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Abstract

To characterize the location (mean, median) of a set of
graphs, one needs a notion of centrality that is adapted to
metric spaces, since graph sets are not Euclidean spaces.
A standard approach is to consider the Fréchet mean. In
this work, we equip a set of graph with the pseudometric
defined by the f2 norm between the eigenvalues of their
respective adjacency matrix. Unlike the edit distance, this
pseudometric reveals structural changes at multiple scales,
and is well adapted to studying various statistical problems
for graph-valued data. We describe an algorithm to compute
an approximation to the sample Fréchet mean of a set of
undirected unweighted graphs with a fixed size using this
pseudometric.

Keywords: Statistical Network Analysis; Fréchet mean.

1 Introduction.

Machine learning almost always requires the estimation
of the average of a dataset. Algorithms for clustering,
classification, and linear regression all utilize the average
value of the data set [17]. When the distance is
induced by a norm, then the mean is a simple algebraic
operation. If the data lie on a Riemannian manifold,
equipped with a metric, then one can extend the
notion of mean with the concept of Fréchet mean
[27]. In fact the concept of Fréchet mean only requires
that a (pseudo)metric between points be defined, and
therefore one can consider the Fréchet mean of a set
in a pseudometric space [14]. Not surprisingly, many
machine learning algorithms, which were developed for
Euclidean spaces, can be extended to use the Fréchet
mean. The purpose of this paper is to solve the
nontrivial problem of determining the sample Fréchet
mean for data sets of graphs when the pseudometric is
the /5 distance between the eigenvalues of the adjacency
matrices of two graphs.

In this work we consider a set of simple graphs with
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n vertices which have an edge density that satisfies,

(1.1)

We additionally note that the vertex set must be
sufficiently large and that the technique introduced in
this paper will perform poorly for sets of small graphs.

Our line of attack involves the following two inter-
mediate results: (1) a graph’s largest eigenvalues can be
approximated within any precision by the corresponding
eigenvalues of a realization of a stochastic block model;
(2) given a set of target eigenvalues, one can recover
the stochastic block model whose Fréchet mean has a
spectrum that best matches these target eigenvalues.
We prove various error bounds and convergence results
for our algorithm and validate the theory with several
experiments.

n"% < p, < 1.

2 State of the Art.

We consider the set of undirected, unweighted graphs
of fixed size m, wherein we define a distance. To
characterize the location (mean, median) of the set of
graphs we need a notion of centrality that is adapted to
metric spaces, since graph sets are not Euclidean spaces.
A standard approach is to consider the Fréchet sample
mean, and the Fréchet total sample variance.

The choice of metric is crucial to the computation of
the Fréchet mean, since each metric induces a different
mean graph. The Fréchet mean of graphs has been
studied in the context where the distance is the edit
distance (e.g., [4, 18] and references therein). The edit
distance reflects small scale changes in the graphs and
therefore the Fréchet mean will be sensitive to the fine
structural variations between graphs. Effectively, the
Fréchet mean with respect to the edit distance can be
interpreted as an average of the fine structures in the
observed graphs.

In this paper, we consider that the fine scale, which
is defined by the local connectivity at the level of each
vertex, may be intrinsically random. The quantification
of such random fluctuations is uninformative when
comparing graphs. We therefore study a distance that
can detect larger scale patterns of connectivity that
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happen at multiple scales (e.g., community structure
[1, 22], modularity [16]).

The adjacency spectral distance, which we define
as the fo norm of the difference between the spectra
of the adjacency matrices of the two graphs of interest
[31], exhibits good performance when comparing various
types of graphs [30], making it a reliable choice for
a wide range of problems. Spectral distances also
exhibit practical advantages, as they can inherently
compare graphs of different sizes and can compare
graphs without known vertex correspondence (see e.g.,
[12] and references therein). The adjacency spectrum in
particular is well-understood, and is perhaps the most
frequently studied graph spectrum [8, 13].

The eigenvalues of the adjacency matrix carry im-
portant topological information about the graph at dif-
ferent structural scales [31]. The spectrum reveals in-
formation about large scale features such as commu-
nity structure [22] or the existence of highly connected
“hubs” [13], as well as the smaller scale structure such
as local connectivity (i.e. the degree of a vertex) or the
ubiquity of substructures such as triangles [11]. In [30],
the authors observe that the adjacency spectral pseudo-
distance exhibits good performance across a variety of
scenarios, making it a reliable choice for a wide range
of problems (from the two-sample test problem to the
change point detection problem).

A stronger notion of spectral similarity involves the
similarity between the eigenspaces of the adjacency ma-
trices of the respective graphs (e.g., [23]). These notions
of spectral similarity have regained some interest in the
context of graph coarsening (or aggregation) for graph
neural networks [6, 26].

Inspired by the conjecture of Vu [29], we propose
to use the eigenvalues of the adjacency matrix as
“fingerprints” that uniquely (up to trivial permutations
and the possible iso-spectral graphs) characterize a
graph (see also [20]).

In practice, it is often the case that only the first ¢
eigenvalues are compared, where ¢ < n. We still refer
to such distances as spectral distances but comparison
using the first ¢ eigenvalues for small ¢ allows one to
focus on the global structure of the graph while ignoring
the local structure [22]. We provide in section 6 our
recommendation for the choice of c.

Instead of solving the minimization problem associ-
ated with the computation of the Fréchet mean in the
original set G, the authors in [12] suggest to embed the
graphs in Fuclidean space, wherein they can trivially
find the mean of the set. Because the embedding in [12]
is not an isometry, there is no guarantee that the inverse
of the average embedded graphs be equal to the Fréchet
mean. Furthermore, the inverse embedding may not be

available in closed form. In the case of simple graphs,
the Laplacian matrix of the graph uniquely character-
izes the graph. The authors in [15] define the mean of a
set of graphs using the Fréchet sample mean (computed
on the manifold defined by the cone of symmetric pos-
itive semi-definite matrices) of the respective Laplacian
matrices.

3 Main Contributions.

The sample Fréchet mean graph has become a stan-
dard tool for the analysis of graph-valued data. In
this paper, we derive a method to compute the sam-
ple Fréchet mean when the distance between graphs is
computed by comparing the spectra of the adjacency
matrices of the respective graphs. We provide a rigorous
theoretical analysis of our algorithm that demonstrates
that our estimator converges toward the true sample
Fréchet mean in the limit of large graph sizes. This
is the first computation of the sample Fréchet mean for
graphs when considering a spectral distance. This novel
theoretical result relies on a combination of two ideas:
stochastic block models provide universal approximants
in the spectral adjacency pseudometric, and the domi-
nant eigenvalues of the adjacency matrix of a stochastic
block model can be used to recover the corresponding
graph. We use numerical simulations to compare our
theoretical analysis to the finite graph size estimates
obtained with our algorithm.

4 Notations.

We denote by G = (V,E) a graph with vertex set
V = {1,2,..,n} and edge set £ C V x V. For
vertices 7,7 € V an edge exists between them if the
pair (i,7) € E. The size of a graph is called n = |V|
and the number of edges is m = |E|. The density of a
graph is called p, = W

The matrix A is the adjacency matrix of the graph
and is defined as

1
A=
-4

We define the function o to be the mapping from the set
of n xn adjacency matrices (square, symmetric matrices
with zero entries on the diagonal), M, to R™ that
assigns to an adjacency matrix the vector of its n sorted
eigenvalues,

if (i,j) € E,

(4.2)
else.

(4.3) o:M,x, — R”,
(4.4) A— X=[A1,..., A\,
where A\; > ... > )\,. Because we often consider the ¢

largest eigenvalue of the adjacency matrix A, we define
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the mapping to the truncated spectrum as o, ,

(4.5)
(4.6)

¢ : My xn — R,

A A=A, A

DEFINITION 4.1. We define the adjacency spectral
pseudometric as the fo norm between the spectra of the
respective adjacency matrices,

(4.7) da(G,G") = |lo(A) = o(A)]]2.

The pseudometric d 4 satisfies the symmetry and trian-
gle inequality axioms, but not the identity axiom. In-
stead, d 4 satisfies the reflexivity axiom

da(G,G) =0, VGeg.

When the adjacency matrices (or Laplacian) of
graphs have a similar spectra it can be shown that
the graphs have similar global and structural properties
[30]. As a natural extension of this spectral metric,
sometimes only the largest c eigenvalues are measured
where ¢ < n. We refer to this next metric as a
truncation of the adjacency spectral pseudometric.

DEFINITION 4.2. We define the truncated adjacency
spectral pseudometric as the £o norm between the largest
¢ spectra of the respective adjacency matrices,

(4.8) . (G, G) = [loc(A) — oe(AT)][2-

DEFINITION 4.3. We denote by G the set of all simple
unweighted graphs on n nodes.

4.1 Random Graphs We denote by M(G) the space
of probability measures on G. In this work, when we talk
about a measure we always mean a probability measure.

DEFINITION 4.4. We define the set of random graphs
distributed according to p to be the probability space

(G, ).

REMARK 4.1. In this paper, the o-field associated with
the (G, p) will always be the power set of G.

This definition allows us to unify various ensem-
ble of random graphs (e.g., Erdés-Rényi, inhomoge-
neous Erdds-Rényi, Small-World, Barabasi-Albert etc)
through the unique concept of a probability space.

4.1.1 Kernel Probability Measures Here we de-
fine an important class of probability measures for our
study.

DEFINITION 4.5. A probability measure p € M(G)
1s called a kernel probability measure if there exist a
positive constant p, and a function f,

(4.9) puf 0,1] x [0,1] — [0, 1],

such that f(z,y) = f(1 —y,1 —x), and

VG € G, with adjacency matriz A = (a;5),

(4 = TT Pag) = TJ Bemout (5.2 2)).

1<i<j<n 1<i<j<n

The function p,f is called a kernel of p and is denoted
/u’Pnf‘

REMARK 4.2. We refer to these measures as kernel
probability measures since the kernels naturally give rise
to linear integral operators with kernels f.

We note that given the sequence {%}:;1 and the
measure u, the kernel p, f forms an equivalence class
of functions, characterized by their values on the grid

{7} x {%}jzl .
DEFINITION 4.6. We denote by G, a random realiza-
tion of a graph G € (G, ).

4.1.2 Stochastic Block Models The stochastic
block model (see [1]) plays an important role in this
work. We review the specific features of this model
using the notations that were defined in the previous
paragraphs. The key aspects of the model are: the
geometry of the blocks, the within-community edges
densities, and the across-community edge densities. An
example of the kernel function and associated adjacency
matrix from a stochastic block model is given in Fig. 1.

We denote by ¢ the number of communities in the
stochastic block model.

The geometry of the stochastic block model is
encoded using the relative sizes of the communities. We
denote by s € ¢; a non-increasing non-negative sequence
of relative community sizes with ¢ non-zero entries and
Is] = 1.

For the geometry specified by s we define an asso-
ciated edge density vector p € f, such that 0 < p;
for i = 1,...,c and p; = 0 for 4 > ¢ which describes the
within-community edge densities.

Finally, we denote by @ = (¢;;) an infinite matrix
of cross-community edge densities where ¢; ; =0, ¢; ; =
gji,and ¢;; =0if i > cor j > c.

REMARK 4.3. We allow for infinite vectors with finite
number of non-zero entries so that we may introduce
new communities smoothly. For example, let t € [0, 1]
and parametrize s and p by t as

(4.10)
(4.11)

s(t)=[1—-1t/2,t/2,0..]
pnp(t) = [0.2+1/2,0.1+1/2,0,...].

We can parameterize a stochastic block model using
one representative of the equivalence class of kernels, f.
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We simply consider the function f, which is piecewise
constant over the blocks, and is defined by
onf :10,1] x [0,1] — [0, 1]

(4.12)
pnpi  if 22—211 sp << ZZ:; Sk,
(z,y) — .and 12—:12;11 k=Y ;LZI o
pndij 3E Doy sk <@ <D0py Sk,

and 3370 se <y < Xy s

This piecewise constant function is called the canonical
kernel of the block model with measure u (see, e.g.
Fig. 1), and we denote it by f(z,y,p,Q,s).

Ezample. Given s = [1/2 1/4 1/4 O~~~]T the

values of f(z,y;p,Q,s) in the unit square are shown
i B 1

1Ak
P1 12 13
y
q12 P2 423
q13 q23 P3
o > fel
0 A Adjacency Matrix
X
Figure 1: Left: Ezample stochastic block model kernel

flz,y;p,Q, s).
:U‘Pnf

Right:  Ezample adjacency matrixz from

5 The Fréchet mean and sample Fréchet Mean

We equip the set G of graphs defined on n vertices (see
definition 4.3) with the pseudometric defined by the /o
norm between the spectra of the respective adjacency
matrices, d4., (see (4.8)). For any subset of graphs
{GWIN_ | C G, using da,, we quantify the spread of
the graphs, and we define a notion of centrality, which
gives the location of the average graph, according to the
empirical measure.

Definition 5.1 (sample Fréchet mean [14]) Let
{G(k)} 1<k <N be a set of graphs in G. The sample
Fréchet mean is defined by

N
1
(5.13) {Gy € G} = argmin N E dic(G,G(k)).
ceg N i

Because G is a finite set, the minimization problem
(5.14) always has at least one solution. Throughout
this work, we are interested in determining at least
one element of the set {G% € G}. Since our results
hold for any minimizer of (5.14) (i.e. for any sample

Fréchet mean), to ease the exposition, and without loss
of generality, we assume that the sample Fréchet mean
is unique. Therefore {G* € G} is a singleton and we
write the sample Fréchet mean as

N
. _ . 2 (k)
(5.14) Gy = argmin — kgﬂd (G,G'").

Geg

We note the similarity between equation 5.14 and
the definition of the barycenter [27]. Indeed, for differ-
ent sets of graphs {G(k)}k]\’:1 C G we expect that, for
a fixed G, + Zszl d*(G,G™®)) will change, and there-
fore the sample Fréchet mean G7 will move inside G.
Here, G’ plays the role of the center of mass for the set
{GWYL, Cg.

The computation of the sample Fréchet mean for
sets of large graphs is intractable due to two primary
issues. The first is that |G| = O(2"") so any brute
force procedure to solve the minimization problem in
(5.13) will not compute in reasonable time. Second,
the set G is not ordered so searching the space of
graphs in a principled manner is difficult (in contrast
to the situation with trees [2]). We suggest solving
these issues by first lifting the sample Fréchet mean
problem to a larger space and defining an approximation
to the lifted problem. Our approach involves searching
for the correct parameters of a stochastic block model
kernel such that the sample Fréchet mean given p,, s
approximates the target graph, G, with respect to d4. .

6 Approximation of the sample Fréchet mean.

We first state the primary theoretical results (Theorem
6.1 and Corollary 6.1) which form the foundation of our
algorithm (see Alg. 1). We additionally state theorems
that are necessary results for the implementation of our
algorithm.

Let G € G with adjacency matrix A such that
n=%/% < p, < 1. Assume that

(6.15) 0< 0.(A)

and for every 1 <i# j <c¢, A\; # A;. Our primary the-
oretical contribution, Theorem 6.1, states that we may
approximate any graph G that satisfies our assumptions
by the sample Fréchet mean of an appropriate stochas-
tic block model kernel probability measure, f,,, , almost
surely with respect to the truncated adjacency spectral
pseudo-metric.

Theorem 6.1 (Spectrally similar large graphs)
Ve > 0, In; € N such that Vn > n1, 3f(z,y;p,Q, s)
a canonical stochastic block model kernel with ¢ com-
munities such that

ngnoo da,(G,G a.s.

(6.16) ) <e

*
Nippn f
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where Gy, denotes the sample Fréchet mean of

pn f
{GWYN_ | an iid sample distributed according to ju,, .

REMARK 6.1. While we are free to choose the geometry
vector s, we make the choice that s1 > s; fori=2,...,c
and s; = sj fori,j =2,...,c

The following corollary applies Theorem 6.1 to the
sample Fréchet mean of any given data set of graphs,
{GW}N_ . This corollary forms the basis of our ap-
proach to solving (5.13).

Let {G®}N_| be a set of graphs with sample
Fréchet mean G73,. Assume G satisfies the assump-
tions of Theorem 6.1.

Corollary 6.1 (Approximation of the sample
Fréchet mean) Ve > 0, In; € N such that Vn > nq,
3f(z,y;p,Q, 8) a canonical stochastic block model ker-
nel with ¢ communities such that

(6.17) K}gnoodAC( ~ Gy o f) <€ a.s.
where G*J\7 o s denotes the sample Fréchet mean of

{é(k)}szl, an iid sample distributed according to p,, ¢.

Corollary 6.1 tells us that rather than solving the argmin
procedure in equation (5.13) we may instead search for
a set of parameters for the stochastic block model kernel
and compute the sample Fréchet mean. Most notably,
the computation of the sample Fréchet mean given
Hp, f, is straightforward due to the following theorem.
We show that with high probability, the truncated
spectrum of the set mean graph of an iid sample drawn
from p,, s is near the expected spectrum.

Let {C;’(k)}g:l be a sample of graphs distributed
according to pu,, r where f is the canonical stochastic
block model kernel. Define the set mean graph by

E Z &4 (G.GW)

Nipip, £

(6.18)

argmin
Ge{GUNN_ |

with adjacency matrix A N
Theorem 6.2 (High probability convergence of
the truncated spectrum of the set mean graph)
Ve > 0,
(6.19)

lim P(|loc(A*

n—oQ

N ) ~Eloe(Ay, ]2 >€) =0.

We prove Theorem 6.2 in the supplementary material
[9]. Our final theorem provides us with a method of
estimating the expected eigenvalues of graphs drawn
from a stochastic block model which will allow us to

search for the correct canonical stochastic block model.
Let f(z,y;p,Q,s) be a stochastic block model kernel
of a kernel probability measure. Let G, , be a graph
distributed according to u,,; with adjacency matrix
A. Let \;(A) denote the i-th largest eigenvalue of A.

Define the linear integral operator Ly : L2([0,1])
L2([0,1]) as

1
(6.20) :/ f(@,y;:p,Q, 8)t(y)dy

0

with eigenvalues denoted \; (L) and orthonormal eigen-
functions r;(x). Assume r;(x) is piecewise continuous
with finitely many discontinuities.

Theorem 6.3 (Estimation of the Largest Eigen-
values of Stochastic Block Models) Fori=1,...,c

(6.21) E \(A)] = i(L)npn + O(y/5m)

The full proof of Theorem 6.3 can be found in [9]. The
culmination of these theorems results in the following
algorithm.

Algorithm 1 Approximate sample Fréchet mean

Require: Set of graphs, M = {G*}N

: Compute the average density p,, of the graphs in M

Estimate ¢ and choose s (see [9] and Remark 6.1).

For eachi =1, ..., c compute \; = % Zszl i (AR,

Randomly initialize p

Initialize @ = (g;;) such that ¢;; = ¢ for all 4, j and

||f(xay;p7Q7 s)”l =1

while Relative change in p and ¢ is large do
Estimate the gradient of > ;_, [np,A;(Lf) —

via centered differences

8: Update p via a projected gradient descent step

9: Update ¢ such that ||f(z,y;p, @, s)||1 =1

10: end while

11: Estimate Gy y with G*

NTPS
12: Return: Estimate of G* .
N, pp, f

N

Ail?

(Theorem 6.2).

Nippp

Alg. 1 is founded on the following idea: Any
graph G can be expressed as the Fréchet mean of some
probability measure. For large graphs, our theory shows
we may search for a canonical stochastic block model
kernel, f, by aligning the eigenvalues of L; (Steps 6
- 10), and then estimating the sample Fréchet mean
of iy, ¢ using the set mean graph (Step 11). A full
justification of Alg. 1 appears in [9].

Notably, the runtime of Alg. 1 is bottlenecked by
Step 11 which has a complexity of O(Nn?c®). Though,
for large graphs, taking N =1 is sufficient and reduces
the time complexity to O(n?).
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7 Experimental Validation.

7.1 Assessment, Validation, and Comparison
A brute force computation of the sample Fréchet
mean or median graph based on the adjacency spec-
tral pseudo-distance is unrealistic (it requires about
Q (n22”2
vide a ground truth. One may consider comparing the
Fréchet mean computed here to a Fréchet mean com-
puted with respect to the edit distance for which sev-
eral optimization algorithms have been proposed (e.g.,
[3, 10, 18]). While this comparison may be feasible, it
is uninformative as the Fréchet mean with respect to
the edit distance need not have any resemblance to the
Fréchet mean with respect to d4..

All the code and data is provided at https://
github.com/dafe0926/approx_Graph_Frechet_Mean.
To the best of our knowledge, this study provides the
first algorithm to compute the sample Fréchet mean
for a dataset of graphs when considering a spectral
distance, as a consequence, we have no baselines to
compare our results with.

) operations), and we therefore do not pro-

7.2 Choice of the Datasets

Graph valued databases have recently been created and
made available publicly [25]. These databases are de-
signed for the evaluation of machine learning algorithms
and the mean for each class is not provided (even for the
edit distance). Consequently, we believe that comput-
ing the Fréchet mean of these graph sets provide little
scientific value for the purpose of validating our method.
Instead we conduct experiments on synthetic datasets
that are generated using ensembles of random graphs.

Ensembles of random graphs capture prototypical
features of existing real world networks. Because our
theoretical analysis and associated algorithms rely on
the stochastic block model graphs as the “atoms” that
are used to approximate G}, we expect that our
algorithm will perform well when computing the Fréchet
mean of graphs generated by stochastic block models.
Our experimental investigation is thus concerned with
the performance of our approach when the families of
graph ensembles exhibit structural features that differ
from those of the stochastic block models.

Each data set consists of N = 50 graphs on n = 600
nodes. We consider three different iid data sets of
graphs, M7, My, M3, drawn from distributions p1, ps, pis
which have the following high level descriptions.

p1:  Barabasi-Albert
po:  Small world
3. Variable community size stochastic block model

The specific parameters of each p; are discussed within

each subsection. Note that p; and pe induce graphs
with vastly different topologies than those generated by
Hp,f- For each dataset, we determine the canonical
stochastic block model whose sample Fréchet mean is

close to G and compute GN s

7.3 Barabasi-Albert approximate sample
Fréchet mean For the Barabasi-Albert ensemble,
the initial graph is fully connected on my = 5 nodes
and m = 5 edges were added at each step. In Fig. 2
we reorder the nodes by their degree to get a better
visual understanding of the similarities between an

observation and G* .
sHpn f

An Observed Graph Approximate sample Frechet mean: Gy,

Figure 2: Visualization of a graph in My and the approwi-

mate sample Fréchet mean of M1, G -
Hon

O Average extreme cigenvalues from M;
o Estimated extreme eigenvalues of G

Average bulk eigenvalues from J;

o Bulk eigenvalues of G}, |

x Theoretical extreme eigenvalues of G

Probability

®o
®o
®0
®o
®o
®o

Value of extreme eigenvalue
®o
®o
@0

80

skm

% 5 10 3 ° 2 4 ) 0
E: d pdf of ei (not r Index of extreme eigenvalue

Figure 3: Left: The average distribution of bulk eigenval-
ues from M (black). The distribution of bulk eigenvalues
of G
ues fmm M1 (black). The expected extreme eigenvalues of
(blue).

(blue). Right: The average extreme eigenval-

G}},’Mpnf (red). The extreme eigenvalues of GN’% ;

Fig. 2 is a visual depiction of a graph from M;
compared to the approximate sample Fréchet mean
graph G* ; though we note that there need not

Hop,
be any v1sua1 similarity between a graph in M; and

G~ since any observation from a distribution p

Nibpn s
need not be similar to the mean of pu.

Fig. 3 depicts the alignment of the spectra from
the approximate sample Fréchet mean with that of
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the average spectra of the graphs from set M;. The
misalignment in the largest eigenvalues is due to the
finite graph approximation.

The theory presented in section 5 only ensures
that the c largest eigenvalues can be well approximated
by the eigenvalues of the sample mean graph from a
stochastic block model. In Fig. 3, we see that the ex-
pected eigenvalues (red markers), are near perfect es-
timates of the average extreme eigenvalues. However
there is a notable distance between the extreme eigen-
values of G% (blue markers), and the expected

sHon f

eigenvalues (red markers). This distance is determined
primarily by the size of the graph n and as n increases
this distance will decay like O(,/p,) per Theorem 6.3.

7.4 Small World approximate sample Fréchet
mean The parameters for the Small World ensemble
are the number of connected nearest neighbors, K = 22,
and the probability of rewiring, 8 = 0.7.

B

An Observed Graph Approximate Empirical Frechet Mean: Gy

Figure 4: Visualization of a graph in M> and the approzi-

’ *
mate sample Fréchet mean of Mz, G
Hon f
g e [ o Average xtreme cigenaues rom M,
o Bulk eigenvalues of G o Estimated extreme eigenvalues of G‘\ -
" @ || « Theoretical extreme cigenvalues of G
EP i
©
g la
o5 ity 5
> 2.
3 o
go § % £
g s 3 5
3 ¢ 3 £
Qo & )
5 5
i on o
. g -
E Sooo
-3 @ o ® ® o
; > g E® Q85 g g g3 2
g H 0
Wl 3
& 3

n” 15 10 5 0 5 10 15 2 o 2 ¢ 6 8 10 2 "
Estimated pdf of eigenvalues (not normalized) Index of extreme eigenvalue

Figure 5: Left: The average distribution of bulk eigenval-
ues from My (black). The distribution of bulk eigenvalues
of @},#Mf (blue). Right: The average extreme eigenval-
ues from My (black). The expected extreme eigenvalues of

GNvF/pnf (red). The extreme eigenvalues of é}]aupnf (blue).

Here we see a nice similarity between the adjacency
matrices of the two graphs (see Fig. 4). Furthermore

Fig. 5 demonstrates the striking spectral similarity
between the two graphs, both in the extreme and bulk
eigenvalues.

The alignment of the bulk eigenvalues from the
observed set of graphs and the bulk eigenvalues of
G}hup ; showcases that the graph structure is entirely
determined by the c largest eigenvalues. This has been
well know to be true of stochastic block models and in
Fig. 5 we see evidence that the Small World ensemble

may also be characterized by its largest eigenvalues.

7.5 Variable Community Size approximate
sample Fréchet mean The parameters for the
stochastic block model in this section are p =
[0.4,0.5,0.6,0.3,0.37,0.65], @Q;; = 0.08, s =

160 100 60 120 85 75 : o
(600> 606 500 Goo 00> Goo)- Fig. 6 visualizes a graph
from M3 and the sample Fréchet mean graph G

*

N’lu‘ﬂnf '

An Observed Graph Approximate Empirical Frechet Mean: G

Figure 6: Visualization of a graph in Ms and the approxi-
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Figure 7: Left: The average distribution of bulk eigenval-

ues from Ms (black). The distribution of bulk eigenvalues

of G},u ; (blue). Right: The average extreme eigenval-
Hon

ues from Ms (black). The expected extreme eigenvalues of

GNvl”pnf (red). The extreme eigenvalues of GN:I—Lpnf (blue).

In spite of the visual difference between the adja-
cency matrices of a graph from the set M3 and the graph
Gy s respectively (see Fig. 6), we again see a striking

W pn

similarity between the eigenvalues.
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8 Application to Graph Valued Regression

In this section we provide an application of the compu-
tation of the sample Fréchet mean: the construction of
a regression function in the context where we observe a
graph-valued random variable that depends on a real-
valued random variable. Our approach is based on the
theory developed in [28] where we replace the computa-
tion of the sample Fréchet mean with our algorithm. We
briefly recall the framework of [28] using our notation.
We consider the following scenario. Let u € M (G),
and let T be a random variable with probability density
Pr (t). We consider the random variable formed by the
pair G and T, distributed with the joint distribution
formed by the product p x Pr (t). We wish to compute
the regression function E [G|T = t]. The authors in [28]
propose to compute the following,

(8.22)  m(t) = argmin E,,xp, (1) [s(T,1)d*(G,G,)],
Geg

where the expectation in (8.22) is computed jointly
over G, distributed according to p, and T', distributed
according to Pr (t), and the bilinear form s is defined
by

(8.23) s(T,t) =1+ (T —E[T]) [var [T]] " (t — E[T)).

The bilinear form s(7,t) plays the role of a kernel,
returning the location of ¢ with respect to the location,
E [T], and scale, var [T], of T. The regression function
m(t) returns a kernel estimate of the linear regression
function by summing over all the possible pairs (G, T).

The sample estimate of equation (8.22) is the natu-
ral estimate where each unknown term is replaced with
the sample alternative as

N
m(t) = argmin Y s; n(t)d*(G, G;)
Geg T

(8.24)

(8.25) sin(t) =1+ (t; = T)V(t —T).

Here we have used T and V as the sample estimate
of the mean and variance of 7. The objective in (8.24)
can be interpreted as a weighted sample Fréchet mean
with weight function sj n(t). Assume for all ¢ that the
graph, m(t), satisfies the conditions for Theorem 6.1.
This implies the existence of a sequence of stochastic
block model kernels depending on t, 1, r¢, such that,
for sufficiently large n,

(8.26) ]\}gnoo da,(Mm(t),GN,y, ;) <€ as.

where G, denotes the sample Fréchet mean of

s
{ng)}fcvzl, an iid sample distributed according to
Hp, f:t- For each ¢ we may compute G, using Alg.
1 as an approximation to the graph m(t).

8.1 Experimental Validation for Graph Valued
Regression We validate the computation of the regres-
sion with numerical simulation. We first generate a syn-
thetic data set of graphs by allowing the parameters of
the stochastic block model to vary with time. For sim-
plicity we hold the nonzero entries of @ and s fixed but
allow p to vary for ¢ € [0,1] as

(8.27)
0.1+ 0.1t 1/3
pnp(t) = [0.2+0.15¢| ,s(t) = |1/3| , png = 0.08.
0.35 + 0.2t 1/3

For T ~ unif(0,1), the distribution over G is given as
Ko, s Where f(z,y; p(T), Q, s) is a canonical stochastic
block model kernel. For each sample from wunif(0,1)
there is a corresponding sample from the stochastic
block model. By construction we know the number of
communities in the observed graphs will be constant at
¢ = 3 dictating the number of non-zero entries of p we
allow to vary when searching for the stochastic block
model kernel in equation (8.26).

We take n = 600 and N = 30 samples for the
sample set M = {(tx, G¥)}3Y  in the experiment and
approximate the value of 7 (t) at six different times. For
' €{0,0.2,0.4,0.6,0.8, 1} we compute G%
Alg. 1.

In an effort of visualization, since we are unable to
plot a graph G on the y-axis, we plot in Fig. 8 the largest
three eigenvalues of the adjacency matrices of graphs in
M (marked by a ) and the largest three eigenvalues of
ek (marked by an x). A vertical line of points in

usin
Wy £t/ &

N“uﬂnf;t’
Fig. 8 identifies the largest three eigenvalues of a single
graph.
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Figure 8: Recovered eigenvalues

The most notable part of Fig. 8 is the construction
of a graph that fits the linear regression of each of the
largest ¢ eigenvalues simultaneously. To our knowledge,
this is the first graph valued linear regression line with
respect to a spectral distance.
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9 Conclusion.

In the area of statistical analysis of graph-valued data,
determining an average graph is a point of priority
among researchers. Throughout this paper, we have
shown that when considering the metric da, it is
possible to determine an approximation to G .

How this approximate sample Fréchet mean is uti-
lized is up to the discretion of the researcher. In sec-
tion 8 we explore one motivating idea that utilizes the
Fréchet mean, termed Fréchet regression in the work
in [28]. This is but one example of the utility of the
Fréchet mean graph, another interesting application of
this graph is to further push the work in [24] which in-
troduces a centered random graph model to capture the
variance of a set of observations around a mean graph.
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