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Abstract. The availability of large datasets composed of graphs creates
an unprecedented need to invent novel tools in statistical learning for
graph-valued random variables. To characterize the average of a sam-
ple of graphs, one can compute the sample Frechet mean and median
graphs. In this paper, we address the following foundational question:
does a mean or median graph inherit the structural properties of the
graphs in the sample? An important graph property is the edge density;
we establish that edge density is an hereditary property, which can be
transmitted from a graph sample to its sample Frechet mean or median
graphs, irrespective of the method used to estimate the mean or the
median. Because of the prominence of the Frechet mean in graph-valued
machine learning, this novel theoretical result has some significant prac-
tical consequences.

Keywords: Frechet mean and median graphs - statistical network
analysis

1 Introduction

We consider the set G formed by all undirected unweighted simple labeled graphs
with vertex set {1,...,n}. We equip G with a metric d to measure the distance
between two graphs.

We characterize the “average” of a sample of graphs {G(l), ..., GWN )}, which
are defined on the same vertex set {1,...,n}, with the sample Fréchet mean and
median graphs, [6].

Definition 1. The sample Fréchet mean graphs are solutions to

N
1
an|G) = argmin — Y (G, G, 1
An[C] = argmin ,; (G.G") (1)
and the sample Fréchet median graphs are solutions to
| N
my[G] = argmin — > d(G,G®). 2
(6] = arguin 5 3 (G, G¥) 2)
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Solutions to the minimization problems (1) and (2) always exist, but the
minimizers need not be unique. All our results are stated in terms of any of the
elements in the set of minimizers of (1) and (2).

Because the focus of this work is not the computation of the Fréchet mean
or median graphs, but rather a theoretical analysis of the properties that these
graphs inherit from the graph sample, we assume that the graphs in the sample
are defined on the same vertex set.

The vital role played by the Fréchet mean as a location parameter [9,10,13],
is exemplified in the works of [1,14], who have created novel families of random
graphs by generating random perturbations around a given Fréchet mean graph.

1.1 Owur Main Contributions

We consider a set of N unweighted simple labeled graphs, {G1),...,G(M},
with vertex set {1,...,n}. In this paper, we address the following foundational
question: does a mean or median graph inherit the structural properties of the
graphs in the sample? Specifically, we establish that edge density is an hereditary
property, which can be transmitted from a graph sample to its sample Fréchet
mean or median.

Because sparse graphs provide prototypical models for real networks, our
theoretical analysis is significant since it provides a guarantee that this structural
property is preserved when computing a sample mean or median. In a similar
vein, the authors in [8] construct a sparse median graph, which provides a more
interpretable summary, from a set of graphs that are not necessarily sparse.

Our work answers the question raised by the author in [7]: “does the average
of two sparse networks/matrices need to be sparse?” Specifically, we prove the
following result: the number of edges of the Fréchet mean or median graphs of
a set of graphs is bounded by the sample mean number of edges of the graphs
in the sample. We prove this result for the graph Hamming distance, and the
spectral adjacency pseudometric, using different arguments.

2 Preliminary and Notations

We denote by S the set of n x n adjacency matrices of graphs in G,
S= {A € {0,1}"*™; where a;; = aj;,and a;,; =0; 1 <1 < j < n} (3)

For a graph G € G, we denote by A its adjacency matrix, and by e(A) the
number of edges — or volume — of G,

Z Qg - (4)

1<i<j<n

We denote by A(A) = [Aq( - An(A)], the vector of eigenvalues of A, with
the convention that )\1(A) 2 An(A).
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2.1 Distances Between Graphs

In this work, we consider two metrics: the Hamming distance and the spectral
adjacency pseudometric. We briefly recall the definitions of these.

Definition 2. Let G, G’ € G be two unweighted graphs with known vertex cor-
respondence and with adjacency matriz A and A’ respectively. We define the
Hamming distance between G and G’ as

du(A, AN E > aj —alj| =e(A) +e(B) =2 > aijbi;. (5)

1<i<j<n 1<i<j<n

The Hamming distance is very sensitive to fine scale fluctuations of the graph
connectivity. In contrast, a metric based on the eigenvalues of the adjacency
matrix can quantify configurational changes that occur on a graph at many
more scales [5,17].

Definition 3. Let G,G’ € G with adjacency matriz A and A’ respectively. We
define the adjacency spectral pseudometric as the €5 norm between the vectors of

eigenvalues A(A) and A(A’) of A and A’ respectively,
(A, A') = |[IA(A) = A(A)]|2. (6)

The pseudometric dy satisfies the symmetry and triangle inequality axioms,
but not the identity axiom. Instead, d satisfies the reflexivity axiom, VG € G,
dx(G, G) = 0. We note that the adjacency spectral pseudometric does not require
node correspondence.

3 Main Results

In the following, we consider a set of N unweighted simple labeled graphs,
{GW,...,GM}, with vertex set {1,...,n}. We denote by A*) the adjacency
matrix of graph G*). We equip the set G of all unweighted simple graphs on
n nodes with a pseudometric, or a metric, d. The Fréchet mean and median
graphs encode two notions of centrality (1) and (2) that minimise the following
dispersion function, also called the Fréchet function.

Definition 4. We denote by ﬁq (A) the sample Fréchet function associated with
a sample Fréchet median (q =1) or mean (q =2),

2

Fy(4) = £ > d1(4, A®), (7)

k=1

To quantify the connectivity of the graph sample, {G(l), e G(N)}, we define
the sample mean and variance of the number of edges.
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Definition 5. The sample mean and variance of the number of edges are defined
by

1 N k 2 1 al k 2 2
=g eAt), and o= g (O -l @

We now turn our attention to the main problem. We consider the following
question: if the graphs G, ..., G(™) all have a similar edge density, can one
determine the edge density of the sample Fréchet mean or median graphs? and
does that number of edges depend on the choice of metric d in (1) and (2)? We
answer both questions in the following theorem.

Theorem 1. Let {G(l),...7G(N)} be a sample of unweighted simple labeled
graphs with vertez set {1,...,n}. Let in[A] be the adjacency matriz of a sam-
ple Fréchet mean graph, and let My [A] be the adjacency matriz of a sample
Fréchet median graph. Let e and ez be the number of edges of ﬁN[A] and
my [A] respectively.

If the Fréchet mean and median graphs are computed using the Hamming
distance, then
on(e)
\/i )
and if the Fréchet mean and median graphs are computed using the adjacency
spectral pseudometric, then

ep < 26N + and ez < 2ey, (9)

eg <9en, and em < 9en. (10)
Proof. The proof is a direct consequence of Lemmata 6 and 12.

Remark 1. When the graph G®) are sampled from the inhomogeneous Erdds-
Rényi random graph probability space G (n,P) [3], and if the distance on G is
the Hamming distance, then fiy[A] = miy[A] with high probability [15]. In
this case, a tight bound on ej or ez in (9) is 2€x, which — unlike (9) — does not
involve o (e).

The fact that we overestimate the bound on ej by the addition of the term
on(e)/v/2 comes from our technique of proof, which relies on an estimate of the
Fréchet function. As explained in Remark 4, our estimate of the Fréchet function
is almost tight; it does include the term oy (e), as it should.

Finally, the following corollary answers the question raised by the author in [7]:
“does the average of two sparse networks/matrices need to be sparse?”

Corollary 1. Let {G(l),...,G(N)} be a sample of unweighted simple labeled
graphs with vertex set {1,...,n}. We assume that the number of edges of each
G®) satisfies

e(A(k)) =0 (n?), but e(A(k)) = w(n). (11)

Then the sample Fréchet mean and median graphs — computed according to either

the Hamming distance or the adjacency spectral pseudometric — are sparse, as
defined by (11).
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Proof of Corollary 1. The corollary is a direct consequence of Theorem 1.

4 Proofs of the Main Result

We give in the following the proof of Theorem 1. The key observation is that it
is relatively easy to derive tight bounds on the number of edges of the sample
Fréchet median graph. Inspired by the results in [15] that show that for large
classes of random graphs the sample Fréchet median and mean graphs are iden-
tical, we prove that the bounds derived for the Fréchet median graphs also hold
for the Fréchet mean graphs.

Our analysis begins in Subsect.4.1 with the sample median graphs com-
puted using the Hamming distance, we then move to the sample mean graphs in
Subsect. 4.2. In Subsects. 4.4 and 4.5, we extend these results to the sample
mean and median graphs computed with the adjacency spectral pseudometric.

When possible, we use the probability space G(n, P) of inhomogeneous Erdés-
Rényi random graphs [3], equipped with the Hamming distance to test the tight-
ness of our results [15].

4.1 The Median Graphs Computed Using the Hamming Distance

The Hamming distance, by nature, promotes sparsity [5,17], and we therefore

expect that the volumes of the sample Fréchet mean and median graphs com-

puted with this distance be similar to the sample mean number of edges.
When the distance is the Hamming distance, the sample Fréchet median

graphs can in fact be characterized analytically.

Lemma 1. The adjacency matriz my [A] of a sample median graph my [G]

18 given by the majority rule,

if o al? < Nj2
[fﬁN[A]] 0 by <N a)
1  otherwise.

Proof of Lemma 1. The result is classic and we omit the proof, which can be
found for instance in [4].

In the following lemma, we derive an upper bound on the number of edges of a
Fréchet median graph, ez
Lemma 2. Let ey be the sample mean number of edges, given by (8). Then the
number of edges of a Fréchet median graph my [G] s bounded by

em < 2€N. (13)

Remark 2. The bound (13) is tight for large N. Indeed, consider a sample of 2N
graphs, where

ak) {the complete graph K,, if 1<k<N+1, 14

the empty graph if N+2<k<2N.
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A Fréchet median graph my [A], given by the majority rule (12) is K, and
thus ez = n(n — 1)/2. On the other hand, the sample mean number of edges is
en = e /2 + ez /(2N). As the sample size N goes to infinity, we have

lim eqm = 2ey, (15)

N—00
which proves that the bound (13) is asymptotically tight.

Proof of Lemma 2. Let & = {(i,j), i < j, [mn[A]];j =1} be the set of
edges of My [G} We have |E7| = e - Now,

N N N N
VRS S SUIIED SID SIS Db DI IR
k=1 1<i<j<n k=1 1,jEEm k=1 i,JEE k=1

Neglecting the edges (i, j) not in Ez, we have

N
CED YD WED SE S v

k=1 i,jEEm k=1 i,j€EEm

N

whence we conclude

N
2 _
e < N 321 e(A(k)) = 2en. (17)

4.2 The Mean Graphs Computed Using the Hamming Distance
First, we recall the following lower bound on the Hamming distance.

Lemma 3. Let A and B be the adjacency matrices of two unweighted graphs
with number of edges e(A) and e(B) respectively. Then

le(A) —e(B)| < du(A,B). (18)
Proof of Lemma 3. The proof is elementary and is skipped.

Next, we derive an upper bound on the deviation of the volume of a Fréchet
mean, e;, away from the sample average volume, ey, given by (8).

Lemma 4. Let ﬁN[A] be the adjacency matrixz of a sample Fréchet mean com-
puted using the Hamming distance, with e; edges. Let en be the sample mean
number of edges. Then

2 N
[eﬁ —eN] <2 dh(inlA], AW) = EBy(av([A]). (19)
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Remark 3. This bound is not tight. We consider again the probability space of
inhomogeneous Erdds-Rényi random graphs equipped with the Hamming dis-
tance. In that case, one can show that the population Fréchet mean and median
coincide [15], and the adjacency matrix of the population Fréchet mean graph,
u [A], is given by the majority rule,

I

0 otherwise.

Also, the population Fréchet function, Fb, evaluated at N[A] is given by [15]

AulA) = [ Y py - Y @y -] + X s -p) ()

1<i<j<n (i’j)eg(u [AD 1<i<j<n

where 5(;1, [A]) is the set of edges of the population Fréchet mean, ,u,[A]. We
claim that the lower bound on ﬁg(ﬁ,N[A]) in (19),

[EN — 6,7]2, (22)

can be identified with the first term of F5(p[A]) in (21),

[ Sopi— > (@pij- 1)}2~ (23)

1si<isn (i jyee(ufa))

Indeed, the first sum inside (23) is the population mean number of edges, E [e],
which matches the sample mean €y in (22). Also, the second sum in (23) is
bounded by e(/J, [A} ), the number of edges of the population Fréchet mean,

0< Y @p—-1)< > 1=e(nlA]). (24)
(e (u[a]) (.)€ (unla])

The number of edges e(p[A]) matches the sample estimate, ez, in (22). In
summary, the first term (23) of the population Fréchet function (21) matches
the corresponding sample estimate (22).

However, the second term, >, ;< Pij(1 — pi;) in (21), which accounts for
the variance of the n(n —1)/2 independent Bernoulli edges, is not present in the
lower bound on in Fy[u[A]] given by (19), confirming that the lower bound in
(19) is missing a variance term, and is therefore not tight.

Proof of Lemma 4. Because of Lemma 3, we have
le(AM) — ez* < d (jin[A], AD). (25)

Now, the function
z— (e — x)2 (26)
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1s strictly convex so,

2

_ 2 15~ Lo *) ?
len —ea|” = NZ@(A NZ‘@ (AW —ep (27)
k=1 k=1
and substituting (25) for each k in (27), we get the advertised result. O

Finally, we compute an upper bound on the Fréchet function evaluated at a
sample Fréchet median graph, F(my [A] ).

Lemma 5. Let ey and o%(e) be the sample mean and variance of the number

of edges (see (8)). Then the Fréchet function 28 (mn[A]) evaluated at a Fréchet
median graph is bounded by

Py [A]) < 2[en]’ + o%(e). (28)

Remark 4. As explained in Remark 3, when the graphs G®) are sampled
from G (n, P), then the population Fréchet mean and median graphs coincide,
u[G] = m[G] Also, the population Fréchet function Fg(m[AD evaluated at a
population Fréchet median graph is given by

RimAl= [ Y p= ¥ -0 + X ps-py) @)

1<i<j<n (M)eg(m[A]) 1<i<j<n

where the term 2p;; — 1) is always positive (since the median
(ayee (mla]) Y

graphs are constructed using the majority rule (12)). Therefore, we have

F [ Z Pl]} + Z pij(1 = pij). (30)

1<i<j<n 1<i<j<n

The term Zl<i<j<n pij is the expectation of the number of edges, whereas
Zl<i<j<npij(1 — pij) is the variance of the number of edges. In summary, we
have the following bound on the population Fréchet function,

Fy(m[A]) < [Ele] ]2 + var [e], (31)

where e denotes the number of edges in graphs sampled from g(n,P). If we
replace E [e] and var [e] by their respective sample estimates, €y and o3 (e),
then the bound (28) is only slightly worse (by a factor 2 in front of €y) than
the population bound, (31). Interestingly, the variance of the number of edges is
present in both expressions.

Proof of Lemma 5. From (5), one can derive the following expression for the
Hamming distance from a Fréchet median graph my [G] to a graph G*)

dy(my [A], AW) = ez +e(AW)) —2) agf), (32)
(17])687?



34 D. Ferguson and F. G. Meyer

where we recall that & = {(i, ), i <7, {mN [A]] = 1} is the set of edges of
ij

my [G} . Taking the square of the Hamming distance given by (32), and summing

over all the graphs, yields

Fy(my[A]) = Jbi { [em + e(A(k))]2 + 4[ Z Ef)]
k=1 (i.4) €€
-fes+e(a®)] 3 o]}
(i,7) €€

Ezpanding all the terms, and using the definition of 03;(e) and ey in (8), we get

N 2
. 4
k=1 (“J)Egm

2

P
— A [ 0] —tem| 3 Za )
k=1 (4,§) EEm (4,0)EEm
N 2
= [eﬁ +€N]2 +0']2V(€> +4% Z [ Z al(.;_“)‘|
(4,0)EEm
P
N Ze(A(k)) [Z al(?)} — dem [ Z N Za(k)]
k=1 (4,7)EEm (4,7)€Em

Now, because of the definition of the median graphs (12), we have the following
upper bound

1 N
- 4%[ 3 a(ﬂ < —2[em]”. (34)
(4,)EEm k=1
")

Because e(A®)) > 2 (i)eEm af

ij

_42 A®) S a®) < 42 [Z (k)}. (35)

(i,5)€€m k=1 (i,j)€€m

we get the following upper bound,

Finally, after substituting (34) and (35) into (33), we get the bound announced
in the lemma,

ﬁg(fn\N [A}) S[em —|—EN]2 — 2[6@}2 + 0']2\;(6) = —[em — EN]2 + Q[EN]Q + 0']2\[(6)
<2[en]? + % (e). O

4.3 The Number of Edges of my [G] and fin [G] when d = dyg

The following lemma provides the bounds given by Theorem 1 when d is the
Hamming distance.
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Lemma 6. Let {G(l), ceey G(N)} be a sample of unweighted simple labeled
graphs with vertex set {1,...,n}. Let fix[A] be the adjacency matriz of a sample
Fréchet mean graph, and my [A] be the adjacency matrix of a sample Fréchet
median graph, computed according to the Hamming distance. Then

JN(G)
\/i 9

Proof of Lemma 6. The bound on e(?n\N [A]) is a straightforward conse-
quence of Lemma /4. Indeed, (13) and (8) yield the bound in (36),

( Z A(k) < 2en.

e(BnlA]) and e(my[A]) < 2en. (36)

We now move to e(ﬁN[A]). We use my [A] to derive an upper bound on the
Fréchet function computed at ﬁN[A}. By definition of the sample Fréchet mean
graphs, we have

N N
Z A, AW < Z (mn[A], AW). (37)

k:

Using (19) as a lower bound and (28) as an upper bound in (37), we get

[eﬁ — eN} 2 < 2[@N]2 + 0% (e),

and thus

leq —en| < /2[en]” + o%(e) <

\/»{\[eN‘f'UN( )} on+ O (g

from which we get the advertised bound on eg. a

4.4 The Mean Graphs Computed Using the Adjacency Spectral
Pseudometric

The technical difficulty in defining the sample Fréchet mean and median graphs
according to the adjacency spectral pseudometric stems from the fact that the
sample Fréchet function, F,(A), is defined in the spectral domain, but the
domain over which the optimization takes place is the matrix domain. This leads
to the definition of the set, A, of real spectra that are realizable by adjacency
matrices of unweighted graphs (elements of S, defined by (3)) [11],

A={X(A)=[A(A) - A\ (A)] ;where A € S}. (39)

Let {G(1)7...,G(N)} be a sample of unweighted simple labeled graphs with
vertex set {1,...,n}. Let A®) be the adjacency matrix of graph G*), and let



36 D. Ferguson and F. G. Meyer

X(A®) be the spectrum of A®*). The adjacency matrix, ﬁN[A], of a sample
Fréchet mean graph computed according to the adjacency spectral pseudometric,
has a vector of eigenvalues, A(ptn [AD € A, that satisfies

An[A]) = argmin > |2 = AA®)|”. (10)
€4 k=1

Similarly, the adjacency matrix, my [A}, of a sample Fréchet median computed
according to the adjacency spectral pseudometric, has a vector of eigenvalues,
A(my[A]) € A, that satisfies

N
A(mn[A]) = ar)‘grr/llin S IA=AA®))). (41)
€4 k=1

We recall the following result that expresses the number of edges as a function
of the £2 norm of the spectrum of the adjacency matrix.

Lemma 7. Let G € G with adjacency matriz A. Let A\ (A) > ... > A\, (A) be
the eigenvalues of A. Then

2e(A) =) AH(A) = | AA)I5. (42)
i=1

Proof of Lemma 7. The result is classic; see for instance [2,16].

We derive the following lower bound on the sample mean number of edges.

Lemma 8. Let IEN[)\(A)] = %Zszl X(A®) be the sample mean spectrum.
Then

11~ 2
s[Esxa]| <, (43)
where €y is the sample mean number of edges, given by (8).

Proof of Lemma 8. The result is a straightforward consequence of the convez-
ity of the norm combined with (42).

If A were to be a convex set, then the spectrum of a sample Fréchet mean
graph would simply be the sample mean spectrum, which would minimize (40).
Unfortunately, A is not convex [12]. We can nevertheless relate the spectrum of
a sample Fréchet mean graph, )\(ﬁN[A} ), to the mean spectrum IEN[)\(A)]. We
take a short detour to build some intuition about the geometric position of the
spectrum of fin[A] with respect to A(AM), ..., A(ADN)),

Warm-Up: The Sample Mean Spectrum. Let {G(l), ceey G(N)} be a sample
of unweighted simple labeled graphs with vertex set {1,...,n}. Let A®) be the
adjacency matrix of graph G*), and let A(A®)) be the spectrum of A,
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Lemma 9. Let IEN[/\(A)] be the sample mean spectrum. Then 3 ko €
{1,..., N} such that
IM(AT) || < [Ex[AA)]- (44)

Proof of Lemma 9. A proof by contradiction is elementary.

Using the characterization of a sample Fréchet mean graph, ﬁN[A], given by
(40), we can extend the above lemma to A(fin[A]), and derive the following
result.

Lemma 10. Let )\(ﬁN[A]) be the spectrum of a sample Fréchet mean graph.
Let ey be the sample mean number of edges of the graphs G, ... .G Then

A [A])] < 32w (45)
Proof of Lemma 10. Because of Lemma 9,
Fho € {1,..., N}, [AA®)| < [[En[A(A)]]. (46)
Now, because of Lemma 8, (46) implies that
IAA®) | < Ty (47)
Because the vector X\(A*0)) is in A (defined by (39)), we have

N

N
5 S IAENA) - AAD)? <+ STIAAR) - A(A®) 2
k=1

k:

Ezxpanding the norms squared on both sides yields

IMENTADP — 2\ AN [A]), Ex[MA)]) + Z [A(A®)?

N
<[A(A%)|2 —2(a(A%), E Z A(AD) 2.

Subtracting + Zgzl IA(A®)|12 and adding HI@N[)\(A)} ||2 on both sides we get

2

9

M@V [A]) - Ex[A)]]* < [|A(A®) ~ Ex[A4)]

and therefore

IMEN[AD] < [AAR) | + 2| En[AA)]]- (49)
Finally, using Lemma 8 and (47) in the equation above, we obtain
IA(BN[AD] < 3v2en, (50)

which completes the proof of the bound on the spectrum of the Fréchet mean. O
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4.5 The Median Graphs Computed Using the Adjacency Spectral
Pseudometric

We finally consider the computation of the median graphs. We have the following
bound on the norm of the spectrum of my [A].

Lemma 11. Let A(my [A]) be the spectrum of a sample Fréchet median graph.
Let ey be the sample mean number of edges of the graphs G, ... G Then,

AN [A])] < 3v2w. (51)
Proof of Lemma 11. The function &,
¢ :R" — [0,00)
z— &(x) = | A(mn[A]) — ||

18 strictly convex, and therefore

?(En[A(A)]) = <]1V ﬁ: A(A(’“))> < % ﬁ:@ (A(AW)) . (52)

Now, the right-hand side of (52) is the Fréchet function evaluated at one of its
minimizers. Thus Fy (X(my [A])), is smaller than Fy(A(A*))), where AFo) is
defined in Lemma 9, and (52) becomes

N
— =~ 1
IM@mx [A]) ~ Ex[AA)]I] < 5 D IAAS) = X(AW)]. (53)
k=1
Also, because of Lemma 8 and (47), we get

N
5 O IAA%) — A(AW) | < A(A®)] + Iy < 2T (54)
k=1

Combining (53) and (54), and using Lemma 8 we conclude that

AN [AD] < [Ex[ACA)]| +2vEN < 35w,

This completes the proof of the bound on the spectrum of a Fréchet median. 0O

4.6 The Number of Edges of my [G] and [in|[G] when d = d,

The following lemma provides the bounds given by Theorem 1 when d is the
spectral adjacency pseudometric.

Lemma 12. Let {G(l),...,G(N)} be a sample of unweighted simple labeled
graphs with vertex set {1,...,n}. We consider a sample Fréchet mean, ﬁN[A] ,
and a sample Fréchet median, my [A] , computed according to the spectral adja-
cency pseudometric. Then

max {e(iin[A]), e(my[A])} < 9eEn, (55)

where ey 1is the sample mean number of edges given by (8).
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Proof of Lemma 12. We first analyse the case of a sample Fréchet mean
graph; a sample Fréchet median graph is handled in the same way. From lem-
mata 10 and 11, we have

IA(En[A]]* < 18en. (56)

Now, from (42) we have e(in[A]) = || A(Bn[A])|?, and therefore

e(pnfA]) <9en,

which completes the proof of the lemma. O
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