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Taking the two-phase material as a model system, here we perform atomistic-to-microscale computa-
tional analysis on how the dislocations pileup is formed at a buried interface through two-dimensional
concurrent atomistic-continuum simulations. One novelty here is a simultaneous resolution of the pum-
level dislocation slip, the pileup-induced stress complexity, and the atomic-level interface structure evo-
lution all in one single model. Our main findings are: (i) the internal stresses induced by a pileup spans
a range up to hundreds of nanometers when tens of dislocations participate the pileup; (ii) the resulting
stress concentration decays as a function of the distance, r, away from the pileup tip, but deviates from
the Eshelby model-based 1/r%°, where the interface was assumed to be rigid without allowing any local
structure reconstruction; and (iii) the stress intensity factor at a pileup tip is linearly proportional to the
dislocation density nearby the interface only when a few dislocations are involved in the pileup, but will
suddenly "upper bend” to a very high level when tens of or more dislocations arrive at the interface. The
gained knowledge can be used to understand how the local stresses may dictate the plastic flow-induced
phase transformations, twinning, or cracking in heterogeneous materials such as polycrystalline steel, Ti-,
Mg-, high entropy alloys, fcc/bcc, fcc/hep, and bec/hep composites, containing a high density of interfaces.
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1. Introduction high local stress cannot be fully relieved by dislocation cross-slip,

transmission, the other structure changes such as phase transfor-

The microstructure of many engineering materials is usually
heterogeneous in nature due to the presence of a high density of
interfaces, such as grain boundaries (GBs), phase boundaries (PBs),
stacking faults, or twin boundaries (TBs), etc. When these mate-
rials are subjected to a plastic deformation, the interactions be-
tween those interfaces and the plasticity carriers, e.g., dislocations,
control their microstructure evolution and overall performance. A
pileup forms when the interface blocks the slip containing a queue
of dislocations. The dislocation pileup leads to a local strain accu-
mulation and a stress concentration, i.e., a stress magnitude at a
fraction of theoretical strength ahead of the spearhead of a pileup
[1-3]. Even at moderate applied stresses, the stress concentration
factor at a pileup tip can be as large as 10 to 100 [4-6]. If such a
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mations (PTs), crack initiations, twinning, and even atomic diffu-
sion will then occur.

In the past decades, extensive experimental research efforts
have been dedicated to characterizing the complex stress field
induced by a slip-interface reaction across a variety of different
length scales. For instance, at the microscale, the electron backscat-
tered diffraction (EBSD) or high-resolution EBSD (HR-EBSD) has
been widely used to measure the strain accumulation at the slip-
GB intersection [1,2,4,7]. At the nanoscale, the transmission elec-
tron microscopy (TEM) or high-resolution TEM (HR-TEM) is usu-
ally deployed [8-13] to resolve the detailed dislocation activities
near the GBs. These experiments have, of course, largely advanced
the researchers’ understanding in this field but are limited in sev-
eral aspects: (i) the local internal stresses are usually not directly
measured in experiments. Instead, they are calculated from the
EBSD-/TEM-measured strain using certain constitutive rules, e.g.,
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the Hooke’s law, in elasticity or higher-order theories; and (ii) the
existing experimental techniques have a limited time-scale reso-
lution, at which the capture of the local structure change, such
as the dislocation transmission or step formation process at the
GB, during the dislocation piling up process is non-trivial. Up to
date, it remains difficult using single-scale techniques to simulta-
neously resolve the configuration of tens of or more dislocations
piling up at the interface, the pm-level stress concentration ahead
of the pileup tip, as well as the atomic-scale structure evolution at
the slip-interface intersection. These limitations lead to a series of
unanswered questions: is it possible to directly quantify the inter-
nal stress around the dislocation-interface intersection instead of
measuring the strain and then converting it into stresses according
to the theory of elasticity? If it is, how will such a directly mea-
sured local stress differ from the prediction by classical models,
such as the Eshelby model, at the continuum level? Can we quan-
titatively correlate the density of the dislocations in a localized slip
with the internal stress intensity factor ahead of the slip-interface
intersection? If yes, at what length scales? Clearly, a seek of the
answers to those questions remains challenging from the experi-
mental point of view.

High-fidelity computer simulations are thus essential to avoid
interpreting the experimental results using assumed theories or
mechanisms. With the advent of high-performance computing,
molecular dynamics (MD) have become a powerful tool for study-
ing materials’ deformation behavior at an atomistic resolution. The
equations in MD are discretized in time and do not involve spa-
tial derivatives. It, consequently, possesses no barrier in simulating
dislocations slip and the local structural change. Thus, MD simu-
lations can unravel the mechanisms underlying the material’s con-
stitutive behavior and may correlate the fine-scale interface struc-
ture changes with the behavior of materials at a larger length
scale. However, by considering the materials as a collection of
atoms, MD simulations is computationally demanding. If only a
modest computational resource is used, the length scale of an MD
model is usually limited at the nanoscale and even below if a so-
phisticated interatomic potential is deployed. This limitation pre-
vents MD from being used to fully reproduce the material’'s de-
formation behavior observed in real experiments. As far as the
slip-interface reactions are concerned, in many existing MD mod-
els, one single [14,15] or only a few dislocations are introduced
close to an interface in a simulation cell with a very limited vol-
ume [16-18]. As such, the dislocation density becomes unrealis-
tically high. Also, the forces induced by the interaction between
periodic images are non-negligible and may pollute the results
[18,19]. It thus casts doubt on directly mapping the nanoscale MD-
simulation-based mechanisms to the microscale experimental ob-
servation for a dislocation-interface reaction [20]. Historically, to
scale up in length, continuum models enjoy the most popularity
in understanding the deformation behavior of materials at large
length scales. In particular, for heterogeneous materials containing
interfaces, a variety of continuum models [21-24], such as dislo-
cation dynamics (DD), crystal plasticity finite element (CPFE), or
phase field approach (PFA), have been developed. In particular, the
interaction between dislocation pileups and the GBs leading to slip
transfer [25] and PTs [26,27] in materials under compression and
shear have been studied with PFA. Without the explicit descrip-
tion of the atomistic structure of dislocation/interfaces, these con-
tinuum approaches provide researchers with a considerable gain
in computational efficiency comparing with MD. Nevertheless, they
require constitutive rules as inputs, which usually need to be care-
fully calibrated from experiments and fine-scale simulations. This
is, however, not trivial, especially when describing the interac-
tion between dislocation-mediated plastic flow and the buried in-
terface becomes essential. Understanding the dislocation-interface
reaction in materials thus necessitates multiscale simulations to
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overcome many limitations in continuum and also fully atomistic
models.

In this work, a concurrent atomistic-continuum (CAC) approach
[28-39] built upon a formulation [40-42] that unifies the atom-
istic and continuum description of materials within one framework
is deployed. Here, as a first demonstration of the CAC's applica-
bility in characterizing the local stress complexity induced by a
micrometer-level dislocation pileup at an atomically-resolved in-
terface, a two-dimensional (2D) two-phase material (the hexago-
nal and square phases co-exist with an incoherent interface in be-
tween) under a well-controlled plastic shear is selected as a model
system. We choose such a simple system as a model material be-
cause: (i) the dislocation pileup at the GBs and the pileup-induced
local stresses in many realistic 2D materials, such as boron nitride
[43], colloidal crystals [44], MoTe, [45] and so on, significantly
contribute to their deformation behavior (PT in particular) but is
not fully understood up to date; (ii) the 2D model setup under a
plane strain condition provides us with an opportunity to validate
the simulation results through comparing them with the analyti-
cal solutions from the plane elasticity theory-based Eshelby model
[46]; and (iii) if desired, the interface structure in this system can
be easily tuned to approximate the realistic interface in recently
developed high-performance hcp/fcc, hcp/bec, or fcc/becc metallic
composites, such as Ti/Al [47], Mg/Nb [48], Cu/Nb [49], and among
several others.

This paper is organized as follows. In Section 2, we briefly
review and introduce the CAC methodology, the model material,
the computer model set-up, as well as the boundary and load-
ing conditions. The results from the microscale CAC together with
nanoscale MD simulations of the dislocation pileup at the inter-
face and the pileup-induced stress concentration are then analyzed
in Section 3. Thereafter, this work is concluded with a summary
of our major findings as well as a discussion of future research in
Section 4

2. Methodology and the computer model setup

The CAC methodology is derived from the numerical implemen-
tation of a formulation in [41,50-52], which is a generalization of
the Irving-Kirkwood procedure [53-56] in statistical mechanics. It
views the solid material as a collection of lattice cells continu-
ously distributed in space, within each of which a group of dis-
crete atoms is embedded. The continuum-level physical quantities,
including mass density, linear momentum density, energy density,
momentum flux (also referred as stress in continuum mechanics),
and energy flux, are then defined from the atomic positions, ve-
locities, and interatomic forces through Dirac or Gaussian distri-
bution functions [40,42]. An introduction of these physical quan-
tities into the classical Newtonian mechanics leads to a series of
equations, i.e., mass conservation, momentum balance, and energy
conservation equations, which can govern the mechanical, ther-
mal, and mass transport behavior of materials from the bottom up
[41]. These equations are partial differential equations in the same
form as the balance equations in classical continuum mechanics
but with atomistic information built-in. Thus, those equations can
be solved using numerical techniques, such as finite-difference or
finite element (FE), which are commonly used for solving the equa-
tions in continuum mechanics.

As an FE implementation [38,39] of the atomistic field formu-
lation, CAC has several unique features: (1) unlike the FE model in
classical continuum mechanics considering the material as a col-
lection of mass points without any internal structures, each FE
node in CAC is one lattice cell containing a group of atoms whose
motions are independent from each other; (2) the material behav-
ior in the atomistic and CG domains of a CAC model is governed by
the same constitutive rule, i.e., the interatomic potential. In partic-
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Table 1
The parameters of the modified L-J potential for both the square and hexagonal
phases.
mass (g/mole) o (A) & (eV) H(eV-A) 1, (A) o, (A)  cut-off (A)
63.546 2277 0415 -0.4964 3.6432 04772  5.0094

ular, the forces acting on the atoms within each FE node in the CG
domain are calculated by converting the interatomic forces into the
internal force density through the deployment of a Gauss quadra-
ture scheme [38,39]; (3) it does not need any special treatments
to describe discontinuity, such as dislocations or cracking, at the
continuum level because the slip systems as well as the cleavage
planes are all built in; (4) the dislocations can be also initially in-
troduced into the CG domain by displacing the FE nodes according
to the dislocation-induced displacement field derived from the the-
ory of elasticity[7]. This differs from other continuum approaches
which accommodate dislocations through the deployment of either
a contact model in [57,58], a Heaviside step function in [59], or an
additional DOF in CPFE [60,61]; (5) it does not need sophisticated
rules for passing the dislocation-mediated plastic flow from the
continuum domain to the atomistic domain and vice versa [28-
30]; (6) the CG domain in CAC has a significantly less degrees
of freedom (DOF) than that in a fully atomistic model. It may be
scaled up to the micrometer level and in turn, enable us to model
the pileup of tens of dislocations at an interface. This goes beyond
the reach of a traditional MD model because MD usually has a lim-
ited length scale at nanometers and can only accommodate sev-
eral dislocations in an equilibrium pileup [18]. Furnished with the
above features, CAC have been applied to simulate: (a) dislocations
in Cu, Al, Ni, and Si by CAC using rhombohedral-shaped elements
with the element boundaries being aligned on the slip plane [31];
(b) Si-I — Si-II PT in single-crystal Si by CAC [39]; and (c) the dis-
location pile up at a grain boundary (GB) as well as the subse-
quent dislocation transmission across the GB, in bi-crystalline Cu
[30]. These results confirm that CAC has a predictive capability at
approximately the same level as that of MD but demands signif-
icantly less computational resources. It thus provides us with an
ideal platform for understanding the micrometer-level dislocation
pileup at a material interface, the atomic-level interface structure
evolution, together with the subsequent phase transformation and
twinning, if there would be any.

For the two-dimensional two-phase material system under con-
sideration here, two phases (hexagonal and square) co-exist with
an interface in between. The interaction between the atoms in both
the square and hexagonal phases is described using a modified
Lennard-Jones (L-]J) potential as shown in Eq. (1) by Lee and Ray
[62]:
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which was originally proposed to study the bcc-to-hcp PT in iron.

The modified L-J potential’s functional form in Eq. (1) is the
combination of a traditional L-J (12-6) term and an inverse Gaus-
sian term. The 12-6 term leads to a stable hexagonal crystal struc-
ture at zero stress. The addition of an inverse Gaussian into the
modified L-] potential gives rise to a square lattice structure. Here
the parameters H, r,,,;,, and oy, in Eq. (1) were chosen to stabilize:
(i) an immobile but deformable incoherent interface between the
square and the hexagonal phase, which can act as the obstacles to
dislocation motion; and (ii) the core structure of a dislocation in
the hexagonal phase. The interatomic potential parameters satis-
fying these two conditions are listed in Table 1. Fig. 1 aand 1 b
shows the corresponding potential energy landscapes and the cells

Square
Hexagonal

Potential Energy Per Atom(eV)
—
)

_2.0 2 2 2 2 2 2 2
4 6 8 10 12 14 16 18
Area (A?)
(a
Y

ahex
(b)

Fig. 1. (a) The potential energy of the square (blue) and hexagonal (brown) lattices
by a modified Lennard-Jones form in Eq. (1) and (b) the unit cell transformation
from square to hexagonal phase.

X

of these two phases with their lattice constants being noted as asq
and apey-

The 2D CAC model for the two-phase material with square and
hexagonal lattices coexisting is then constructed (Fig. 2 a). The ma-
terial on the right side of the interface is in a square phase and has
a dimension of Ly_sq along the x-direction. By contrast, the mate-
rial domain on the left side of interface is in a hexagonal phase
and has a dimension of L,_j., along the x-direction. The sample di-
mension along the y-direction is chosen as Ly = MpexQpeyx = Nsqlsqs
where mye, and nsq are the numbers of the hexagonal and square
lattice cells along the y direction, ape, =2.41 A and asq = 2.56 A
are the lattice constants for the hexagonal and square lattice, re-
spectively. For the hexagonal phase on the left side of the inter-
face, the material domain is in a CG description and is discretized
into coarse FEs. Each FE, the center of which is indicated as green
squares in Fig. 2 b, contains 64 atoms. Due to the deployment of
a CG description, L,_pex can be scaled up to the micrometer level
and even above. Most importantly, these FEs can slide with each
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Fig. 2. The CAC model set-up for the dislocation pileup at an interface in the two-phase system: (a) the CG description of dislocations in hexagonal lattice away from the
interface and the atomistic resolution near the interface; (b) a zoom-in display of the region in the dashed box of (a).

other along the element boundaries, which are currently aligned
with one of the slip planes, to accommodate the dislocation mi-
grations along the [100] direction without the need of tracking the
motion of each atom in the hexagonal phase. In details, a queue of
dislocations can be initially introduced into the CG domain one by
one through displacing the FE nodes there according to the the so-
lution from the theory of elasticity for the displacement of a dislo-
cation. Here, the dislocation nearest the interface is labeled as “1”,
the dislocation second nearest the interface is labeled as “2”, so on
and so forth. Such a dislocation indexing strategy does not change
on the fly of the simulations and has been used in the analysis of
our simulation results to be discussed in the following sections.

Different from the above CG description of the dislocations
away from the interface, the material domain near the interface
is resolved at a fully atomistic resolution (Fig. 2 a) because the de-
formation behavior at the interface is critical and will dictate its
overall constitutive response. As indicated by the crystallographic
orientations of the hexagonal and square phases being in Fig. 2 b,
an incoherent interface has been carefully designed here such that:
(i) the dislocation-mediated slip in the hexagonal phase is per-
pendicular to the interface; and (ii) the dislocation transmission
or slip transfer will be discouraged the most (the evidence why
the slip transfer across this interface is unfavorable can be found
through Schmid factor, geometric compatibility factor, and also
the Burgers vector analysis as shown in Section 3.1). In this way,
the pileup-induced stress field can be well quantified without the
need of considering many other complexities caused by the slip-
interface inclined angles, dislocation transmission, cross-slip, and
so on. However, it should be noted that, among all the possible
interfaces, the constructed interface satisfying the above two con-
ditions is not the one with an energy minimum, although our anal-
ysis on the slip-interface reaction will indeed benefit from such a
setup.

Thereafter the introduction of a queue of dislocations and the
construction of the carefully designed interface, the formation of
a pileup can be then simulated through the following steps: (1)
First of all, the displacement along z direction of the sample is
constrained to achieve a plane strain condition, which is consistent
with the setup in the classical Eshelby model [46]; (2) The model
containing the initially introduced dislocations is equilibrated for
a duration of 20 ps with a timestep of 1 fs to achieve an equilib-
rium configuration of dislocations; (3) A homogeneous shear strain

of &y =2 x 10~* is then imposed. This is in turn, followed by an
equilibration for a duration of 1 ps with the upper and bottom
boundaries being fixed. The strain rate resulting from such a load-
ing strategy is thus at a level of 2 x 108 /s, which is at the same
level as that in common MD simulations. It should be noted that,
although the material is deformed at a level of orders of magni-
tude of higher than that in experiments, the pileup-induced stress
is only characterized here when the system is fully equilibrated
at a desired shear; (4) This procedure repeats until the averaged
shear stress of the whole model arrives at a desired level noted
as Tqp. This is realized through monitoring the shear stress when
the shear strain has been imposed. If the shear stress is below the
desired 7qp, the shear strain will continue increasing. If the shear
stress is above the desired 7,4p, the imposed shear strain will be
adjusted to a lower level. When 74 arrives at the desired value,
the top and bottom boundaries of the sample will be constrained
and not allowed to move any further along both x and y directions;
(5) The 74p will then drive dislocations to migrate towards the in-
terface. For the sample under different 74p, the dislocation config-
urations will largely differ from each other: the higher the applied
shear, the smaller spacing between dislocations. In this way, the
dislocation pileup will be formed and in turn a stress concentra-
tion ahead of the pileup tip will be generated. The level of this
stress concentration can be then related with the number of the
dislocations participating the pileup, the density of the dislocations
behind the pileup tip, and of course, the level of the applied shear
(see more details in Section 3).

Other than the microscale CAC model, a series of nanoscale
fully MD simulations is also performed using LAMMPS [63] for val-
idation purpose. The dimensions, and the number of DOF, and the
computational cost for both the nanoscale MD and the microscale
CAC models are listed Table 2.

The timescale of each simulation in the above table depends on
the number of the dislocations in a pileup, i.e., the more disloca-
tions, the longer run. Taking one CAC simulation containing 16 dis-
locations as an example, after 9 dislocations arrive at the interface
within a duration of 0.4 ns, the CAC model has been equilibrated
under a constant shear for another 1.6 ns. The resulting timescale
of this run is 2 ns. The computational cost of such simulations are
reasonably affordable because one such simulation only takes 72 h
to finish if 96 computing cores on Comet of XSEDE are deployed.
Given the perfectly linear scalability of our massively parallelized
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Table 2
The dimensions and the number of the DOF in MD and CAC models.
Ly _hex Ly—sq Ly DOF Number of dislo- timestep/
cations in a pileup  second
Nanoscale MD 420 nm 70 nm 84 nm 1,355,284 atoms 0~38 170.034
Microscale CAC 1.58 um 120 nm 138 nm 315528 FE nodes 5~ 16 54.283

+118392 atoms

The timestep/second is measured using compute node on COMET@SDSC with 96 cores.

Table 3

The slip systems of the incoming and the potential outgoing dislocations as well as the resulting Schmid

factors, the geometric compatibility factors.

Incoming slip system

Outgoing slip system

Metric value

Slip plane  Slip direction  Slip plane  Slip direction  SF, SFout m’ m’ (SEy, + SFout)
{OOi}\heX (100) | pex {01}]sq (10)|sq 043 014 05 0.29

{001”hex (loo)lhex {]0}‘sq (01)‘sq 0.43 0.14 0 0

{00] } ‘hex (loo)lhex {]0} ‘sq (01 ) ‘sq 0.43 0.14 0 0

CAC simulator [64], for the formation of a longer pileup containing
more dislocations within an even longer duration, e.g., 32 disloca-
tions forming a pileup within 4 ns, one can still expect to finish
the simulation within 72 h by using 384 computing cores.

3. Simulation results

3.1. The Schmid factor, geometric compatibility factor, and burgers
vector analysis

In order to confirm that the interface that we have constructed
here indeed promotes the formation of a pileup by acting as a
strong barrier to the dislocation-mediated slip, we have performed
a series of detailed Schmid factor (SF), geometric compatibility fac-
tor (also noted as the Luster-Morris factor), and also the Burgers
vector analysis as follows.

For the slip-transfer problem under consideration here, the
incoming dislocations are in the hexagonal phase gliding on a
{001} plane with a slip direction of (100), which can be noted
as {001}(100)|pex.The neighboring grain across the interface is in
a square phase with three slip systems. If there would be any
transmission across the interface, the outgoing dislocations will
be in the {01} plane with a slip direction of (10), or in the {10}
plane with a slip direction of (01), or in the {10} plane with a
slip direction of (01), which are noted as {01}(10)|sq, {10}(01)|sq,
and {10}(01)|sq, respectively. For each of these three outgoing
slip systems, with respect to the incoming dislocation slip sys-
tem, {001}(100)|,e, under a shear along x direction (See Fig.
2), the Schmid factors of the incoming and outgoing dislocations
(noted as SF,, and SF,,;) are calculated and listed in Table 3. More-
over, the geometry compatibility factor, i.e., Luster-Morris param-
eter noted as m’ = cos(¢) cos(x) [65] is also calculated and in-
cluded in Table 3. Here, ¢ is the angle between the slip direction of
the dislocations in hexagonal and square phases, « is the angle be-
tween the normal direction of the slip plane along which the dis-
location glide in hexagonal and square phases. In addition to SF,,,
SFyu: and m’, a combined metrics proposed in a recent paper [66],
m' (SF;, + SFoyt) is also calculated and included here.

Two major observations from Table 3 are: (1) if the geomet-
ric compatibility factor is used as a controlling metrics, the slip
transfer and the outgoing dislocations can never happen through
{10}(01)|sq and {10}(01)|sq (the second and the third row of
Table 3) because m’ =0 for those two slip systems in square
phases; (2) the slip transfer may occur through an outgoing dis-
location along the {01}(10)|sq in the square phase, the chance of
which is, however, very low with m’ = 0.50 and m’(SE; + SFout) =
0.29 (the first row of Table 3) because, according to the extensive

experimental data reported in [67-69], the threshold value of m’
at which the slip transfer occurs is usually around 0.8 and even
higher.

In order to confirm that the slip transfer indeed will not occur
through an outgoing dislocation along the {01}(10)|sq during the
simulations, here we also perform a detailed Burgers vector analy-
sis. Firstly, the interface that we have constructed can be viewed as
a collection of dislocations resulting from the mismatch between
hexagonal and square phases. Taking the square lattice as a refer-
ence, the Burgers vector of these resultant dislocations, bys [70-
73], can be calculated as:

{bres} = {tsq} - {P}{thex}’ (2)

where {P} is a transformation matrix for mapping the Miller index
of a plane in hexagonal phases to that of a plane in square phases,
which is (0.94 -047 -0.47

0.0 082 -0.82
{tnex) represent the Miller index of the interface in the square and
hexagonal phase, respectively. According to the formula in [74,75],
the transmission will occur as long as the deformation gradient, F,
acting on the material which accommodates the outgoing disloca-
tion, i.e., the square phase here, satisfies:

{bo} = (F' =) - {p}, 3)

where by, is the Burgers vector of the outgoing dislocation. If it is
along the slip system of {01}(10)|sq in the square phase, {bou} =
(1,0)7, I'is the identity matrix, and p is the vector associated with
the Burgers circuit of the defect in the interface.

When no dislocation arrives at the interface, p is simply the
resultant Burgers vector, and is noted as py = bres, which can be
calculated using Eq. (2) by using the t); and t{,, as indicated
in Fig. 3 a. When the first dislocation arrives at the interface,
D1 = bj, + bres. During the pileup formation, for example, for the
CAC model containing 16 dislocations, upon certain shear, 9 of
them have arrived at the interface forming a step there, which
will result in pg = 9b;,, + 3byes since the step formed at the pileup
tip occupies three atomic layers. In this scenario, the deforma-
tion gradient, F, required for producing of an outgoing dislocation
of boyr = (1,0)T should satisfy {Boy} = (F~' =1I)-{po}. According
to E = 1/2(FTF —I), the deformation gradient satisfying this equa-
tion will produce a shear strain of y = 0.263. If the square phase
is subjected to a shear strain at this level, a phase transformation
(PT), rather than a slip, will occur because the square-to-hexagonal
—-0.057 0.222
0.222  -0.057
serve the PT ahead of the pileup tip when more dislocations are

). The column matrices {tsq} and

PT strain is ( )- It also explains why we always ob-
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Fig. 3. The atomic - scale structure evolution at the slip - interface intersection when different number of dislocations arrive at the interface in the time sequences, with
the formation of the step with a height of 5b when 5 dislocations arrive at the interface under 7y = 4 x 107 N/m.
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110 nm
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Fig. 4. The configuration of the local stress (tyy) field of dislocations in a pileup from truncated: (a) microscale CAC: 16 dislocations are piled up against the interface under
a shear 7, = 7 x 107 N/m. 9 of them arrive at the interface; and (b) nanoscale MD: 8 dislocations are piled up at 74, = 4 x 107 N/m. 5 of them arrive at the interface.

piled up at the interface no matter how long we run the simula-
tions, which is reported in our separate work [76].

3.2. The dislocation pileup process

A retaining of the fully atomistic resolution at the interface pro-
vides us with an opportunity of examining the detailed process of
a slip-interface reaction. Fig. 3 presents the time sequences of the
snapshots showing the reaction between dislocations and the in-
terface at the early stage of the simulations with the atoms be-
ing color coded with the coordination number (red: hexagonal;
blue: square; other: green). It should be noted that the simula-
tion box shown in Fig. 3 has been truncated to display the atomic
structures only at the slip-interface intersection. Fig. 3 a and b
shows that, when one dislocation arrives at the interface, a step
of 2.56 A, i.e., the magnitude of one Burgers vector b, forms. With
a further increase of the applied shear, more dislocations will ar-
rive at the interface and eventually, a step with a larger height
will be formed. This step can be approximately considered as a
single “super-dislocation” with a Burgers vector of Nb, with N as
the number of dislocations arriving at the interface. Under a shear
stress of Tqp =8 x 107 N/m, 5 dislocations have arrived at the in-
terface. The “super-dislocation” at the interface has a Burgers’ vec-
tor of 5b (Fig. 3 c).

Three major findings from Fig. 3 are: (1) as desired, the inter-
face under consideration here indeed blocks the motion of dislo-
cations without allowing any transmission. This is also the case
even when we extend the timescale of the simulations up to sev-
eral nanoseconds and longer [76]; (2) CAC resolves the fully atom-
istic details of a slip-interface reaction; and (3) a step-like “super-
dislocation” with a complex local atomistic structure is formed
at the slip-interface intersection. Similar features were observed
in our previous three-dimensional MD simulations of dislocation
pileup against tilt GBs in Si, which caused amorphization [77].

Fig. 4 a and 4 b shows the results from CAC and MD simulations
of 16 and 8 dislocations piling up at the interface under a shear
stress of Tqp = 7 x 107 N/m and 7qp = 4 x 107 N/m, respectively. It
should be pointed out that, since all the dislocations are initially
indexed before any external shear is imposed, dislocations 1-9 in

Fig. 4 a and dislocations 1-5 in Fig. 4 b are gone because they have
fully arrived at the interface and formed a step there. The heights
of the steps in Fig. 4 a and 4 b are 9b and 5b, respectively. It is
seen that: (i) Dislocations in CAC smoothly migrate from the CG
to the atomistically resolved interface domain; (ii) The pileup can
form at the interface without the occurrence of any transmission
in both MD and CAC; (iii) The dislocation transmission is not ob-
served even we significantly increase the timescale of the simula-
tion run up to several nanoseconds; and (iv) A square-to-hexagonal
PT is observed in such long-run simulations as reported elsewhere
|76]. Several main observations from Fig. 4 a and b are: (1) The lo-
cal shear stress field, Ty, around a single dislocation far away from
the interface, such as the 16th dislocation in Fig. 4 a and the 8th
dislocation in Fig. 4 b, is comparable with the solution from the
theory of elasticity. In contrast, Ty, around the dislocations close
to the pileup tip, such as the 10th-12th dislocations in Fig. 4 a
and the 6th dislocation in Fig. 4 b, has been largely altered. This
is believed to be correlated with the atomic-level structure distor-
tion at the slip-interface intersection; and (2) A stress concentra-
tion has been generated ahead of the pileup tip in both CAC and
MD. According to the results obtained from CAC (Fig. 4 a), this
stress concentration spans a length scale at a range of 130 nm
and will be even longer if more dislocations are included in the
pileup. A full MD simulation at this length scale will be computa-
tionally demanding, if not impossible. In our current MD models
with a limited space ( 70 nm) between the pileup tip and the free
end of the sample, the stress concentration ahead of the disloca-
tion pileup tip has been largely released due to the presence of
the free surface (Fig. 4 b), although only 8 dislocations have par-
ticipated in the pileup there.

3.3. The dislocation configuration in a pileup

Here, for comparison, the computer simulation-predicted dislo-
cation configuration in a pileup is compared with results from the
Eshelby model [46]. According to this model, the distribution of a
continuous dislocation density (noted as p(d), i.e., the number of
dislocations per unit length) behind the pileup tip approximately
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where d is the distance away from the tip of a pileup (see the in-
dication of d in the inset pictures of Fig. 5 a and b); 7qp is the
applied shear stress; w is the shear modulus of the materials con-
taining dislocations, i.e., the hexagonal lattice here; b is the Burgers
vector of dislocations; v is Poisson’s ratio of the material. In this
work, it = 35.4 x 107 N/m, b = 2.56 A, and v =0.3. Before compar-
ing our simulation results with Eshelby solutions, we would like
to point out that the derivation of Eq. (4) is under several key as-
sumptions: (i) it is a mathematical treatment under a continuum
approximation based on the theory of linear isotropic elasticity and
has ignored the dislocation core structures; (ii) the obstacle acting
as a barrier to dislocation’s motion in Eshelby model is assumed to
be fully rigid. It does not allow any local relaxation at the disloca-
tion pileup tip; and (iii) the Eshelby model does not take any free

p(d) =2 (4)
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surface-induced image stresses into account by considering dislo-
cations embedded within an infinite medium.

Fig. 5 a and 5 b shows the CAC- and MD-simulation-predicted
dislocation density distributions behind the pileup tip and their
comparison with that from Eq. (4), respectively. Here, p(d) is es-
timated by directly counting the number of dislocations per unit
length within a distance, d, away from the pileup tip. p(d) shown
in Fig. 5 a and b does not include any dislocations that have par-
ticipated the formation of the steps on the interface. Several key
findings from Fig. 5 a and b are: (a) the density of dislocation
distribution, p(d), especially p(d) near the tip at d — O, signifi-
cantly increases with the increase of applied shear stress. This is
consistently observed in CAC, MD, as well as Eq. (4); (b) the CAC-
simulation-predicted dislocation density distribution under tqp =
6 x 107 N/m and 7qp = 8 x 107 N/m agrees perfectly well with that
from Eq. (4) (Fig. 5 a), especially when d > 20 nm, although the
assumption of linear isotropy has been deployed in the Eshelby
model but anisotropy is retained in CAC; (c) at Tqp = 8 x 107 N/m,
different from the singularity predicted by Eshelby for p(d) at d —
0 in Eq. (4), the CAC-predicted p(d) saturates at d — O (Fig. 5 a).
This is believed to be reasonable because the CAC model allows a
local relaxation at the tip while the Eshelby model has assumed a
rigid obstacle; (d) comparing with the results from the microscale
CAC simulations, the dislocation density distribution from MD (Fig.
5 b) also agrees reasonably well with that from Eq. (4) even at d —
0. Because 74 applied on the MD model is lower than that in CAC,
at this stress level, the local structure at the pileup tip does not
relax and the interface may be still approximately considered as a
rigid obstacle; and (e) when 16 dislocations participate the pileup
formation, at tqp = 8 x 107 N/m, p(d) does not decay to zero at d
= 1.2 um (Fig. 5 a). In contrast, when only 8 dislocations partici-
pate in the pileup, (Fig. 5), even at 7qp = 4 x 107 N/m, p(d) decays
to zero at d = 0.4 um. This result suggests that the pileup con-
taining tens of or more dislocations spans a length scale at the
micrometer level or above, which can be captured by CAC but is
beyond the reach of a full MD model, if a modest computational
resource is used.

3.4. The dislocation pileup-induced stress concentration

In addition to dislocation density distribution, the CAC- and
MD-simulation-predicted stress distribution, especially the stress
profile, ahead of the pileup tip is also characterized. To measure
the local stress, in both CAC and MD models, a series of finite-sized
volume elements are constructed ahead of the pileup tip, each of
which is in a high resolution with a dimension of 5 A x 5A and
contains approximately four atoms. Then the stress tensor asso-
ciated with each volume element is calculated using a Virial for-
mula [78]. In this way, the dislocation pileup-induced stress profile
ahead of the slip-interface intersection can be determined. We are
aware that the deployment of a Virial formula for measuring the
local stress in an atomistic system may not be precise due to its
inconsistency with the definition of continuum-level Cauchy stress
[79]. A measurement of the local stress using the newly developed
atomic-level Cauchy stress formula in [80] is not used here but
will be attempted in our future work. The obtained stress profiles
are then fitted into an Eshelby-type model, i.e., Eq. (5), which is
a generalization of the classical Eshelby model [46] by introduc-
ing an additional parameter, g, into it (a = 0.5 in classical Eshelby
model). Two major reasons for such a generalization are: (a) the
local stress’ decay as a function of 1/r0 (here r is the the distance
away from the slip-interface intersection) in the classical Eshelby
model is built upon an assumption on treating the dislocation bar-
rier as a rigid obstacle, which is obviously not the case here; (b)
the step formation at the slip-interface intersection is accompa-
nied by a complex local structure evolution, which may have led
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Fig. 6. The local stress profile ahead of the slip-interface intersection along the slip direction under a variety of 7, from CAC and MD simulations and their fits into Eq. (5),

the extended Eshelby model with (a,d) a=0.5, (b,e) a=0.58, (c,f) a=1.

to a stress redistribution deviating from 1,103, especially when a
large number of dislocations arrive at the interface. Under this ar-
gument, a generalized Eshelby model for characterizing the stress
profile, e.g., T, ahead of the pileup tip is proposed as:

. K
(r+r9®’

where 7 is the local shear stress ahead of the pileup tip, K is the
stress intensity factor at the pileup tip, and r is the distance be-
tween the pileup tip and the stress measurement site (the center
of the volume element in the inset picture of Fig. 5). Two param-
eters, Tg and rg, in Eq. (5) account for the uncertainty associated
with the reference stress state and the location of the pileup tip,
respectively. The parameter a is introduced here to accommodate
the local structure relaxation at the slip-interface intersection.

Fig. 6 presents the MD- and CAC-simulation-predicted shear
stress distributions ahead of the dislocation pileup tip, as well as
their fits into the Eshelby-type model at three typical values of a.
Several major findings here are:

(a) Both CAC (Fig. 6 a-c) and MD (Fig. 6 d-f) data fit into
Eq. (5) predicting an exponential decay of T ahead of the dislo-
cation pileup tip. One common feature between CAC and MD sim-
ulations are: the stress level as well as the stress range ahead of
the pileup tip will be amplified when the applied shear stress, qp,
is increased because the number of dislocations arriving at the in-
terface becomes more at a higher 74p. In details, when the applied
shear stress is relatively low but increases from 2x107 N/m (red
curves in Fig. 6 d-f) to 4x107 N/m (green curves in Fig. 6 d-f), the
local stress at the pileup tip (r = 0) increases from 4x107 N/m to
14x107 N/m. This stress concentration does not decay to zero un-

T=T7 (5)

til r=20 nm and r =40 nm when 7q, = 2x107 N/m and Tap =
4x107 N/m, respectively. Upon a further tqp increase from 6x 107
N/m (red curves in Fig. 6 a-c) to 8x107 N/m (green curve in Fig.
6 a-c), the stress concentration at the pileup tip (r = 0) increases
up to 17x107 N/m. At this stage, the number of dislocations par-
ticipating the pileup is 16, which can not be accommodated by the
current MD models. Thus, all the results in Fig. 6 a—c are obtained
from CAC simulations. Obviously, the participation of a large num-
ber of dislocations in the pileup produces a long-range stress pro-
file spanning hundreds of nanometers (Fig. 6 a-c), which does not
decay to zero until the free surface at r = 138 nm. We believe that,
similar to what has been observed in experiments [81], such a slip-
interface interaction-induced stress concentration can span tens of
microns as long as more dislocations are included into the pileup
in an even larger sample by CAC.

(b) When the applied shear stress, 7qp, is 7x107 N/m and be-
low, all the CAC and MD simulation data fit into Eq. (5) perfectly
well no matter what value has been chosen for a. However, when
Tap is increased up to 8x107 N/m (green curves in Fig. 6 a—c), the
simulation data differs from Eq. (5) in two main aspects. Firstly,
Eq. (5) still predicts a finite stress even at r =138 nm, which
should be zero due to the presence of a free surface there. Because
the Eshelby model is formulated for the stress field induced by a
pileup buried in an infinite medium, it does not consider the re-
laxation induced by a free surface and thus predicts a finite stress
at a level of 5x107 N/m at r =138 nm when 74 = 8 x 107 N/m.
In contrast, under 7gp =8 x 107 N/m, a zero stress at r = 138 nm
has been naturally captured by CAC simulations (green curves in
Fig. 6 a-c). Secondly, when a = 0.5 (Fig. 6 a) or a = 1.0 (Fig. 6 c),
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Fig. 7. The relation between the fitted stress intensity factor K and the density of dislocations p* at the interface when setting (a) a = 0.5 and (b) a = 0.58.

at the site very close to the pileup tip, i.e.,, r — 0, the stress con-
centrations from CAC simulations deviate from Eq. (5). In partic-
ular, simulation data shows that 7,_¢ is 17x107 N/m at 7qp is
8x107 N/m, which is lower than that (7, 20 x 107 N/m) from
Eq. (5) when a = 0.5, but is higher than that from Eq. (5) when
a=1 (1o 15 x 107 N/m). For either a = 0.5 (Fig. 6 a) or a = 1.0
(Fig. 6 ¢), such differences between simulation data and the pre-
diction from from Eq. (5) can even amplify if 74p further increases.

The obtained results then lead to two plots with the K — p* re-
lation as shown in Fig. 7. In details, the vertical axis of Fig. 7 a

10

and 7 b indicates the fitted stress intensity factor, K, when setting
a=0.50 and a = 0.58, respectively. Here, the error bar is induced
by the resolution-dependence of the local stress measurements.
For a = 0.5 and a = 0.58, the stress intensity factor K ahead of the
pileup tip is measured through the fitting of Eq. (5) and correlated
with the density of dislocations, p*, accumulated near the inter-
face. Fig. 7 shows that, for both a = 0.5 and a = 0.58, consistent
with previous MD simulation results in [82], the stress intensity
factor, K, ahead of a pileup is proportional to the density of dislo-
cations accumulated at the interface. For a = 0.5, the stress inten-
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Fig. 8. (a) the numerical error, R?, when fitting simulation data into Eq. (5) and its dependence on the choice of fitting parameter of a; (b) the resolution dependence of
local stress profile ahead of the slip-interface intersection in CAC and MD simulations.

sity linearly increases with the increase of the dislocation density
(Fig. 7 a) and then suddenly drops at p*(d)=19x102 /nm, cor-
responding to which the number of dislocations in the pileup is
16. In contrast, the K — p* relation in Fig. 7 b at a = 0.58 is highly
nonlinear and behaves significantly different from that in Fig. 7 a.
In Fig. 7 b, K sharply increases at p*(d)=19x10~2 /nm, instead of
the sudden drop as shown in Fig. 7 a where a = 0.5. Obviously,
such results cannot be simply obtained by MD simulations alone
because MD simulation will always only predict a linear K — p* re-
lation by only accommodating several dislocations in a pileup. This
can be evidenced by the blue circle data points in Fig. 7 a and b.

1

Such an atomic-to-microscale simulation-based K-p* relation
may be used to interpret results from microscale experiments, such
as [83], where the dislocation density p* near a GB and the dis-
location pileup-induced stress concentration has been measured.
However, a quantitative connection between simulations and ex-
periments needs to be taken with great caution because the mea-
surement of K in both experiments and simulations involves a con-
siderable uncertainty. In particular, the K values from CAC and MD
obviously depends on the resolution to be deployed in the local
stress measurement. In both CAC and MD, a significant fluctuation
appears in the pileup-induced stress profile if different resolutions
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(noted as I) are used in measuring the local stress (Fig. 7 b). For
instance, the error bar induced by the numerical fitting at a = 0.58
is significantly narrower than that of a = 0.5. It means that the re-
laxation of the parameter of a largely suppresses the uncertainty
in determining the stress intensity factor of K. Such uncertainties
cannot be ignored despite the overall trend of the K — p* relation
remain unchanged at different a.

As a preliminary search of the best fitting parameter a in
Eq. (5), Fig. 8 also presents the change of the fitting error, R2, upon
the variation of the parameter of a from 0 to 1 at a step of 0.01. In
details, the expression of the fitting error, R2, is defined as,

SSres
— , 6
SStet ©

where SS¢or is the total sum of squares ) ;(0; — &), and SSpes is the
residual sum of squares ¥;(0; — f;)?. o; is the stress on each vol-
ume element, & is the mean of the data points, and f; is the fitted
value. By this definition, a value of R? closer to 1 implies a less
error when fitting simulation data into Eq. (5).

Results in both Figs. 6 b, 6 e, and 8 a show that a choice of a =
0.58 leads to a best fit of simulation data into Eq. (5). It should be
pointed out that, a = 0.58 is simply determined by maximizing RZ.
Although a = 0.58 may not be a typical value, we believe that its
deviation from 0.5 or 1 is physically reasonable in general because
a = 0.5 corresponds to the dislocation pileup at an ideally rigid in-
terface without any step formation while a = 1.0 corresponds to
the formation of a “perfect” step at the pileup tip without any local
structure relaxation. This finding implies that the pileup-induced
stress concentration indeed decays away from the pileup tip in a
similar trend as that in Eshelby model, but decays more slowly
and spans a longer range than what has been predicted by the Es-
helby model. In other words, although a continuum-level Eshelby-
type model can approximately describe the pileup-induced internal
stresses, it, however, has a limited resolution because it smears out
the step formation and any other local structure relaxation at the
slip-interface intersection. In order to further confirm that a best
fit of simulation data into Eq. (5) has been achieved at a = 0.58 in-
deed no matter what resolution has been employed in the stress
measurement, Fig. 8b presents the simulation-based stress profiles
at different resolutions and their fits into Eq. (5). It is seen that,
with the volume element size (noted as [, the side length of one
volume element) being decreased from [ =1.0 nm to [ =0.2 nm,
the local stress profile exhibits a notable fluctuation but still obeys
the Eshelby-type model very well.

The above results suggest: (1) CAC simulations not only repro-
duce a K — p* relation, which is consistent with the prediction
from nanoscale MD simulations in [82], but also expand the pre-
dictive capability of MD simulations up to the microscale by ac-
commodating tens of dislocations in a pileup; (2) this in turn en-
ables CAC to capture the long-range stress field caused by the ac-
cumulation of a large number of dislocations at a buried interface.
With a unique feature of simultaneously resolving the long-range
stress field together with an atomic-level structure evolution at
the slip-interface intersection, CAC bridges the length scale gap be-
tween atomistic and continuum, and provides us with a platform
for simulating dislocation slip, PTs, twinning, and their interactions
discussed in details elsewhere [76].

R>=1

4. Summary and discussion

To summarize, in this work, we present atomistic-to-micoscale
computational analysis of the local stress complexity induced by
the dislocation pileup at an interface in two-phase materials under
a plastic shear. One main novelty of the CAC approach deployed
here is its capability in bridging the relevant length scales by re-
solving the atomic-level structure changes near a buried material
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interface while the lagging dislocations away from the interface in
a coarse-grained atomistic description. It thus expands the MD-
simulation-based predictive capability from the nanoscale to the
micrometer level. This can be evidenced by our several main find-
ings as follows:

(1) The CAC model accommodates up to 16 dislocations in one
slip at a modest computational cost. Under certain shear stresses,
these dislocations may be blocked by obstacles (an incoherent in-
terface in this work) and form a pileup spanning a range of several
micrometers (1.2 pm in the present model). In contrast, the MD
model using the same computational resource can only accommo-
date up to 8 dislocations in a pileup, the equilibrium configuration
of which under certain shear stress only spans a range of tens or
hundreds of nanometers.

(2) When tens of dislocations are piled up at the interface, the
CAC-simulation-predicted stress concentration ahead of the pileup
tip is also in a long-range. It does not decay to zero at a site hun-
dreds of nanometers away from the pileup tip. This range can be
even longer if more dislocations are introduced. This is also con-
firmed in our recent microscale CAC simulation of the dislocation
pileup in Ti-alloys to be reported in [84]. In contrast, the MD-
simulation-predicted stress concentration ahead the tip of a pileup
containing a few dislocations spans only 60 nm.

(3) When the number of dislocations in a pileup is as small as
considered in MD, or when the number of dislocations participat-
ing in the pileup is large but the applied stress is relatively low, the
continuum-level Eshelby model [46] predicts well about the dislo-
cation density, p, behind a pileup and also the stress intensity, K,
ahead of a pileup tip. In such situations, an increase of p and K
with the increase of 7qp is consistently observed in MD, CAC, and
the Eshelby-type models.

(4) When the number of dislocations in a pileup increases up
to 16, under a high shear stress, CAC predicts a pileup-induced
step formation at the interface, a considerable stress concentra-
tion ahead of the pileup tip, a saturation of the dislocation density,
p*, behind the pileup tip, and most importantly, a sudden “upper
bend” of the pileup tip stress intensity factor, K, up to a very high
level. At this stage, our two main observations contradicting to the
conventional wisdom are: (a) the stress profile ahead of the pileup
tip obeys neither 1/r%5 (the classical Eshelby model, assuming a
rigid obstacle without allowing the step formation at the interface)
nor 1/r (the superposition model, assuming the formation of a per-
fect step without any local structure relaxation at the interface);
(b) the relationship between the local stress intensity factor and
the dislocation density near the interface, i.e., the K-p* relation, is
not as linear as reported by many existing MD simulations which
only consider a few dislocations piling up at the obstacles, but is
highly non-linear instead. A simple linear correlation between dis-
location density and the stress intensity factor may have largely
underestimated the dislocation accumulation-induced local stress
intensity within the materials.

These findings highlight: (a) the insufficiency of only using
nanoscale MD simulations to interpret the microscale experimental
results on such phenomenon, which may have involved tens and
even hundreds of um-long dislocations; (b) the need for a multi-
scale materials modeling methodology to bridge the length scale
gap between atomistic simulations, experiments, and continuum-
level approaches for the problem under consideration; and (c)
the possibility of engineering the microstructure of a plastically
deformed two-phase materials, such as fcc/bcc, fcc/hep, bec/hep
metallic composites, Ti-/Zr-/high entropy alloys, and among sev-
eral others, through a fine control of the microscale dislocation-
mediated plastic flow and its interaction with the buried material
interfaces through multiscale computer simulations.

The results that we have presented here suggest that the CAC
simulation tool may provide researchers with an alternative vehicle
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to meet this need, but are considered to be still preliminary at this
stage because:

(i) the material system under consideration here is simpli-
fied in terms of crystal structure, chemistry, interatomic poten-
tial, microstructure and among several others. A transfer of the
present model or the gained knowledge for understanding the slip-
interface reactions in realistic multiphase material is not trivial. It
demands the design of new finite elements for simultaneously ac-
commodating complex dislocation activities, the implementation of
more sophisticated or machine learning-based interatomic poten-
tial trained from ab initio data for capturing more complex struc-
ture changes, as well as the incorporation of realistic structures
and chemistry at the GBs, PBs, and other interfaces in the mate-
rials.

(ii) in addition to the local stress, another factor that plays
a vital role in the local structural change is the thermal-induced
atomic fluctuations. The implementation of a finite temperature al-
gorithm into CAC for capturing the thermal effects on dislocations,
PTs, and their interactions is needed, especially when the correla-
tion between phonon instability and PTs becomes a concern.

(iii) The critical applied stress at which the step forms at the in-
terface may have been overestimated due to the limitation of sim-
ulation timescale in MD and CAC. Since the structural change of in-
terest can be many orders of magnitude slower than the vibrations
of the atoms, conventional MD or CAC is not able to quantitatively
capture the realistic atomic structure revolution that is observed in
experimental time scale. The nudged elastic band (NEB) methods
have been generally used to determine the atomic structure revo-
lution of such long time scale event. In particular, a finite deforma-
tion NEB method was recently developed to determine the stress
dependent minimum energy path of a phase transition under finite
deformation [85], which has been applied to study the PTs in 2D
materials [45] and silicon [86]. Although NEB methods could help
resolve the challenges from the time scale, it still faces the chal-
lenges in the length scales. To this end, an integration of CAC and
NEB methods is promising to further push the predictive capabil-
ity of atomistic simulations by resolving the large length and time
scales simultaneously.

A further expansion of CAC along with the above three direc-
tions and its applications in predicting the slip-interface reactions
in a variety of realistic materials are being intensively pursued in
our group. The relevant results will be reported in our future pub-
lications.
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