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a b s t r a c t 

Taking the two-phase material as a model system, here we perform atomistic-to-microscale computa- 

tional analysis on how the dislocations pileup is formed at a buried interface through two-dimensional 

concurrent atomistic-continuum simulations. One novelty here is a simultaneous resolution of the μm- 

level dislocation slip, the pileup-induced stress complexity, and the atomic-level interface structure evo- 

lution all in one single model. Our main findings are: (i) the internal stresses induced by a pileup spans 

a range up to hundreds of nanometers when tens of dislocations participate the pileup; (ii) the resulting 

stress concentration decays as a function of the distance, r, away from the pileup tip, but deviates from 

the Eshelby model-based 1 /r 0 . 5 , where the interface was assumed to be rigid without allowing any local 

structure reconstruction; and (iii) the stress intensity factor at a pileup tip is linearly proportional to the 

dislocation density nearby the interface only when a few dislocations are involved in the pileup, but will 

suddenly ”upper bend” to a very high level when tens of or more dislocations arrive at the interface. The 

gained knowledge can be used to understand how the local stresses may dictate the plastic flow-induced 

phase transformations, twinning, or cracking in heterogeneous materials such as polycrystalline steel, Ti-, 

Mg-, high entropy alloys, fcc/bcc, fcc/hcp, and bcc/hcp composites, containing a high density of interfaces. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

The microstructure of many engineering materials is usually 

eterogeneous in nature due to the presence of a high density of 

nterfaces, such as grain boundaries (GBs), phase boundaries (PBs), 

tacking faults, or twin boundaries (TBs), etc. When these mate- 

ials are subjected to a plastic deformation, the interactions be- 

ween those interfaces and the plasticity carriers, e.g., dislocations, 

ontrol their microstructure evolution and overall performance. A 

ileup forms when the interface blocks the slip containing a queue 

f dislocations. The dislocation pileup leads to a local strain accu- 

ulation and a stress concentration, i.e., a stress magnitude at a 

raction of theoretical strength ahead of the spearhead of a pileup 

1–3] . Even at moderate applied stresses, the stress concentration 

actor at a pileup tip can be as large as 10 to 100 [4–6] . If such a
∗ Corresponding author. 
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igh local stress cannot be fully relieved by dislocation cross-slip, 

ransmission, the other structure changes such as phase transfor- 

ations (PTs), crack initiations, twinning, and even atomic diffu- 

ion will then occur. 

In the past decades, extensive experimental research efforts 

ave been dedicated to characterizing the complex stress field 

nduced by a slip-interface reaction across a variety of different 

ength scales. For instance, at the microscale, the electron backscat- 

ered diffraction (EBSD) or high-resolution EBSD (HR-EBSD) has 

een widely used to measure the strain accumulation at the slip- 

B intersection [1,2,4,7] . At the nanoscale, the transmission elec- 

ron microscopy (TEM) or high-resolution TEM (HR-TEM) is usu- 

lly deployed [8–13] to resolve the detailed dislocation activities 

ear the GBs. These experiments have, of course, largely advanced 

he researchers’ understanding in this field but are limited in sev- 

ral aspects: (i) the local internal stresses are usually not directly 

easured in experiments. Instead, they are calculated from the 

BSD-/TEM-measured strain using certain constitutive rules, e.g., 

https://doi.org/10.1016/j.actamat.2022.117663
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.117663&domain=pdf
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he Hooke’s law, in elasticity or higher-order theories; and (ii) the 

xisting experimental techniques have a limited time-scale reso- 

ution, at which the capture of the local structure change, such 

s the dislocation transmission or step formation process at the 

B, during the dislocation piling up process is non-trivial. Up to 

ate, it remains difficult using single-scale techniques to simulta- 

eously resolve the configuration of tens of or more dislocations 

iling up at the interface, the μm-level stress concentration ahead 

f the pileup tip, as well as the atomic-scale structure evolution at 

he slip-interface intersection. These limitations lead to a series of 

nanswered questions: is it possible to directly quantify the inter- 

al stress around the dislocation-interface intersection instead of 

easuring the strain and then converting it into stresses according 

o the theory of elasticity? If it is, how will such a directly mea-

ured local stress differ from the prediction by classical models, 

uch as the Eshelby model, at the continuum level? Can we quan- 

itatively correlate the density of the dislocations in a localized slip 

ith the internal stress intensity factor ahead of the slip-interface 

ntersection? If yes, at what length scales? Clearly, a seek of the 

nswers to those questions remains challenging from the experi- 

ental point of view. 

High-fidelity computer simulations are thus essential to avoid 

nterpreting the experimental results using assumed theories or 

echanisms. With the advent of high-performance computing, 

olecular dynamics (MD) have become a powerful tool for study- 

ng materials’ deformation behavior at an atomistic resolution. The 

quations in MD are discretized in time and do not involve spa- 

ial derivatives. It, consequently, possesses no barrier in simulating 

islocations slip and the local structural change. Thus, MD simu- 

ations can unravel the mechanisms underlying the material’s con- 

titutive behavior and may correlate the fine-scale interface struc- 

ure changes with the behavior of materials at a larger length 

cale. However, by considering the materials as a collection of 

toms, MD simulations is computationally demanding. If only a 

odest computational resource is used, the length scale of an MD 

odel is usually limited at the nanoscale and even below if a so- 

histicated interatomic potential is deployed. This limitation pre- 

ents MD from being used to fully reproduce the material’s de- 

ormation behavior observed in real experiments. As far as the 

lip-interface reactions are concerned, in many existing MD mod- 

ls, one single [14,15] or only a few dislocations are introduced 

lose to an interface in a simulation cell with a very limited vol- 

me [16–18] . As such, the dislocation density becomes unrealis- 

ically high. Also, the forces induced by the interaction between 

eriodic images are non-negligible and may pollute the results 

18,19] . It thus casts doubt on directly mapping the nanoscale MD- 

imulation-based mechanisms to the microscale experimental ob- 

ervation for a dislocation-interface reaction [20] . Historically, to 

cale up in length, continuum models enjoy the most popularity 

n understanding the deformation behavior of materials at large 

ength scales. In particular, for heterogeneous materials containing 

nterfaces, a variety of continuum models [21–24] , such as dislo- 

ation dynamics (DD), crystal plasticity finite element (CPFE), or 

hase field approach (PFA), have been developed. In particular, the 

nteraction between dislocation pileups and the GBs leading to slip 

ransfer [25] and PTs [26,27] in materials under compression and 

hear have been studied with PFA. Without the explicit descrip- 

ion of the atomistic structure of dislocation/interfaces, these con- 

inuum approaches provide researchers with a considerable gain 

n computational efficiency comparing with MD. Nevertheless, they 

equire constitutive rules as inputs, which usually need to be care- 

ully calibrated from experiments and fine-scale simulations. This 

s, however, not trivial, especially when describing the interac- 

ion between dislocation-mediated plastic flow and the buried in- 

erface becomes essential. Understanding the dislocation-interface 

eaction in materials thus necessitates multiscale simulations to 
t

2 
vercome many limitations in continuum and also fully atomistic 

odels. 

In this work, a concurrent atomistic-continuum (CAC) approach 

28–39] built upon a formulation [40–42] that unifies the atom- 

stic and continuum description of materials within one framework 

s deployed. Here, as a first demonstration of the CAC’s applica- 

ility in characterizing the local stress complexity induced by a 

icrometer-level dislocation pileup at an atomically-resolved in- 

erface, a two-dimensional (2D) two-phase material (the hexago- 

al and square phases co-exist with an incoherent interface in be- 

ween) under a well-controlled plastic shear is selected as a model 

ystem. We choose such a simple system as a model material be- 

ause: (i) the dislocation pileup at the GBs and the pileup-induced 

ocal stresses in many realistic 2D materials, such as boron nitride 

43] , colloidal crystals [44] , MoTe 2 [45] and so on, significantly 

ontribute to their deformation behavior (PT in particular) but is 

ot fully understood up to date; (ii) the 2D model setup under a 

lane strain condition provides us with an opportunity to validate 

he simulation results through comparing them with the analyti- 

al solutions from the plane elasticity theory-based Eshelby model 

46] ; and (iii) if desired, the interface structure in this system can 

e easily tuned to approximate the realistic interface in recently 

eveloped high-performance hcp/fcc, hcp/bcc, or fcc/bcc metallic 

omposites, such as Ti/Al [47] , Mg/Nb [4 8] , Cu/Nb [4 9] , and among

everal others. 

This paper is organized as follows. In Section 2 , we briefly 

eview and introduce the CAC methodology, the model material, 

he computer model set-up, as well as the boundary and load- 

ng conditions. The results from the microscale CAC together with 

anoscale MD simulations of the dislocation pileup at the inter- 

ace and the pileup-induced stress concentration are then analyzed 

n Section 3 . Thereafter, this work is concluded with a summary 

f our major findings as well as a discussion of future research in 

ection 4 

. Methodology and the computer model setup 

The CAC methodology is derived from the numerical implemen- 

ation of a formulation in [41,50–52] , which is a generalization of 

he Irving-Kirkwood procedure [53–56] in statistical mechanics. It 

iews the solid material as a collection of lattice cells continu- 

usly distributed in space, within each of which a group of dis- 

rete atoms is embedded. The continuum-level physical quantities, 

ncluding mass density, linear momentum density, energy density, 

omentum flux (also referred as stress in continuum mechanics), 

nd energy flux, are then defined from the atomic positions, ve- 

ocities, and interatomic forces through Dirac or Gaussian distri- 

ution functions [40,42] . An introduction of these physical quan- 

ities into the classical Newtonian mechanics leads to a series of 

quations, i.e., mass conservation, momentum balance, and energy 

onservation equations, which can govern the mechanical, ther- 

al, and mass transport behavior of materials from the bottom up 

41] . These equations are partial differential equations in the same 

orm as the balance equations in classical continuum mechanics 

ut with atomistic information built-in. Thus, those equations can 

e solved using numerical techniques, such as finite-difference or 

nite element (FE), which are commonly used for solving the equa- 

ions in continuum mechanics. 

As an FE implementation [38,39] of the atomistic field formu- 

ation, CAC has several unique features: (1) unlike the FE model in 

lassical continuum mechanics considering the material as a col- 

ection of mass points without any internal structures, each FE 

ode in CAC is one lattice cell containing a group of atoms whose 

otions are independent from each other; (2) the material behav- 

or in the atomistic and CG domains of a CAC model is governed by 

he same constitutive rule, i.e., the interatomic potential. In partic- 
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Table 1 

The parameters of the modified L-J potential for both the square and hexagonal 

phases. 

mass (g/mole) σ ( ̊A) ε (eV) H (eV ·Å) r mh ( ̊A) σh ( ̊A) cut-off ( ̊A) 

63.546 2.277 0.415 -0.4964 3.6432 0.4772 5.0094 
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Fig. 1. (a) The potential energy of the square (blue) and hexagonal (brown) lattices 

by a modified Lennard-Jones form in Eq. (1) and (b) the unit cell transformation 

from square to hexagonal phase. 
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lar, the forces acting on the atoms within each FE node in the CG 

omain are calculated by converting the interatomic forces into the 

nternal force density through the deployment of a Gauss quadra- 

ure scheme [38,39] ; (3) it does not need any special treatments 

o describe discontinuity, such as dislocations or cracking, at the 

ontinuum level because the slip systems as well as the cleavage 

lanes are all built in; (4) the dislocations can be also initially in- 

roduced into the CG domain by displacing the FE nodes according 

o the dislocation-induced displacement field derived from the the- 

ry of elasticity [7] . This differs from other continuum approaches 

hich accommodate dislocations through the deployment of either 

 contact model in [57,58] , a Heaviside step function in [59] , or an

dditional DOF in CPFE [60,61] ; (5) it does not need sophisticated 

ules for passing the dislocation-mediated plastic flow from the 

ontinuum domain to the atomistic domain and vice versa [28–

0] ; (6) the CG domain in CAC has a significantly less degrees 

f freedom (DOF) than that in a fully atomistic model. It may be 

caled up to the micrometer level and in turn, enable us to model 

he pileup of tens of dislocations at an interface. This goes beyond 

he reach of a traditional MD model because MD usually has a lim- 

ted length scale at nanometers and can only accommodate sev- 

ral dislocations in an equilibrium pileup [18] . Furnished with the 

bove features, CAC have been applied to simulate: (a) dislocations 

n Cu, Al, Ni, and Si by CAC using rhombohedral-shaped elements 

ith the element boundaries being aligned on the slip plane [31] ; 

b) Si-I → Si-II PT in single-crystal Si by CAC [39] ; and (c) the dis-

ocation pile up at a grain boundary (GB) as well as the subse- 

uent dislocation transmission across the GB, in bi-crystalline Cu 

30] . These results confirm that CAC has a predictive capability at 

pproximately the same level as that of MD but demands signif- 

cantly less computational resources. It thus provides us with an 

deal platform for understanding the micrometer-level dislocation 

ileup at a material interface, the atomic-level interface structure 

volution, together with the subsequent phase transformation and 

winning, if there would be any. 

For the two-dimensional two-phase material system under con- 

ideration here, two phases (hexagonal and square) co-exist with 

n interface in between. The interaction between the atoms in both 

he square and hexagonal phases is described using a modified 

ennard-Jones (L-J) potential as shown in Eq. (1) by Lee and Ray 

62] : 

 MLJ = −4 ε[( 
σ

r 
) 6 − ( 

σ

r 
) 12 ] − H 

σh 

√ 

2 π
e 

[ − (r−r mh ) 
2 

2 σ2 
h 

] 
, (1) 

hich was originally proposed to study the bcc-to-hcp PT in iron. 

The modified L-J potential’s functional form in Eq. (1) is the 

ombination of a traditional L-J (12-6) term and an inverse Gaus- 

ian term. The 12-6 term leads to a stable hexagonal crystal struc- 

ure at zero stress. The addition of an inverse Gaussian into the 

odified L-J potential gives rise to a square lattice structure. Here 

he parameters H , r mh , and σh in Eq. (1) were chosen to stabilize:

i) an immobile but deformable incoherent interface between the 

quare and the hexagonal phase, which can act as the obstacles to 

islocation motion; and (ii) the core structure of a dislocation in 

he hexagonal phase. The interatomic potential parameters satis- 

ying these two conditions are listed in Table 1 . Fig. 1 a and 1 b

hows the corresponding potential energy landscapes and the cells 
3 
f these two phases with their lattice constants being noted as a sq 

nd a hex . 

The 2D CAC model for the two-phase material with square and 

exagonal lattices coexisting is then constructed (Fig. 2 a). The ma- 

erial on the right side of the interface is in a square phase and has

 dimension of L x −sq along the x -direction. By contrast, the mate- 

ial domain on the left side of interface is in a hexagonal phase 

nd has a dimension of L x −hex along the x -direction. The sample di- 

ension along the y -direction is chosen as L y = m hex a hex = n sq a sq ,

here m hex and n sq are the numbers of the hexagonal and square 

attice cells along the y direction, a hex = 2 . 41 Å and a sq = 2 . 56 Å

re the lattice constants for the hexagonal and square lattice, re- 

pectively. For the hexagonal phase on the left side of the inter- 

ace, the material domain is in a CG description and is discretized 

nto coarse FEs. Each FE, the center of which is indicated as green 

quares in Fig. 2 b, contains 64 atoms. Due to the deployment of 

 CG description, L x −hex can be scaled up to the micrometer level 

nd even above. Most importantly, these FEs can slide with each 
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Fig. 2. The CAC model set-up for the dislocation pileup at an interface in the two-phase system: (a) the CG description of dislocations in hexagonal lattice away from the 

interface and the atomistic resolution near the interface; (b) a zoom-in display of the region in the dashed box of (a). 
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ther along the element boundaries, which are currently aligned 

ith one of the slip planes, to accommodate the dislocation mi- 

rations along the [100] direction without the need of tracking the 

otion of each atom in the hexagonal phase. In details, a queue of 

islocations can be initially introduced into the CG domain one by 

ne through displacing the FE nodes there according to the the so- 

ution from the theory of elasticity for the displacement of a dislo- 

ation. Here, the dislocation nearest the interface is labeled as “1”, 

he dislocation second nearest the interface is labeled as “2”, so on 

nd so forth. Such a dislocation indexing strategy does not change 

n the fly of the simulations and has been used in the analysis of 

ur simulation results to be discussed in the following sections. 

Different from the above CG description of the dislocations 

way from the interface, the material domain near the interface 

s resolved at a fully atomistic resolution (Fig. 2 a) because the de- 

ormation behavior at the interface is critical and will dictate its 

verall constitutive response. As indicated by the crystallographic 

rientations of the hexagonal and square phases being in Fig. 2 b, 

n incoherent interface has been carefully designed here such that: 

i) the dislocation-mediated slip in the hexagonal phase is per- 

endicular to the interface; and (ii) the dislocation transmission 

r slip transfer will be discouraged the most (the evidence why 

he slip transfer across this interface is unfavorable can be found 

hrough Schmid factor, geometric compatibility factor, and also 

he Burgers vector analysis as shown in Section 3 .1). In this way, 

he pileup-induced stress field can be well quantified without the 

eed of considering many other complexities caused by the slip- 

nterface inclined angles, dislocation transmission, cross-slip, and 

o on. However, it should be noted that, among all the possible 

nterfaces, the constructed interface satisfying the above two con- 

itions is not the one with an energy minimum, although our anal- 

sis on the slip-interface reaction will indeed benefit from such a 

etup. 

Thereafter the introduction of a queue of dislocations and the 

onstruction of the carefully designed interface, the formation of 

 pileup can be then simulated through the following steps: (1) 

irst of all, the displacement along z direction of the sample is 

onstrained to achieve a plane strain condition, which is consistent 

ith the setup in the classical Eshelby model [46] ; (2) The model 

ontaining the initially introduced dislocations is equilibrated for 

 duration of 20 ps with a timestep of 1 fs to achieve an equilib-

ium configuration of dislocations; (3) A homogeneous shear strain 
4 
f ε xy = 2 × 10 −4 is then imposed. This is in turn, followed by an

quilibration for a duration of 1 ps with the upper and bottom 

oundaries being fixed. The strain rate resulting from such a load- 

ng strategy is thus at a level of 2 × 10 8 /s, which is at the same

evel as that in common MD simulations. It should be noted that, 

lthough the material is deformed at a level of orders of magni- 

ude of higher than that in experiments, the pileup-induced stress 

s only characterized here when the system is fully equilibrated 

t a desired shear; (4) This procedure repeats until the averaged 

hear stress of the whole model arrives at a desired level noted 

s τap . This is realized through monitoring the shear stress when 

he shear strain has been imposed. If the shear stress is below the 

esired τap , the shear strain will continue increasing. If the shear 

tress is above the desired τap , the imposed shear strain will be 

djusted to a lower level. When τap arrives at the desired value, 

he top and bottom boundaries of the sample will be constrained 

nd not allowed to move any further along both x and y directions; 

5) The τap will then drive dislocations to migrate towards the in- 

erface. For the sample under different τap , the dislocation config- 

rations will largely differ from each other: the higher the applied 

hear, the smaller spacing between dislocations. In this way, the 

islocation pileup will be formed and in turn a stress concentra- 

ion ahead of the pileup tip will be generated. The level of this 

tress concentration can be then related with the number of the 

islocations participating the pileup, the density of the dislocations 

ehind the pileup tip, and of course, the level of the applied shear 

see more details in Section 3 ). 

Other than the microscale CAC model, a series of nanoscale 

ully MD simulations is also performed using LAMMPS [63] for val- 

dation purpose. The dimensions, and the number of DOF, and the 

omputational cost for both the nanoscale MD and the microscale 

AC models are listed Table 2 . 

The timescale of each simulation in the above table depends on 

he number of the dislocations in a pileup, i.e., the more disloca- 

ions, the longer run. Taking one CAC simulation containing 16 dis- 

ocations as an example, after 9 dislocations arrive at the interface 

ithin a duration of 0.4 ns, the CAC model has been equilibrated 

nder a constant shear for another 1.6 ns. The resulting timescale 

f this run is 2 ns. The computational cost of such simulations are 

easonably affordable because one such simulation only takes 72 h 

o finish if 96 computing cores on Comet of XSEDE are deployed. 

iven the perfectly linear scalability of our massively parallelized 
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Table 2 

The dimensions and the number of the DOF in MD and CAC models. 

L x −hex L x −sq L y DOF Number of dislo- timestep/ 

cations in a pileup second 

Nanoscale MD 420 nm 70 nm 84 nm 1,355,284 atoms 0 ∼ 8 170.034 

Microscale CAC 1.58 μm 120 nm 138 nm 315528 FE nodes 5 ∼ 16 54.283 

+ 118392 atoms 

The timestep/second is measured using compute node on COMET@SDSC with 96 cores. 

Table 3 

The slip systems of the incoming and the potential outgoing dislocations as well as the resulting Schmid 

factors, the geometric compatibility factors. 

Incoming slip system Outgoing slip system Metric value 

Slip plane Slip direction Slip plane Slip direction SF in SF out m 

′ m 

′ (SF in + SF out ) 

{ 00 ̄1 }| hex (100) | hex { 01 }| sq (10) | sq 0.43 0.14 0.5 0.29 

{ 00 ̄1 }| hex (100) | hex { 10 }| sq (01) | sq 0.43 0.14 0 0 

{ 00 ̄1 }| hex (100) | hex { 10 }| sq (0 ̄1 ) | sq 0.43 0.14 0 0 
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AC simulator [64] , for the formation of a longer pileup containing 

ore dislocations within an even longer duration, e.g., 32 disloca- 

ions forming a pileup within 4 ns, one can still expect to finish 

he simulation within 72 h by using 384 computing cores. 

. Simulation results 

.1. The Schmid factor, geometric compatibility factor, and burgers 

ector analysis 

In order to confirm that the interface that we have constructed 

ere indeed promotes the formation of a pileup by acting as a 

trong barrier to the dislocation-mediated slip, we have performed 

 series of detailed Schmid factor (SF), geometric compatibility fac- 

or (also noted as the Luster-Morris factor), and also the Burgers 

ector analysis as follows. 

For the slip-transfer problem under consideration here, the 

ncoming dislocations are in the hexagonal phase gliding on a 

 00 ̄1 } plane with a slip direction of (100), which can be noted 

s { 0 0 ̄1 } (10 0) | hex .The neighboring grain across the interface is in

 square phase with three slip systems. If there would be any 

ransmission across the interface, the outgoing dislocations will 

e in the { 01 } plane with a slip direction of (10), or in the { 10 }
lane with a slip direction of (01), or in the { 10 } plane with a

lip direction of (0 ̄1 ), which are noted as { 01 } (10) | sq , { 10 } (01) | sq ,

nd { 10 } (0 ̄1 ) | sq , respectively. For each of these three outgoing

lip systems, with respect to the incoming dislocation slip sys- 

em, { 0 0 ̄1 } (10 0) | hex , under a shear along x direction (See Fig.

 ), the Schmid factors of the incoming and outgoing dislocations 

noted as SF in and SF out ) are calculated and listed in Table 3 . More-

ver, the geometry compatibility factor, i.e., Luster-Morris param- 

ter noted as m 

′ = cos (φ) cos (κ) [65] is also calculated and in- 

luded in Table 3 . Here, φ is the angle between the slip direction of

he dislocations in hexagonal and square phases, κ is the angle be- 

ween the normal direction of the slip plane along which the dis- 

ocation glide in hexagonal and square phases. In addition to SF in , 

F out and m 

′ , a combined metrics proposed in a recent paper [66] ,

 

′ (SF in + SF out ) is also calculated and included here. 

Two major observations from Table 3 are: (1) if the geomet- 

ic compatibility factor is used as a controlling metrics, the slip 

ransfer and the outgoing dislocations can never happen through 

 10 } (01) | sq and { 10 } (0 ̄1 ) | sq (the second and the third row of

able 3 ) because m 

′ = 0 for those two slip systems in square

hases; (2) the slip transfer may occur through an outgoing dis- 

ocation along the { 01 } (10) | sq in the square phase, the chance of

hich is, however, very low with m 

′ = 0 . 50 and m 

′ (SF in + SF out ) =
 . 29 (the first row of Table 3 ) because, according to the extensive 
5 
xperimental data reported in [67–69] , the threshold value of m 

′ 
t which the slip transfer occurs is usually around 0.8 and even 

igher. 

In order to confirm that the slip transfer indeed will not occur 

hrough an outgoing dislocation along the { 01 } (10) | sq during the 

imulations, here we also perform a detailed Burgers vector analy- 

is. Firstly, the interface that we have constructed can be viewed as 

 collection of dislocations resulting from the mismatch between 

exagonal and square phases. Taking the square lattice as a refer- 

nce, the Burgers vector of these resultant dislocations, b res [70–

3] , can be calculated as: 

 b res } = { t sq } − { P }{ t hex } , (2) 

here { P } is a transformation matrix for mapping the Miller index 

f a plane in hexagonal phases to that of a plane in square phases, 

hich is 
(0 . 94 −0 . 47 −0 . 47 

0 . 0 0 . 82 −0 . 82 

)
. The column matrices { t sq } and 

 t hex } represent the Miller index of the interface in the square and 

exagonal phase, respectively. According to the formula in [74,75] , 

he transmission will occur as long as the deformation gradient, F , 

cting on the material which accommodates the outgoing disloca- 

ion, i.e., the square phase here, satisfies: 

 b out } = ( F −1 − I ) · { p } , (3) 

here b out is the Burgers vector of the outgoing dislocation. If it is 

long the slip system of { 01 } (10) | sq in the square phase, { b out } =
1 , 0) T , I is the identity matrix, and p is the vector associated with 

he Burgers circuit of the defect in the interface. 

When no dislocation arrives at the interface, p is simply the 

esultant Burgers vector, and is noted as p 0 = b res , which can be 

alculated using Eq. (2) by using the t 0 sq and t 0 
hex 

as indicated 

n Fig. 3 a. When the first dislocation arrives at the interface, 

p 1 = b in + b res . During the pileup formation, for example, for the 

AC model containing 16 dislocations, upon certain shear, 9 of 

hem have arrived at the interface forming a step there, which 

ill result in p 9 = 9 b in + 3 b res since the step formed at the pileup

ip occupies three atomic layers. In this scenario, the deforma- 

ion gradient, F , required for producing of an outgoing dislocation 

f b out = (1 , 0) T should satisfy { b out } = ( F −1 − I ) · { p 9 } . According

o E = 1 / 2(F T F − I) , the deformation gradient satisfying this equa-

ion will produce a shear strain of γ = 0 . 263 . If the square phase

s subjected to a shear strain at this level, a phase transformation 

PT), rather than a slip, will occur because the square-to-hexagonal 

T strain is 
(−0 . 057 0 . 222 

0 . 222 −0 . 057 

)
. It also explains why we always ob- 

erve the PT ahead of the pileup tip when more dislocations are 
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Fig. 3. The atomic - scale structure evolution at the slip - interface intersection when different number of dislocations arrive at the interface in the time sequences, with 

the formation of the step with a height of 5 b when 5 dislocations arrive at the interface under τap = 4 × 10 7 N/m. 

6 
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Fig. 4. The configuration of the local stress ( τxy ) field of dislocations in a pileup from truncated: (a) microscale CAC: 16 dislocations are piled up against the interface under 

a shear τap = 7 × 10 7 N/m. 9 of them arrive at the interface; and (b) nanoscale MD: 8 dislocations are piled up at τap = 4 × 10 7 N/m. 5 of them arrive at the interface. 
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iled up at the interface no matter how long we run the simula- 

ions, which is reported in our separate work [76] . 

.2. The dislocation pileup process 

A retaining of the fully atomistic resolution at the interface pro- 

ides us with an opportunity of examining the detailed process of 

 slip-interface reaction. Fig. 3 presents the time sequences of the 

napshots showing the reaction between dislocations and the in- 

erface at the early stage of the simulations with the atoms be- 

ng color coded with the coordination number (red: hexagonal; 

lue: square; other: green). It should be noted that the simula- 

ion box shown in Fig. 3 has been truncated to display the atomic 

tructures only at the slip-interface intersection. Fig. 3 a and b 

hows that, when one dislocation arrives at the interface, a step 

f 2.56 Å, i.e., the magnitude of one Burgers vector b , forms. With 

 further increase of the applied shear, more dislocations will ar- 

ive at the interface and eventually, a step with a larger height 

ill be formed. This step can be approximately considered as a 

ingle “super-dislocation” with a Burgers vector of N b , with N as 

he number of dislocations arriving at the interface. Under a shear 

tress of τap = 8 × 10 7 N/m, 5 dislocations have arrived at the in- 

erface. The “super-dislocation” at the interface has a Burgers’ vec- 

or of 5 b (Fig. 3 c). 

Three major findings from Fig. 3 are: (1) as desired, the inter- 

ace under consideration here indeed blocks the motion of dislo- 

ations without allowing any transmission. This is also the case 

ven when we extend the timescale of the simulations up to sev- 

ral nanoseconds and longer [76] ; (2) CAC resolves the fully atom- 

stic details of a slip-interface reaction; and (3) a step-like “super- 

islocation” with a complex local atomistic structure is formed 

t the slip-interface intersection. Similar features were observed 

n our previous three-dimensional MD simulations of dislocation 

ileup against tilt GBs in Si, which caused amorphization [77] . 

Fig. 4 a and 4 b shows the results from CAC and MD simulations

f 16 and 8 dislocations piling up at the interface under a shear 

tress of τap = 7 × 10 7 N/m and τap = 4 × 10 7 N/m, respectively. It 

hould be pointed out that, since all the dislocations are initially 

ndexed before any external shear is imposed, dislocations 1–9 in 
7 
ig. 4 a and dislocations 1–5 in Fig. 4 b are gone because they have

ully arrived at the interface and formed a step there. The heights 

f the steps in Fig. 4 a and 4 b are 9 b and 5 b, respectively. It is

een that: (i) Dislocations in CAC smoothly migrate from the CG 

o the atomistically resolved interface domain; (ii) The pileup can 

orm at the interface without the occurrence of any transmission 

n both MD and CAC; (iii) The dislocation transmission is not ob- 

erved even we significantly increase the timescale of the simula- 

ion run up to several nanoseconds; and (iv) A square-to-hexagonal 

T is observed in such long-run simulations as reported elsewhere 

76] . Several main observations from Fig. 4 a and b are: (1) The lo-

al shear stress field, τxy , around a single dislocation far away from 

he interface, such as the 16th dislocation in Fig. 4 a and the 8th

islocation in Fig. 4 b, is comparable with the solution from the 

heory of elasticity. In contrast, τxy around the dislocations close 

o the pileup tip, such as the 10th–12th dislocations in Fig. 4 a 

nd the 6th dislocation in Fig. 4 b, has been largely altered. This 

s believed to be correlated with the atomic-level structure distor- 

ion at the slip-interface intersection; and (2) A stress concentra- 

ion has been generated ahead of the pileup tip in both CAC and 

D. According to the results obtained from CAC (Fig. 4 a), this 

tress concentration spans a length scale at a range of 130 nm 

nd will be even longer if more dislocations are included in the 

ileup. A full MD simulation at this length scale will be computa- 

ionally demanding, if not impossible. In our current MD models 

ith a limited space ( 70 nm) between the pileup tip and the free 

nd of the sample, the stress concentration ahead of the disloca- 

ion pileup tip has been largely released due to the presence of 

he free surface (Fig. 4 b), although only 8 dislocations have par- 

icipated in the pileup there. 

.3. The dislocation configuration in a pileup 

Here, for comparison, the computer simulation-predicted dislo- 

ation configuration in a pileup is compared with results from the 

shelby model [46] . According to this model, the distribution of a 

ontinuous dislocation density (noted as ρ(d) , i.e., the number of 

islocations per unit length) behind the pileup tip approximately 
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Fig. 5. (a) CAC and (b) MD simulation-predicted ρ(d) as a function of the distance, 

d , behind the tip of a pileup at the interface and its comparison with continuum 

solutions. Here, ρ(d) is only for dislocation density behind the pileup tip and does 

not include the dislocations that have formed the step on the interface. 
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beys: 

(d) = 

2(1 − ν) τap 

μb 
· L x −hex − d √ 

L 2 
x −hex 

− ( L x −hex − d) 2 
, (4) 

here d is the distance away from the tip of a pileup (see the in-

ication of d in the inset pictures of Fig. 5 a and b); τap is the

pplied shear stress; μ is the shear modulus of the materials con- 

aining dislocations, i.e., the hexagonal lattice here; b is the Burgers 

ector of dislocations; ν is Poisson’s ratio of the material. In this 

ork, μ = 35 . 4 × 10 7 N/m, b = 2.56 Å, and ν = 0.3. Before compar-

ng our simulation results with Eshelby solutions, we would like 

o point out that the derivation of Eq. (4) is under several key as-

umptions: (i) it is a mathematical treatment under a continuum 

pproximation based on the theory of linear isotropic elasticity and 

as ignored the dislocation core structures; (ii) the obstacle acting 

s a barrier to dislocation’s motion in Eshelby model is assumed to 

e fully rigid. It does not allow any local relaxation at the disloca- 

ion pileup tip; and (iii) the Eshelby model does not take any free 
8 
urface-induced image stresses into account by considering dislo- 

ations embedded within an infinite medium. 

Fig. 5 a and 5 b shows the CAC- and MD-simulation-predicted 

islocation density distributions behind the pileup tip and their 

omparison with that from Eq. (4) , respectively. Here, ρ(d) is es- 

imated by directly counting the number of dislocations per unit 

ength within a distance, d , away from the pileup tip. ρ(d) shown 

n Fig. 5 a and b does not include any dislocations that have par- 

icipated the formation of the steps on the interface. Several key 

ndings from Fig. 5 a and b are: (a) the density of dislocation 

istribution, ρ(d) , especially ρ(d) near the tip at d → 0, signifi- 

antly increases with the increase of applied shear stress. This is 

onsistently observed in CAC, MD, as well as Eq. (4) ; (b) the CAC- 

imulation-predicted dislocation density distribution under τap = 

 × 10 7 N/m and τap = 8 × 10 7 N/m agrees perfectly well with that 

rom Eq. (4) (Fig. 5 a), especially when d > 20 nm, although the 

ssumption of linear isotropy has been deployed in the Eshelby 

odel but anisotropy is retained in CAC; (c) at τap = 8 × 10 7 N/m, 

ifferent from the singularity predicted by Eshelby for ρ(d) at d → 

 in Eq. (4) , the CAC-predicted ρ(d) saturates at d → 0 (Fig. 5 a).

his is believed to be reasonable because the CAC model allows a 

ocal relaxation at the tip while the Eshelby model has assumed a 

igid obstacle; (d) comparing with the results from the microscale 

AC simulations, the dislocation density distribution from MD (Fig. 

 b) also agrees reasonably well with that from Eq. (4) even at d →
. Because τap applied on the MD model is lower than that in CAC, 

t this stress level, the local structure at the pileup tip does not 

elax and the interface may be still approximately considered as a 

igid obstacle; and (e) when 16 dislocations participate the pileup 

ormation, at τap = 8 × 10 7 N/m, ρ(d) does not decay to zero at d 

 1.2 μm (Fig. 5 a). In contrast, when only 8 dislocations partici- 

ate in the pileup, (Fig. 5 ), even at τap = 4 × 10 7 N/m, ρ(d) decays

o zero at d = 0.4 μm. This result suggests that the pileup con- 

aining tens of or more dislocations spans a length scale at the 

icrometer level or above, which can be captured by CAC but is 

eyond the reach of a full MD model, if a modest computational 

esource is used. 

.4. The dislocation pileup-induced stress concentration 

In addition to dislocation density distribution, the CAC- and 

D-simulation-predicted stress distribution, especially the stress 

rofile, ahead of the pileup tip is also characterized. To measure 

he local stress, in both CAC and MD models, a series of finite-sized 

olume elements are constructed ahead of the pileup tip, each of 

hich is in a high resolution with a dimension of 5 Å × 5 ̊A and

ontains approximately four atoms. Then the stress tensor asso- 

iated with each volume element is calculated using a Virial for- 

ula [78] . In this way, the dislocation pileup-induced stress profile 

head of the slip-interface intersection can be determined. We are 

ware that the deployment of a Virial formula for measuring the 

ocal stress in an atomistic system may not be precise due to its 

nconsistency with the definition of continuum-level Cauchy stress 

79] . A measurement of the local stress using the newly developed 

tomic-level Cauchy stress formula in [80] is not used here but 

ill be attempted in our future work. The obtained stress profiles 

re then fitted into an Eshelby-type model, i.e., Eq. (5) , which is 

 generalization of the classical Eshelby model [46] by introduc- 

ng an additional parameter, a , into it ( a = 0 . 5 in classical Eshelby

odel). Two major reasons for such a generalization are: (a) the 

ocal stress’ decay as a function of 1 /r 0 . 5 (here r is the the distance

way from the slip-interface intersection) in the classical Eshelby 

odel is built upon an assumption on treating the dislocation bar- 

ier as a rigid obstacle, which is obviously not the case here; (b) 

he step formation at the slip-interface intersection is accompa- 

ied by a complex local structure evolution, which may have led 
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Fig. 6. The local stress profile ahead of the slip-interface intersection along the slip direction under a variety of τap from CAC and MD simulations and their fits into Eq. (5) , 

the extended Eshelby model with (a,d) a = 0.5, (b,e) a = 0.58, (c,f) a = 1. 
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o a stress redistribution deviating from 1 /r 0 . 5 , especially when a 

arge number of dislocations arrive at the interface. Under this ar- 

ument, a generalized Eshelby model for characterizing the stress 

rofile, e.g., τ , ahead of the pileup tip is proposed as: 

= τ0 + 

K 

(r + r 0 ) a 
, (5) 

here τ is the local shear stress ahead of the pileup tip, K is the 

tress intensity factor at the pileup tip, and r is the distance be- 

ween the pileup tip and the stress measurement site (the center 

f the volume element in the inset picture of Fig. 5 ). Two param-

ters, τ0 and r 0 , in Eq. (5) account for the uncertainty associated 

ith the reference stress state and the location of the pileup tip, 

espectively. The parameter a is introduced here to accommodate 

he local structure relaxation at the slip-interface intersection. 

Fig. 6 presents the MD- and CAC-simulation-predicted shear 

tress distributions ahead of the dislocation pileup tip, as well as 

heir fits into the Eshelby-type model at three typical values of a . 

everal major findings here are: 

(a) Both CAC (Fig. 6 a–c) and MD (Fig. 6 d–f) data fit into

q. (5) predicting an exponential decay of τ ahead of the dislo- 

ation pileup tip. One common feature between CAC and MD sim- 

lations are: the stress level as well as the stress range ahead of 

he pileup tip will be amplified when the applied shear stress, τap , 

s increased because the number of dislocations arriving at the in- 

erface becomes more at a higher τap . In details, when the applied 

hear stress is relatively low but increases from 2 ×10 7 N/m (red 

urves in Fig. 6 d–f) to 4 ×10 7 N/m (green curves in Fig. 6 d–f), the

ocal stress at the pileup tip ( r = 0 ) increases from 4 ×10 7 N/m to

4 ×10 7 N/m. This stress concentration does not decay to zero un- 
9 
il r = 20 nm and r = 40 nm when τap = 2 ×10 7 N/m and τap =
 ×10 7 N/m, respectively. Upon a further τap increase from 6 ×10 7 

/m (red curves in Fig. 6 a–c) to 8 ×10 7 N/m (green curve in Fig.

 a–c), the stress concentration at the pileup tip ( r = 0 ) increases

p to 17 ×10 7 N/m. At this stage, the number of dislocations par- 

icipating the pileup is 16, which can not be accommodated by the 

urrent MD models. Thus, all the results in Fig. 6 a–c are obtained 

rom CAC simulations. Obviously, the participation of a large num- 

er of dislocations in the pileup produces a long-range stress pro- 

le spanning hundreds of nanometers (Fig. 6 a–c), which does not 

ecay to zero until the free surface at r = 138 nm. We believe that,

imilar to what has been observed in experiments [81] , such a slip- 

nterface interaction-induced stress concentration can span tens of 

icrons as long as more dislocations are included into the pileup 

n an even larger sample by CAC. 

(b) When the applied shear stress, τap , is 7 ×10 7 N/m and be- 

ow, all the CAC and MD simulation data fit into Eq. (5) perfectly 

ell no matter what value has been chosen for a . However, when 

ap is increased up to 8 ×10 7 N/m (green curves in Fig. 6 a–c), the

imulation data differs from Eq. (5) in two main aspects. Firstly, 

q. (5) still predicts a finite stress even at r = 138 nm, which

hould be zero due to the presence of a free surface there. Because 

he Eshelby model is formulated for the stress field induced by a 

ileup buried in an infinite medium, it does not consider the re- 

axation induced by a free surface and thus predicts a finite stress 

t a level of 5 ×10 7 N/m at r = 138 nm when τap = 8 × 10 7 N/m.

n contrast, under τap = 8 × 10 7 N/m, a zero stress at r = 138 nm

as been naturally captured by CAC simulations (green curves in 

ig. 6 a–c). Secondly, when a = 0 . 5 (Fig. 6 a) or a = 1 . 0 (Fig. 6 c),
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Fig. 7. The relation between the fitted stress intensity factor K and the density of dislocations ρ∗ at the interface when setting (a) a = 0 . 5 and (b) a = 0 . 58 . 
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t the site very close to the pileup tip, i.e., r → 0, the stress con-

entrations from CAC simulations deviate from Eq. (5) . In partic- 

lar, simulation data shows that τr→ 0 is 17 ×10 7 N/m at τap is 

 ×10 7 N/m, which is lower than that ( τr→ 0 20 × 10 7 N/m) from 

q. (5) when a = 0 . 5 , but is higher than that from Eq. (5) when

 = 1 ( τr→ 0 15 × 10 7 N/m). For either a = 0 . 5 (Fig. 6 a) or a = 1 . 0

Fig. 6 c), such differences between simulation data and the pre- 

iction from from Eq. (5) can even amplify if τap further increases. 

The obtained results then lead to two plots with the K − ρ∗ re- 

ation as shown in Fig. 7 . In details, the vertical axis of Fig. 7 a
10 
nd 7 b indicates the fitted stress intensity factor, K, when setting 

 = 0 . 50 and a = 0 . 58 , respectively. Here, the error bar is induced

y the resolution-dependence of the local stress measurements. 

or a = 0 . 5 and a = 0 . 58 , the stress intensity factor K ahead of the

ileup tip is measured through the fitting of Eq. (5) and correlated 

ith the density of dislocations, ρ∗, accumulated near the inter- 

ace. Fig. 7 shows that, for both a = 0 . 5 and a = 0 . 58 , consistent

ith previous MD simulation results in [82] , the stress intensity 

actor, K , ahead of a pileup is proportional to the density of dislo- 

ations accumulated at the interface. For a = 0 . 5 , the stress inten-
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Fig. 8. (a) the numerical error, R 2 , when fitting simulation data into Eq. (5) and its dependence on the choice of fitting parameter of a ; (b) the resolution dependence of 

local stress profile ahead of the slip-interface intersection in CAC and MD simulations. 
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ity linearly increases with the increase of the dislocation density 

Fig. 7 a) and then suddenly drops at ρ∗(d)= 19 ×10 −2 /nm, cor- 

esponding to which the number of dislocations in the pileup is 

6. In contrast, the K − ρ∗ relation in Fig. 7 b at a = 0 . 58 is highly

onlinear and behaves significantly different from that in Fig. 7 a. 

n Fig. 7 b, K sharply increases at ρ∗(d)= 19 ×10 −2 /nm, instead of 

he sudden drop as shown in Fig. 7 a where a = 0 . 5 . Obviously,

uch results cannot be simply obtained by MD simulations alone 

ecause MD simulation will always only predict a linear K − ρ∗ re- 

ation by only accommodating several dislocations in a pileup. This 

an be evidenced by the blue circle data points in Fig. 7 a and b. 
11 
Such an atomic-to-microscale simulation-based K - ρ∗ relation 

ay be used to interpret results from microscale experiments, such 

s [83] , where the dislocation density ρ∗ near a GB and the dis- 

ocation pileup-induced stress concentration has been measured. 

owever, a quantitative connection between simulations and ex- 

eriments needs to be taken with great caution because the mea- 

urement of K in both experiments and simulations involves a con- 

iderable uncertainty. In particular, the K values from CAC and MD 

bviously depends on the resolution to be deployed in the local 

tress measurement. In both CAC and MD, a significant fluctuation 

ppears in the pileup-induced stress profile if different resolutions 
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noted as l ) are used in measuring the local stress (Fig. 7 b). For

nstance, the error bar induced by the numerical fitting at a = 0 . 58

s significantly narrower than that of a = 0 . 5 . It means that the re-

axation of the parameter of a largely suppresses the uncertainty 

n determining the stress intensity factor of K . Such uncertainties 

annot be ignored despite the overall trend of the K − ρ∗ relation 

emain unchanged at different a . 

As a preliminary search of the best fitting parameter a in 

q. (5) , Fig. 8 also presents the change of the fitting error, R 2 , upon

he variation of the parameter of a from 0 to 1 at a step of 0.01. In

etails, the expression of the fitting error, R 2 , is defined as, 

 

2 = 1 − SS res 

SS tot 
, (6) 

here SS tot is the total sum of squares 
∑ 

i (σi − σ̄ ) , and SS res is the

esidual sum of squares 
∑ 

i (σi − f i ) 
2 . σi is the stress on each vol- 

me element, σ̄ is the mean of the data points, and f i is the fitted

alue. By this definition, a value of R 2 closer to 1 implies a less

rror when fitting simulation data into Eq. (5) . 

Results in both Figs. 6 b, 6 e, and 8 a show that a choice of a =
 . 58 leads to a best fit of simulation data into Eq. (5) . It should be

ointed out that, a = 0 . 58 is simply determined by maximizing R 2 .

lthough a = 0 . 58 may not be a typical value, we believe that its

eviation from 0.5 or 1 is physically reasonable in general because 

 = 0 . 5 corresponds to the dislocation pileup at an ideally rigid in-

erface without any step formation while a = 1 . 0 corresponds to 

he formation of a “perfect” step at the pileup tip without any local 

tructure relaxation. This finding implies that the pileup-induced 

tress concentration indeed decays away from the pileup tip in a 

imilar trend as that in Eshelby model, but decays more slowly 

nd spans a longer range than what has been predicted by the Es- 

elby model. In other words, although a continuum-level Eshelby- 

ype model can approximately describe the pileup-induced internal 

tresses, it, however, has a limited resolution because it smears out 

he step formation and any other local structure relaxation at the 

lip-interface intersection. In order to further confirm that a best 

t of simulation data into Eq. (5) has been achieved at a = 0 . 58 in-

eed no matter what resolution has been employed in the stress 

easurement, Fig. 8 b presents the simulation-based stress profiles 

t different resolutions and their fits into Eq. (5) . It is seen that,

ith the volume element size (noted as l , the side length of one 

olume element) being decreased from l = 1 . 0 nm to l = 0 . 2 nm,

he local stress profile exhibits a notable fluctuation but still obeys 

he Eshelby-type model very well. 

The above results suggest: (1) CAC simulations not only repro- 

uce a K − ρ∗ relation, which is consistent with the prediction 

rom nanoscale MD simulations in [82] , but also expand the pre- 

ictive capability of MD simulations up to the microscale by ac- 

ommodating tens of dislocations in a pileup; (2) this in turn en- 

bles CAC to capture the long-range stress field caused by the ac- 

umulation of a large number of dislocations at a buried interface. 

ith a unique feature of simultaneously resolving the long-range 

tress field together with an atomic-level structure evolution at 

he slip-interface intersection, CAC bridges the length scale gap be- 

ween atomistic and continuum, and provides us with a platform 

or simulating dislocation slip, PTs, twinning, and their interactions 

iscussed in details elsewhere [76] . 

. Summary and discussion 

To summarize, in this work, we present atomistic-to-micoscale 

omputational analysis of the local stress complexity induced by 

he dislocation pileup at an interface in two-phase materials under 

 plastic shear. One main novelty of the CAC approach deployed 

ere is its capability in bridging the relevant length scales by re- 

olving the atomic-level structure changes near a buried material 
12 
nterface while the lagging dislocations away from the interface in 

 coarse-grained atomistic description. It thus expands the MD- 

imulation-based predictive capability from the nanoscale to the 

icrometer level. This can be evidenced by our several main find- 

ngs as follows: 

(1) The CAC model accommodates up to 16 dislocations in one 

lip at a modest computational cost. Under certain shear stresses, 

hese dislocations may be blocked by obstacles (an incoherent in- 

erface in this work) and form a pileup spanning a range of several 

icrometers (1.2 μm in the present model). In contrast, the MD 

odel using the same computational resource can only accommo- 

ate up to 8 dislocations in a pileup, the equilibrium configuration 

f which under certain shear stress only spans a range of tens or 

undreds of nanometers. 

(2) When tens of dislocations are piled up at the interface, the 

AC-simulation-predicted stress concentration ahead of the pileup 

ip is also in a long-range. It does not decay to zero at a site hun-

reds of nanometers away from the pileup tip. This range can be 

ven longer if more dislocations are introduced. This is also con- 

rmed in our recent microscale CAC simulation of the dislocation 

ileup in Ti-alloys to be reported in [84] . In contrast, the MD- 

imulation-predicted stress concentration ahead the tip of a pileup 

ontaining a few dislocations spans only 60 nm. 

(3) When the number of dislocations in a pileup is as small as 

onsidered in MD, or when the number of dislocations participat- 

ng in the pileup is large but the applied stress is relatively low, the 

ontinuum-level Eshelby model [46] predicts well about the dislo- 

ation density, ρ , behind a pileup and also the stress intensity, K , 

head of a pileup tip. In such situations, an increase of ρ and K 

ith the increase of τap is consistently observed in MD, CAC, and 

he Eshelby-type models. 

(4) When the number of dislocations in a pileup increases up 

o 16, under a high shear stress, CAC predicts a pileup-induced 

tep formation at the interface, a considerable stress concentra- 

ion ahead of the pileup tip, a saturation of the dislocation density, 
∗, behind the pileup tip, and most importantly, a sudden “upper 

end” of the pileup tip stress intensity factor, K , up to a very high 

evel. At this stage, our two main observations contradicting to the 

onventional wisdom are: (a) the stress profile ahead of the pileup 

ip obeys neither 1 /r 0 . 5 (the classical Eshelby model, assuming a 

igid obstacle without allowing the step formation at the interface) 

or 1 /r (the superposition model, assuming the formation of a per- 

ect step without any local structure relaxation at the interface); 

b) the relationship between the local stress intensity factor and 

he dislocation density near the interface, i.e., the K - ρ∗ relation, is 

ot as linear as reported by many existing MD simulations which 

nly consider a few dislocations piling up at the obstacles, but is 

ighly non-linear instead. A simple linear correlation between dis- 

ocation density and the stress intensity factor may have largely 

nderestimated the dislocation accumulation-induced local stress 

ntensity within the materials. 

These findings highlight: (a) the insufficiency of only using 

anoscale MD simulations to interpret the microscale experimental 

esults on such phenomenon, which may have involved tens and 

ven hundreds of μm-long dislocations; (b) the need for a multi- 

cale materials modeling methodology to bridge the length scale 

ap between atomistic simulations, experiments, and continuum- 

evel approaches for the problem under consideration; and (c) 

he possibility of engineering the microstructure of a plastically 

eformed two-phase materials, such as fcc/bcc, fcc/hcp, bcc/hcp 

etallic composites, Ti-/Zr-/high entropy alloys, and among sev- 

ral others, through a fine control of the microscale dislocation- 

ediated plastic flow and its interaction with the buried material 

nterfaces through multiscale computer simulations. 

The results that we have presented here suggest that the CAC 

imulation tool may provide researchers with an alternative vehicle 
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o meet this need, but are considered to be still preliminary at this 

tage because: 

(i) the material system under consideration here is simpli- 

ed in terms of crystal structure, chemistry, interatomic poten- 

ial, microstructure and among several others. A transfer of the 

resent model or the gained knowledge for understanding the slip- 

nterface reactions in realistic multiphase material is not trivial. It 

emands the design of new finite elements for simultaneously ac- 

ommodating complex dislocation activities, the implementation of 

ore sophisticated or machine learning-based interatomic poten- 

ial trained from ab initio data for capturing more complex struc- 

ure changes, as well as the incorporation of realistic structures 

nd chemistry at the GBs, PBs, and other interfaces in the mate- 

ials. 

(ii) in addition to the local stress, another factor that plays 

 vital role in the local structural change is the thermal-induced 

tomic fluctuations. The implementation of a finite temperature al- 

orithm into CAC for capturing the thermal effects on dislocations, 

Ts, and their interactions is needed, especially when the correla- 

ion between phonon instability and PTs becomes a concern. 

(iii) The critical applied stress at which the step forms at the in- 

erface may have been overestimated due to the limitation of sim- 

lation timescale in MD and CAC. Since the structural change of in- 

erest can be many orders of magnitude slower than the vibrations 

f the atoms, conventional MD or CAC is not able to quantitatively 

apture the realistic atomic structure revolution that is observed in 

xperimental time scale. The nudged elastic band (NEB) methods 

ave been generally used to determine the atomic structure revo- 

ution of such long time scale event. In particular, a finite deforma- 

ion NEB method was recently developed to determine the stress 

ependent minimum energy path of a phase transition under finite 

eformation [85] , which has been applied to study the PTs in 2D 

aterials [45] and silicon [86] . Although NEB methods could help 

esolve the challenges from the time scale, it still faces the chal- 

enges in the length scales. To this end, an integration of CAC and 

EB methods is promising to further push the predictive capabil- 

ty of atomistic simulations by resolving the large length and time 

cales simultaneously. 

A further expansion of CAC along with the above three direc- 

ions and its applications in predicting the slip-interface reactions 

n a variety of realistic materials are being intensively pursued in 

ur group. The relevant results will be reported in our future pub- 

ications. 
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