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Abstract
This work explores the relationship between wind speed and time-dependent structural motion response as a means
of leveraging the rich information visible in flow–structure interactions for anemometry. We build on recent work by
Cardona, Bouman and Dabiri (Flow, vol. 1, 2021, E4), which presented an approach using mean structural bending.
Here, we present the amplitude of the dynamic structural sway as an alternative signal that can be used when mean
bending is small or inconvenient to measure. A force balance relating the instantaneous loading and instantaneous
deflection yields a relationship between the incident wind speed and the amplitude of structural sway. This physical
model is applied to two field datasets comprising 13 trees of 4 different species exposed to ambient wind conditions.
Model generalization to the diverse test structures is achieved through normalization with respect to a reference
condition. The model agrees well with experimental measurements of the local wind speed, suggesting that tree
sway amplitude can be used as an indirect measurement of mean wind speed, and is applicable to a broad variety
of diverse trees.

Impact Statement
It has recently been proposed that environmental structures such as trees can be used as ubiquitous, low-cost
flow sensors by leveraging visual observations of their characteristic responses to wind loading (Cardona,
Bouman, & Dabiri, 2021). Potential application areas include analyses of pollution dispersal and wildfire
propagation. The present work demonstrates that measurements of tree sway amplitudes can be related to
wind speeds in the context of this visual anemometry goal. This greatly expands the potential of visual
anemometry methods to be used on a broad variety of trees and in lower-speed wind conditions, since it does
not require that trees exhibit large observable mean bending.

1. Introduction

Recent work has suggested that flow speeds can be measured using visual observations of flow–structure
interactions such as the bending response of trees to incident wind (Cardona et al., 2021; Cardona,
Howland, & Dabiri, 2019). Video of trees could potentially be used instead of conventional point-
wise anemometers to achieve low-cost, spatially resolved wind speed measurements simultaneously
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throughout the entire camera field of view. Such data would be valuable for applications such as analyses
of pollution dispersal and wildfire propagation. Cardona et al. (2021) presented a technique that allowed
for normalized wind speed measurements to be made using mean structural deflections compared with
a known reference condition. The aforementioned method demonstrated how visual observations of
objects including trees can be used toward anemometry tasks. However, the application of that method
requires that the mean deflections can be observed, which may not always be possible or convenient in
practice. Mean deflections may be small in many cases, especially for large trees, making them difficult
to measure accurately. For instance, a field study by Peltola, Kellomäki, Hassinen, and Lemettinen
(1993) found that for two Scots pines of 9.5 and 13.5 m tall, the maximum bending measurements at the
crown centre heights were less than 2 and 5 cm, respectively, for a wind speed range of 4–8 m s−1. The
amount of static bending that a tree undergoes is a function of its slenderness and material properties
in addition to the wind (discussed further in § 2.3). This limits the range of trees and wind conditions
for which the mean bending method proposed by Cardona et al. (2021) can be used. Another challenge
is that mean deflections must be measured with respect to the object position under no wind load. This
inherently means that the object must be observed in the absence of wind in addition to being observed
under a known calibration wind speed.

Trees are desirable target objects to use for visual anemometry because of their ubiquity. For instance,
in New York City, more than 680 000 trees have been mapped to date, with 234 species represented
(NYC Parks, 2021). A tree-based visual anemometry method will be most widely applicable to wind
mapping applications if it can be used on a diverse range of trees of various sizes and species. Although
the mean deflection-based technique developed by Cardona et al. (2021) is limited in this regard, the
behaviour of a tree in response to incident wind is dynamic, and is rich with information extending
beyond the mean deflections. For example, the land adaptation of the Beaufort scale relies on perceptible
tree branch motion as a correlate for low wind speeds (Jemison, 1934). Tree motion has previously been
related to the time-varying wind speed, often through semi-empirical mechanical transfer functions
(Holbo, Corbett, & Horton, 1980; Kerzenmacher & Gardiner, 1998; Mayer, 1987; Moore & Maguire,
2008). These transfer functions depend on the tree-specific properties affecting the dynamics, including
the natural frequency, damping and drag coefficient. Prior work measuring tree sway also suggests that
the magnitude of the tree sway increases with increasing wind speed (Peltola et al., 1993; van Emmerik
et al., 2017), as does the velocity of the tree branches (Tadrist et al., 2018).

The present work leverages dynamic tree sway to extend the capabilities of the visual anemometry
technique proposed by (Cardona et al. 2021). A physical model is developed, applying a force balance
to relate mean wind speeds to the amplitude of tree sway. This eliminates the need to observe the object
of interest in the absence of wind loading, and allows measurements to be made in cases where swaying
behaviour is observable even when mean deflections are difficult to measure. The model is applied to
two field datasets including a video dataset capturing the swaying behaviour of a M. grandiflora in an
open field, and a publicly available dataset with strain gauge measurements of 12 trees of 3 different
species in a broadleaf forest in the UK (Jackson, 2018). Results suggest that the method developed in
this work is widely applicable to a diverse set of trees.

2. Methods

2.1. Analytical model

The structural deflection, 𝛿, in response to wind loading was modelled based on Newton’s law for a
single degree of freedom damped harmonic oscillator

FW (t) = m �𝛿 + 𝜆 �𝛿 + 𝜅𝛿, (2.1)

where FW is the external forcing due to incident wind, m is the mass of the structure, 𝜆 is the damping
coefficient and 𝜅 is the elastic constant. An arbitrary time-dependent forcing F(t) can be expressed as a
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Fourier series

F(t) = a0

2
+

∞∑
n=1

(an cos(nt)) +
∞∑
n=1

(bn sin(nt)). (2.2)

When forced with harmonic loading,

F(t) = F0 sin(𝜔t), (2.3)

where 𝜔 is the forcing frequency, and t is time, the steady-state solution of (2.1) is

𝛿(t) = F0

𝜅

[
1

(1 − 𝛽2) + (2𝜁 𝛽)2

] [(1 − 𝛽2) sin(𝜔t) − 2𝜁 𝛽 cos(𝜔t)] , (2.4)

where 𝛽 is the ratio of the forcing frequency to the natural frequency of the system (𝛽 = 𝜔/𝜔n), and
𝜁 = 𝜆/2√𝜅m (Clough & Penzien, 1995).

In the present work, we define the amplitude of the structural oscillations as the standard deviation
of the structural deflection, 𝜎(𝛿) (median absolute deviation is discussed as an alternative to this choice
in the supplementary material, § S1.2 is available at https://doi.org/10.1017/flo.2021.15). The steady-
state solution given by (2.4) reveals that the amplitude of structural oscillations scales with the forcing
amplitude

𝜎(𝛿(t)) ∝ 𝜎(FW (t)). (2.5)

The instantaneous force of the wind on the structure, FW , is given by

FW (t) ∝ 𝜌AU2(t) (2.6)
= CU2(t), (2.7)

where 𝜌 is the fluid density, A is the projected frontal area of the structure, U(t) is the instantaneous
wind speed and C is a positive constant. The instantaneous wind speed, U(t), can be decomposed as a
sum of the mean wind speed, Ū, and the unsteady fluctuating wind speed, u′(t). This gives

FW (t) = C[Ū + u′(t)]2

= C[Ū2 + 2Ūu′ + u′2] . (2.8)

Taking the standard deviation of (2.8) gives an expression relating 𝜎(FW ) to Ū and u′

𝜎(FW ) = 𝜎(C[Ū2 + 2Ūu′ + u′2])
= C𝜎(Ū2 + 2Ūu′ + u′2)
= C𝜎(2Ūu′ + u′2), (2.9)

or equivalently
𝜎(FW ) ∝ 𝜎(2Ūu′ + u′2). (2.10)

Assuming u′/Ū � 1, the u′2 term in (2.10) can be neglected, giving

𝜎(FW ) ∝ 𝜎(2Ūu′)
∝ 𝜎(Ūu′)
∝ 𝜎(u′)Ū

∝ 𝜎(u′)
Ū

Ū2. (2.11)
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Table 1. Summary of the properties of the 13 test trees analysed in the present work, including species,
height (h), diameter at breast height (DBH) and approximate elastic modulus (E). Literature-reported
values of E were obtained from aGreen, Winandy, and Kretschmann (1999) and bNiklas and Spatz
(2010). Tree ID numbers assigned in the original Jackson (2018) dataset are also listed for the relevant
subset of trees.

Dataset Tree ID Species h (m) DBH (m) E (GPa)

Present N/A Magnolia 5 0.08 9.7a
Jackson (2018) 8 Ash 23.37 0.26 9.5b
Jackson (2018) 9 Ash 24.37 0.34 9.5b
Jackson (2018) 10 Ash 23.87 0.28 9.5b
Jackson (2018) 11 Ash 18.91 0.24 9.5b
Jackson (2018) 13 Ash 22.10 0.37 9.5b
Jackson (2018) 14 Ash 23.40 0.38 9.5b
Jackson (2018) 15 Sycamore 18.41 0.23 8.4b
Jackson (2018) 17 Ash 23.20 0.39 9.5b
Jackson (2018) 18 Birch 16.28 0.15 9.9b
Jackson (2018) 19 Birch 16.07 0.24 9.9b
Jackson (2018) 20 Birch 15.34 0.21 9.9b
Jackson (2018) 21 Birch 19.90 0.28 9.9b

The assumption that u′/Ū � 1 is examined in field measurements described below. The turbulence
intensity, 𝜎(u′)/Ū, will be denoted as Iu. Given that the structural sway amplitude, 𝜎(𝛿), scales with
𝜎(FW ) (2.5), 𝜎(𝛿) can replace 𝜎(FW ) in (2.11), yielding

𝜎(𝛿) ∝ IuŪ2. (2.12)

The simplified final expression given in (2.12) reveals that the sway amplitude scales with Ū2 multiplied
by the turbulence intensity Iu.

2.2. Field measurements

Analysis was carried out on two distinct datasets: a direct field measurement dataset comprising videos
of a M. grandiflora collected for the purposes of this work, and an indirect field measurement dataset
comprising strain gauge data for several trees collected by Jackson (2018). Methods are described for
each of these two datasets in §§ 2.2.1 and 2.2.2, respectively. The direct field measurements from the
videos of theM. grandiflora are used to demonstrate model application to visual observations of dynamic
oscillations. Model generalizability to a diverse set of trees is established through its application to the
indirect field measurements from Jackson (2018).

In total, 13 trees across 4 different species were analysed between the two datasets. The four species
considered were: M. grandiflora (magnolia), Fraxinus excelsior (ash), Betula spp. (birch) and Acer
pseudoplatanus (sycamore). The tree species are henceforth referred to by their common names. Table
1 lists the approximate height, h, diameter at breast height, DBH, and elastic modulus, E, for each of the
13 test trees. Tree ID numbers are also listed for the subset of trees from the Jackson (2018) dataset for
reference. Approximate values of E were obtained from literature-reported values (Green et al., 1999;
Niklas & Spatz, 2010).
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Figure 1. (a) TheM. grandiflora specimen used for analysis. (b) An example of a cropped and binarized
image of the treetop. The top-most point on the tree (marked here with the green ‘+’) was located in each
frame for tracking in order to measure 𝛿(t). (c) An example of how 𝛿 would be measured between an
original position (black) and deflected position (grey) of the treetop. Note that, although the deflection is
shown between two video frames here for illustration, 𝛿 was calculated with respect to the mean position
of the treetop over the 900 frames for each video. (d) Plot of 𝛿 vs. time for a representative 1 min video
clip (Ū = 9.17 m s−1). The grey band shows ±𝜎(𝛿). As noted in § 2.1, 𝜎(𝛿) was used to quantify the
sway amplitude for these video experiments. (e) Probability density function (PDF) of measurements of
𝛿 taken during the averaging window.

2.2.1. Direct field measurements
Observations of the dynamic sway of a magnolia tree were captured in 1 min video clips recorded in an
open field with flat terrain in Lancaster, California in the USA. This test tree was the same specimen that
was used by Cardona et al. (2019) to train a machine learning model. A photo of the tree is shown in
figure 1(a), and tree properties are listed in table 1. The data were collected during August, 2018, during
daylight hours when the lighting conditions allowed for the treetop to be easily tracked. Videos were
recorded at 15 frames per second (f.p.s.). A 150 × 150 pixel (px) region of interest capturing the top of
the tree was used for analysis. To measure the deflection, the frames were binarized to distinguish the tree
from the background, and the top-most pixel of the tree was tracked over time. The deflection, 𝛿(t), was
measured by calculating the displacement in the horizontal direction in each frame relative to the mean
position over the 1 min period (900 frames). Note that sensitivity to the averaging period is discussed
further in the supplementary material (§ S1.3). An example of a binarized frame with the treetop detected
is shown in figure 1(b). Deflection, 𝛿, was measured at integer pixel resolution. Figure 1(c) illustrates
how 𝛿 would be measured between an original and deflected position of the tree. A timetrace of 𝛿(t) is
shown in figure 1(d), along with the distribution of 𝛿 over a 1 min averaging window (figure 1e).

Wind speeds were recorded with an anemometer on site (Thies First Class) positioned at 10 m height
and located approximately 60 m from the tree. In selecting time periods to analyse, the incident wind
direction was fixed at 250◦ ± 10◦, which is approximately 50◦ from the plane of the recorded images.
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This allowed for video clips to be compared without correcting for changes in incident wind direction
with respect to the camera angle. The turbulence intensity varied from 10 % to 12 % during experiments,
consistent with an assumed approximately constant value of Iu in (2.12).

2.2.2. Indirect field measurements
The dataset collected by Jackson (2018) comprised strain gauge data for 21 broadleaf trees located in
Wytham Woods, a broadleaf forest in southern England. Each tree was instrumented with a pair of
perpendicular strain gauges installed at 1.3 m height on the trunk. Strain gauge data were recorded at
4 Hz. The dataset also included wind data collected in a walkway within the forest canopy with a cup
anemometer at a time resolution of 0.1 Hz. The present analysis focuses on a subset of data collected
during winter months (January–February, 2016) corresponding to the absence of foliage for these species
of broadleaf trees as noted by Jackson et al. (2019). The subset of 12 trees considered in this work are
listed in table 1 along with their approximate dimensions.

The model given in (2.12) is based on deflection, 𝛿, but it can be equivalently applied to the bending
strain, 𝜀, measured from the strain gauges. Bending strain in an idealized cantilever beam is given by

𝜀 =
Mc
EI

, (2.13)

where M is the bending moment, c is the distance from the neutral axis, E is the elastic modulus and I
is the area moment of inertia. For a cantilever beam subject to a uniform distributed load, the bending
moment, M is given by

M =
fx2

2
, (2.14)

where f is the force per unit length and x is the position along the length of the beam. The tip deflection
is given by

𝛿 =
fL4

8EI
, (2.15)

where L is the length of the beam. The strain, 𝜀, and tip deflection, 𝛿, both scale with the force per unit
length, f . Thus, the strain is proportional to the tip deflection (𝜀 ∝ 𝛿) for a given loading, and the strain
gauge measurements can be used directly in the model in place of the tip deflections. The standard
deviation of 𝜀 is used to define the sway amplitude for analyses of the strain gauge dataset, and in this
case the model relating sway amplitude and wind speed is

𝜎(𝜀) ∝ IuŪ2. (2.16)

To compare experimental results with the physical model, sway amplitudes, mean wind speeds, and
turbulence intensities were quantified from the Jackson (2018) dataset over 10 min averaging periods.
Note that this averaging period is longer than the 1 min period used for the video dataset (§ 2.2.1). This
longer averaging period was afforded by the abundance of available data. We observed improved model
agreement using the longer, 10 min averaging windows (this is discussed further in the supplementary
material, § S1.3). Timestamps were matched to retrieve samples for which both anemometer-recorded
wind data and strain gauge data were available over the course of the full 10 min averaging periods. The
averaging periods did not overlap (i.e. each sample represented a unique window in time). Values of
Ū and Iu were calculated from the instantaneous measurements of U(t) for each averaging period. The
strain, 𝜀(t), was calculated as

𝜀(t) =
√
𝜀2
N (t) + 𝜀2

E (t), (2.17)

where 𝜀N and 𝜀E are the strain measurements recorded by the northward and eastward oriented strain
gauges comprising a perpendicular pair for a given tree. The instantaneous strain measurements, 𝜀(t),
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Figure 2. Representative example of strain measurements over a 10 min averaging window for a
sycamore tree (tree no. 17) with Ū = 1.08 m s−1. (a) Strain vs. time with the mean value shown with the
black line and ±𝜎(𝜀) shown with the grey band. (b) The PDF of strain measurements taken during the
averaging window.

were used to calculate the sway amplitude, 𝜎(𝜀), for each averaging window. A representative example
timetrace of the strain over a 10 min averaging window is shown in figure 2(a). The PDF of strain
measurements over the averaging window is also shown (figure 2b).

2.3. Tree response regimes

The response of a tree subject to incident wind loading depends on both fluid and structural properties.
The Cauchy number, Ca, and slenderness ratio, S, are useful in determining whether a tree is likely to
show large static bending (de Langre, 2008). The parameters Ca and S are defined as

Ca =
𝜌U2

E
, (2.18)

S =
L
l
, (2.19)

where L and l are the maximum and minimum dimensional lengths of the cross-section perpendicular
to the flow direction respectively. Large static deformation is expected when CaS3 > 1 (de Langre,
2008). Therefore, less slender trees will resist large observable static bending until higher wind speeds
are reached. Values of CaS3 were approximated for the trees analysed in this work. The lengths, L and l,
were taken to be the tree height (h) and the DBH, respectively. The trees of interest in this study
correspond to values of CaS3 ≤ 5× 10−3, suggesting that large static deformations are not present. This
limits the applicability of the mean bending method of Cardona et al. (2021).

3. Results

3.1. Model comparison with direct field measurements from video data

Figure 3 shows the mean wind speed plotted against the square root of the sway amplitude for the field
measurements of the magnolia tree from the video dataset. Datapoints are shown for each of the 1 min
video clips captured in the field experiments. The best-fit line assuming proportionality (i.e.

√
𝜎(𝛿) ∝ Ū)

is shown with the black line (calculated using ordinary least squares). The experimental data agree well
with the proportional model, with the best-fit line yielding R2 = 0.81. These results demonstrate that the
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Figure 3. Mean wind speed, Ū, vs. the square root of sway amplitude measured from video frames.
Black lines indicate best fit for proportional model with R2 value of 0.81.

proposed physical model (i.e. (2.12)) characterizes the relationship between tree sway and mean wind
speed captured in this video dataset.

3.2. Model comparison with indirect field measurements from strain gauge data

Figure 4 shows the mean wind speed versus the square root of the sway amplitude for each of the 12 trees
analysed from the Jackson (2018) dataset. In the engineering application employing the physical model
for anemometry, both Ū and Iu would be unknown, and the oscillatory motion of the structure would
be the sole experimentally measured quantity. Therefore, Iu was not considered to generate these results
(i.e. Iu assumed constant). Model sensitivity to Iu is further discussed in the supplementary material,
§ S1.1. The best-fit line assuming the proportional relationship Ū ∝

√
𝜎(𝜀) is shown for each tree (again

calculated using ordinary least squares). This proportional relationship characterizes the trend in the
experimental data well, with clear agreement for all trees with the exception of one outlier specimen
(tree no. 13).

4. Discussion

4.1. Application to anemometry and calibration reference point considerations

The results shown in figures 3 and 4 suggest that the proposed model captures the trend in relating
structural sway amplitude to the mean wind speed. This is apparent in the clear agreement between the
best-fit proportional lines and experimental sway measurements for each of the various sample trees.
As discussed in § 1, the motivation behind this modelling effort is ultimately to use observations of
the structural sway for anemometry. If the proportionality constant relating

√
𝜎(𝛿)) and Ū was known

a priori, then the relationship could be applied directly to estimate Ū given 𝛿(t) (or 𝜀(t) in the case
of strain gauge measurements). However, the proportionality constant is inherently structure-specific,
dependent upon unique structure geometries and material properties. In order to determine a structure-
specific proportionality constant (i.e. the slope of the best-fit line), a measurement campaign capturing
both Ū and 𝛿(t) would be necessary. This would require an anemometer to be installed over a long
time duration to capture the structure response under varying wind loads, which would undermine the
purpose of using the structure itself as an anemometer.
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Figure 4. Mean wind speed, Ū, vs. the square root of sway amplitude measured from strain gauges for
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good except for outlier tree no. 13.
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One possibility for using the proposed anemometry method without an extensive measurement
campaign is to calibrate the model using wind speed and structural sway measurements for a single
averaging period. This allows for the inference of normalized ratios of wind speeds at the specific site,
and the dimensional wind speeds can be recovered if the reference wind speed is known. This approach
was taken in the visual anemometry method using mean deflections proposed by Cardona et al. (2021).
The trade-off is that the estimated model slope for a given structure will be based on a single calibration
point, and may not capture the trend as well. The slope of the reference-calibrated model is U0/

√
𝜎(𝜀0),

where U0 and
√
𝜎(𝜀0) are quantities measured over the reference time period. Several metrics are

used below to evaluate the goodness of fit of these reference-calibrated models, including the R2 value
(coefficient of determination), the mean absolute error (MAE), the scale factor between the reference-
calibrated and best-fit slopes (SF) and the mean percentage error (MPE). Equations for MAE, MPE and
SF are given below:

MAE =

∑n
i=1 |U′

i − Ui |
n

, (4.1)

MPE =
1
n

n∑
i=1

(U′
i − Ui)
Ui

, (4.2)

SF =
𝜉calibrated

𝜉fit
, (4.3)

where U′
i are the model-estimated wind speeds, Ui are the ground truth wind speeds, and 𝜉calibrated and

𝜉fit are the reference-calibrated and best-fit proportionality constants respectively.
An illustrative example of this calibration reference point approach is shown in figure 5. Figure 5(a)

shows a plot of Ū vs.
√
𝜎(𝜀) for a birch tree. Three hypothetical reference points are shown by ‘+’ marks,

with the resulting calibrated models shown with the dotted lines. Figure 5(b–d) shows how the three
reference-calibrated models perform when applied to estimate Ū from the tree sway measurements. Plots
show the model-estimated wind speed versus the ground truth wind speed for each of the three reference-
calibrated models. The dashed black lines indicate a perfect one-to-one relationship. Figure 5(b–d)
demonstrates how reference-calibrated model performance depends on the chosen reference point. The
reference-calibrated models will tend to systematically over-estimate or under-estimate Ū depending on
whether the calibrated slope is greater than or less than the best-fit slope. For example, in figure 5(a),
Reference Point 1 lies below the best-fit line (i.e. the sway amplitude was higher than usual for the incident
wind speed), which resulted in a model that systematically underestimated wind speeds compared with
ground truth (figure 5b). In contrast, Reference Point 2 lies above the best-fit line (figure 5a), resulting in a
model that systematically overestimated wind speeds compared with ground truth (figure 5c). Reference
points that lie close to the best fit line (e.g. Reference Point 3) yield the best results (figure 5d).

A reference condition with a higher flow speed may be beneficial because of the higher signal-to-
noise ratio in measuring the sway amplitude. A deviation of the reference point from the best-line at
a low reference wind speed will lead to a greater discrepancy in the slope compared with a reference
point taken at a higher wind speed with the same deviation. To further illustrate this point, reference-
calibrated models were evaluated as a function of reference wind speed. For each of the 12 strain gauged
trees, the available samples were sorted by Ū in bins of 0.25 m s−1. For each bin with at least 20 samples
for a given tree, 10 samples were chosen at random and held out as possible reference conditions. The
remaining samples were used as test conditions. Each reference condition was used to calibrate a model
to estimate the Ū for the test conditions. The error metrics were calculated for each reference-calibrated
model. Figure 6 shows error metrics as functions of U0 for all trees combined. The reference-calibrated
models tend to improve with higher U0. The model performance also becomes more consistent, which
is demonstrated by the decreasing size of the error bars marking the 5th and 95th percentiles.

The amount of scatter in the sway measurements for a given tree impacts the error in the wind
speed measurements resulting from a calibrated model. Both the measurement techniques and inherent
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Figure 5. Example showing reference-calibrated model performance for a birch tree. (a) Mean wind
speed, Ū, vs. the square root of sway amplitude for representative birch tree (tree no. 18). The best-fit
line is shown in black. Three example reference points are shown with ‘+’ marks, and the resulting
reference-calibrated models are shown with the dotted lines. (b–d) Model-estimated Ū vs. ground truth
for reference-calibrated models using reference points 1, 2 and 3 respectively. Evaluation metrics
including R2, MAE, SF and MPE are shown.

properties of the structure and surrounding flow may play a role in the variability. For instance, using
a longer 10 min averaging period reduced the scatter in the indirect field data in comparison with
1 min averaging periods, as discussed in the supplementary material (§ S1.3). The scatter varies across
different samples, as seen in figure 4. It would be difficult to conclusively explain the differing results
and outliers (e.g. tree no. 13) across the various specimens with the limited number of samples available
for each species, especially given that each tree is unique in its properties and spatial location. However,
there are several factors that are known to affect the response of a tree subject to incident wind that
should be investigated further in regard to their impact on both the structure-specific proportionality
constant and the scatter in sway measurements. For instance, as discussed in § 2.3, the slenderness
ratio and Cauchy number both play a role in the ultimate tree response, and prior work has also
shown that the detailed tree and crown geometry can have a substantial effect on the tree dynamics in
response to wind. Examples of geometric features that impact the tree response include branch size and
insertion angle (Sellier & Fourcaud, 2009), branching structure (Hao, Kopp, Wu, & Gillmeier, 2020;
James, 2003; Moore & Maguire, 2004) and trunk taper (Gardiner, 1992; Morgan & Cannell, 1987).
Tree response also exhibits seasonal variation. Broadleaf trees in particular undergo changes in foliage
depending on the season. The foliage has a significant effect on response characteristics such as the
sway frequency, damping and the drag on the tree (Baker & Bell, 1992; Jackson et al., 2021; Koizumi,
Motoyama, Sawata, Sasaki, & Hirai, 2010; Manickathan, Defraeye, Allegrini, Derome, & Carmeliet,
2018; Schindler, Schönborn, Fugmann, & Mayer, 2013). In the present work, individual specimens were
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Figure 6. Model assessment metrics vs. reference wind speed Ū0 for all 12 strain gauged trees:
(a) MAE; (b) R2; (c) SF; and (d) MPE. Markers represent the median values, and error bars denote the
5th and 95th percentile values.

only analysed within a single season, but seasonal variation should be a consideration for measurement
campaigns over longer time spans. Future work may also account for variation of local temperature
and humidity over shorter time scales. Overall, further investigation of the effects of the instantaneous
properties of the structure and surrounding environment such as those discussed here would be useful
in better understanding the measurement limitations of a calibrated model.

4.2. Measurement height considerations

A practical consideration in applying the present visual anemometry technique to pre-existing objects
such as trees is that the height of the interrogation point on the structure may not be the exact height
of the desired wind speed measurement. However, the technique can still be used to extrapolate the
wind speed at a desired measurement height, L0, under the assumption that the force of the wind on the
structure, FW (t), is proportional to U2(t, L0) (2.7). A common model for the wind speed profile near
the surface in the atmospheric boundary layer is the log wind profile

U(z) = u∗

K
ln

(
z + d
z0

)
, (4.4)

where z is the height above ground, u∗ is the friction velocity, K is the von Kármán constant (K ≈ 0.4),
d is the displacement height and z0 is the surface roughness (Stull, 1988). If the shape of the wind profile
remains constant across measurement times (i.e. d and z0 are constant), then the force on the structure
due to the distributed wind load will be proportional to U2(z) at any fixed height z, as described by
Cardona et al. (2021). The chosen height, L0, will impact the proportionality constant, but this does not
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pose a concern since the constant must already be calibrated with a conventional anemometer at the
desired measurement height as discussed in § 4.1. The capability of the model to estimate wind speeds
at differing heights is evident in the results in figures 3 and 4, which show clear agreement despite
the discrepancy in heights between the conventional anemometers and the interrogation points on the
various trees. Note that (4.4) assumes neutral atmospheric conditions, and there would be higher shear
under stable conditions. If large deviations in the shape of the wind speed profile are expected due to
disparate atmospheric conditions, they could affect the response of the structure in comparison with the
calibration, and should be taken into account as a potential source of uncertainty.

5. Conclusion

In the present work, a physical model was developed relating the mean wind speed, Ū, to the amplitude
of structural oscillations, 𝜎(𝛿), in response to incident wind. The model was compared with two
experimental field datasets with trees as the objects of interest. The first was a video dataset capturing
the swaying of a magnolia tree, and the second was a subset of the publicly available data collected by
Jackson (2018) comprising strain gauge data of various trees in a broadleaf forest. Between these two
datasets, 13 trees were analysed representing 4 different species. The physical model agreed well with
the experimental measurements from both datasets. The relationship Ū ∝

√
𝜎(𝛿) was robust for the

trees over the range of conditions analysed here. However, further consideration should be given to the
effect of large changes in turbulence intensity, Iu, especially at high wind speeds.

The excellent agreement between the model and experimental results suggests that the model can be
used towards visual anemometry, where structural sway recorded in video data can be used to measure
wind speeds. However, the model scaling is structure-specific, so model application to anemometry
requires a calibration for each structure of interest. Alternatively, the method can be used to infer the
normalized ratios of wind speeds present at the site of interest. The proposed visual anemometry method
based on sway amplitude provides advantages over the previously developed technique by Cardona et al.
(2021), because it can be used on large trees that may not exhibit noticeable mean bending, and it does
not require additional calibration measurements to be taken in the absence of wind.
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