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Particulate matter in the environment, such as sediment, marine debris and plankton, is
transported by surface waves. The transport of these inertial particles is different from
that of fluid parcels described by Stokes drift. In this study, we consider the transport of
negatively buoyant particles that settle in flow induced by surface waves as described by
linear wave theory in arbitrary depth. We consider particles that fall under both a linear
drag regime in the low Reynolds number limit and in a nonlinear drag regime in the
transitional Reynolds number range. Based on an analysis of typical applications, we find
that the nonlinear regime is the most widely applicable. From an expansion in the particle
Stokes number, we find kinematic expressions for inertial particle motion in waves, and
from a multiscale expansion in the dimensionless wave amplitude, we find expressions
for the wave-averaged drift velocities. These drift velocities are analogous to Stokes drift
and can be used in large-scale models that do not resolve surface waves. We find that the
horizontal drift velocity is reduced relative to the Stokes drift of fluid parcels and that
the vertical drift velocity is enhanced relative to the particle terminal settling velocity. We
also demonstrate that a cloud of settling particles released simultaneously will disperse in
the horizontal direction. Finally, we discuss the accuracy of our expressions by comparing
against numerical simulations, which show excellent agreement, and against experimental
data, which show the same trends.
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1. Introduction

The dynamics of particulate matter in surface gravity waves determine the transport
and dispersion of natural particles, such as sediment, ice crystals and plankton, as well
as synthetic particles, such as microplastics. For small, neutrally buoyant particles that
can be treated as tracers of the fluid motion, there is a net horizontal transport in the
wave-averaged sense known as Stokes drift (Stokes 1847; van den Bremer & Breivik 2017).
However, the dynamics of most particles in the environment deviate from the tracer limit
because of their inertia, stemming from finite size and density difference with the fluid.
These deviations alter particle transport in surface waves from the classical Stokes drift.

Recent work in inertial particle transport in surface waves, much of which has been
motivated by marine litter, has shown that altered forms of Stokes drift can arise from
several mechanisms. For positively buoyant particles that float on the surface, Calvert et al.
(2021) showed that the horizontal drift velocity is enhanced for larger particles because of
dynamic buoyancy forces. For weakly inertial particles suspended in the water column,
Alsina, Jongedijk & van Sebille (2020) found that horizontal particle drift was reasonably
well predicted by the classical Stokes drift velocity in laboratory experiments.

For negatively buoyant particles, several works have examined how particle inertia alters
the horizontal and vertical drifts (Eames 2008; Santamaria et al. 2013; Bakhoday-Paskyabi
2015). In particular, Santamaria et al. (2013) predicted a vertical drift that enhances
particle settling velocity due to the combined effects of particle inertia and the flow
field. This effect can be thought of as a vertical Stokes drift. Laboratory experiments
have similarly measured enhanced settling (Clark et al. 2020; De Leo et al. 2021),
although these experiments have been outside the regime of the low particle Reynolds
number assumed in theoretical works, making it difficult to perform a direct comparison.
Additionally, non-spherical particles have been shown to experience an angular analogue
to Stokes drift that causes particles to adopt preferred orientations (DiBenedetto &
Ouellette 2018; DiBenedetto, Koseff & Ouellette 2019) that alter their trajectories in
shape-dependent ways (DiBenedetto, Ouellette & Koseff 2018; Clark et al. 2020). The
combined findings of these studies show the value of analysing particle dynamics from a
Stokes drift framework.

Previous theory on inertial particle transport has generally adopted the well-known
equations of motion for small, rigid spheres whose motion relative to the fluid is
characterised by small Reynolds number (Maxey & Riley 1983). If the assumption of small
particle Reynolds number is relaxed, the drag force deviates from the Stokes drag law and
becomes a nonlinear function of the slip velocity. The effects of this nonlinear drag on
particle settling have been explored in vertically oscillating fluid columns, which partially
mimic the oscillatory flow of surface waves. In the Newtonian drag regime, where the drag
coefficient is a constant, it was found that particles have a reduced settling velocity relative
to their terminal settling velocity (Ho 1964; Nielsen 1984; Hwang 1985; Ikeda & Yamasaka
1989). However, it is unclear whether these findings from vertically oscillating columns
translate directly to surface waves, and if they do, how this reduction in settling velocity in
the Newtonian drag regime competes with the mechanism that produces enhanced settling
in the linear drag regime.

Here, we reconsider the settling of inertial spheres in surface waves. While previous
analytical work by Eames (2008) and Santamaria et al. (2013) examined this problem in
deep-water waves in the limit of small particle Reynolds number, we expand the scope
by considering waves in arbitrary depth and particles whose motion relative to the fluid
need not be in the small Reynolds number limit. Starting from the dynamical equation
of particle motion, we first derive a kinematic solution to particle motion that gives
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the particle velocity as a function of position within the flow and then use a two-time
expansion to isolate the wave-induced particle oscillatory motion from the wave-averaged
particle drift. We also describe a mechanism for horizontal dispersal of particles that
are settling vertically. We compare our theoretical results with numerical simulations
and laboratory experiments, being careful to describe procedures to accurately translate
between the wave-resolving and wave-averaged systems. Our results show that inertial
particles that are denser than the fluid undergo oscillatory motion that has a smaller
amplitude and a phase lag relative to tracer particles. We also find that such particles
experience an enhancement in the settling velocity, which stems from a dynamical part
related to particle inertia and a kinematic part related to how the particles sample the flow
field, akin to a vertical Stokes drift. The enhanced settling velocity can be expressed in
terms of the classical Stokes drift. For larger and denser particles, we use a well-known
model of the drag coefficient in the transitional regime of Reynolds number and make
a simplification that allows analytical solutions of the particle motion to be extended to
particles with nonlinear drag. The theory compares well with numerical simulations and
reasonably well with laboratory experiments.

The remainder of this paper is organised as follows. We begin with the equations of
motion and derive the theoretical results in § 2, with the comparisons with simulations
and experiments presented in § 3 and conclusions in § 4.

2. Particle motion in surface gravity waves
2.1. Surface gravity waves

We consider a train of progressive, two-dimensional surface gravity waves travelling in the
x'-direction in water of depth &, as described by linear wave theory. In the X'~z plane, the
fluid velocities are

k h(k(z +h
W, = gka cosh(k(z + h)) cos(kx’ — wt), (2.1a)
w cosh kh
ka sinh(k(7 + h
U = gka sinh(k(z + 1)) sin(kx’ — of)). (2.1b)
< 1) cosh kh

Here, 7 is time, a is the wave amplitude, k is the wavenumber, @ is the angular
frequency and u’ = [u, u_] gives the fluid velocity field in —A < z' < 0. The free-surface
displacement is ' = a cos(kx’ — wt’), and the dispersion relationship is w* = gk tanh kh
where g is gravitational acceleration. The phase velocity of the wave train is ¢ = w/k.
We make this system of equations dimensionless by defining the following variables:
t=owt,x=kx',u=u'/c,n = kn'. In dimensionless form, the free surface is defined as
n = kacos(x — t), and the velocity field is given by

cosh(z + kh)

Uy = EW COS(X — l'), (220)

sinh(z + kh) |
—e——— - — 1), 2.2b
= cosh kh sin(x —1) ( )

where

ka

s = (2.3)
tanh kh

is a small parameter that we refer to as the wave nonlinearity parameter. In the
deep-water limit (kh — 00), &€ — ka and in the shallow-water limit (kh — 0), ¢ — a/h.
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The wave-induced flow field is completely characterised by the dimensionless variables ka
and kh.

2.2. Equations of particle motion

The equations of motion for a spherical particle of diameter dj, moving in an unsteady and
non-uniform flow are given by

/
dx,

= (2.40)
dv’ u dvv Du
m”@ = (mp —my)g + my Dr Cmy % Dr + Firag, (2.4D)

where x,," is the particle position, v’ is the particle velocity, u’ is the fluid velocity at the
particle’s location and g is the gravitational acceleration vector. The particle mass is m,,
the mass of fluid displaced by the particle is my and C,, is the added mass coefficient for
the particle. The added mass coefficient is defined as the added inertia associated with the
fluid that has to accelerate around the particle normalised by the mass of fluid displaced
by the particle. For spherical particles, C,, = 0.5 (Newman 1977). The rate of change
following the particle is d/df#(= 9/9¢ + v - V) and the rate of change following a fluid
parcel is D/D#(= 9/0t 4+ u - V). The terms on the right-hand side of (2.4b) are the forces
on the particle: buoyancy, fluid forcing, added mass and drag, respectively.

We make the equations of particle motion dimensionless in a similar manner to the fluid
velocities but with the additional dimensionless variables x, = kx,’, v = v'/c, y = pp/p,

and Cp = Fypqg/ (% p(v —u )ang), where p, is the particle density, d), is the particle
diameter and p is the fluid density. The dimensionless equations of motion are

dx, B

; 2.5
o =Y (2.5a)

dv y —1 1 14+ C,, Du 1 13
—_— = e; + — — —————Cplv—u|(v —u), (2.5b)
dt y + C,, tanh kh y+CnDt  y+Cykdy4

where e; is the unit vector antiparallel to gravity and where we have used the dispersion
relation w? = gk tanh kh.

From (2.5), we can see that four dimensionless parameters are required to compute
particle motion: the density ratio y, the dimensionless diameter kd),, the added mass
coefficient C,, and the drag coefficient Cp. While y and kd), are fixed for a given particle
in a given wave field, Cp varies dynamically as a function of the particle Reynolds number
based on the slip velocity

v —u'|d,
Rep = ——, (2.6)
v
where v is the kinematic viscosity of the fluid.

For Re, < 1, the drag coefficient is given by the Stokes drag model, Cp = 24/Re),
which results in a drag force that is linear with respect to the slip velocity. For finite values
of Re),, empirical relationships for the drag coefficient show that the drag force is nonlinear
with respect to the slip velocity. Here, we use the Schiller—Naumann drag model, Cp =
(24/Rep) (1 + 0.15Re) "), which is £5 % accurate for Re, < 10° (Clift, Grace & Weber
2005).

936 A38-4


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.95

Downloaded from https://www.cambridge.org/core. IP address: 147.219.172.170, on 15 Mar 2022 at 17:04:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.95

Enhanced settling and dispersion of particles in waves

Linear drag: using the Stokes drag model, (2.5b) reduces to

dv (u—v) Du v in
- = + . eZ7
dr Stiin Dt Stiin

2.7)

where Stj;, = T, is the particle Stokes number with 7, = dﬁ(Cm + y)/18v being the

time scale over which the particle exponentially relaxes to match the flow velocity and
B ={0+Cyp)/(y + Cp). For spherical particles, the parameter 8 € [0, 3] with 8 < 1 for
negatively buoyant particles and § > 1 for positively buoyant particles. The dimensionless
particle terminal settling velocity is vy jin = (St;;,(1 — B))/tanh kh, where the subscript
‘lin” indicates the use of the linear drag model. Equation (2.7) is similar to Maxey &
Riley’s (1983) formulation (their (43)); the differences are that we have neglected the
Basset history term and we have used Du/Drt instead of du/df in the added mass term
(Auton, Hunt & Prud’Homme 1988). We have also neglected the Faxén corrections, but
they are irrelevant here since V>u = 0 for the wave-induced flow field.
Nonlinear drag: using the Schiller—Naumann drag model, (2.5b) reduces to

dv  (u—v) Du v v

dv i , 2.8
dr Stsn Dt StSN,z % (2.8)

where Stsy = wt), v is the particle Stokes number for the Schiller-Naumann drag
model with 7, sy = d[%(Cm + ) /[18v(1 + 0.15Re[9’687)] being the corresponding time
scale. The subscript ‘SN’ indicates the use of the Schiller-Naumann drag model. In
this model, the particle’s terminal settling velocity must be found iteratively using the
empirical drag relationship, which is then used to calculate the particle Stokes number
at terminal velocity, Stgy,, using the particle Reynolds number at terminal velocity,
Rep ; = vs sndy/v. While Stgy, is constant for a given particle in a given wave field,
Stgy is a dynamic quantity that evolves as the particle travels through the flow. Under
the simplification Szgy = Stgy;, which is equivalent to simplifying the drag coefficient as

Cp = (24/Rep)(1 + 0. 15Regg?87), the equations for linear drag and nonlinear drag become
identical except for the definition of the Stokes number and the terminal settling velocity.
This simplification can be interpreted as assuming that the particle time scale is constant
and independent of the flow, or equivalently, a ‘linearisation’ of the drag model such that
drag force is linear with respect to the dynamic slip velocity, but contains the nonlinear
aspects with respect to the particle’s terminal settling velocity.

To show the applicability of linear and nonlinear drag models, the particle time scale
and the particle Reynolds number based on the terminal velocity are plotted as functions of
the particle density and particle diameter in figure 1. These quantities have been calculated
using the Schiller-Naumann model. The range of particle densities and sizes cover small
particles close to neutral buoyancy (e.g. diatoms, y ~ 1.01; d, ~ 100 wm) to large dense
particles (e.g. sediment pebbles, y ~ 2.65, d, ~ 1 cm). Over most of this parameter space,
we see that 1 < Re, < 10? (figure la), suggesting that the Schiller-Naumann nonlinear
drag model is relevant for many particles of environmental relevance. We also see that the
particle time scales are small compared with typical wave periods in the laboratory (O(1)s)
and in the field (O(10)s) (figure 1b), suggesting that a small Stokes number approximation
is appropriate.
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Figure 1. Particle parameters calculated with the Schiller—Naumann drag model for p = 10° kg m~ and
v = 1079 m? s7!: (a) particle Reynolds number at terminal velocity; (b) particle time scale in seconds.

2.3. PFarticle motion and drift

We further analyse the particle equation of motion under the approximation of a small
Stokes number. We write the particle equation as

dv (u—v) s
v _ Ue . 2.9
dr St 51 (2.9)

with the choice of drag model being implicit and affecting the values of vg and St. In the
case of the Schiller—Naumann drag model, this also assumes that the Stokes number is
constant. From an expansion of the particle velocity in S¢, we find kinematic solutions to
the particle motion to be (as derived in Appendix A)

v,

" ,BDu
Dt

cosh(z + kh) ) St(1—pB) .
Uy = €AW COS (x —t+ ¢) + & m sm(2(x — f)), (210(1)
sinh(z + kh) . L St(1 —B) .
= — A— —t — &“————=5sinh(2 kh)), 2.10b
v, v+ & ~osh i sin (x +¢)—¢ S oo i sinh(2(z + kh)), ( )

where A and ¢ give the relative magnitude and phase shift for the leading-order particle
orbital motion

A= \/[1 — 81— ,3)]2 +[St (1 — BT, (2.11a)
B St (1 —B)
¢ = arctan [—1 By ﬂ)i| . (2.11b)

In (2.10), the particle velocity includes terms of O(¢) and O(?) as well as the constant
terminal settling velocity vg. The O(e) terms describe how inertia modifies particle motion
relative to wave orbital motion experienced by fluid tracers. The tracer particle limit is
described by A =1 and ¢ = 0, and deviations from this limit grow with increasing St
and increasing deviation from neutral buoyancy (where neutrally buoyant particles have
y =1 and g = 1). The relative amplitude A and phase shift ¢ are plotted for negatively
buoyant particles as functions of St and y in figure 2. For settling particles (y > 1),A < 1
and ¢ > 0, showing that they trace out smaller wave orbitals than fluid parcels and lag
the fluid velocity in time. These terms are equally valid for positively buoyant particles
(y < 1); they show the opposite behaviour, tracing out larger wave orbitals than fluid

936 A38-6


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.95

Downloaded from https://www.cambridge.org/core. IP address: 147.219.172.170, on 15 Mar 2022 at 17:04:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.95

Enhanced settling and dispersion of particles in waves

(@) o @
1.0 : 0.257 3.0
25 0.207 25
0.9}
0.157
A 2.0 20y
0.107
0.8}
LS 00sn 15
0.7 I H10 0 1.0
102 10! 100 102 10! 10°
St St

Figure 2. Particle motion parameters as functions of Stokes number St for different density ratios y calculated
using (2.11). (a) Amplitude A and (b) phase shift ¢ of particle velocity relative to tracer particles. Lines
correspond to a different density ratios, y = 1, 1.2, 1.5, 1.8, 2.1, 2.4,2.7, 3.

parcels and leading the fluid velocity. The O(e?) terms arise from the coupling between
particle inertia and fluid inertia (specifically, the advective part of the fluid acceleration;
(A6)). In the horizontal direction, this coupling produces a small oscillation in the particle
motion at twice the wave frequency. In the vertical direction, it produces a depth-dependent
enhancement of the particle vertical motion. For settling particles (y > 1), the settling
velocity is enhanced, whereas for positively buoyant particles (y < 1), the rise velocity is
enhanced.

From the kinematic solution to particle motion (2.10), we can next derive the
wave-averaged particle horizontal and vertical drift velocities using a two-time expansion
in the wave nonlinearity parameter ¢ (as shown in Appendix B). The resulting particle drift
velocities can be written in terms of the classical Stokes drift velocity of tracer particles

AZ
Ux-drift = mMSD, (2.12a)
S
A? 1 dusp
Uz_d”'ﬂ = —Vy 1 + 1 T U% usp + 5 tanh kh?po , (212]9)

where ugp is the Stokes drift velocity, which is a function of the wave-averaged vertical
position zpo (Stokes 1847; van den Bremer & Breivik 2017)

5 cosh(2(zpo + kh))
2 cosh? kh '

Equations (2.12) show that the horizontal drift is reduced relative to the Stokes drift of
tracers and that the settling velocity is enhanced relative to the particle’s terminal settling
velocity. (Although not the focus of this study, this result also applies to positively buoyant
particles where the rise velocity is also enhanced.) In the tracer limit of St — Oand y — 1,
we recover the classical Stokes drift velocity. In the deep-water limit of kh — oo, we
recover results identical to Santamaria et al. (2013) up to O(St), with slight differences
occurring at higher orders due to differences in the dynamical equation (cf. (2.9) with
their (4)).

The drift modifications are functions of wave and particle parameters. Figure 3 shows
that the horizontal drift velocity of settling inertial particles is reduced relative to the
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Figure 3. Horizontal drift for settling particles relative to tracer particles as functions of Stokes number St for
different density ratios y at different relative depths kA, calculated using (2.12a). Lines correspond to different
density ratios, y = 1,1.2,1.5,1.8,2.1,2.4,2.7, 3; (a) kh = 0.3, (b) kh = 1.0, (c) kh = 3.0.

Stokes drift of fluid tracers, with this effect becoming stronger in shallow-water waves
(smaller kh), for denser particles (larger y), and for particles with more inertia (larger S7).
This reduction in horizontal drift can be understood via the kinematic solution to particle
motion (2.10): since the orbital motion amplitude of inertial particles is reduced relative to
fluid tracers, the net displacement of these particles over a wave period is smaller than it
is for fluid tracers.

Similar to the horizontal drift, the vertical drift enhancement can be understood via the
kinematic solution to particle motion (2.10). One part of the settling enhancement comes
from settling particles sampling a stronger wave-induced flow during the downward part
of their orbital motion than the subsequent upward part of their orbital motion since the
particles settle lower into the water column during each wave cycle. Another part of the
settling enhancement comes from the coupling between particle inertia and fluid inertia. In
figure 4 we plot the settling enhancement across a range of particle and wave parameters.
By varying kh while keeping ¢ constant, we find that the relative enhancement of settling
velocity is larger in deeper water (larger kh), for less dense particles (smaller ), and for
particles with less inertia (smaller St). If instead kh is varied while keeping ka constant,
the relative enhancement of settling velocity is larger in shallower water (smaller kh).
Therefore, the vertical drift enhancement is a complex function of both ka and kh. The
settling enhancement also depends on the vertical position of the particle, with the effect
always being strongest near the surface and decaying with increasing depth.
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Figure 4. Vertical drift for settling particles relative to their terminal settling velocity as functions of Stokes
number St for different density ratios y at different relative depths kh, calculated using (2.12b) with ¢ = 0.33
and z,0 = 0. Lines correspond to different density ratios, y = 1.2, 1.5,1.8,2.1,2.4,2.7, 3; note y = 1 is not
shown since particles do not settle in this case; (@) kh = 0.3, (b) kh = 1.0, (¢) kh = 3.0.

These results show that the modifications of horizontal and vertical drifts have different
physical origins. The horizontal drift has the same structure and origin as classical Stokes
drift: it arises from the correlation between the particle orbital motion and the Eulerian
particle velocity field, and it is therefore a kinematic effect arising from the O(e) term in
(2.10a). The reduction in the horizontal drift relative to classical Stokes drift is a dynamical
effect because particles undergo smaller orbital motions because of inertial effects. The
vertical drift has two components: a kinematic effect that is a vertical analogue to Stokes
drift for settling particles and a dynamic effect from the coupling of particle inertia with
the fluid inertia. The kinematic effect is the term proportional to ugp in (2.12b) and comes
from the O(e) term in (2.10b), whereas the dynamic effect is the term proportional to
dugp/dz and comes from the O0(g?) term in (2.10b).

2.4. Particle dispersion

To quantify particle dispersion in the wave-averaged sense, we can compute the divergence
of the particle drift velocity (2.12). We find that it is non-zero, where Vi, * Varift =
OVx-drifi/ 0Xp0 + 0Vz-arifr/ 02p0, and

0 Ux-drift

0, (2.14a)
9xp0
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Figure 5. Wave-averaged particle positions computed using the wave-averaged drifts (2.12) for ka = 0.1,
kh =1, y = 1.1 and St = 0.1. Particles are coloured according to their initial vertical position and particle
positions are shown every 10 units of dimensionless time.

IV-ari A% d
Uz drift = —, |: usp } ) (214b)

320 o Us2 020 + tanh kh ugp
This shows that the wave-averaged inertial particle field has non-zero vertical divergence,
but zero horizontal divergence. Negatively buoyant particles will converge in the vertical
direction, whereas positively buoyant particles will diverge in the vertical direction. This
vertical compressibility in the particle velocity field is associated with the same terms that
lead to enhanced settling, but it is not the leading cause of particle dispersion.

To understand particle dispersion, we first consider the wave-averaged system. We
initiate a cloud of settling particles near the surface and simulate their drift trajectories
using (2.12). As shown in figure 5, a cloud of particles will experience dispersion in the
horizontal direction in the wave-averaged sense despite the fact that the drift velocities
do not show a horizontal divergence. The source of this effect is the influence of the
initial particle positions. Since the drift velocities in (2.12) decay rapidly with depth in the
same manner as the classical Stokes drift, particles with higher initial position will travel
faster and further over time in the horizontal direction. In figure 5, the cloud of particles
marked by their initial vertical position and tracked at regular time intervals expands in the
horizontal direction because of differences in initial vertical positions while contracting
slightly in the vertical direction as predicted by (2.14b). This mechanism for horizontal
dispersion is stronger in deep-water waves (larger kh), for less dense particles (smaller y),
and for particles with less inertia (smaller S7).

In the unaveraged system, figure 6 shows how particles can disperse when released at
the same position continuously over time. The wave-averaged initial conditions depend
on the wave phase at the initial particle position (Appendix B.3), and therefore particles
released continuously over time will have different wave-averaged initial conditions, which
will lead to horizontal dispersion. In this way, waves can disperse a continuous release of
settling particles.

3. Comparisons with numerical simulations and laboratory experiments

Having derived a kinematic solution for particle motion (2.10) and the associated
wave-averaged particle drift velocities (2.12), we now compare them with numerical
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Figure 6. Particle trajectories computed with the linear drag model using (2.10) for particles released
continuously at (x, z) = (0, —0.2) (red asterisk) for ka = 0.2, kh =1, y = 1.1 and St = 0.1. Trajectories are
coloured according to their initial starting time.

simulations of the full dynamical equation of particle motion (2.7), (2.8) and laboratory
experiments.

When comparing particle trajectories between the unaveraged system and the
wave-averaged system, it is important to project the initial conditions from the unaveraged
system to the averaged system (Appendix B.3). Even a change as small as O(g?) in the
initial vertical position of the particle in the averaged system can lead to a large difference
in particle trajectories as shown in figures 5 and 6.

3.1. Numerical simulations

3.1.1. Particle trajectories

Linear drag: in the Stokes drag model, the entire problem is defined by four dimensionless
parameters (ka, kh, y and St). Figure 7 compares particle trajectories obtained from the full
dynamical equation with those obtained from the kinematic solution and wave-averaged
drifts for different values of these four dimensionless parameters. In simulations using the
full dynamical equations, the initial particle velocity is set to the sum of the local fluid
velocity and the particle terminal velocity, though the solutions are not too sensitive to
this choice. We can see that the kinematic solution tracks the full dynamical equation well
in all cases, even when St = O(1). The wave-averaged drifts also follow the unaveraged
solutions faithfully in all cases, except when ka is increased. This reflects the limitation
of the drift velocities and initial condition corrections, which are correct to O(¢2) in the
two-time expansion (Appendix B). Therefore, discrepancies start to appear between the
unaveraged and wave-averaged solutions as € increases, but remain small so long as ¢ is
not too large (¢ = 0.26 in figure 7d).

Nonlinear drag: in the Schiller—-Naumann drag model, the terminal particle velocity
must be calculated empirically and the drag coefficient becomes a nonlinear function of
the slip velocity. This alters the particle dynamics significantly.

As an example, consider a typical laboratory experiment of a microplastic particle
settling through waves: a particle of diameter 1 mm and density 1020 kg m™3 settling
through surface waves of amplitude 2.5 cm and period 1s in water of depth 0.5 m.
The fluid is of density 1000 kg m—3 and kinematic viscosity 107® m? s~'. This gives

936 A38-11


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.95

Downloaded from https://www.cambridge.org/core. IP address: 147.219.172.170, on 15 Mar 2022 at 17:04:47, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.95

M.H. DiBenedetto, L.K. Clark and N. Pujara

(a)

0.2}

—04}

—0.6

0.8}

-1.0
1.0

(c)

-0.1 0.1 0.2 ) ' 4
xP

Figure 7. Particle trajectories computed with the linear drag model using the full dynamical equation for
particle motion ((2.7); solid blue line), the kinematic solution for particle motion ((2.10); dashed yellow line),
and the wave-averaged drift velocities ((2.12); solid black line): (@) ka = 0.1, kh =1, y = 1.1, St = 0.1; (b)
ka=0.1,kh=3,y =1.1,St=0.1;(c)ka =0.1,kh =1,y = 1.05,8t = 0.75; (d) ka = 0.2, kh =1,y = 1.1,
St =0.1.

y = 1.02, ka = 0.10 and kh = 2.1. Stokes drag predicts a terminal settling velocity of
1.1 cm s~! in quiescent water with an associated particle Reynolds number Rep; = 11.
The Schiller-Naumann drag model, which is expected to be more accurate in this case,
predicts a terminal settling velocity of 0.7 cm s~! with an associated particle Reynolds
number Re,; = 7. Figure 8 shows the particle trajectories computed for this example
using the full dynamical equation with linear drag (2.7), with nonlinear drag (2.8) and
with nonlinear drag with constant Stokes number (2.8 with Stgy = Stsy ;). The trajectories
with nonlinear drag travel further in the horizontal direction as the particles settle slower
through the water column because of a reduced settling velocity. The two nonlinear drag
trajectories are similar to each other, suggesting that the slip velocity does not deviate too
far from the terminal settling velocity. Figure 9 confirms this, showing that the particle
slip velocity, the particle Reynolds number and the particle Stokes number all have small
variations around their respective values based on the terminal velocity. In particular, Sty
only fluctuates at most 2 % from its value computed with the terminal settling velocity
Stsn-

If we consider the same particle settling in field conditions, longer wave periods in the
field will result in lower Stokes numbers. Thus, the particle will come to local equilibrium
with the flow faster in dimensionless terms and the fluctuations of Szgy relative to the
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Figure 8. Particle trajectories computed using the full dynamical equation with linear drag ((2.7); solid blue
line), nonlinear drag ((2.8); solid red line) and nonlinear drag with constant Stokes number ((2.8) with Stgy =
Stsn, ¢ dashed green line) for d, = 1 mm, p, = 1020 kg m3, o = 1000 kg m3v=10°"m?s,a=25 cm,
w=2ns"",h=05m.
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Figure 9. Slip velocity and derived quantities computed from a numerical solution of the full dynamical
equation with nonlinear drag (2.8) for d, = 1 mm, p, = 1020 kg m~3, p = 1000 kg m=3, v = 107%m? s~ !,
a=25cm, w=2ns"', h=0.5m. (a) Absolute slip velocity component normalised by —vy, (b) Re), and (c)
Stsy of the particle are plotted over dimensionless depth z,,. Corresponding terminal settling velocity values
Reyp, ; and Stgy,, are marked with vertical grey lines.

value of Sty will be even smaller in percentage terms. The approximation Stsy = Stsy
is therefore even more justified in field conditions. Overall, this example serves to illustrate
that the main effects of nonlinear drag are captured by how it alters terminal settling
velocity and particle time scale to reach the terminal settling velocity in both laboratory
and field conditions.

Given that a constant Stokes number approximation is reasonable, we now compare
numerical simulations computed with the full dynamical equation (2.8) with the kinematic
solution and wave-averaged particle drifts derived under the Stgy = Stsy; approximation
in figure 10. Similar to the linear drag cases, we see that the kinematic solution tracks the
full dynamical equation for different values of the controlling dimensionless parameters
and that the wave-averaged drifts also faithfully follow the unaveraged solutions, except
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Figure 10. Particle trajectories computed with the nonlinear drag model using the full dynamical equation for
particle motion ((2.8); solid red line), the kinematic solution for particle motion ((2.10); dashed yellow line)
and the wave-averaged drift velocities ((2.12); solid black line): (a) ka =0.1, kh =1, y = 1.1, Stgy, = 0.1,
Rep; =212, (b)ka=0.1,kh =3,y = 1.1, Stgn; = 0.1, Rep ; = 55; (c) ka = 0.1, kh = 1,y = 1.05, Sty ; =
0.5,Rep = 1093; (d) ka = 0.2,kh =1,y = 1.1, Stsn, = 0.1, Re, ; = 212.

when ka becomes too large. Together, these results show that the kinematic solution
and wave-averaged drifts are also applicable to scenarios with nonlinear drag, where the
particle Reynolds number is significantly larger than unity.

3.1.2. Settling velocity

In order to further compare the derived drift expressions with the full dynamical system,
we consider the particle settling velocity directly. To achieve this comparison, the particle
motion from numerical simulations needs to be wave averaged to remove the oscillations
that are an order of magnitude larger than the drift velocities of interest. For settling
particles, this averaging procedure is non-trivial for two reasons: (i) the oscillation
frequency of a Lagrangian particle is different from that of the Eulerian flow because of a
Doppler-shifting effect of the Stokes drift (Longuet-Higgins 1986), and (ii) the oscillation
frequency evolves as the particle settles through the wave field because the Stokes drift
decays with depth. To account for this variation in frequency, we use a discrete Hilbert
transform (Huang & Wu 2008) to find the desired phase of the particle motion in each
oscillation cycle. Figure 11(a) shows a particle trajectory with particle positions marked
at the top and bottom of each oscillation using this procedure. The wave-averaged value
for some quantity f following the particle motion can then be found by time averaging
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Figure 11. Particle trajectory and wave-averaged drifts for kh =1, ka = 0.1, y = 1.05, Stsy.; = 0.065,
Rep ; = 6.5. (a) Particle trajectories computed with the nonlinear drag model using the full dynamical equation
for particle motion (2.8) with constant phase points marked with . (b) Wave-averaged vertical velocity with
starting phase points marked. (¢) Twice wave-averaged vertical velocity of the trajectory —u; /vs.

between corresponding phases (which occur at times ¢, and #),

_ 1 I
f= f f(Hde. (3.1)
Ip —Ia tq

Using this method, we average the particle’s vertical velocity and position over its
trajectory, and we plot the resulting wave-averaged quantities v; and 7, and in figure 11(b).
From inspection, we find an initial condition dependence exists: v, is a function of the
starting phase of the averaging. Its value oscillates around unity because the particle
oscillatory motion does not settle uniformly; rather, the settling velocity is faster when
averaged crest-to-crest compared with trough-to-trough. In other words, the tops of the
particle orbitals move downward faster than the bottoms of the particle orbitals. This
result suggests that waves can both enhance and reduce the particle settling velocity
depending on where the wave-averaging process begins. The enhancement and reduction,
however, are not symmetric. By wave averaging the signal once more, we obtain v, which

is now only a function of z:p (figure 11¢). At this level of averaging, the initial condition
dependence goes away, and we recover the enhanced vertical drift, which closely matches
the analytical prediction of (2.12b). Only by wave averaging the particle velocities twice
are we able to recover the vertical drift velocities and confirm that the particle settling
velocity is enhanced by waves.

3.2. Laboratory experiments

Finally, we compare our theoretical results with the experimental data of settling spheres
under surface waves reported in Clark et al. (2020), where we have conducted a re-analysis
of the previously reported data. The experiments investigated spheres with diameter
2.96 mm settling in three different wave conditions in water of depth 41.5cm: a =
3.5cm, w = 27 rad s~! (‘shallow’; ka = 0.15, kh = 1.78), a = 3.3 cm, @ = 37 rad s~!
(‘intermediate’; ka = 0.29, kh = 3.7) and a = 2.3 cm, @ = 47 rad s~} (‘deep’; ka =
0.32, kh = 5.9). The flow was laminar and well approximated by linear wave theory
(DiBenedetto ef al. 2019). The terminal settling velocity of the spheres in quiescent fluid
was 2.90 cm s~!. In comparing the experimental data with our analytical results, we
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Figure 12. Experimental data (symbols) from Clark er al. (2020) compared with predicted vertical drift
(2.12b) (solid lines). Different colours represent different experimental cases: ‘shallow’: ka = 0.15, kh = 1.77;
‘intermediate’: ka = 0.30, kh = 3.8;‘deep’: ka = 0.37, kh = 6.7. Error bars denote 95 % confidence intervals
which were found by bootstrapping the experimental data.

calculated a terminal settling velocity of 2.86 cm s~! using the Schiller—Naumann model,

with specific gravity y = 1.025 and kinematic viscosity v = 107® m? s~!. Thus, these
particles exist in the nonlinear drag regime where Re, = 86, Stgy, = [1.1, 1.7, 2.2], and
dimensionless settling velocity vy = [0.019, 0.028, 0.037] for the shallow-, intermediate-
and deep-water wave conditions, respectively.

The experimental data were measured with particle tracking velocimetry and showed
enhanced settling under waves. The data were originally reported in terms of an ensemble
mean of the instantaneous particle vertical velocities as a function of a dimensionless
‘velocity scale reflective of the local vertical flow velocities” and the results appear to show
an increase with this quantity (see their figure 3). This analysis allowed Clark et al. (2020)
to combine data across wave conditions, scaled by relative wave strength. To compare with
our drift predictions, we average the instantaneous vertical velocities of the particles in a
similar way, but now as a function of both wave conditions and dimensionless depth. We
note that this ensemble average is distinct from the trajectory average that leads to the drift
velocity predictions, and therefore we do not expect the laboratory results to be identical to
the theory, but we do expect both to reflect the settling enhancement in a similar manner.

Figure 12 shows a comparison between the averaged experimental data and the theory,
where we see that the theory predicts the correct overall trend with depth and wave
conditions, but the experimental data show a larger velocity enhancement than predicted
by (2.12b). These discrepancies between the theory and the data could be due to multiple
reasons. First, the experimental results are averaged in a different way than the theory.
Additionally, the experiments are performed at relatively large ka values where the theory
starts to break down, especially near the surface. Finally, other approximations made in
our theoretical analysis, e.g. neglecting the Basset history and assuming that the drag
coefficient in the unsteady system can be approximated as the steady drag coefficient at a
particular Re;, value, could also play a role.
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4. Conclusions

From the dynamical equation of inertial spheres in surface waves, we have found a
kinematic solution that gives the particle velocity as a function of its position within the
background flow field (2.10) and a solution for the particle drift velocity that gives the
horizontal and vertical particle motion in the wave-averaged sense (2.12). While the former
can be used in wave-resolving models, the latter can be used in wave-averaged or spectral
models to compute inertial particle motion. These solutions are derived using expansions
that assume small Stokes number and small wave amplitude, with no restrictions on
the relative water depth. Comparisons with numerical simulations of the full dynamical
equation show that the solutions accurately predict particle motion up to St = O(1) and
e = 0(107"), suggesting that they are applicable within the confines of linear wave theory
even when the particle inertia is significant.

The kinematic solution shows that negatively buoyant inertial particles move in orbitals
that are smaller and lag behind fluid parcels in time (figure 2). This effect is especially
noticeable for St > 0.1. The particle drift velocity solution shows that the horizontal drift
is proportional to the Stokes drift for fluid tracers, but reduced in magnitude for negatively
buoyant inertial particles (figure 3). The vertical drift velocity solution shows that inertial
particles experience enhanced settling in surface waves (figure 4). This enhancement
relative to the terminal settling velocity is both a kinematic and a dynamic effect. While the
kinematics create a bias for the particle to sample downward wave-induced velocities, akin
to a vertical Stokes drift, the dynamics enhance settling via a coupling between the particle
inertia and fluid inertia. These conclusions are supported by theory (§2.3), numerical
simulations (§ 3.1) and experimental evidence (§ 3.2).

Additionally, we find that a cloud of particles released together or a continuous release of
particles at a single location will undergo horizontal dispersion because of the differences
in the particles’ wave-averaged initial vertical positions (§ 2.3). Particles with a higher
initial wave-averaged position travel faster and further than those with a lower initial
position, which leads to particle trajectories diverging in the horizontal direction.

Finally, we have examined different regimes of drag, including linear (Stokes) drag
and nonlinear drag (as parameterised by the Schiller-Naumann model). A simplifying
assumption in the nonlinear drag formulation allows us to extend the kinematic solution
and wave-averaged drift velocity solution to also include the nonlinear drag regime where

the particle Reynolds number can be up to Re, = 0(10%). This simplification can be
interpreted as assuming that the particle relaxation time scale is independent of the
flow such that 7, = d[%(Cm + ) /[18vf(Rep)] =~ d[%(Cm +y)/[18vf(Rep )] or that the
drag model is ‘linearised’ such that Cp = (24/Re)) f (Rep) ~ (24/Rep) f (Rep 1), where
Re, ; is the particle Reynolds number at terminal velocity in quiescent fluid determined
from the nonlinear drag model. Comparisons with numerical simulations show that this
simplification is effective and that the kinematic solution and wave-averaged drifts apply
equally well to the nonlinear drag regime as long as the terminal settling velocity and
Stokes number are based on the nonlinear drag model.
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Appendix A. Particle motion for small S number

In this appendix, we find the kinematic solution for particle motion in the limit of small
Stokes number. Expanding the particle velocity in the Stokes number

v=vo+Stv1+St2v2+..., (A1)

and substituting it into (2.9), which is re-written as

dv Du
= —St— 4+ 85t8—, A2
V=u-+ v o +StB Dr (A2)

and collecting terms of different orders gives

Fogtst| -2 gP 1L g2 du 5L (2] 4 o (A3)
v = v - — — —B— = .
H s dr Dt dr? dr \ Dt
By expanding du/d¢
du _ o vu=" Va0 (Ad)
- = D = — Ve * £ 5
dr ot S T

and substituting it into (A3) we can find explicit expressions for the particle velocity. The
expressions depend on the relative magnitudes of St, ¢ and v;. We take ¢ and St to be of
the same order and vy < St. This last choice is driven by an analysis of the ratio of the
dimensionless settling velocity and the particle Stokes number, given by

vu_ v (AS)
St tanhkh gz’

where v} is the dimensional terminal settling velocity and 7, is the particle time scale.
Figure 13 shows that v;/(g7),) is typically small, and hence, vy < St for most applications
as long as the waves are not in extremely shallow water.

From (A3), the particle velocity is given by

Du 5 9%u 20 3
v=u+vs—St(1—,3)E+St (l—ﬂ)ﬁ—l—O(s St°, &St7), (A6)

which can be evaluated using (2.2) to give

cosh(z + kh)

sin(2(x — 1))
—ctA—— —t 2511 — By —————7 A7
= E cosh kh costx + @)+ eSiC 2 2 cosh? kh (&7a)
sinh(z + kh) . 2 sinh(2(z + kh))
= — _ —t —&°8St(l — B)———= ATb
vz Us oshfn  Sna—tt¢)—e 1-5) > cosi K (ATb)
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Figure 13. Ratio of dimensionless terminal velocity to Stokes number for deep-water waves calculated with
the Schiller—Naumann drag model for p = 10> kg m™> and v = 107® m?> s~

The particle orbital motion at leading order has modified amplitude and phase shift relative
to the motion of fluid parcels given by

A= \/[1 — 81— ,3)]2 +[St(1 = B2, (A8a)
_ St (1 —B)
¢ = arctan [—1 —7 - ,3)] . (A8Db)

Appendix B. Wave-averaged particle motion

In this appendix, we employ a two-time expansion on the particle motion found in
Appendix A to remove the wave-induced oscillations, find the wave-averaged particle drift
velocities and find suitable initial conditions for the wave-averaged particle motion.

B.1. Two-time expansion

To perform a two-time expansion to separate the fast wave-induced oscillations from the
slow wave-averaged behaviour, we look for a solution of the form

xp(t; ) =xp(r, Ty ¢), witht =1, T = &2t. B1)

The slow time scale is taken to be order &> since the Stokes drift and the dynamical
settling enhancement for inertial settling particles both arise at the second order. With
this, the particle velocity (A7) is given by

cosh(z, + kh)

2
Orxp + 707Xy = €A ~osh kh

cos(x, — T + @)

sin(2(x, — 7))

2
+ &°St(1 —
( 2 2 cosh? kh

(B2a)
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sinh(z, + kh) .
0c2p + 828sz = —v; + SACOSPW sin(x, — T + @)
’ sinh(2(z, + kh))
—&e°St(l — B)————. B2b
1=F 2 cosh? kh (B25)

We expand the particle position about the small parameter ¢ that characterises the
dimensionless wave amplitude,

xp(T, T) = xpo(t, T) + exp1(z, 1) + ..., (B3)

treating vy and St as constants. The order at which the terminal settling velocity vy enters
the problem depends on the magnitude of the settling number
Sv ==, (B4)
€

which is the ratio of the terminal particle settling velocity to the fluid velocity scale.
We will assume vy = O(1) (Sv > 1) so that settling enters the problem at leading order.
Although the settling number is not necessarily always large, following this assumption
ensures that we capture how particle settling kinematics affect wave-averaged drift
velocities.

Substituting this expansion into (B2) and collecting terms of the same order gives the
following.

At g?

0cxp0 = 0, (B5a)
0:2p0 = — ;. (B5b)

The leading-order solution is a constant settling superimposed on functions of the slow
time scale (X, (T), Z,(T))

Xp0 = Xp(T)a (B6a)
7p0 = Zp(T) — vyt. (B6b)
Ate!
cosh(z,o + kh)
drxp1 = ACO;’W cos(xp0 — T + ), (B7a)
sinh(zp0 + kh)
drzpl = ACOQ’W sin(x,0 — T + ¢), (B7b)
whose solution is given by
A .
Xpl = —m [cosh(zpo + kh) sin(x,0 — T + ¢)
+vy sinh(zp0 + kh) cos(xy0 — T + ¢)] (B8a)
A .
Zpl = m [smh(zpo =+ kh) COS()CP() -7+ ¢)
—vy cosh(zpo + kh) sin(xy0 — 7 + ¢)]. (B8b)
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At g2

AZ
cosh? kh(1 + v2) [

sin(2(xp0 — 7))

Ocrxp + 07Xy, = sinh? (zpo + kh) + sinz(xpo — T+ ¢)]

+ St(1 — B9a
¢ P 2 cosh? kh ( )
320 + 977, = — s> [sinhz(z + kh) + sin2(xy0 — T + ¢)]
TR T sk k(1 + v2) 7 7
sinh(2(zp0 + kh))
— sl — . BOb
¢ 2 2 cosh? kh ( )

The solvability condition at this order is given by averaging this equation over a wave
period

A2
orX, = cosh(2(z,0 + kh)), B10a
T2 = 5 cosh? kh(1 + v2) @G0 2 ( )
077 A" h2(zp0 + k) — L= P) G20 + ki)
= — COS Z — ——=—— S1n Z .
T T D cosh? kn(1 + v2) 7 2 cosh? kh 7
(B10b)

Note that we have made a simplifying approximation to obtain explicit expressions: we
have assumed that the constant settling is small enough such that changes in z,0 = Z, —
vsT over a wave period can be neglected. The validity of this simplification is investigated
by comparisons with numerical solutions.

To find the solution at the next order, we substitute (B10) into the second-order equation
to get

A2
~ 2cosh? kh(1 + v2)

[cos(2(xp0 — T 4+ ¢)) + St(1 — B) sin(2(xp0 — 7))],
(Blla)

8'txpz =

vSA2
2 cosh? kh(1 4 v2)

dezpr = cos(2(xy0 — T + $)). (B11b)

The solution is given by

A2

Xpo = sin(2(xp0 — T + ¢)) + St(1 — B) cos(L(x,0 — 7)) |, (Bl2a
P27 Geosh? k(1 + v2) [sin(2(xp0 $)) + St(1 — B) cos2(xp0 — T))], (B12a)
uA in(2( +9¢)) (B12b)
P2 == sin(2(x,0 — T )
727 4eosh? kh(1 + v2) 0
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B.2. Wave-averaged particle drift velocities
From (B10), we can obtain the leading-order wave-averaged particle velocities that include
the constant settling component by using 9; = 9; + €297

2 A?
2 cosh? kh(1 + v2)
22 vsA2
2 cosh? kh(1 4 v2)

iXpo = & cosh(2(zpo + kh)), (B13a)

St(l —p)

cosh(2(z,0 + kh —g?
@G0+ kh) =& Wk

sinh(2(zp0 + kh)).
(B13b)

athO = Vs —

These are the particle drift velocities and are related to the classical Stokes drift velocity
of tracer particles

5 cosh(2(zp0 + kh))
2 cosh? kh

Hence, we refer to them as vy.qrif and v;_grir, and we re-write them in terms of the Stokes
drift

(B14)

usp = €

A2
Ux-drift = WMSD, (B15a)
N
1A + L anh o 8452 (B15b)
i = — u — tan .
Vz-drift Us I Usz SD ) dz0

B.3. Initial conditions for wave-averaged particle motion

Equation (B15) can be used to compute the wave-averaged trajectories of particles, but this
requires that the initial conditions first be transformed into the wave-averaged system. To
find this transformation, we expand the wave-averaged initial condition as

xp0(0) = Xp0,0 + &Xpo,1 + E2Xp02 + - - -, (B16)
and substitute it into the expansion (B3) at the initial time r = 0
x,(0) = x,0(0) + £x,1(0) + £2x,0(0) + ..., (B17)

and collect terms of the same order.
At €0, we get x,0,0 = xp(0). At el we get

Xp0,1 = m cosh(z,0,0 + kh) sin(x,0,0 + ¢)
0 Sinh(zn0 + kh) cosCipo0 + 9) (B13a)
————in cos(x a
coshkh(1 +v2) P00 ?0.0
A .
Zp0,1 = —m sinh(z,0,0 + kh) cos(xpo,0 + @)

;A

cosh k(1 1 17) " ki) si - BI8b
+ coshkh(l + USZ) cos (ZPO,O + kh) Sm(xpO,O +¢) ( )
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At g2, we get
A? St(1 — B)
= sin(2(x,0.0 + ¢)) — ———=
4cosh® kh(1 + v2) P00t ) = ok

A2 inh(2(2,0.0 + kh)) + v,A”
Sin Z

2 cosh? k(1 + v2) P00 4cosh® kh(1 + v2)

Xp0,2 cos(2x,0,0), (B19a)

Sin(2(x50,0 + ¢))-
(B19b)

Thus, for a given set of initial conditions x,(0), the initial conditions for the
wave-averaged system correct to O(¢2) are

2p0,2 =

x%0(0) = x,(0) + ¢ cosh(z, (0) + kh) sin(x,(0) + ¢)

cosh kh(1 + v2)
vA
+e————-
coshkh(1 + v2)
AZ
+ &2 3
4 cosh® kh(1 + v2)
St(1 — B)

2
—&"——co0s(2x,(0 B20a
4 cosh? kh @1 (O) (B20a)

sinh(z, (0) + kh) cos(x,(0) + @)

sin(2(xp(0) + ¢))

7p0(0) = 7,(0) — ¢ sinh(z,,(0) + kh) cos(x,(0) + ¢)

coshkh(1 + v2)
+ e—vSA
coshkh(1 + v?)
2
+ &? 5 4
2 cosh® kh(1 + v2)
42 VA2
4 cosh? kh(1 + v2)

cosh(z, (0) + kh) sin(x, (0) + ¢)

sinh(2(z, (0) + kh))

sin(2(x, (0) + ¢)). (B20b)
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