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ABSTRACT: Ixodes cookei Packard, the groundhog tick or woodchuck tick, is the main known vector of Powassan virus 
(POWV) disease in North America and an ectoparasite that infests diverse small- and mid-size mammals for blood meals to 
complete its life stages. Since I. cookei spends much of its life cycle off the host and needs hosts for a blood meal in order to 
pass to the next life stage, it is susceptible to changes in environmental conditions. We used a maximum-entropy approach to 
ecological niche modeling that incorporates detailed model-selection routes to link occurrence data to climatic variables to 
assess the potential geographic distribution of I. cookei under current and likely future climate conditions. Our models identified 
suitable areas in the eastern United States, from Tennessee and North Carolina north to southern Canada, including Nova 
Scotia, New Brunswick, eastern Newfoundland and Labrador, southern Quebec, and Ontario; suitable areas were also in western 
states, including Washington and Oregon and restricted areas of northern Idaho, northwestern Montana, and adjacent British 
Columbia, in Canada. This study produces the first maps of the potential geographic distribution of I. cookei. Documented 
POWV cases overlapped with suitable areas in the northeastern states; however, the presence of this disease in areas classified by 
our models as not suitable by our models but with POWV cases (Minnesota and North Dakota) requires more study. Journal of 
Vector Ecology 46 (2): 155-162. 2021.

Keyword Index: Ecological niche modeling, Ixodes cookei, future climate scenarios, potential distribution, Powassan virus, North 
America. 

INTRODUCTION

Ixodes cookei Packard, the groundhog tick or woodchuck 
tick, is a hard tick (Acari: Ixodidae) that infests a wide variety of 
small- and mid-size animals, including woodchucks, racoons, 
mink, foxes, weasels, and squirrels (Durden and Keirans 1996). 
Ixodes cookei is the main known vector of one of the Powassan 
virus (POWV) (genus Flavivirus) genotypes known as lineage 
1, the infectious agent of Powassan encephalitis (Ebel 2010), 
but is not a highly efficient vector of the pathogen causing 
Lyme disease (Barker et al. 1993); another POWVr genotype 
is called deer tick virus which is transmitted by I. scapularis 
(Ebel 2010). POWV was first discovered in 1958 in Ontario 
after a human died of encephalitis (McLean and Donohue 
1959). Since that time, POWV cases have been documented 
more, including in eastern Canada and northeastern United 
States (Gholam et al. 1999). In the United States, although 
Powassan encephalitis cases are rare, numbers of human 
cases have increased in recent years, from 8-12 cases in 2010-
2011 to 21-37 cases in 2018-2019 (CDC 2020).

Environmental conditions are crucial for shaping the 
geographic distributions of tick species, as temperature 
increases are known to have caused range expansions of tick 
species (Gasmi et al. 2018, Molaei 2020). Previous studies have 
reported that I. cookei is distributed in the central and eastern 
United States, mostly in the northeastern States (Connecticut, 
Massachusetts, New Hampshire, Rhode Island, Vermont, 
and particularly in Maine) (Rand et al. 2007). They are also 
distributed in southeastern Canada, especially Québec, where 
they are the most common tick species (Gasmi et al. 2018, 

Scott et al. 2018). However, the full geographic distribution 
of I. cookei remains poorly studied. In Canada, for example, 
a recent study documented a range expansion from eastern 
Canada into southwestern British Columbia (Scott et al. 
2018). 

Ecological niche modeling (ENM) comprises methods 
and tools that allow researchers to estimate the set of 
conditions suitable for a species to maintain populations, by 
means of integrating known occurrence points with gridded 
data summarizing environmental conditions (Peterson et al. 
2011). ENM is considered as a powerful tool and has been 
used widely in spatial epidemiology to understand geographic 
distributions of disease vectors, pathogens, human cases, and 
disease hosts (Escobar 2020). ENM comes with some caveats 
and challenges, such as species not having the ability to 
occupy the full set of suitable areas owing to limited dispersal 
ability or biotic interactions, and biases in sampling among 
regions. When taken carefully into account, these challenges 
can be minimized in terms of their effects on model outcomes 
(Peterson 2014).

Given the relative paucity of knowledge of the range of I. 
cookei and increasing Powassan encephalitis disease concerns 
(CDC 2020), we here present a first study using ecological 
niche modeling. Our aim is to identify suitable areas for I. 
cookei under current conditions, as well as highlighting the 
potential distribution of the species under future climate 
conditions (for the year 2050). This paper adds more detail of 
the likely geographic distribution of I. cookei and may benefit 
public health by identifying new or unrecognized areas of 
potential POWV transmission. 
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MATERIALS AND METHODS

Occurrence records
A total of 402 occurrence points of I. cookei was 

obtained from various sources (Table 1). We cleaned and 
reduced the raw data records by removing records not clearly 
corresponding to the species of interest, points not confirmed 
in the literature, records missing coordinates or records with 
(0, 0) as coordinates, and duplicate records (supplementary 
materials; S1 file). We thinned the remaining records, using a 
spatial distance filter of 50 km, to avoid model bias and model 
overfitting resulting from spatial autocorrelation (Anderson 
et al. 2003), using the spTthin R package (Aiello‐Lammens 
et al. 2015). After these steps, we had 52 occurrence points 
as final data inputs for our model (Figure 1). We divided 
the data randomly into two sets: 50% for model calibration 
and evaluation, and used the full set of data for creating final 
models following Cobos et al. (2019). We also did another 
model excluding occurrence points that are in western 
Canada (Figure 1) to test the ability of our models based on 
eastern points to anticipate those western distributional areas. 
We did not use a block-based sub-setting strategy (Muscarella 
et al. 2014) out of concern that such an approach may lead 
to problems in model transfer springing from poorer 
representation of environmental conditions in the calibration 
dataset (Owens et al. 2013).

Calibration area (M) and environmental data 
The accessible area (termed M) for the species, which 

defines the area to be used in model calibration, was delimited 
based on a 500 km buffer around the available occurrence 
points (Barve et al. 2011), assuming that highly mobile 
vertebrates play a role in carrying ticks into areas some 
distance away from established populations, which avoids 
bias in model outcomes (Anderson and Raza 2010). We 
used 19 environmental predictors, based on average monthly 
temperature and rainfall data derived from weather stations 
during 1950-2000, from WorldClim version 1.4, at 10’ (~17 
km) spatial resolution (Hijmans et al. 2005); (available at 
http://www.worldclim.org). We removed variables 8, 9, 18, 
and 19 (combinations of temperature and precipitation) 
because of their known spatial artifacts that they are known 
to hold (Broennimann et al. 2012, Bede‐Fazekas and Somodi 
2020). 

The remaining 15 variables were masked to the 
calibration areas (M); we then used principal component 
analysis (PCA) to reduce dimensionality among 15 variables 
that characterize variation in climate across the training and 

testing areas and to create sets of orthogonal predictors. In the 
end, we used 11 sets of variables, which represent all possible 
combinations of the first four PCs (supplementary materials; 
S2), which together explained 94% of overall variation. 
For transfers to future climate conditions, we used five 
general circulation models (GCMs) for two representative 
concentration pathway (RCP) emission scenarios (RCP4.5 
and RCP8.5) for a twenty-year period centered on 2050 
(years 2041-2060) from Climate Change, Agriculture and 
Food Security (CCAF), at 10’ (~17 km) spatial resolution 
(available at http://www.ccafs-climate.org/data_spatial_
downscaling). Those GCMs were from the Canadian Center 
for Climate Modeling and Analysis (CCCMA-CANESM2); 
National Science Foundation Department of Energy, National 
Center for Atmospheric Research (CESM1-BGC); NASA 
Goddard Institute for Space Studies (NASA GISS) (GISS – 
E2 - R); Institute Pierre-Simon Laplace (IPSL-CM5A-MR); 
and National Center for Atmospheric Research (NCAR) 
(CCSM 4). These emission scenarios represent low and high 
greenhouse gas concentrations, and thus may bracket likely 
future climate conditions.

	
Ecological niche modeling

For model calibration, using the kuenm R package 
(Cobos et al. 2019) which uses a maximum-entropy algorithm 
implemented in Maxent (Phillips and Dudík 2008, Phillips et 
al. 2017). We tested all combinations of four feature classes (15 
combinations: l, q, p, h, lq, lp, lh, qp, qh, ph, lqp, lqh, lph, qph, 
lqph) where linear = l, product = p, quadratic = q, hinge = h 

Source Number of records Reference

Global Biodiversity 
Information Facility 200 GBIF.org (09 April 2020) GBIF occurrence download. https://doi.

org/10.15468/dl.4x3wrb.
VectorMap 14 http://vectormap.si.edu/Tick_Metadata.htm#vec148

BISON 173 https://bison.usgs.gov/#home
Literature 15 (Scott et al. 2018)

Table 1. Sources of occurrence data of Ixodes cookei.

Figure 1. Occurrence points (red dots) and calibration areas 
(red buffer) for Ixodes cookei.
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and 17 regularization multiplier values (0.1 to 1 at intervals of 
0.1, 2 to 10 at intervals of 1), as well as the 11 environmental 
datasets described above. In all, 2805 candidate models 
were tested and evaluated based on statistical significance 
of partial receiver operating characteristic (ROC) (P < 0.05) 
(Peterson et al. 2008) and omission rate (E < 5%) (Anderson 
et al. 2003). Finally, among significant, low-omission models, 
we applied the Akaike Information Criterion corrected for 
small sampling sizes (AICc) (Warren and Seifert 2011) and 
delta AICc, which is the difference between AICc values 
and the minimum AICc among significant, low-omission 
models, for choosing the best candidate models to run finals 
models (criterion AICc < 2). This three-part model-selection 
procedure assures predictive models with relatively few 
parameters. 

Final models
We used the complete set of occurrences and the 

parameterizations selected during model calibration. We used 
a 50% bootstrap with ten replicates to permit consideration 
of uncertainty deriving from availability of occurrence data, 
and transferred the models to all of North America in current 
and future climate scenarios. We summarized model results 
by calculating medians of final results obtained for each 
parameter value set. We used a fixed allowable omission error 
rate at 5% (Anderson et al. 2003) to binarize final models, in 
effect assuming that <5% of occurrence data have errors that 
might misrepresent environments used by the species. We 
summarized the results from current and future scenarios by 
calculating the differences in suitability (taking the median 
across GCMs) for each RCP from the present (Campbell et al. 
2015). We represented agreement of changes of suitable areas 
across the five GCMs into predictions of range stability, gain, 
or loss. The kuenm R package (available at https://github.com/
marlonecobos/kuenm) was used for all modelling analyses.

Uncertainty in model projections
We used mobility-oriented parity metric (MOP) 

following Owens et al. (2013) to assess the strict extrapolation 
risk considering the nearest 5% of the reference cloud. We 
also assessed model variability from replicates, parameters 
settings, GCMs, and RCPs in the model projections following 
Cobos et al. (2019), by inspecting variation on a pixel-by-
pixel basis. These calculations were developed in the kuenm 
R package.

RESULTS

Present suitable areas
We had 2,624 statistically significant models (P ≤ 0.05) 

from an initial total of 2,805 candidate models; 1,449 of 
significant models also met the omission rate criteria (OR 
≤ 0.05), and just five models were identified as best models 
based on AICc. All best models were based on the predictor 
variables in Set 2 (PC1, PC2, and PC3; Table 2). 

Results from initial models in which we did not include 
the occurrence points from western Canada successfully 
anticipated the distributional areas in the Pacific Northwest, 
particularly in British Columbia (Figure 2). This initial 
modeling pass thus successfully anticipated highly suitable 
areas in British Columbia, lending confidence in these models 
to anticipate other distributional areas.

In the United States, I. cookei showed high suitability 
across most eastern states, including Maine, New Hampshire, 
Vermont, Massachusetts, Rhode Island, Connecticut, New 
York, New Jersey, Pennsylvania, Delaware, Maryland, 
Washington D.C., West Virginia, Ohio, Indiana, Illinois, 
Michigan, and Kentucky, and in restricted areas of northern 
and western Virginia, western North Carolina, and eastern 
Missouri.  Suitable areas were also identified in western 
states, including Washington, Oregon, and restricted parts of 
northern Idaho and northwestern Montana. Low suitability 
was observed in southern Minnesota, Iowa, eastern Kansas, 
northern Arkansas, and Tennessee, as well as in eastern 
California, southern Montana, northern Wyoming, northern 
Utah, and Colorado (Figure 3). 

For Canada, high suitability was anticipated in 
southeastern Canada, including Nova Scotia, New Brunswick, 
eastern Newfoundland Labrador, southern Quebec, and 
Ontario. Suitable areas also were identified in western 
Canada, particularly in eastern and coastal British Columbia 
(Figure 3). 

Future suitable areas
Model transfers to future conditions showed stability in 

suitability of areas across most of the northeastern United 
States and eastern and southern Canada (Figure 4). Reduction 
(loss) of suitable areas (with some differences between RCP 
4.5 and RCP 8.5)  was anticipated in Missouri, Tennessee, 
North Carolina, Virginia, West Virginia, Kentucky, Ohio, 
Indiana, Illinois, Michigan, and some areas in Pennsylvania 

Feature 
class

Reg. 
multiplier

Variable 
set

Mean 
AUC ratio

Partial 
ROC

Omission 
rate at 5% AICc AICc Parameters

L, Q, P 0.4 Set 2 1.397 0.00 0.038 955.596 0.000 8
L, Q, P 0.5 Set 2 1.385 0.00 0.038 955.945 0.349 8
L, Q, P 0.6 Set 2 1.404 0.00 0.038 956.355 0.759 8
L, Q, P 0.7 Set 2 1.390 0.00 0.038 956.821 1.224 8
L, Q, P 0.8 Set 2 1.387 0.00 0.038 957.337 1.741 8

Table 2. Best models selected based on parameter settings in the process of model calibration, to produce final models for Ixodes 
cookei. Reg. = regularization; AUC = area under the curve; ROC = receiver operating characteristic; AICc = Akaike information 
criterion corrected for small sample size.
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(Figure 4, RCP 4.5); RCP 8.5 included reduction in areas in 
southern Canada (Figure 3, RCP 8.5). Expansions (gains) in 
suitable areas were observed mostly in northwestern Canada 
(British Columbia) (Figure 4). In general, more dramatic 
reductions and expansions were observed under RCP 8.5 
than under RCP 4.5. 

MOP analysis results were slightly different between 
RCP 4.5 and RCP 8.5, but with high agreement in strict-
extrapolation areas being concentrated in areas clearly not 
suitable for I. cookei (Figure 4). Variation among models 
suggested high uncertainty coming from GCMs in Missouri, 
Illinois, Ohio, Pennsylvania, Michigan, southern Ontario, and 
Quebec (Figure 5). Low uncertainty was observed from RCPs 
and replicates, with almost no variation from parameters 
(Figure 5).

DISCUSSION

Climate change has influenced distributions, activity, 
and biting rates of arthropod vectors in different regions 
around the world (Campbell-Lendrum et al. 2015). In the 
United States, for example, the number of tick-borne diseases 
has increased recently (CDC 2019b), especially with the 
warmest recorded winter in 2017. Some tick species have also 

established populations in new areas not known to be within 
the species’ range in the past (Molaei 2020).

During recent decades, many crucial advances have been 
made in applications of disease ecology and biogeography 
to the challenge of mapping pathogen transmission risk 
(Peterson 2014). Crucial concepts, such as fundamental 
niche, realized niche, accessible areas (Peterson et al. 2011), 
and various analytic tools mentioned above have improved 
ENM workflow markedly. Here, we applied the most up-to-
date methods in ecological niche modeling following Cobos 
et al. (2019) using kuenm R package, to estimate for the first 
time the potential distribution of I. cookei. We also included 
further analysis to assess model uncertainty from model 
projections to the future and new areas beyond the calibration 
area (M). Including analyses such as MOP (to identify strict-
extrapolation areas) and model variability (to detect areas 
with high variability in model predictions) in model results 
help to identify areas with low confidence regarding the 
species’ potential geographic distribution (Figures 4 and 5) 
(Owens et al. 2013, Alkishe et al. 2020).

Our models showed that suitable areas are concentrated 
across the eastern United States and southeastern Canada 
(Figures 3 and 4). Moreover, our study reflected the recent 
discovery of I. cookei in British Columbia (Scott et al. 2018), 

Figure 4. Left panels, potential suitable areas of Ixodes cookei based on binarizing (5% threshold), current conditions (in blue 
and gray) and future (blue = no longer suitable, red = newly suitable) conditions. Right panel, agreement in strict extrapolation 
areas among GCMs.
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Figure 5. Median of variance coming from replicates, parameters settings, GCMs, and RCPs in future projections.

Figure 6. Potential geographic distribution of Ixodes cookei and Powassan encephalitis virus case incidences in the United States 
during 2010–2019. 
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where our models identified areas as suitable for this species 
(Figure 3), even when the western occurrence records were 
omitted from the model development (Figure 2). Low stability 
in suitable areas and predicted potential expansions in ranges 
under future conditions was noted in the southern United 
States and northern Canada, respectively, which indicated 
that this species may lose large areas and shift its range 
northward, particularly into Canada (Figure 4). Climate 
change has already impacted the geographic distribution of 
many species (Parmesan and Yohe 2003, Peterson and Shaw 
2003). Tick species are also susceptible to climate changes, 
as increasing temperatures can rearrange the geography of 
suitable areas for ticks (Gasmi et al. 2018).

Interestingly, potential suitable areas for I. cookei overlap 
broadly with the geographic distribution of documented 
POWV cases (CDC 2020) across the eastern United States, 
where most of the human cases have been documented 
(Figure 6). However, some areas that were not detected as 
suitable areas in our models, such as Minnesota and North 
Dakota, are known to yield POWV cases (CDC 2020). This 
finding may lead to the insight that this disease might be 
transmitted by other tick vectors such as I. scapularis and 
I. marxi (CDC 2019a), or alternatively, that our models 
are failing to anticipate that northwestern portion of the 
eastern range area of the species. More studies are needed to 
investigate the vector of POWV in those areas. 

The biology of this species remains poorly studied, 
although one study has investigated the developmental 
period of each stage (larvae, nymph, and adult) under lab 
conditions (Farkas and Surgeoner 1991). We used climate 
variables (temperature and precipitation) to estimate the 
species’ ecological niche based on their overall importance to 
shape the geographic range of the species. We excluded biotic 
factors such as host abundances from our analysis owing 
to the complexity of an enormous range of hosts, for which 
high-quality data are not available. An increasing number 
of POWV cases in the United States and Canada indicates a 
need for more active surveillance of the distribution ecology 
of I. cookei.
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