeroed by first lowering the top plate until it contacts the
bottom plate and an appreciable force is measured. At the
beginning of an experiment, the test fluid is loaded onto the
bottom plate using a syringe. The top plate is then lowered
slowly to contact the fluid such that the plates are fully wet-
ted and the contact lines at the upper and lower plate edges
are pinned. Before testing, the height of the liquid bridge
is manually adjusted until the shape is cylindrical, as con-
firmed by laser micrometer scans of diameter across the en-
tire height. Efforts were made to achieve consistent initial
heights Hy = 1 0.3 mm. The force transducer is then tared
to the weight of the sample and the surface-tension force of the
cylindrical film. For highly viscous samples, the liquid bridge
was allowed to reach an equilibrium shape (steady-state force)
before taring.

Experiments were conducted over ten full oscillations. Av-
erages of the measured height H(¢), midplane radius Ryq(?),
and force F (1) were taken over all ten periods along with their
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FIG. 6. Experimental images of glycerol undergoing oscillatory
squeezing at several time points and oscillation frequencies. From
top to bottom: @/(27) = 1 Hz, 0.1 Hz, and 0.05 Hz. From left to
right: @t = 7t/2, 7, and 37t/2. For all experiments, € = 10% and
Rop =4 mm.

associated standard deviations. The practical range of oscil-
lation frequencies, ®/(27), is between 0.01 Hz and 1 Hz, al-
though lower frequencies are achievable if evaporation is neg-
ligible over the duration of the experiment. The experimental
range of suitable strain amplitudes is bounded by the stability
of the liquid bridge, which ensures that the contact line re-
mains pinned and the film does not rupture’*?>. The critical
strain above which the contact line depins is about 12% for
experimentally relevant aspect ratios in the range A = 0.1-0.2
(further details can be found in the Supplemental Material,
§S.4). The oscillation amplitude € was maintained between
5% and 10%, which maximizes the signal-to-noise ratio while
preserving the stability of the film.

Figure 6 shows micrographs of glycerol in a typical ex-
periment at several time points and different oscillation fre-
quencies. Videos were recorded during several experiments
in order to verify that the film remains pinned to the plate
edge. Successful pinning is clearly achieved and maintained
throughout the experiment. However, slight plate misalign-
ment is also evident, which has a significant impact on the
measured surface-tension force. Slight depinning was ob-
served in some cases for the silicone oil, especially at low
frequencies, due to initial aspect ratios approaching the de-
pinning instability. For this reason, all experiments reported
for the silicone oil were conducted at frequencies w/(2m) >
0.1 Hz. We expect film depinning to have a small (quantita-
tive) effect on the force measurement at high capillary num-
bers (Ca > 1), since the surface-tension force is small com-
pared to the viscous force in this regime.

C. Experimental results and comparison to theory

Figure 7 shows two representative data sets for polyiso-
prene (Fig. 7a, corresponding to the high-Ca regime) and
glycerol (7b, low-Ca regime). The height H(¢), midplane ra-
dius Rpiq(t), and force F(r) are averaged over ten cycles and

plotted for a single time interval. Also plotted in Figs. 7a
and 7b are predictions based, respectively, on the lubrication
model (presented in §IIB 1) and the capillary-statics model
(§IIB 2). The model predictions are based on the measured
height H (z) for each experiment. No fitting parameters were
used in the theoretical predictions. Based on Fig. 7, the mod-
els clearly capture the important qualitative and quantitative
features of the measured radius Rpq(¢) and force F(¢). The
slight overprediction of the radius and force by the two models
is due to errors in the measured height, which were described
in §IIT A and are discussed later in this section. We note that
several “jumps” in the force F(¢) are measured in Fig. 7a;
these correspond to instantaneous jumps in the plate velocity,
which result in a sudden increase or decrease in H(¢).

The discrete Fourier transform of .#(t) = F(wt)/mYRo
gives the primary harmonic amplitude |.%|. Figure 8 plots
our measurements of |.%#| against Ca for all experimental test
fluids. The plot is normalized using the same convention as in
Fig. 5 so that we may compare the experimental data against
the predictions of Eq. (24a). For the normalization, the pa-
rameters €, A, Hy, and Ry are computed from measurements
of H(t) and Rp;iq(t), as described in the Supplemental Ma-
terial, §S.2B. The meaning of the differently colored data
points in Fig. 8 is described below.

The blue data points in Fig. 8 show qualitative agreement
with the theoretical predictions, with increasing discrepancy
at lower capillary numbers. These points were processed us-
ing the height measurement from the VADER 1000; a height
offset of AH = 83 um was assumed due to error in the zero-
ing routine. However, uncertainty still exists in the measured
height due to plate misalignment, which is difficult to deter-
mine without a secondary height measurement. The error bars
in the blue data points are one-sided to reflect an additional
uncertainty in the height corresponding to an estimated (max-
imum) misalignment ¥ = 2°, which translates to a height off-
set AHy = Ry siny = 140 um for a plate diameter of 2Ry = 8
mm. The upper limit of the error window thus reflects a total
offset of 223 pum above the value reported by the instrument.

Several experiments were conducted using video imaging
to accurately measure the average height as a function of
time (details of this measurement can be found in the Sup-
plemental Material, §S.2D). The red points in Fig. 8 corre-
spond to experiments using the measured height from video
microscopy. These experiments show much better agreement
with theory, confirming the need for very accurate height mea-
surement in the capillary-statics regime. However, signifi-
cant discrepancies persist at much lower capillary numbers
even after considering significant misalignment of the plates.
There are two possible explanations for these discrepancies:
(i) non-axisymmetric effects®®, which are not accounted for
in the theory discussed in §II, or (ii) low accuracy of the load
cell. To investigate non-axisymmetric effects, we numerically
solve the full Young-Laplace equation over the radius r and
azimuthal angle 6, subject to slight misalignment of the top
and bottom plates (details may be found in the Supplemen-
tal Material, §S.1 B). Both misalignment of the plate centers
[or eccentricity, as detailed in®*6%] and misalignment perpen-
dicular to the axis of symmetry are considered. In short, we
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FIG. 7. Time series of the experimental height H (¢), midplane radius R,;q(¢), and force F(¢) for (a) polyisoprene at € = 10% and w/(27) =
0.56 Hz (Ca = 97) and (b) glycerol at € = 5% and @/(27) = 0.056 Hz (Ca = 0.023). Solid curves and shaded regions indicate the mean
and standard deviation, respectively, based on measurements taken over ten oscillation periods. Dashed curves indicate predictions from the

lubrication and capillary-statics models based on the measured height.

find no significant change in the force when the average height
is kept constant. Therefore, non-axisymmetric effects cannot
accurately explain the discrepancy between experiment and
theory, which leaves the accuracy of the load cell as the only
reasonable explanation.

The blue and red points in Fig. 8 were measured using a
load cell rated for 5 N with a nonlinearity error of 2.5x 1073
N. At low Ca, the force reading was as small as 1x 103N
(see Fig. 7b), which is below the recommended threshold of
the load cell and could lead to inaccuracies in the measured
force amplitude. The green points in Fig. 8 show experi-
ments with water and ethylene glycol (corresponding to the
lowest capillary numbers) using a more sensitive load cell,
which is rated for 1 N with a nonlinearity error of 5x10~* N.
As with the red data, the green data was processed using the
height offset measured from video microscopy. However, the
use of a more sensitive force transducer results in much better
agreement with theory. Thus, when the height offset, mis-
alignment, and load cell accuracy are all accounted for, quan-
titative agreement between theory and experiment is achieved
over six decades in the capillary number.

The implications of these findings on OSFR are as fol-
lows. Firstly, the accurate measure of height is critical, as
the force response in either the capillary-statics or viscous
regimes largely depends on the initial height Hy and strain am-

plitude €. Using the VADER 1000, these issues are magnified
because of the increased aspect ratio, which leads to larger
difficulty in manually aligning the plates. Note that the factor
of two discrepancy in the force reported by Wingstrand et al. >
(for viscoelastic moduli measured in the high-Ca limit) is most
likely due to the height offset discussed above. Finally, the ac-
curacy of the force transducer is an important instrument con-
sideration because the forces measured in the capillary-statics
regime are particularly small. However, this also suggests that
the larger forces generated in the viscous regime may exceed
the transducer limit, meaning different transducers would be
required for the viscous and capillary-statics regimes.

D. Evaluation of OSFR for measuring surface tension

Having verified the crossover from viscous- to surface-
tension-dominated behavior at a critical capillary number
Ca* = 1, we now assess the ability of OSFR to measure sur-
face tension in the regime Ca* < 1 based on the amplitude of
the oscillating force response. For this purpose, we focus only
on the green data in Fig. 8 — those which were measured using
the most sensitive force transducer with concurrent imaging of
the shape profile. The test fluids considered — water and ethy-
lene glycol — have the highest surface tension of any of the
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FIG. 8. Experimental measurements of the rescaled force amplitude,
|F| = %A2|ﬁ1 |/€fo, plotted against a rescaled capillary number,
Ca* = icaf. /fo. Blue points represent data using the measured
height H(z) + AH, assuming an offset of AH = 83 um from the ze-
roing routine of the machine. Red and green points were processed
using the average height offset measured from image-analyzed mi-
crographs. Green points were also measured using a more sensitive
force transducer. Error bars represent the standard deviation based
on replicate errors, material property uncertainty, and plate misalign-
ment.

test fluids studied (cf. Table II).

To use OSFR to measure surface tension, we assume that
the density p and viscosity u are independently measured but
leave the surface tension Y as an unknown parameter. OSFR
measures the plate height H**P(wt) and force F*P(wt) si-
multaneously for a given frequency @. We may render the
height and force dimensionless as 5 (1) = H(wt)/Hy— 1 and
Z (1) = F(wt)/myRy. Given the experimentally measured
height program, ##°*P(t), the dimensionless capillary force
can be predicted theoretically, .7 (1), using Eq. (20). Thus,
we may measure the surface tension by fitting our experimen-
tal measurements of the (dimensional) force F**P(wt) to the
following model:

F (1) = myRo { Fo + F™ [ (T)]},  (25)

where % is an offset (accounting for possible errors in the
initial taring of the load cell) and .7 ™" [J#°*P(1)] denotes the
functional dependence of .Z™"" on #7°P,

In Eq. (25), the only unknown parameters are the surface
tension y and the force offset .%; all other parameters are
measured or known independently. We fit ¥ and .%; using
nonlinear least-squares regression with 95% confidence in-
tervals (assuming normally distributed error). The resulting
regression parameters at three different frequencies are tabu-
lated in Tables III and IV for water and ethylene glycol, re-
spectively; the associated force-time curves are presented in
the Supplemental Material, §S.5. The fits for water give rea-
sonable, albeit underestimated, measurements of surface ten-
sion in the range 58-68 mN/m (the exact value is 72 mN/m).

11
/2t (Hz) 0.01 0.1 1 1 (w/time shift)
Y(@mN/m) 64.7+04 58.8+0.3 51.5+£3.5 674+£1.2
0 2.01 1.00 0.675 0.537

TABLE III. Fit values of v and .% for water at a strain € = 10%,
corresponding to the green data in Fig. 8. The exact surface tension
of water is 72.0 mN/m. For the experiment at 1 Hz, a time shift
Tshift = —0.631 dramatically improved the fit.

/27 (Hz) 0.01 0.1 1
¥ (mN/m) 40.5+0.1 41.1+£04 53.1£1.3
Fo 0.0162 0.427 0.0005

TABLE 1V. Fit values of y and % for ethylene glycol at a strain
€ = 10%, corresponding to the green data in Fig. 8. The exact surface
tension of ethylene glycol is 47.3 mN/m.

The fits for ethylene glycol are generally more accurate, in the
range 40-53 mN/m (the exact value is 47.3 mN/m). These data
suggest that OSFR is capable of measuring the surface tension
of low viscosity fluids to within 20% relative error with cur-
rent instrumentation and protocol.

IV. DISCUSSION

We have presented a comprehensive study of Newtonian
fluids undergoing oscillatory squeeze flow in order to quanti-
tatively predict the effect of surface tension on the measured
force F(t). Equation (24), reproduced below for convenience,

A 3¢ iCafi
T = =—
TRy 4iA2 (f 0Ty )
3¢ 1—2A2
T AAZ | 14 L (e2/A2)(1 - BL2A2)

2
14 8A )7 (24)

1 et
+ ziCa ((1 EPOIED

accurately captures the influence of fluid flow and surface ten-
sion (Ca = HRy/7), strain amplitude (€), and initial aspect
ratio [A = Hy/(2Ro)], as verified by direct comparison to nu-
merical simulations (Fig. 5) and experiments (Fig. 8) over
several decades in a modified capillary number,

Caf..
Ca* =
4fo
_Ca/ 1+8A? 1+ 8L (e2/A%)(1 - Bl2A2)
4 (1—82)3/2 —%AZ ’

(26)

This model for the primary harmonic force response is ad-
vantageous in that it clearly expresses the dependence on the
capillary number Ca, strain amplitude €, and aspect ration A
in closed analytical form. The primary disadvantage of this
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model is in the approximation for fy [cf. Eq. (24c)], which
breaks down when the ratio £/A? is not O(1).

For thin films A? < 1 and sufficiently small strains € =
O(Az), Eq. (24) simplifies to the thin-film, small-strain model
(13). The small-strain model reflects the essential physics of
the expected force response. The real part of this expression
[in-phase with the plate velocity dH /df = ewHycos (wt)] is
essentially the classical lubrication prediction for OSFR based
on the linearized Stefan equation (2). The imaginary part (out-
of-phase with the plate velocity) is a new contribution to the
theory of OSFR, and represents the force of surface tension
along the axial curvature 1/R, ~ —(6€R/HZ)sin () of the
free surface. We find that this force is highly sensitive to the
geometry of the film due to the Hj 2 dependence of the axial
curvature. Therefore, this force can be amplified by simply
reducing the initial thickness of the film; however, this re-
duction will constrain the experimentally accessible range of
strain amplitudes. The azimuthal curvature, 1/R; = 1/Ry, is
approximately independent of ¢ and, therefore, does not con-
tribute to Fj.

Although the thin-film, small-strain model [Eq. (13)] ex-
hibits a simpler dependence on € and A as compared to the
refined model [Eq. (24)], its applicability is limited to A% < 1
and € ~ A2. The restriction of (13) to small strains (¢ < 1) ap-
plies mainly to the small-Ca (capillary-statics) regime, where
the force is generally a nonlinear function of the applied strain
€ (Fig. 4). This nonlinearity is well captured by the rational-
fraction approximant, Eq. (23), of the capillary-statics re-
sponse. At larger Ca (viscous regime), the force is approxi-
mately linear in the applied strain € even for strains as large
as 20% (Fig. 3). Thus, the factor of (1 —&2)~3/2 appearing
in Eq. (24) contributes only a small correction to the force
response.

The additional restriction of Eq. (13) to thin films (A% < 1)
affects both the large-Ca and small-Ca regimes. In particular,
at high Ca we expect an increase in the predicted force ac-
cording to the factor of (14-8A?) in Eq. (24), which was pre-
viously introduced by Wingstrand et al. > [cf. Eq. (3)]. This
O(A?) correction arises due to the relative importance of uni-
axial extension as compared to shear in OSFR. According to
Fig. 3, this correction is generally non-negligible under typ-
ical operating conditions. At low Ca, the dependence of the
force on A is more complicated (Fig. 4), and is again captured
by Eq. (23). Thus, finite-A effects generally introduce quanti-
tative corrections to the measured force for strain amplitudes
€ greater than a few percent, regardless of the value of Ca.

The theoretical limitations of Eq. (13) are further com-
pounded by practical considerations that arise in experiments.
For one, the strain amplitude must be sufficiently large to
achieve a good force signal-to-noise ratio. Smaller strains
give a noisier force response F(t), adding unwanted uncer-
tainty to the value of F; upon Fourier transformation. On the
other hand, large strains (>10%) can result in film squeeze-
out and contact line depinning due to a meniscus instability
(see the Supplemental Material, §S.4). Thus, for all practical
purposes, the strain set point is limited to the range € < 10%
in our study. The aspect ratio is determined from simultane-
ous measurements of the film height and diameter, with typ-
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FIG. 9. Operating diagram for OSFR based on the isocontours Ca =
Cac, as a function of € and A, for which Ca* = 1. The dashed line
represents the magnitude of the minimum stable €, corresponding
to fluid ejection from the plates. The top labels indicate operating
windows for conventional OSFR and the FSR in OSFR mode, based
on typical aspect ratios.

ical values in the range A = 0.1-0.2. For such small aspect
ratios, Eq. (13) only holds for small strains, i.e., a few per-
cent. Therefore, the more general model (24) is necessary to
accurately predict the force response.

An operating diagram for OSFR and FSR can be con-
structed based on the criterion Ca* = 1. Figure 9 plots the
isocontours Ca = Ca, as a function of A and € that satisfy this
criterion. Because Eq. (26) is an approximation that breaks
down as € or A is increased, the exact solution for f — rather
than the rational fraction approximant, Eq. (24c¢) — was used
to compute Ca* = 1 and the isocontours in Fig. 9 (see Figure
S.1 in the Supplemental Material for plots of the exact values
of fy as a function of € and A). For fixed values of € and A,
the calculated Ca. represents the transition between the vis-
cous and capillary-statics regimes; i.e., Ca > Ca, would result
in forces dominated by viscosity, whereas Ca < Ca. gives a
surface-tension-dominated response. In the limit as € — 0,
Cac ~ (1+8A%)/(1 - %AZ) and the transition is approxi-
mately independent of the (small) applied strain. The upper
bound of € is determined by the film stability limit, which cor-
responds to a limit on compression where the fluid is expelled
from the plates (see the Supplemental Material, §S.4, for more
details on film stability). Evidently, A is a much more impor-
tant parameter than € in defining Ca.. Also indicated, at the
top of the plot, are the typical operating windows for commer-
cial OSFR instruments and the VADER 1000 in OSFR mode.
Values of Ca > 4 for OSFR instruments, and greater than 2.5
for the VADER 1000, are sufficient to ignore surface-tension
effects. This operating diagram places the experimental lim-
itations on fluid viscosity that are measurable using oscilla-
tory squeeze flow. For example, considering a frequency of
®/(2m) = 10 Hz, a surface tension of ¥ = 35 mN/m, and a
plate diameter of 2Ry = 25 mm, the fluid viscosity should be
greater than 0.09 Pa s to minimize surface-tension effects.

On the other hand, the low-Ca response suggests that the
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OSFR method could be used to measure surface tension Y or,
more generally, the dynamical surface properties of materi-
als. We evaluated the capability of OSFR to measure surface
tension in §III D, and found that, with current instrumentation
and protocol, the surface tensions of water and ethylene glycol
were measured to within an accuracy of 20% (relative error).
It should be emphasized that our primary purpose for this eval-
uation was not to invent a new way to measure surface tension
per se — indeed, numerous, more accurate measurement tech-
niques for this purpose that date back a hundred years (e.g.,
Wilhelmy plate or pendant drop tensiometry). Rather, the ad-
vantage of OSFR as a measurement tool is to extract dynamic
changes to surface tension through time-periodic changes in
curvature. For instance, the OSFR technique could be applied
to (i) measure the static surface tension y of moderately vis-
cous fluids; (ii) measure the dynamic surface tension y(¢) as a
function of frequency to determine the adsorption or desorp-
tion of surface-active species to and from the interface; (iii)
measure the surface viscoelastic properties of materials with
negligible bulk stresses, e.g., the oxide films on the surface
of liquid metals*®. To these ends, our present evaluation is
encouraging that OSFR, with suitable improvements, can be
made into a valuable interfacial measurement tool akin to the
oscillating bubble tensiometer.®>-04

Several aspects must be considered to optimize OSFR as
an interfacial measurement technique. First, ensuring that the
contact line remains pinned to the edge of the plates is criti-
cal. Second, the height measurements must be accurate. One
method of ensuring accurate height measurements is the use
of video microscopy and image analysis. Lastly, the ampli-
tude of the force measured should be within the accuracy of
the force transducer.

V. SUMMARY AND CONCLUSIONS

The key results of this work may be summarized as follows:

e We demonstrate that theoretical predictions of the
OSFR primary harmonic force mode .%] collapse onto
a universal curve when plotted against a modified cap-
illary number Ca*. These predictions are robust for ex-
perimentally relevant values of the aspect ratio A and
strain amplitude €.

e For Ca* > 1, the force is driven primarily by viscous
shear stresses and predicted by lubrication theory. This
response can be modeled analytically with high fidelity.

e For Ca* <« 1, the force is predicted by capillary stat-
ics. Modeling the capillary-statics response in general
requires a numerical method, but a double perturbation
expansion (recast as a rational fraction) provides a suit-
able approximation provided that £ and A are small
and the ratio /A% = O(1).

e Experimental measurements completed over a wide
range of Ca* compare favorably to theory and demon-
strate, for the first time, the ability of OSFR to mea-

13

sure surface-tension forces in the absence of viscous
stresses.

e Current measurements of surface tension using OSFR
are accurate to within a relative error of 20%, with clear
avenues for improvement.

The application of the present theory requires that the fluid
is Newtonian and the interface has a constant surface ten-
sion and no surface viscosity (shear or dilatational). Future
work will examine the effects of surface viscosity and non-
Newtonian fluids.

NOMENCLATURE

0 — liquid contact angle at the bottom plate
Ca — capillary number

Ca* — modified capillary number
X — dimensionless pressure

€ — strain amplitude

fo — low-Ca force factor

[ — high-Ca force factor

F —force on the bottom plate

% — dimensionless force

%1 — primary harmonic mode of the dimensionless force
Z* — modified dimensionless force
Gr — gravity number

Y — surface tension

H —liquid bridge height

Hy — initial liquid bridge height
i — imaginary unit

A — aspect ratio

U — viscosity

p — pressure

r —radial position

R —liquid bridge radius

Ro — initial liquid bridge radius
Re — Reynolds number

p — density

t —time

T — dimensionless time

6 — azimuthal angle

u, —radial velocity component
u, — axial velocity component

v — plate misalignment angle

o — angular frequency

z — axial position

SUPPLEMENTAL MATERIAL

Online supplemental material contains (1) numerical meth-
ods for integration of the capillary-statics equations; (2) addi-
tional experimental details; (3) discussion of gravitational and
inertial effects; (4) discussion of capillary bridge instabilities;
and (5) raw OSFR data for fitting surface tension by nonlinear
regression.
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Appendix A: Small-strain analysis of the capillary-statics
model

In this Appendix, we derive an approximate solution to the
capillary statics equations, Eqs. (16)-(19), for small strain am-
plitudes, € < 1. In this regime, we may expand R, p, and F' in
perturbation series with respect to €:

R(z,t) = Ro+eRW(z,t) + 2RP (z,1) +---,  (Ala)
p) = +er W+ ep )+, (Alb)
F(1) = tyRo+ eF D (1) + 2F ) (1) + - -- (Alc)

The leading-order terms in equation (A1) correspond to the
unperturbed state (i.e., a cylindrical column of radius Ry). We
also make use of the boundary perturbations at z = H(t):

=
z=Hj

(A2)

R|—n@y=Ro+ eRW |2=Ho
ORM)
0z

+¢? (R(Z) |e—H, + Hosin (o1)

H(t) Hy
/ R>dz=R}Hy+€ </ 2R0R(1>dz+R3Hosin(wt))
0 0
H
+32( /O "2ReR® + (RV)?]dz

+2RoR") |:—#,Ho sin (a)t)> o,
(A3)

where we have substituted H(t) = Ho[l + €sin(@t)]. Equa-
tions (A2)-(A3) enable transfer of the boundary conditions
from the moving boundary at z = H(z) to the fixed boundary
at z = Hp.

We will now systematically derive perturbative corrections
to the cylinder solution for small strains. Inserting equations
(A1)-(A3) into (16)-(19) and collecting terms of O(€) gives,

92R(M) R p

= A4
P : (A4)

14
atz=0, Hy : RY =0, (A5)
Hy
/ 2RoR™M dz = —R2Ho sin (wr). (A6)
0

These equations govern the radius R())(z,z) and pressure
p (¢). Integrating equation (A4) and applying the two-point
boundary conditions (AS5) yields the following solution for the
radius:

R? z sinA z
R — 0 ; 11 M
(z,1) v cos { & +ooan S0 Re 'Y,

2R(2) 2 Z ( Z )
~ 0N (1) ), A7)
Y Ho Hy u (

where we have substituted A = Hy/(2Ro) and approximated
the result for A2 < 1. Inserting equation (A7) into (A6) then
yields the solution for the pressure:

Wy ¥ [ AcosA .
P 2R0<sinA—AcosA sin (o)

3y /1 2\ .
~ _2713; <A2 - 5) sin (o). (A8)

To compute the force, we expand equation (18) up to O(¢)
and insert (A8) for the pressure:

FU(r) = —mrgpV

~ TYRo AcosA .

) <sinA—AcosA) sin (@r)
3myRy (1 2 .

N — (/\2 - 5) sin (or). (A9)

Note that the error in the approximation made in the last line
is of O(A?) and typically negligible.

Next, we consider the O(g?) problem. From the O(g?)
terms in equations (16)-(19b), we derive the following
boundary-value problem for the radius R® (z,t) and pressure

P ():

P2RD RD @ 1 |1 orM\? (R
—t ==z — ,
072 R(z) Y Ro|2\ 9z R%
(A10)
, _ ()
atz=0, Hy : R? = —Hysin (o1) (A11)

dz ’

Z:H()HO sin ((J)l‘) .

(A12)
The force F(?) (¢) is then obtained by expanding equation (18)
up to O(&?):

H,
/ "12RoR?) + (RV)?)dz = —2RoR™
0

2
@) L opW]_p(D) (1)
FO(r) = —mtyRy Rop +21; l-=op +<a§ >
Z

z=0
(A13)
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Unsurprisingly, the solution of the second-order problem is
far more laborious than the first. However, the procedure is
essentially unchanged from before. We shall simply quote the
O(€?) correction for the force, which is of principal interest:

TtYRo
SRRt

27A?
sinA — A cosA)?
A?[sin (3A) —3A cos (3A)]
B (sinA —AcosA)3

2437tyR, 1 2
_ 253mrRo ( - > sin’ (ot).

> sin® (@)

Q

Al4
40 A 35 (Al

This procedure can be continued to obtain higher-order cor-
rections; we have computed up to the O(g*) term. The fi-
nal result for the dimensionless force % (1) = F(t)/(myRy) is
given in Eq. (21).
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