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Abstract. To characterize the “average” of a set of graphs, one can
compute the sample Fréchet mean. We prove the following result: if we
use the Hamming distance to compute distances between graphs, then
the Fréchet mean of an ensemble of inhomogeneous random graphs is
obtained by thresholding the expected adjacency matrix: an edge exists
between the vertices i and j in the Fréchet mean graph if and only
if the corresponding entry of the expected adjacency matrix is greater
than 1/2. We prove that the result also holds for the sample Fréchet
mean when the expected adjacency matrix is replaced with the sample
mean adjacency matrix. This novel theoretical result has some significant
practical consequences; for instance, the Fréchet mean of an ensemble of
sparse inhomogeneous random graphs is the empty graph.

Keywords: Fréchet mean · Statistical network analysis

1 Introduction

The Fréchet mean graph has become a standard tool for the analysis of graph-
valued data (e.g., [5,6,8,10,13,14]). In this work, we derive the expression for
the population Fréchet mean for inhomogeneous Erdős-Rényi random graphs [2].
We prove that the sample Fréchet mean is consistent, and could be estimated
using a simple thresholding rule. This novel theoretical result implies that the
sample Fréchet mean computed from a training set of graphs, which display
specific topological features of interest, will not inherit from the training set the
desired topological structure.

We consider the set G formed by all undirected unweighted simple labeled
graphs with vertex set {1, . . . , n}. We denote by S the set of n × n adjacency
matrices of graphs in G,

S =
{
A ∈ {0, 1}n×n; where aij = aji, and ai,i = 0; 1 ≤ i < j ≤ n

}
. (1)
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We denote by G(
n,P

)
the probability space formed by the inhomogeneous

Erdős-Rényi random graphs [2], defined on {1, . . . , n}, where a graph G with
adjacency matrix A has probability,

P (A) =
∏

1≤1<j≤n

[pij ]
aij [1 − pij ]

1−aij . (2)

The n × n matrix P = [pij ] determines the edge probabilities 0 ≤ pij ≤ 1, with
pii = 0. We identify G(

n,P
)

with the probability space (S,P), where P is defined
by (2). The prominence of G(

n,P
)

stems from its ability to provide tractable
models of random graphs that can capture many of the structures of real net-
works (e.g., stochastic block models, which have great practical importance). We
equip G with the Hamming distance defined as follows.

Definition 1. The Hamming distance between G and G′ in G, with adjacency
matrix A and A′ respectively, is given by

dH(G,G′) =
∑

1≤i<j≤n

|aij − a′
ij |. (3)

We characterize the mean of the probability P with the Fréchet mean graph, [7].

Definition 2. The Fréchet mean of the probability measure P is the set formed
by the solutions to

µ
[
P
]

= argmin
G∈G

∑

G′∈G
d2H(G,G′)P (G′) (4)

where dH is the Hamming distance (1).

By replacing P with the empirical measure, the concept of Fréchet mean graph
can be extended to a sample of graphs defined on the same vertex set {1, . . . , n}.

Definition 3. Let
{
G(k)

}
1≤k≤N

,be independent random graphs, sampled from
P. The sample Fréchet mean is the set composed of the solutions to

µ̂N

[
P
]

= argmin
G∈G

1
N

N∑

k=1

d2(G,G(k)). (5)

We note that solutions to the minimization problems (4) and (5) always exist,
but need not be unique. Because all the results in this paper hold for any graph in
the set formed by the solutions to (4) and (5), and without any loss of generality,
we assume that µ

[
P
]

and µ̂N

[
P
]

each contains a single element.
This notion of centrality is well adapted to metric spaces (e.g., [4,10,13]). The

vital role played by the Fréchet mean as a location parameter, is exemplified
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in the works of [1,14], who have created novel families of random graphs by
generating random perturbations around a given Fréchet mean.

Because the focus of this work is not the computation of the Fréchet mean
graph, but rather a theoretical analysis of the properties that the Fréchet mean
graph inherits from the probability measure P, defined in (2), we can assume
that all the graphs are defined on the same vertex set.

1.1 Our Main Contributions

The prominence of the inhomogeneous Erdős-Rényi random graph model [2]
prompts the following critical question: does the Fréchet mean of P inherit from
the probability space G(

n,P
)

any of the edge connectivity information encoded
by P ?

In this paper, we answer this question. We show in Theorem 1 that the
population Fréchet mean graph µ

[
P
]

can be obtained by thresholding the mean
adjacency matrix E [A] = P ; an edge exists between the vertices i and j in µ

[
A

]

if and only if E [A]ij > 1/2. We prove in Theorem 2 that this result also holds
for the sample Fréchet mean graph, µ̂N

[
A

]
, when E [A] is replaced with the

sample mean adjacency matrix, ÊN [A].

2 Main Results

Let P = [pij ] be an n × n symmetric matrix with entries 0 ≤ pij ≤ 1. In the
following two theorems we determine the Fréchet mean graph, and sample mean
graph, of graphs in G(

n,P
)
. In the following, we denote by [n] the set {1, . . . , n}.

2.1 The Population Fréchet Mean Graph of G(n,P)

Theorem 1. The Fréchet mean graph µ
[
P
]
of the probability measure (2), is

given by

∀i, j ∈ [n], µ
[
P
]
ij

=

{
1 if E [A]ij = pij > 1/2,

0 otherwise.
(6)

Proof. The proof is given in Sect. 3.2.

2.2 The Sample Fréchet Mean Graph of a Graph Sample in G(n,P)

We now turn our attention to the sample Fréchet mean graph, which has recently
been used for the statistical analysis of graph-valued data (e.g., [5,8,14,17]). The
computation of the sample Fréchet mean graph using the Hamming distance is
NP-hard [3]. For this reason, several alternatives have been proposed (e.g., [6,8]).

Before presenting the second result, we take a short detour through the sam-
ple Fréchet median of the probability measure P, [9,11,16], minimiser of

m̂N [P] = argmin
G∈G

1
N

N∑

k=1

dH(G,G(k)), (7)
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and which can be computed using the majority rule [1].

Lemma 1. The adjacency matrix m̂N [A] of m̂N [P] is given by

∀i, j ∈ [n], m̂N [A]ij =

{
1 if

∑N
k=1 a

(k)
ij ≥ N/2,

0 otherwise.
(8)

We now come back to the second main contribution, where we prove that the
sample Fréchet mean graph of N independent random graphs sampled from
G(

n,P
)

is asymptotically equal (for large sample size) to the sample Fréchet
median graph, with high probability.

Theorem 2. ∀δ ∈ (0, 1),∃Nδ,∀N ≥ Nδ, m̂N [A] and µ̂N

[
A

]
are given by

∀i, j ∈ [n] , µ̂N

[
A

]
ij

= m̂N [A]ij =

{
1 if E [A]ij = pij > 1/2,

0 otherwise,
(9)

with probability 1 − δ over the realizations of the graphs,
{
G(1), . . . , G(N)

}
in

G(
n,P

)
.

Proof. The proof is given in Sect. 3.5.

The practical impact of Theorem 2 is given by the following corollary, which is
an elementary consequence of Theorem 2 and Lemma 1.

Corollary 1. ∀δ ∈ (0, 1),∃Nδ,∀N ≥ Nδ, µ̂N

[
A

]
is given by the majority rule,

∀i, j ∈ [n] , µ̂N

[
A

]
ij

=

{
1 if

∑N
k=1 a

(k)
ij > N/2,

0 otherwise,
(10)

with probability 1 − δ over the realizations of the graphs,
{
G(1), . . . , G(N)

}
, in

G(
n,P

)
.

3 Proofs of the Main Results

We give in the following the proofs of Theorems 1 and 2. In the process, we prove
several technical lemmata.

3.1 The Population and sample Fréchet Functions

Let A and B be two adjacency matrices in S. We provide below an expression
for the Hamming distance squared, d2H(A,B), where the computation is split
between the entries of A along the edges of B, E(B), and the entries of A along
the “nonedges” of B, E(B). We denote by |E(B)| the number of edges in B.
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Lemma 2. Let A and B two matrices in S. Then,

d2H(A,B) =
[ ∑

1≤i<j≤n

aij

]2

+ |E(B)|2 + 2 |E(B)|
[ ∑

(i,j)∈E(B )

aij −
∑

(i,j)∈E(B )

aij

]

− 4
∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

aijai′j′ (11)

We now define the (population) Fréchet function associated with (4).

Definition 4. We denote by F2 the Fréchet function associated with the Fréchet
mean

F2(B) =
∑

A∈S
d2H(A,B)P (A) . (12)

As explained in the following lemma, the value of the Fréchet function F2(B)
depends only on the entries of the probability matrix P along the edges of B.

Lemma 3. Let B ∈ S, let E(B) be the set of edges of the graph associated to
B. Then

F2(B) =
[ ∑

(i,j)∈E(B )

(1 − 2pij) +
∑

1≤i<j≤n

pij

]2
+

∑

1≤i<j≤n

pij(1 − pij). (13)

Proof. The proof of (13) relies on the expression for the Hamming distance
squared, (11). The proof is omitted; instead we will prove Lemma 4, the proof
of which is extremely similar, albeit more technical, to that of Lemma 3.

3.2 Proof of Theorem 1

We are now in position to prove the first theorem. By Lemma 3, we seek the
matrix B, with edge set E(B), that minimizes the Fréchet function defined by
(13). Let us denote

x
def=

∑

(i,j)∈E(B )

(1 − 2pij) . (14)

Since 0 ≤ pij ≤ 1, x is confined to the following interval,

−
∑

1≤i<j≤n

pij ≤ −
∑

(i,j)∈E(B )

pij ≤ x ≤
∑

(i,j)∈E(B )

1 ≤ n(n − 1)/2. (15)

In fact, x = −∑
1≤i<j≤n pij , only if ∀i, j ∈ [n], pij = 1, and the graph associated

to B is the complete graph. This case is of no interest to us, and thus we can
assume that P is always chosen such that

−
∑

1≤i<j≤n

pij < x. (16)
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We define,

f(x) def=
[
x +

∑

1≤i<j≤n

pij

]2
.

We have
f(x) = F2(B) −

∑

1≤i<j≤n

pij(1 − pij).

Minimizing F2 is therefore equivalent to minimizing f . Clearly, f(x) is convex,
has a global minimum at xmin = −∑

1≤i<j≤n pij , and is increasing for x ≥
−∑

1≤i<j≤n pij . We seek x∗ that minimizes f(x) over the interval wherein x is
enclosed, (

−
∑

1≤i<j≤n

pij , n(n − 1)/2
]
.

We note that because of (16), xmin < x∗. Also, x∗ cannot be positive; otherwise,
we would get f(x∗) > f(0). The optimal value x∗ is obtained by minimizing the
distance from x∗ to −∑

1≤i<j≤n pij ,

x
∗ − (−

∑

1≤i<j≤n

pij) =
∑

(i,j)∈E(B )

(1−2pij)+
∑

1≤i<j≤n

pij ≥
∑

(i,j);1−2pij<0

(1 − 2pij)+
∑

1≤i<j≤n

pij .

(17)
The lower bound (17) is independent of B, and can be attained by choosing,

µ
[
P
]
ij

=

{
1 if pij > 1/2,

0 otherwise,
(18)

as advertised in the theorem. ��

3.3 The Sample Fréchet Function for the Hamming Distance

We now consider N independent random graphs,
{
G(k)

}
1≤k≤N

, sampled from

G(
n,P

)
, with adjacency matrices A(k). The sample Fréchet function F̂2(B)

associated with the sample Fréchet mean graph is defined as follows.

Definition 5. We denote by F̂2 the sample Fréchet function

F̂2(B) =
1
N

N∑

k=1

d2H(A(k),B). (19)

We have the following expression for F̂2(B), which is similar to (13).
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Lemma 4. Let B ∈ S, let E(B) be the set of edges of the graph associated to
B. Then

F̂2(B) =

[
∑

(i,j)∈E(B )

[
1− 2ÊN [aij ]

]
+

∑

1≤i<j≤n

ÊN [aij ]

]2

+
∑

1≤i<j≤n

ÊN [aij ]
(
1− ÊN [aij ]

)

(20)

−
∑

1≤i<j≤n

∑

1≤i′<j′≤n

(i,j) �=(i′,j′)

(
ÊN [aij ] ÊN

[
ai′j′

] − ÊN

[
ρij,i′j′

])

+ 4
∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

(
ÊN [aij ] ÊN

[
ai′j′

] − ÊN

[
ρij,i′j′

])
(21)

where the sample mean and sample correlation are defined by

ÊN [aij ] =
1
N

N∑

k=1

a
(k)
ij and ÊN [ρij,i′j′ ] =

1
N

N∑

k=1

a
(k)
ij a

(k)
i′j′ (22)

Proof. The proof is similar to the proof of Lemma 3. For each graph G(k), we
apply Eq. (11), sum over all the graphs in the sample, and divide by N ,

F̂2(B) = |E(B)|2 + 2 |E(B)|
[ ∑

(i,j)∈E(B )

1
N

N∑

k=1

a
(k)
ij −

∑

(i,j)∈E(B )

1
N

N∑

k=1

a
(k)
ij

]

+
1
N

N∑

k=1

[ ∑

1≤i<j≤n

a
(k)
ij

]2
− 4

∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

[
1
N

N∑

k=1

a
(k)
ij a

(k)
i′j′

]
.

(23)

Using the expressions for the sample mean and correlation, in (22), we get

F̂2(B) = |E(B)|2 + 2 |E(B)|
[ ∑

(i,j)∈E(B )

ÊN [aij ] −
∑

(i,j)∈E(B )

ÊN [aij ]
]

+
1
N

N∑

k=1

[ ∑

1≤i<j≤n

a
(k)
ij

]2
− 4

∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

ÊN [ρij,i′j′ ] (24)

We note that

1
N

N∑

k=1

[ ∑

1≤i<j≤n

a
(k)
ij

]2
=

∑

1≤i<j≤n

∑

1≤i′<j′≤n

ÊN [ρij,i′j′ ] . (25)
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Also, we have

|E(B)|2 + 2 |E(B)|
[ ∑

(i,j)∈E(B )

ÊN [aij ] −
∑

(i,j)∈E(B )

ÊN [aij ]
]

=
[

|E(B)| − 2
∑

(i,j)∈E(B )

ÊN [aij ]
]2

−
∑

1≤i<j≤n

∑

1≤i′<j′≤n

ÊN [aij ] ÊN [ai′j′ ]

+ 4
∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

ÊN [aij ] ÊN [ai′j′ ] (26)

We can then substitute (25) and (26) into (24), and we get

F̂2(B) =
[

|E(B)| − 2
∑

(i,j)∈E(B )

ÊN [aij ]
]2

−
∑

1≤i<j≤n

∑

1≤i′<j′≤n

[
ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

]

+ 4
∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

[
ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

]
(27)

Finally, we can extract from the second line of (27), the term that corresponds
to (i, j) = (i′, j′), and we get

∑

1≤i<j≤n

∑

1≤i′<j′≤n

[
ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

]

=
∑

1≤i<j≤n

∑

1≤i′<j′≤n

(i′,j′) �=(i,j)

ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

+
∑

1≤i<j≤n

ÊN [aij ]
(
ÊN [aij ] − 1

)
. (28)

Substituting (28) into the second line of (27), we obtain (21) as announced in
Lemma 4. ��

3.4 Concentration of the Sample Fréchet Function

In the following lemma, we show that for large sample size N , the sample Fréchet
function F̂2(B) concentrates around its population counterpart, F2(B).

Lemma 5. ∀δ ∈ (0, 1),∃Nδ,∀N ≥ Nδ,∀B ∈ S,

F̂2(B) =
[ ∑

(i,j)∈E(B )

(1 − 2pij)+
∑

1≤i<j≤n

pij

]2

+
∑

1≤i<j≤n

pij (1 − pij)+O
(

1√
N

)
,

(29)
with probability 1 − δ over the realization of the sample

{
G(k)

}
1≤k≤N

.
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Proof. The sample mean ÊN [aij ], defined in (22), is the sum of Bernoulli random
variables, and it concentrates around its mean pij . We use Hoeffding inequality
to bound the variation of ÊN [aij ] around pij . For each 1 ≤ i < j ≤ n, we have,

P

(
A(k) ∼ G(

n,P
)
;
∣
∣
∣ÊN [aij ] − pij

∣
∣
∣ ≥ ε

)
≤ exp

(−2Nε2
)
. (30)

To control
∑N

k=1 a
(k)
ij for all 1 ≤ i < j < n, we use a union bound and we get,

∀1 ≤ i < j < n,
∣
∣
∣ÊN [aij ] − pij

∣
∣
∣ ≤ α√

N
, (31)

with probability 1 − δ/8, and where α =
√

log (2n/
√

δ). We now study the
concentration of the sample correlation,

ÊN [ρij,i′j′ ] =
1
N

N∑

k=1

a
(k)
ij a

(k)
i′j′ , (32)

when the pair of edges (i, j) and (i′, j′) are distinct. Because (i, j) �= (i′, j′),
the terms a

(k)
ij and a

(k)
i′j′ are always independent, and the product a

(k)
ij a

(k)
i′j′ is a

Bernoulli random variable with parameter pijpi′j′ . We conclude that ÊN [ρij,i′j′ ]
is the sum of Bernoulli random variables, and concentrates around its mean.

We use Hoeffding inequality to bound the variation of ÊN [ρij,i′j′ ]. Replicating
the argument used for ÊN [aij ] mutatis mutandis, yields

∀ 1 ≤ i < j ≤ n,∀ 1 ≤ i′ < j′ ≤ n,
∣
∣
∣ÊN [ρij,i′j′ ] − pijpi′j′

∣
∣
∣ ≤ β√

N
, (33)

with probability 1 − δ/8, where β =
√

log (n2/
√

δ/2). In summary, we have

∀ 1 ≤ i < j ≤ n, ∀ 1 ≤ i′ < j′ ≤ n, with (i, j) �= (i′, j′),

ÊN [aij ] = pij + O
(

1√
N

)
, and ÊN [ρij,i′j′ ] = pi′j′ + O

(
1√
N

)
, (34)

with probability 1 − δ/4. We are now in position to substitute ÊN [aij ] and
ÊN [ρij,i′j′ ] with the expressions given by (34), in F̂2(B) given by (21) in
Lemma 4. Using (34), the first term in (21) becomes

[ ∑

(i,j)∈E(B )

(
1 − 2ÊN [aij ]

)
+

∑

1≤i<j≤n

ÊN [aij ]
]2

=
[ ∑

(i,j)∈E(B )

(1 − 2pij) +
∑

1≤i<j≤n

pij

]2
+ O

(
1√
N

)
, (35)
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with probability 1 − δ/4. Also, we have

∑

1≤i<j≤n

ÊN [aij ]
(
1 − ÊN [aij ]

)
=

∑

1≤i<j≤n

pij (1 − pij) + O
(

1√
N

)
. (36)

with probability 1 − δ/4. The last two terms in (21) can be neglected since,

∑

1≤i<j≤n

∑

1≤i′<j′≤n

(i,j) �=(i′,j′)

[
ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

]

=
∑

1≤i<j≤n

∑

1≤i′<j′≤n

(i,j) �=(i′,j′)

[
pijpi′j′ − pijpi′j′

]
+ O

(
1√
N

)
= O

(
1√
N

)
,

(37)

with probability 1 − δ/4. Similarly

∑

(i,j)∈E(B )

∑

(i′,j′)∈E(B )

[
ÊN [aij ] ÊN [ai′j′ ] − ÊN [ρij,i′j′ ]

]
= O

(
1√
N

)
, (38)

with probability 1 − δ/4. Substituting (35), (36), (37), and (38) into (21) yields
the following estimate

F̂2(B) =
[ ∑

(i,j)∈E(B )

(1 − 2pij)+
∑

1≤i<j≤n

pij

]2
+

∑

1≤i<j≤n

pij (1 − pij)+O
(

1√
N

)
,

which holds with probability 1 − δ. ��

3.5 Proof of Theorem 2

We prove (9), in Theorem 2, for the sample Fréchet mean. The proof for the sam-
ple Fréchet median is completely similar (it also uses a concentration of measure
argument for the Fréchet function defined in (7)) and is therefore omitted.

Because of Lemma 5, (29) implies that

∀δ ∈ (0, 1),∃Nδ,∀N ≥ Nδ,∀B ∈ S, F̂2(B) = F2(B) + O
(

1√
N

)
,

with probability 1 − δ over the realization of the sample
{
G(k)

}
1≤k≤N

. For N

large enough, the main term dominates the expression of F̂2(B), and we can
neglect the O

(
1/

√
N

)
term. We are left with F2(B), the Fréchet function for

the population mean, given by (13), in Lemma 3. The minimum of F̂2(B) is thus
achieved for the adjacency matrix given by the population Fréchet mean, µ

[
P
]
,

defined by (6), as advertised in (9), in Theorem 2. ��
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4 Simulation Studies

We compare our theoretical analysis to finite sample estimates, which were com-
puted using numerical simulations. The software used to conduct the experiments
is publicly available [15].

All graphs were generated using the G(
n,P

)
model (2). We varied the edge

probability matrix, P . For each simulation, P was chosen randomly using inde-
pendent (up to symmetry) beta random variables, pij ∼ beta(2, 10). The sam-
ple Fréchet mean was computed using the approximation provided by (10). All
graphs had n = 512 vertices. We varied the sample size for N ∈ [10, 7079]. For
each sample size N , we first generated a probability matrix P from the beta dis-
tribution, and we then sampled N independent random graphs G(1), . . . , G(N)

from G(
n,P

)
.

We illustrate the concentration of the sample Fréchet function for large N ,
described by Lemma 5. Figure 1 displays the mean error between the population
Fréchet function F2(B), given by (13), and the sample Fréchet function F̂2(B),
given by (21), as a function of the sample size N . The average error between
F2(B) and F̂2(B), is computed using a sample of NB = 16 independent random
graphs B1, . . . ,BNB

, sampled from G(
n,P

)
,

ÊNB

[
F2(B) − F̂2(B)

]
=

1
NB

NB∑

i=1

∣
∣
∣F2(Bi) − F̂2(B)

∣
∣
∣. (39)

For each N , the sample average error ÊNB

[
F2(B) − F̂2(B)

]
, corresponds to a

point in Fig. 1-left. We repeated this simulation 64 times to create 64 different
values of the error (39). A linear regression was computed and is displayed (in
blue) in Fig. 1-left. The slope of the error was found to be −0.5028, confirming
the 1/

√
N decay of the error predicted by Lemma 5.

To estimate the deviation of the sample Fréchet mean graph away from the
population Fréchet mean graph, we computed the Hamming distance between
the population Fréchet mean graph (6), and the sample Fréchet mean graph (9).
Figure 1-right displays dH(µ

[
A

]
, µ̂N

[
A

]
). A linear regression was computed and

is displayed (in blue) in Fig. 1-right. The slope was found to be −0.6707, sug-
gesting that the sample Fréchet mean converges toward the population Fréchet
mean at a rate 1/N2/3, which is faster than the rate predicted by Lemma 5.
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Fig. 1. Left: mean error ̂ENB

[

F2(B)− ̂F2(B)
]

between the population and the sample
Fréchet functions, as a function of the sample size N . Right: dH(µ

[

A
]

, µ̂N

[

A
]

), the
Hamming distance between the population Fréchet mean graph and the sample Fréchet
mean graph.

5 Discussion and Conclusion

Our answer to the question of the authors in [14]: “what is the “mean” network
(rather than how do we estimate the success-probabilities of an inhomogeneous
random graph), and do we want the “mean” itself to be a network?” is therefore
disappointing in the context of the probability space G(

n,P
)
. While the Fréchet

mean is indeed an element of G(
n,P

)
, it only provides a simplistic sketch of

that probability space. Consider for instance sparse graphs where min pij < 1/2
(e.g., graphs with O

(
n2

)
but ω(n) edges), then the sample Fréchet mean is the

empty graph, and is pointless.
On a more positive note, our analysis provides a theoretical justification for

several algorithms designed to recover a graph from noisy measurements of its
adjacency matrix. For instance, the authors in [12] compute the sample mean
of the noisy adjacency matrices, and threshold the sample mean to recover an
unweighted graph. Our results offer a theoretical justification of the approach of
[12]: Theorem 2 proves that the algorithm described in [12] recovers the sample
Fréchet mean graph.
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The Fréchet Mean of Inhomogeneous Random Graphs 219

4. Chowdhury, S., Mémoli, F.: The metric space of networks (2018)
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