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ABSTRACT: Ixodes cookei Packard, the groundhog tick or woodchuck tick, is the main known vector of Powassan virus
(POWYV) disease in North America and an ectoparasite that infests diverse small- and mid-size mammals for blood meals to
complete its life stages. Since I. cookei spends much of its life cycle off the host and needs hosts for a blood meal in order to
pass to the next life stage, it is susceptible to changes in environmental conditions. We used a maximum-entropy approach to
ecological niche modeling that incorporates detailed model-selection routes to link occurrence data to climatic variables to
assess the potential geographic distribution of I. cookei under current and likely future climate conditions. Our models identified
suitable areas in the eastern United States, from Tennessee and North Carolina north to southern Canada, including Nova
Scotia, New Brunswick, eastern Newfoundland and Labrador, southern Quebec, and Ontario; suitable areas were also in western
states, including Washington and Oregon and restricted areas of northern Idaho, northwestern Montana, and adjacent British
Columbia, in Canada. This study produces the first maps of the potential geographic distribution of I. cookei. Documented
POWYV cases overlapped with suitable areas in the northeastern states; however, the presence of this disease in areas classified by
our models as not suitable by our models but with POWYV cases (Minnesota and North Dakota) requires more study. Journal of
Vector Ecology 46 (2): 155-162. 2021.

Keyword Index: Ecological niche modeling, Ixodes cookei, future climate scenarios, potential distribution, Powassan virus, North

America.

INTRODUCTION

Ixodes cookei Packard, the groundhog tick or woodchuck
tick, isa hard tick (Acari: Ixodidae) that infests a wide variety of
small- and mid-size animals, including woodchucks, racoons,
mink, foxes, weasels, and squirrels (Durden and Keirans 1996).
Ixodes cookei is the main known vector of one of the Powassan
virus (POWYV) (genus Flavivirus) genotypes known as lineage
1, the infectious agent of Powassan encephalitis (Ebel 2010),
but is not a highly efficient vector of the pathogen causing
Lyme disease (Barker et al. 1993); another POW Vr genotype
is called deer tick virus which is transmitted by I. scapularis
(Ebel 2010). POWYV was first discovered in 1958 in Ontario
after a human died of encephalitis (McLean and Donohue
1959). Since that time, POWYV cases have been documented
more, including in eastern Canada and northeastern United
States (Gholam et al. 1999). In the United States, although
Powassan encephalitis cases are rare, numbers of human
cases have increased in recent years, from 8-12 cases in 2010-
2011 to 21-37 cases in 2018-2019 (CDC 2020).

Environmental conditions are crucial for shaping the
geographic distributions of tick species, as temperature
increases are known to have caused range expansions of tick
species (Gasmi et al. 2018, Molaei 2020). Previous studies have
reported that I. cookei is distributed in the central and eastern
United States, mostly in the northeastern States (Connecticut,
Massachusetts, New Hampshire, Rhode Island, Vermont,
and particularly in Maine) (Rand et al. 2007). They are also
distributed in southeastern Canada, especially Québec, where
they are the most common tick species (Gasmi et al. 2018,

Downloaded From: https://bioone.org/journals/Journal-of-Vector-Ecology on 03 Dec 2021
Terms of Use: https://bioone.org/terms-of-use Access provided by University of Kansas

Scott et al. 2018). However, the full geographic distribution
of I. cookei remains poorly studied. In Canada, for example,
a recent study documented a range expansion from eastern
Canada into southwestern British Columbia (Scott et al.
2018).

Ecological niche modeling (ENM) comprises methods
and tools that allow researchers to estimate the set of
conditions suitable for a species to maintain populations, by
means of integrating known occurrence points with gridded
data summarizing environmental conditions (Peterson et al.
2011). ENM is considered as a powerful tool and has been
used widely in spatial epidemiology to understand geographic
distributions of disease vectors, pathogens, human cases, and
disease hosts (Escobar 2020). ENM comes with some caveats
and challenges, such as species not having the ability to
occupy the full set of suitable areas owing to limited dispersal
ability or biotic interactions, and biases in sampling among
regions. When taken carefully into account, these challenges
can be minimized in terms of their effects on model outcomes
(Peterson 2014).

Given the relative paucity of knowledge of the range of I.
cookei and increasing Powassan encephalitis disease concerns
(CDC 2020), we here present a first study using ecological
niche modeling. Our aim is to identify suitable areas for I
cookei under current conditions, as well as highlighting the
potential distribution of the species under future climate
conditions (for the year 2050). This paper adds more detail of
the likely geographic distribution of I. cookei and may benefit
public health by identifying new or unrecognized areas of
potential POWYV transmission.
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MATERIALS AND METHODS

Occurrence records

A total of 402 occurrence points of I. cookei was
obtained from various sources (Table 1). We cleaned and
reduced the raw data records by removing records not clearly
corresponding to the species of interest, points not confirmed
in the literature, records missing coordinates or records with
(0, 0) as coordinates, and duplicate records (supplementary
materials; S1 file). We thinned the remaining records, using a
spatial distance filter of 50 km, to avoid model bias and model
overfitting resulting from spatial autocorrelation (Anderson
et al. 2003), using the spTthin R package (Aiello-Lammens
et al. 2015). After these steps, we had 52 occurrence points
as final data inputs for our model (Figure 1). We divided
the data randomly into two sets: 50% for model calibration
and evaluation, and used the full set of data for creating final
models following Cobos et al. (2019). We also did another
model excluding occurrence points that are in western
Canada (Figure 1) to test the ability of our models based on
eastern points to anticipate those western distributional areas.
We did not use a block-based sub-setting strategy (Muscarella
et al. 2014) out of concern that such an approach may lead
to problems in model transfer springing from poorer
representation of environmental conditions in the calibration
dataset (Owens et al. 2013).

Calibration area (M) and environmental data

The accessible area (termed M) for the species, which
defines the area to be used in model calibration, was delimited
based on a 500 km buffer around the available occurrence
points (Barve et al. 2011), assuming that highly mobile
vertebrates play a role in carrying ticks into areas some
distance away from established populations, which avoids
bias in model outcomes (Anderson and Raza 2010). We
used 19 environmental predictors, based on average monthly
temperature and rainfall data derived from weather stations
during 1950-2000, from WorldClim version 1.4, at 10" (~17
km) spatial resolution (Hijmans et al. 2005); (available at
http://www.worldclim.org). We removed variables 8, 9, 18,
and 19 (combinations of temperature and precipitation)
because of their known spatial artifacts that they are known
to hold (Broennimann et al. 2012, Bede-Fazekas and Somodi
2020).

The remaining 15 variables were masked to the
calibration areas (M); we then used principal component
analysis (PCA) to reduce dimensionality among 15 variables
that characterize variation in climate across the training and

Table 1. Sources of occurrence data of Ixodes cookei.

Figure 1. Occurrence points (red dots) and calibration areas
(red buffer) for Ixodes cookei.

testing areas and to create sets of orthogonal predictors. In the
end, we used 11 sets of variables, which represent all possible
combinations of the first four PCs (supplementary materials;
S2), which together explained 94% of overall variation.
For transfers to future climate conditions, we used five
general circulation models (GCMs) for two representative
concentration pathway (RCP) emission scenarios (RCP4.5
and RCP8.5) for a twenty-year period centered on 2050
(years 2041-2060) from Climate Change, Agriculture and
Food Security (CCAF), at 10’ (~17 km) spatial resolution
(available at  http://www.ccafs-climate.org/data_spatial
downscaling). Those GCMs were from the Canadian Center
for Climate Modeling and Analysis (CCCMA-CANESM2);
National Science Foundation Department of Energy, National
Center for Atmospheric Research (CESM1-BGC); NASA
Goddard Institute for Space Studies (NASA GISS) (GISS -
E2 - R); Institute Pierre-Simon Laplace (IPSL-CM5A-MR);
and National Center for Atmospheric Research (NCAR)
(CCSM 4). These emission scenarios represent low and high
greenhouse gas concentrations, and thus may bracket likely
future climate conditions.

Ecological niche modeling

For model calibration, using the kuenm R package
(Cobos et al. 2019) which uses a maximum-entropy algorithm
implemented in Maxent (Phillips and Dudik 2008, Phillips et
al. 2017). We tested all combinations of four feature classes (15
combinations: |, g, p, h, 1q, Ip, 1h, qp, gh, ph, 1gp, 1gh, Iph, gph,
lgph) where linear =1, product = p, quadratic = g, hinge = h

Source Number of records Reference
Global Biodiversity 200 GBIF.org (09 April 2020) GBIF occurrence download. https://doi.
Information Facility org/10.15468/dl.4x3wrb.
VectorMap 14 http://vectormap.si.edu/Tick_Metadata.htm#vec148
BISON 173 https://bison.usgs.gov/#home
Literature 15 (Scott et al. 2018)
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and 17 regularization multiplier values (0.1 to 1 at intervals of
0.1, 2 to 10 at intervals of 1), as well as the 11 environmental
datasets described above. In all, 2805 candidate models
were tested and evaluated based on statistical significance
of partial receiver operating characteristic (ROC) (P < 0.05)
(Peterson et al. 2008) and omission rate (E < 5%) (Anderson
et al. 2003). Finally, among significant, low-omission models,
we applied the Akaike Information Criterion corrected for
small sampling sizes (AICc) (Warren and Seifert 2011) and
delta AICc, which is the difference between AICc values
and the minimum AICc among significant, low-omission
models, for choosing the best candidate models to run finals
models (criterion AICc < 2). This three-part model-selection
procedure assures predictive models with relatively few
parameters.

Final models

We used the complete set of occurrences and the
parameterizations selected during model calibration. We used
a 50% bootstrap with ten replicates to permit consideration
of uncertainty deriving from availability of occurrence data,
and transferred the models to all of North America in current
and future climate scenarios. We summarized model results
by calculating medians of final results obtained for each
parameter value set. We used a fixed allowable omission error
rate at 5% (Anderson et al. 2003) to binarize final models, in
effect assuming that <5% of occurrence data have errors that
might misrepresent environments used by the species. We
summarized the results from current and future scenarios by
calculating the differences in suitability (taking the median
across GCMs) for each RCP from the present (Campbell et al.
2015). We represented agreement of changes of suitable areas
across the five GCMs into predictions of range stability, gain,
or loss. The kuenm R package (available at https://github.com/
marlonecobos/kuenm) was used for all modelling analyses.

Uncertainty in model projections

We used mobility-oriented parity metric (MOP)
following Owens et al. (2013) to assess the strict extrapolation
risk considering the nearest 5% of the reference cloud. We
also assessed model variability from replicates, parameters
settings, GCMs, and RCPs in the model projections following
Cobos et al. (2019), by inspecting variation on a pixel-by-
pixel basis. These calculations were developed in the kuenm
R package.

RESULTS

Present suitable areas

We had 2,624 statistically significant models (P < 0.05)
from an initial total of 2,805 candidate models; 1,449 of
significant models also met the omission rate criteria (OR
< 0.05), and just five models were identified as best models
based on AICc. All best models were based on the predictor
variables in Set 2 (PC1, PC2, and PC3; Table 2).

Results from initial models in which we did not include
the occurrence points from western Canada successfully
anticipated the distributional areas in the Pacific Northwest,
particularly in British Columbia (Figure 2). This initial
modeling pass thus successfully anticipated highly suitable
areas in British Columbia, lending confidence in these models
to anticipate other distributional areas.

In the United States, I. cookei showed high suitability
across most eastern states, including Maine, New Hampshire,
Vermont, Massachusetts, Rhode Island, Connecticut, New
York, New Jersey, Pennsylvania, Delaware, Maryland,
Washington D.C., West Virginia, Ohio, Indiana, Illinois,
Michigan, and Kentucky, and in restricted areas of northern
and western Virginia, western North Carolina, and eastern
Missouri. Suitable areas were also identified in western
states, including Washington, Oregon, and restricted parts of
northern Idaho and northwestern Montana. Low suitability
was observed in southern Minnesota, lowa, eastern Kansas,
northern Arkansas, and Tennessee, as well as in eastern
California, southern Montana, northern Wyoming, northern
Utah, and Colorado (Figure 3).

For Canada, high suitability was anticipated in
southeastern Canada, including Nova Scotia, New Brunswick,
eastern Newfoundland Labrador, southern Quebec, and
Ontario. Suitable areas also were identified in western
Canada, particularly in eastern and coastal British Columbia
(Figure 3).

Future suitable areas

Model transfers to future conditions showed stability in
suitability of areas across most of the northeastern United
States and eastern and southern Canada (Figure 4). Reduction
(loss) of suitable areas (with some differences between RCP
4.5 and RCP 8.5) was anticipated in Missouri, Tennessee,
North Carolina, Virginia, West Virginia, Kentucky, Ohio,
Indiana, Illinois, Michigan, and some areas in Pennsylvania

Table 2. Best models selected based on parameter settings in the process of model calibration, to produce final models for Ixodes
cookei. Reg. = regularization; AUC = area under the curve; ROC = receiver operating characteristic; AICc = Akaike information

criterion corrected for small sample size.

Feature i Mean Partial Omission

class mufl{‘ceiﬁiier Va?;ble AUC ratio ROC rate at 5% AlCc AlCe Parameters
LQP 0.4 Set 2 1.397 0.00 0.038 955.596 0.000 8
L QP 0.5 Set 2 1.385 0.00 0.038 955.945 0.349 8
LQP 0.6 Set 2 1.404 0.00 0.038 956.355 0.759 8
LQP 0.7 Set 2 1.390 0.00 0.038 956.821 1.224 8
LQP 0.8 Set 2 1.387 0.00 0.038 957.337 1.741 8
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Figure 4. Left panels, potential suitable areas of Ixodes cookei based on binarizing (5% threshold), current conditions (in blue
and gray) and future (blue = no longer suitable, red = newly suitable) conditions. Right panel, agreement in strict extrapolation

areas among GCMs.

(Figure 4, RCP 4.5); RCP 8.5 included reduction in areas in
southern Canada (Figure 3, RCP 8.5). Expansions (gains) in
suitable areas were observed mostly in northwestern Canada
(British Columbia) (Figure 4). In general, more dramatic
reductions and expansions were observed under RCP 8.5
than under RCP 4.5.

MOP analysis results were slightly different between
RCP 4.5 and RCP 8.5, but with high agreement in strict-
extrapolation areas being concentrated in areas clearly not
suitable for I. cookei (Figure 4). Variation among models
suggested high uncertainty coming from GCMs in Missouri,
Illinois, Ohio, Pennsylvania, Michigan, southern Ontario, and
Quebec (Figure 5). Low uncertainty was observed from RCPs
and replicates, with almost no variation from parameters
(Figure 5).

DISCUSSION

Climate change has influenced distributions, activity,
and biting rates of arthropod vectors in different regions
around the world (Campbell-Lendrum et al. 2015). In the
United States, for example, the number of tick-borne diseases
has increased recently (CDC 2019b), especially with the
warmest recorded winter in 2017. Some tick species have also
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established populations in new areas not known to be within
the species’ range in the past (Molaei 2020).

During recent decades, many crucial advances have been
made in applications of disease ecology and biogeography
to the challenge of mapping pathogen transmission risk
(Peterson 2014). Crucial concepts, such as fundamental
niche, realized niche, accessible areas (Peterson et al. 2011),
and various analytic tools mentioned above have improved
ENM workflow markedly. Here, we applied the most up-to-
date methods in ecological niche modeling following Cobos
et al. (2019) using kuenm R package, to estimate for the first
time the potential distribution of I. cookei. We also included
further analysis to assess model uncertainty from model
projections to the future and new areas beyond the calibration
area (M). Including analyses such as MOP (to identify strict-
extrapolation areas) and model variability (to detect areas
with high variability in model predictions) in model results
help to identify areas with low confidence regarding the
species’ potential geographic distribution (Figures 4 and 5)
(Owens et al. 2013, Alkishe et al. 2020).

Our models showed that suitable areas are concentrated
across the eastern United States and southeastern Canada
(Figures 3 and 4). Moreover, our study reflected the recent
discovery of I. cookei in British Columbia (Scott et al. 2018),
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where our models identified areas as suitable for this species
(Figure 3), even when the western occurrence records were
omitted from the model development (Figure 2). Low stability
in suitable areas and predicted potential expansions in ranges
under future conditions was noted in the southern United
States and northern Canada, respectively, which indicated
that this species may lose large areas and shift its range
northward, particularly into Canada (Figure 4). Climate
change has already impacted the geographic distribution of
many species (Parmesan and Yohe 2003, Peterson and Shaw
2003). Tick species are also susceptible to climate changes,
as increasing temperatures can rearrange the geography of
suitable areas for ticks (Gasmi et al. 2018).

Interestingly, potential suitable areas for I. cookei overlap
broadly with the geographic distribution of documented
POWYV cases (CDC 2020) across the eastern United States,
where most of the human cases have been documented
(Figure 6). However, some areas that were not detected as
suitable areas in our models, such as Minnesota and North
Dakota, are known to yield POWV cases (CDC 2020). This
finding may lead to the insight that this disease might be
transmitted by other tick vectors such as I. scapularis and
I. marxi (CDC 2019a), or alternatively, that our models
are failing to anticipate that northwestern portion of the
eastern range area of the species. More studies are needed to
investigate the vector of POWYV in those areas.

The biology of this species remains poorly studied,
although one study has investigated the developmental
period of each stage (larvae, nymph, and adult) under lab
conditions (Farkas and Surgeoner 1991). We used climate
variables (temperature and precipitation) to estimate the
species’ ecological niche based on their overall importance to
shape the geographic range of the species. We excluded biotic
factors such as host abundances from our analysis owing
to the complexity of an enormous range of hosts, for which
high-quality data are not available. An increasing number
of POWYV cases in the United States and Canada indicates a
need for more active surveillance of the distribution ecology
of I cookei.
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