Trapping Sets of Quantum LDPC Codes

Nithin Raveendran*, and Bane Vasié¢t
Department of Electrical and Computer Engineering
Center for Quantum Networks
University of Arizona, Tucson, AZ 85721
*nithin @email.arizona.edu, Tvasic@ece.arizona.edu

Abstract—TIterative decoders for finite length quantum low-
density parity-check (QLDPC) codes are attractive because their
hardware complexity scales only linearly with the number of
physical qubits. However, they are impacted by short cycles,
detrimental graphical configurations known as trapping sets
(TSs) present in a code graph as well as symmetric degeneracy of
errors. These factors significantly degrade the decoder decoding
probability performance, and cause so-called error floor. In this
paper, we establish a systematic methodology by which one can
identify and classify quantum trapping sets (QTSs) according
to their topological structure and decoder used. Conventional
definition of a TS from classical error correction is generalized
to address the syndrome decoding scenario for QLDPC codes.
We show that the knowledge of QTSs can be used to design better
QLDPC code and decoder. Frame error rate improvements of two
orders of magnitude in the error floor regime are demonstrated
for some practical finite-length QLDPC codes without requiring
any post-processing.

I. INTRODUCTION

Quantum low-density parity check (QLDPC) codes are
an important class of quantum error correction (QEC) [1],
[2] codes that can realize scalable fault-tolerant quantum
computers (FTQCs) with a finite multiplicative overhead [3].
In addition, they have finite asymptotic rates with non-zero
fault-tolerant thresholds [4], and support low-complexity iter-
ative decoding. The existing QLDPC code literature primarily
focuses on constructing asymptotically good code families
with improved minimum distance scaling with the block
length and higher code rates, as well as on designing better
iterative decoding algorithms [5]-[8]. However, QLDPC codes
implemented in practical QEC systems will be of finite length,
and will exhibit performance degradation due to failure of
iterative decoders to converge to a correct error pattern. This
phenomenon specific to finite-length codes is well understood
in classical literature, but its analysis and precise mathematical
characterization is completely missing in the QEC literature.
The convergence failure manifests itself as an error floor of
the decoding probability of error [9] at low physical error
rate levels — an operating regime for large scale FTQCs —
and is observed in all state-of-the-art iterative message-passing
decoders for QLDPC codes such as belief propagation (BP),
min-sum algorithm (MSA) and their variants [10], [11].

A typical approach in QEC literature to reduce the error
floor of the above decoding algorithms is to couple them with
ordered statistics decoding (OSD) and post-processing [10],
[12]. However, although exhibiting good performance, this
technique is too complex to implement in hardware due to

the high complexity of the OSD algorithm [13] which scales
cubically with the code dimension (see Eq. 4 in [14]). In
contrast, philosophy of our approach and our ultimate goal is
to develop message-passing decoders for QLDPC codes which
do not require a post-processing step to achieve strong error
correction.

Iterative message-passing decoder operates on a Tanner
graph which is the graphical representation of a parity check
matrix of the underlying code. Error floor is attributed to the
presence of specific topologies of sub-graphs in the Tanner
graph generically referred to as frapping sets (TSs) that are
detrimental to iterative decoders. Since a trapping set depends
both on the topology of the sub-graph and on the decoder, one
must understand key differences of QEC, specifically QLDPC
codes and decoding with respect to classical error correction.

The first difference comes as the fact that the stabilizer
commutativity/symplectic inner product (SIP) requirement for
the parity check matrices introduces additional code construc-
tion constraints resulting in unavoidable cycles in the Tanner
graph. Furthermore, QLDPC codes are known to be highly
degenerate, i.e., their minimum distance is higher than the
weight of their stabilizers. From the decoder perspective, this
implies that the decoders need to account for degenerate
errors which has no equivalent in classical error correction.
However, iterative algorithms based on BP are sub-optimal in
the presence of cycles and, also, are not capable of correcting
all degenerate errors [15], [16]. Another key difference from
classical LDPC decoding stems from the inability to directly
measure qubits for error correction. Hence, iterative message-
passing algorithms used for decoding of QLDPC codes are
modified to only make use of the syndrome information to
infer the error introduced by the channel. How the classi-
cal trapping sets definition accommodates a syndrome-based
decoder is not clearly understood. As we show, degenerate
errors having no classical analogy introduces new failure
configurations unique to the QLDPC codes. The approach
presented in this paper accounts for these key differences and
their implications.

Failure configurations of QLDPC codes are relatively un-
known when compared to the classical trapping set research.
One major drawback of BP as pointed out in [17] is that
the decoding ability of BP is typically limited by the row
weight of the parity-check matrix due to the SIP constraint
and identifies pseudo-codeword structures for cycle codes.
However, generalization from cycle codes to QLDPC codes
is non-trivial.

In this paper, we define quantum trapping sets (QTSs) by
investigating into failure configurations for syndrome based
iterative message passing algorithms. The quantum trapping
set formulation is modified to the syndrome decoding scenario
for QLDPC codes considering Pauli X and Z errors separately.
We identify QTSs of prominent QLDPC codes and show that
the QTSs must be analyzed in conjunction with the particular
iterative decoder used along with their location in the Tanner
graph [18]. Message update rules and scheduling strategies are
also identified that help to decoder escape from such trapping
sets improving the error floor performance.

The rest of this paper is organized as follows. In Section
II, we introduce QLDPC codes using the stabilizer formalism
reviewing some basic notations and then discuss the syndrome
decoding problem and classical trapping sets. In Section
II, we analyze the different failure configurations, relation
between trapping sets and decoder/error correction properties.
We also formally define quantum trapping sets and describe
the methodology used to identify those specifically for Calder-
bank, Shor, Steane (CSS) codes [19]. Trapping sets of some
classes of CSS codes are analyzed in Section IV. Based on
these analyses, we present simulation results which briefly
explore two strategies of code and decoder improvement. We
explore CSS code constructions without some of the harmful
configurations and also compare performance of trapping set-
aware decoding strategies in Section V followed by concluding
remarks and future research directions in Section VI.

II. PRELIMINARIES
A. Stabilizer Formalism

Stabilizer codes, the quantum analog of classical linear
codes, are the most common type of QEC codes considered
in both theory and practice. An [n, k,d] quantum stabilizer
code maps k qubit quantum state |¢) to an entangled n-qubit
codeword |¢) (a unit vector in the 2"-dimensional Hilbert
space) and is defined as a 2¥-dimensional subspace of the
Hilbert space which is a common +1 eigenspace of the
stabilizer group S. The n-qubit codeword |¢)) is stabilized
by all stabilizer elements in S. i.e., s;|¢) = +|¢) for any
s; € S. We denote a generator set of a given stabilizer group
S by the set S = {s1,82,..., 8} The stabilizer generators
form the m = n — k rows of the corresponding stabilizer
matrix H, whose entries are the single-qubit Pauli matrices
L =[30.X=0198,2=[5 %] and Y =:XZ = [?]
Kronecker products of n single-qubit Paulis and scalars 2",
where k € Z, = {0, 1,2, 3} forms the n-qubit Pauli group P,
of which the stabilizer group S is a commutative subgroup that
contains only Hermitian Paulis and excludes —I,,. The weight
w(P) of a Pauli operator P € P, is the number of qubits
on which it applies a non-identity Pauli matrix. A QLDPC
code is a stabilizer code with all stabilizer generators having
low weight. Analogous to the classical minimum distance,
[n, k, d]] code have logical operators L € P,\S that commutes
with all s; having minimum weight d. Like the codeword
generators, the logical operators of the code map an n-qubit
codeword to another. Logical group L is generated by k logical
X generators: Lx = {lxq,lzs,...,lzy} and k logical Z

generators: Ly = {lz1,l29,...,l2;} obtained by using either
Gottesman’s [20] or Wilde’s algorithm [21].

The stabilizers commute with each other following the
commutativity relation between two n-qubit Pauli operators
P and Q) defined as follows:

PoQ =[] Pjo@Q;. where PjoQ; = £1 if P;Q; = +P;Q;.
j=1

P and Q commutes if P o (@ = +1 and anti-commutes if

P o @ = —1. Every logical generators commute with the

stabilizers and Lx; commutes with every other generators
except with Lz; Vi € {1, k}.

B. Stabilizers as binary parity checks

An alternative binary representation maps Pauli matrices to
binary tuples as follows: I, — (0,0), X — (1,0), Z —
(0,1), Y — (1,1). More generally, binary representation of
an n-qubit Pauli operator P will be a binary vector of length
2n of the form p = (pg, p-), where p, and p, are of length
n each with ones at positions of X- and Z-Pauli components
respectively. Such a mapping aids in construction of quantum
stabilizer codes using extensive classical coding literature. The
binary representation Hj, of the stabilizer matrix of dimension
m X 2n given by

H, = [Hx | Hy], (1)

where Hx and Hy represent binary parity check matrices
used for error correction. Each row in Hj, denotes a stabilizer
generator, and a pair of corresponding columns in Hx and
H 7 represent a qubit. Equivalent to the commutativity relation
defined for Pauli operators, the stabilizer generators commute
with each other based on the symplectic inner product (SIP) in
their binary representation [22]. Any two rows p = (g, Pz)
and ¢ = (gz,qz) of [Hx | Hz| must satisfy p © q =
mod (pxql + p.bL,2) = 0. This leads to the condition

HxH} + HzHE =0, 2)

where the right hand side (0) is an m X m zero matrix, T’
denotes the transpose of a matrix and operations (addition and
multiplication) are done modulo-2. We will refer to Eq. (2) as
the SIP constraint.

C. Decoding Problem

For binary decoding, typically considered channel model
of a depolarizing channel is isomorphic to two independent
binary symmetric channels (BSCs), a simplified model if the
correlation between bit and phase flip error is ignored. The
BSCs for X and Z errors have a cross-over probability of 2p/3
[1], decoded using Hz and Hx, respectively. Let e = (e, €5)
be the binary representation of a Pauli error acting on the n
qubits. The corresponding syndrome is computed as

o= [0z, 0]

= mod (Hz.el,2), mod (Hx.el,?2)].

All-zero syndrome (o = 0) indicates that all the stabilizers
commute with the error pattern (undetectable error), whereas

non-zero entries/ones in o indicate that some stabilizer gener-
ators anti-commute with the error pattern (detectable error). A
syndrome based decoder’s task is to estimate the error pattern
€ whose syndrome & matches with the initial input syndrome
o.If & = o, the estimated error pattern € is applied to reverse
the error e introduced by the channel. Error correction process
is successful if € = e h, where h € rowspace(Hy), i.e., if the
code word is recovered up to a stabilizer (€ @ e is a stabilizer,
where @ denotes pairwise XOR). Error correction fails when
the decoder is unable to find an error pattern that matches the
syndrome o or when the decoding process results in a logical
or miss-correction error. A logical error occurs if é @ e is
a logical operator such that post error correction state is a
codeword different from the original codeword. We can detect
a logical error if Pauli representation of € & e anti-commutes
with any of the 2k logical generators.

D. Iterative Decoding of CSS codes

Although the syndrome decoding paradigm is applicable
to any class of quantum codes, trapping set analysis in this
paper is focused on QLDPC families: hypergraph product (HP)
codes [7], bicycle codes [1] and generalized bicycle codes
[10] representing the CSS class of codes [19]. An attractive
property of CSS codes constructed from two classical codes
C1 and Co, where Cj‘ C (C; is that the parity check matrix

can be written in a separable form: H;, = I{)X HO . CSS-
Z
QLDPC codes have a sparse matrix H; with the SIP constraint:

Hyz.HY =0.

We can perform error correction for the X and Z er-
rors separately using Hy and Hx matrices, respectively.
The corresponding input syndromes are obtained as o, =
mod (Hz.eL,2) and 0, = mod (Hx.el,2), respectively.
For simplicity going forward, we use , L and o, e for the
parity check matrix, logical generator matrix, input syndrome
and channel error vector, respectively.

The stabilizer generator matrix/parity check matrix H is
the bi-adjacency matrix of a bipartite Tanner graph G =
(VUC, E), where V represents the set of n qubit/variable
nodes (VNs), C' is the set of m stabilizer generators/check
nodes (CNs) and E is the set of edges between them. CN
c¢; € C and VN v; € V are neighbors if there is an edge
(vj,c;) € E between the nodes, corresponding to the non-
zero entry in the parity check matrix H, ., = 1. Diagram-
matically, Tanner graphs are drawn with circles representing
VNs, squares representing CNs and solid-lines representing
the edges. Let us denote the set of CNs connected to a VN
vj by N(v;), and |N(v;)|, where | - | denotes cardinality, is
referred to as the degree of the VN wv;. Similarly, we can
define the neighbor set and the degree of a CN ¢; as N(c¢;)
and |V (c;)|, respectively. A (v, p) QLDPC code have a sparse
stabilizer matrix with the variable and stabilizer degree upper-
bounded by ~ and p respectively. For a subset of VNs, say
K CV, N(K) denotes the set of CN neighbors. The induced
sub-graph G(K) is the graph containing the nodes K UN(K)
along with the edges {(z,y) € F : x € K,y € N(K)}.
The girth, g, of the Tanner graph G is the length of the
shortest cycle in GG. Denote the number of cycles of length g,

g+2,...by Xg, Xg+2, - - -, respectively. If G has x4, Xg+2, - - -

cycles of length g, g+ 2, .. ., then the cycle enumerator series
CYC(z) = Y xra" defines the cycle profile of G.
r>0

The goal of a syndrome based iterative decoder D is to
output an error pattern that matches the input syndrome. This
is different from the traditional iterative decoder D that uses
the channel information as initial likelihoods to recover the
codeword matching to an all-zero syndrome. Starting from an
input syndrome o and an all-zero error vector estimate, D;
performs a finite number ¢,,,,, of iterations of decoding over
the Tanner graph. The messages are passed over the edges
of the Tanner graph from check nodes to their neighboring
variable nodes and vice-versa at every iteration of message
passing decoding. Decoder update rules and message alphabet
size can be of varying complexity ranging from the simplest
binary message passing algorithms such as Gallager-B [23] to
finite alphabet iterative decoders [24], and MSA or BP using
floating point messages [1]. Also, schedule of message passing
in D, can be implemented with a flooding/parallel schedule or
a layered/serial schedule. Trapping set analysis presented here
is applicable for all such decoder implementations. We discuss
a generic syndrome based iterative decoder in Appendix A for
completeness. Based on the update rules, Dy outputs an error
vector estimate é(¥) = (éﬁ“, é(e), ... ,é,(f)) and corresponding
output syndrome &) = (&p,&ég), . .,&,(,f)). We refer to
éy)/&y) as the value of the variable/check node wv;/c; at
iteration ¢ < /... We conclude that D, is successful if
the output syndrome &) is equal to the input syndrome o
(we also say that syndromes are matched). Then, the n-length
error pattern é) is decided as the most likely error pattern.
The iterative procedure is halted if successfully matched or if
{ ez Number of iterations is reached. At the end of iterative
decoding, syndrome decoding process is successful if the
syndromes are matched. Otherwise, the decoding is said to
have failed.

E. Classical Trapping Sets

A classical trapping set example is shown in Fig. 1 illustrat-
ing failure of a classical iterative decoder D on a small sub-
graph inside the Tanner graph. Let us consider a simple binary
message passing decoder - Gallager-B decoder which performs
XOR operation at the check nodes and a majority voting at
the variable nodes. More precisely, the outgoing check node
message over an edge is computed as the XOR of extrinsic
(all incoming messages except the edge for the message is
updated) variable node messages. The outgoing variable node
message is the majority value among incoming extrinsic check
node messages and the channel value. The messages passed
over corresponding edges are marked next to the directed
arrows in the figure. All-zero transmitted codeword has errors
only on three variable nodes (v9,v4,vs - shaded circles @)
as shown in Fig. 1. The decoder is unable to converge to the
all-zero codeword. In fact, the decoder oscillates from error
pattern (vo,v4,vs) to (v1,vs) and back as its output during
the decoding iterations, thus failing to converge.

A classical iterative decoder is said to converge correctly
if the decoder output word for any ¢ < {,,,, matches to the

Fig. 1. Anillustration of a failure configuration of regular Gallager-B decoder,
unable to converge to the all-zero codeword when the input error pattern is a
specific weight-three error pattern (v2, v4, vs) (shaded circles @) among the
five VNs in the sub-graph. Figures are marked with the binary messages (next
to the arrows indicating the direction of the messages passed) corresponding
to the check/variable updates. Upper left figure corresponds to the variable
node update at the zero-th iteration. The subsequent CN and VN updates of
the decoding process are indicated by the connecting arrows. We assume that
the rest of the Tanner graph is correct.

C2

(a) 4,2) TS

(b) (5,3) TS

Fig. 2. Graphical (Tanner graph) representations of a (4,2) TS and a (5, 3)
TS. Odd degree/unsatisfied checks are shown using black squares.

transmitted codeword and fail to converge correctly otherwise.
A variable node v; is eventually correct if there exists a
positive integer I; such that for all iterations ¢ > Ij, the
decoder’s estimate of v; is equal to the transmitted bit value.
Then, trapping set is defined as

Definition 1 ([11]): A trapping set 7 for an iterative
decoder D is a non-empty set of variable nodes in a Tanner
graph G that are not eventually correct. If the sub-graph G(T)
induced by such a set of variable nodes has a VNs and b odd
degree CNis, then the trapping set 7 is conventionally labeled
as an (a,b) trapping set.

Fig. 2 shows examples of TS induced sub-graphs observed
in classical LDPC codes. Even at low physical error rate
levels, the presence of such small sub-graphs can result in
decoding failures resulting in the characteristic error floors
in their decoding performance (frame error rate (FER) vs.
physical error rate) curves.

Harmfulness of a TS is also closely linked with the decoder
through their critical number g and strength s defined as
follows:

Definition 2: Critical number p of a trapping set 7 is the
minimal number of variable nodes that have to be initially in
error for the decoder to fail to converge.

Let failure inducing set be the set of variable nodes that have
to be initially in error for the decoder to fail to converge.

Definition 3: Strength s of a trapping set 7 is the number

of failure inducing sets of cardinality pu.
Two important assumptions are used in the definition of the
critical number and strength of a TS. First one is that the
minimum distance of the code is large compared to the size
of the TS. The second is an isolation assumption [24] which
ensures that messages from outside the TS are correct for
the TS failure analysis. For example, from Fig. 1, the critical
number p for the (5,3) TS with Gallager-B decoder is 3 and
the number of weight-y error patterns that fail is s = 1. Note
that the decoder also fails to correct weight-4 error patterns
and the weight-5 error pattern in the TS. Error floor of the
decoder is dominated by the minimum critical number g,
and the number of weight-y,,, failure inducing error patterns.
Analytical/semi analytical estimation of error floors of QLDPC
codes using critical number and strength of TSs is beyond the
scope of this paper and we refer the reader to classical LDPC
literature [11], [18].

ITII. QUANTUM TRAPPING SETS

As our focus is on the error floor regime, we are interested
in error patterns with small weight, well below the maximum
likelihood (ML) error correction capability of the QLDPC
code for which the syndrome-based iterative decoder D, fails
to converge. Such low-weight error patterns are either part
of a classical-type TS or a symmetric stabilizer, defined as a
quantum trapping set (QTS).

A. Definition of a Quantum Trapping Set

After pre-defined number of iterations, ¢,,,,, of iterative
syndrome decoding, we declare that the decoder D, failed
for a particular input syndrome/error pattern if the decoder
is not able to find an error pattern with a syndrome equal
to the input syndrome. More precisely, a decoder failure is
said to have occurred if there does not exist ¢ < ¢,,4, such
that supp(&“) + o) = (), where supp denotes the support set
(indices of non-zero elements). During iterative decoding, a
check node c; is eventually satisfied if there exists a positive
integer [; such that for all £ > I, &Z@ = o,;. We say that
the variable node v; has eventually converged if there exists
a positive integer I; such that for all ¢ > I, éz(-[) = éngl).
Note that the égz) is not necessarily the correct estimate of
error on the i™-variable node. With these definitions, we define
quantum TSs as follows:

Definition 4: A trapping set T, for a syndrome-based
iterative decoder D; is a non-empty set of variable nodes in
a Tanner graph G that are not eventually converged or are
neighbors of the check nodes that are not eventually satisfied

Remark 1: If the sub-graph G(7) induced by such a set
of variable nodes has ¢ VNs and b unsatisfied CNs, then the
trapping set 75 is conventionally labeled as an (a, b) trapping
set.

Fig. 3. An illustration of a failure configuration of syndrome-based Gallager-B
decoder [23]. The shaded squares M represent the anti-commuting stabiliz-
ers/checks. Syndrome iterative decoder starts message passing with an all zero
error pattern trying to find the true error pattern that matches with the all-one
syndrome but is unable to converge successfully. The messages passed within
the sub-graph in consecutive iterations oscillates showing that the decoder is
trapped.

The QTSs similar to the TSs in classical LDPC codes
have exactly the same definition as the first criterion, and
we refer to them as classical-type trapping sets. The second
class of trapping sets are specifically the harmful degenerate
errors observed within the stabilizers classified as symmetric
stabilizer trapping sets. We will see that in such trapping sets,
even though the variable nodes eventually converge to some
error pattern, there exist check nodes that are not eventually
satisfied. The definitions and assumptions for critical number
and strength of the QTS remain the same as for the classical
trapping set.

In the next two paragraphs we give examples of these two
classes of trapping sets. We assume that Dy is the well-
known Gallager-B decoding algorithm. This assumption is
made mostly for pedagogical reasons, but also because some
trapping sets of Gallager-B are also trapping sets of other
decoders such as BP or MSA.

1) Classical-type trapping set: We will first show in an
illustration why classical-type TSs as shown in Fig. 2 are
also failure configurations of syndrome decoders. The same
error pattern of the (5,3) TS given in Fig. 1 is redrawn for a
syndrome based Gallager-B decoder in Fig. 3. The syndrome
input is all-one vector, indicated by the black squares and
the decoder starts from the all-zero error pattern (no error).
The outgoing check node message over an edge is computed
as the XOR of extrinsic variable node messages and the
syndrome input value at the check node, and the variable node
message computation remains the same as in regular Gallager-
B decoder. The messages passed over corresponding edges are
marked next to the directed arrows. Note that even though the
messages passed in Fig. 3 are different from that in Fig. 1 of
the regular Gallager-B decoder, the syndrome decoder is also

C1 C3

U1 Cq V4

(@

Fig. 4. The Tanner graph representations of the (4,0) and (10, 0) symmetric
stabilizers with @ and @ representing the disjoint sets of variable nodes of
the stabilizer.

unable to converge, and its output oscillates from the all-zero
error pattern to errors in vs, v4, and vs and back. Hence, the
(5,3) TS in Fig. 3 is classified as a QTS for the syndrome
decoder as well.

In addition to classical-type TSs, iterative decoders on
QLDPC codes fail for specific degenerate errors. Our quantum
trapping set Definition 4 captures such failure configurations as
well. This distinctive difference from classical codes deserves
further analysis in the next section.

2) Symmetric stabilizer trapping set: Recall the quan-
tum decoding problem in Section II-C, wherein the decoder
needs to identify any recovery operator such that é @ e =
rowspace(Hy). This is in contrast to the classical decoding
problem where an exact match of error é = e is required.
In quantum decoding, we say error vectors e and f are
degenerate errors if e ® f is a stabilizer, which makes it
equivalent to output any one of the degenerate errors as the
candidate error pattern for matching the syndrome. However,
in QLDPC codes whose minimum distance is higher than their
stabilizer weight, some degenerate errors can be detrimental
to iterative decoding. A symmetric topology of the stabilizer
sub-graph that contains degenerate error patterns e and f of
equal weight will result in a decoding failure. We will see more
examples of such decoder failure when the iterative decoder
attempts to converge to error patterns e and f simultaneously,
thus not matching the input syndrome. This failure can be
attributed to the symmetry of the both the stabilizer and the
decoder message update rules. Hence, such errors are referred
to as symmetric degenerate errors and corresponding sets of
variable nodes as symmetric stabilizer trapping sets or just
symmetric stabilizers, for short. Although degenerate errors
are typically classified as harmless for quantum decoding, from
the above discussion it follows that some (not all) degenerate
error patterns in a symmetric stabilizer are harmful for iterative
decoders.

Definition 5: A symmetric stabilizer is a stabilizer with
the set of variable/qubit nodes, whose induced sub-graph has
no odd-degree check nodes, and that can be partitioned into
an even number of disjoint subsets, so that: (a) sub-graphs
induced by these subsets of variable nodes are isomorphic,
and (b) each subset has the same set of odd degree check
node neighbors in its induced sub-graph.

Example 1: Consider the Fig. 4(b) with the stabilizer sub-

i
W e

Fig. 5. The induced sub-graphs from @ and @ variable nodes of a (10, 0)
symmetric stabilizer trapping set. The sub-graphs 5(a) and 5(b) are isomorphic
and have the same odd-degree checks represented using dark squares H.

(b)

graph induced by ten variable nodes that are partitioned into
two disjoint sets with the coloring ® and ®. The induced sub-
graphs from ® and @ variable nodes are shown in the Fig.
5. The sub-graphs in Fig. 5(a) and Fig. 5(b) are isomorphic
and have the same odd-degree checks represented using dark
squares M. Hence, the stabilizer shown in Fig. 4(b) satisfies
the definition of a symmetric stabilizer.

Remark 2: The symmetric stabilizer shown in Fig. 4 (b)
is present in generalized bicycle codes given in [10]. Surface
codes are highly degenerate, and symmetric stabilizers, for
example as shown in Fig. 4(a), are ubiquitous in them.

Now, we discuss how degenerate errors within the sym-
metric stabilizer are harmful for iterative decoders. As a non-
trivial example of a symmetric degenerate error, let the error
pattern e be located on the @ variable nodes in Fig. 6(a).
They result in unsatisfied check shown as WM. Note, however,
that the sub-graph is symmetric with respect to the vertical
axis, and therefore each erroneous node has a @ twin. The
set of all @ twins form an alternative error pattern f. The
existing iterative decoders fail as they simultaneously attempt
to converge to both these error patterns. It is not difficult
to see that such “ambiguity” happens for all decoders for
which: (a) the check and message update rules are symmetric
functions in incoming messages, and (b) in the same iteration
all variable/check nodes in the graph apply in parallel the same
variable/check update function, respectively. For example, dur-
ing the iterations of the Gallager-B decoder, every unsatisfied
CN MW sends binary message, one back to the VNs. Because
of the symmetry, the VNs in both e and f receive exactly
the same messages, thus converging to e @ f, the symmetric
stabilizer.

Based on the Definition 4, the set of VNs involved in
the symmetric stabilizer form a QTS and the sub-graph in
Fig. 6 (a) is a (10,0) TS by convention. We can prove as in
the following lemma pertaining to the general case.

Lemma 1: A symmetric stabilizer is an (a,b = 0) trapping
set, and a is even.

Proof Let the cardinality of the set of VNs of the stabilizer
be a. By definition, the induced sub-graph having no odd-
degree check nodes implies that b = 0. Also, according to
the symmetric stabilizer definition, the disjoint VN sets that
partitions the stabilizer must have the same odd degree check

(@ (b)

Fig. 6. Degenerate errors e and f located on ® and @ variable nodes,
respectively in the symmetric stabilizer in 6(a) result in an iterative decoder
failure. Introducing asymmetry during the QLDPC code design can lead to
decoder success taking advantage of degeneracy of the QLDPC codes. As
an example, for the sub-graph in 6(b), a BP decoder is able to match to the
syndrome (dark squares represent unsatisfied checks) correctly with the red
error pattern.

node neighbor set. This implies that there can only be even
number of such disjoint sets which further implies that the
parameter a is even. (]

When there are more than a pair (an even number greater
than two) of disjoint sets of VNs, the symmetric stabilizer can
be split into smaller symmetric stabilizers.

From the discussion earlier, it follows that symmetric
stabilizers are trapping sets not only for the syndrome BP
decoder, but for many other iterative decoders, such as bit-
flipping, Gallager-B and MSA with different critical number
and strength. Harmfulness of symmetric stabilizers associated
with decoders is distinct from classical-type trapping sets, as
summarized in the following theorem.

Lemma 2: For an (a,0) symmetric stabilizer TS with any
iterative decoder with a critical number a/2, no error pattern
on more than a/2 nodes of the symmetric stabilizer is a
trapping set.

Proof Consider an (a,0) symmetric stabilizer with critical
number a/2 for a syndrome decoder D,. By the definition
of the critical number, any error pattern of weight smaller
than the critical number a/2 with support on the symmetric
stabilizer is corrected by the decoder D,. Error patterns of
weight larger than the critical number a/2 with support on
the symmetric stabilizer are decoded correctly, converging to
their respective low-weight degenerate error pattern. (]

In Fig. 4 (b), if a syndrome decoder D; is able to correct all
error patterns of weight smaller than five, it can also correct
error patterns of weight six and more by converging to their
respective low-weight degenerate error patterns.

The strength of a (a, 0) symmetric stabilizer TS with critical
number a/2 is given by the twice the number of possible
partitions into two disjoint subsets of VNs that satisfy the
symmetric stabilizer definition. Each of such partition (distinct
by their unsatisfied syndromes) contributes two error patterns
each to the decoder failure in the TS.

B. Searching for Quantum Trapping Sets

Using the definition of a QTS, one can search for small
sub-graphs in the Tanner graph of the QLDPC code to identify

and enumerate the QTSs. There are efficient algorithms for TS
search widely used in classical literature [25], [26] to identify
sub-graphs that are (a,b) TSs. Such techniques are utilized
in the search for classical-type TSs. Note that there can be
more than one non-isomorphic sub-graphs with the same (a, b)
parameters. For example, a (5,3) TS can have non-isomorphic
sub-graphs as in Fig. 2(b) and Fig. 3. Observe that they all
have different combinations of short cycles of length six,
eight and ten. Enumeration of cycles and their combinations
also allows to find harmful classical-type TSs in the QLDPC
code. Unlike these classical-type TSs, the search for symmetric
stabilizer TSs requires a different approach of finding low-
weight codeword sub-graphs [27] with additional symmetry
constraints. In the case of CSS codes, the Hy even-weight
stabilizer generators are examples of symmetric stabilizer TSs
for iterative decoding over the Tanner graph of Hx matrix and
vice-versa. After obtaining the list of relevant QTSs, we can
perform decoder simulation with an iterative decoder D; to
verify their relative harmfulness. In the next section, we find
and enumerate QTSs in some prominent QLDPC code families
presented in the literature. We also provide the harmfulness
analysis of “dominant” QTSs present in these code families.

IV. TRAPPING SET ANALYSIS OF CSS CODES

A myriad of QLDPC code families have been proposed
over the years. They include the CSS-based constructions
(bicycle codes [1], hypergraph product (HP) codes [7] and
their generalizations [10], expander codes [8]), non-CSS based
QLDPC codes [28], [29] and quaternary QLDPC codes [30].
In this section, we analyze trapping sets of CSS based QLDPC
codes, the generalized bicycle codes and HP codes, in partic-
ular. Similar analysis may be extended to the general class of
stabilizer codes.

A. Generalized bicycle codes

Bicycle codes [1] were generalized by Kovalev and Pryadko
in [31] as follows: Consider two binary n/2 x n/2 matrices
A and B that commute (AB = BA). Let

Hx = [A, B] and Hz = BT, A”].

The SIP condition is clearly satisfied by definition, and in [31],
A and B are chosen as binary circulant matrices so that they
commute. Bicycle codes are dual containing CSS codes where
B = AT. Compared to the HP codes, these codes generally
have a wider range of parameters; in particular, they can have a
higher rate while preserving the estimated error threshold [31].
In [10], Panteleev and Kalachev use binary polynomials over
rings to define the circulant matrices for constructing [[n, k]|
family of generalized bicycle codes. The choice of circulant
matrices determines the properties of both the classical-type
TSs and the symmetric stabilizers in the code. Hence, the
observations on QTSs in the example we discuss next can
be generalized to the code family.

Example 2: For the purpose of illustration in our TS
analysis, we chose the A1[[254,28]] code, where the circu-
lant size is 127, a(z) = 1+ 21® + 220 + 22® + 250 and
b(z) = 1+ 2% + 259 + 2190 4 2121 a5 given in Appendix

Fig. 7. A (5,5) TS with 5 variable nodes and 5 odd degree check nodes
(the shaded squares represent the odd-degree checks). The degree of every
variable node is 5. The blue and red shaded circles for the variable nodes
indicate their relative position in the Hx matrix, from A and B, respectively.

B in [10]. The girth of the Tanner graph is six, CN degree
p = 10 and VN degree v = 5.

1) Classical-type trapping sets: Based on our QTS defini-
tion, we search for QTSs of small size (upto a = 5) present in
the Al code in Ex. 2. As noted in [10], based on the circulant
matrices in the A1 code, it does not have (a,b) trapping sets
with b < 5. The (5,5) TS is the most harmful small sub-
graph present in the Tanner graph making BP based iterative
decoders to fail for low weight error patterns. The critical
number and strength of this TS are determined by the specific
decoder used and neighborhood of the (5,5) TS. Fig. 7 shows
the dense (5, 5) TS present in both the circulant matrices A and
B. From their cyclic property, we can locate 127 (equal to the
circulant size) isomorphic (5,5) TSs in each of them. In the
Fig. 7, blue and red shaded circles for the VNs indicate their
relative position in the Hx matrix, from A and B respectively.

The (5,5) trapping set in Fig. 7 has five variable nodes.
Every variable nodes have exactly the same VN degree p = 5
and one odd-degree check node neighbor (black squares).
The number of small cycles within the trapping set and their
symmetry makes this a hard configuration to decode. For
simple binary decoders like syndrome based Gallager-B, any
weight three or more error patterns will result in a failure
inducing set. Hence, the critical number for the (5,5) TS with
the Gallager-B algorithm is ¢ = 3. For stronger decoders
such as BP and MSA decoder, the behavior is more complex
and interesting. Any weight-5 error pattern in the TS in the
circulant matrix A indicated by blue qubits results in a failure,
whereas similar error patterns in the TSs in the circulant matrix
B (indicated by the red qubits) are decoded correctly. Such
a behavior is typically attributed to the neighborhood of the
TS in the Tanner graph. Whether a TS is in fact harmful
depends not just on the graphical configuration, but also on the
neighborhood and the decoder. This “true” behavior of all such
quantum TSs can be systematically analyzed and characterized
by extending the sub-graph expansion-contraction algorithm
[18] developed for classical LDPC codes to quantum codes,
and it is left for future work.

2) Symmetric stabilizer trapping sets: Failures of
syndrome-based iterative decoding on generalized bicycle
code also consist of the degenerate error patterns in symmetric
stabilizers discussed in the Section III-A2. An example of a

pair of symmetric degenerate error patterns of weight five in
the Ex. 2 code is shown in Fig. 5(a) and Fig. 5(b). Together,
they form a (10,0) TS shown in Fig. 4(b) referred as a
symmetric stabilizer. Interestingly, the blue and red shaded
circles indicates the variable nodes relative position as before
in case of the (5,5) TS coloring. Also, these error patterns
induce isomorphic sub-graphs - trees without any cycles,
quite distinct from the error patterns in classical-type TSs
which are usually composed of one or more cycles. Using the
cyclic property of the circulant matrices in the code, we can
easily locate 127 isomorphic symmetric stabilizers present in
the Tanner graph of Hx, and similarly for Hy.

Remark 3: The input syndrome (dark squares representing
odd-degree checks) in both Fig. 5(a) and Fig. 5(b) is not
matched correctly using iterative decoder using a parallel or
flooding schedule. Breaking such TSs requires use asymmetric
update of variable node decisions such as used in a lay-
ered/serial decoder. Since such symmetric trapping sets have
clear distinction of red and blue nodes with respect to the
cyclic matrices A and B, we can identify the layered decoder
schedule that can break such trapping sets.

B. Hypergraph product codes

HP codes by Tillich and Zemor [7] and their improvements
by Kovalev and Pryadko [32] are constructed by taking
Kronecker product (denoted as ®) of two classical LDPC
codes. Using two classical parity check matrices H; and Hs
of dimensions m; X nj and mg X ngy respectively, we have
Hx = [H1®In, | I, ®H] | and Hyz, = [Ln, ®H2 | HY @I, |.

Example 3: For our trapping set analysis, we use the exam-

ple of a [[900, 36, 10]] HP code given in [12] using a symmetric
Kronecker product of a single (n = 24,k = 6,d = 10)
classical code.
The classical LDPC code determines the HP code properties
and its trapping sets. As we analyze the cycle profile of the
Tanner graph of the classical code used in Ex. 3, we observe
that there are 54 cycles of length six (6-cycles) and 160 8-
cycles.

TABLE I
HPG CODE PARAMETERS AND NUMBER OF CYCLES

Code n m g Xg Xg+2
[24,6,10] 24 18 | 6 54 160
[[900,36,10]] | 900 | 432 | 6 | 2268 | 14496

These cycles appear in the HP codes, multiplying according
to the size of the classical parity check matrix (m = 18, n =
24) as given in Table 1. For example, 54 six cycles in the
classical code gives rise to (54 x 24) + (54 x 18) = 2268
6-cycles in both Hx and Hy matrix of the [[900,36,10]]
code. This behavior is consistent across the symmetric HP
code family. Our TS search procedure identified thirty (4,2)
trapping sets and ten (5, 1) trapping sets in the classical code.
Also, there are two non-isomorphic topologies of (5,3) TSs:
one hundred and seventy (5,3) TSs whose induced graph has
a six, eight, and ten-cycle, and fifteen (5, 3) TSs having three
eight cycles. All these trapping sets manifest themselves in
the HP code with their count scaling as in the case of small

Fig. 8. A stabilizer sub-graph in the [[900, 36, 10]] HP code [12] is not
symmetric. Note that the red and blue variable nodes have four and three
check node neighbors, respectively. Thus, a BP decoder converges to the red
variable nodes as its output exploiting the asymmetry in the stabilizer.

cycles. In Table II, we enumerate all the smallest QTSs (with
a < 5,b < a) present in the [[900, 36, 10]] HP code having no
CN with degree > 2 in their induced sub-graphs. These values
for a and b are chosen as such classical-type TSs are typically
the most harmful for iterative decoders. The QTS enumeration
of Hx and Hyz for symmetric HP codes is the same. Also, the

cycle enumerator series CYC(z) = > x,a" for each QTS
r>0
sub-graph in the parameters column in the Table indicates the

number of small cycles present, which we refer to as its cycle
profile. Observe that the (5,3) QTS with v = 3 has two non-
isomorphic topologies with different cycle profiles. Another
interesting observation specific to these HP codes having VNs
with degree 3 and 4 is the presence of (5,3) and (5,5) QTSs
with the same cycle profile - CYC(z) = 32%. The (5,5) QTSs
are indeed the result of the Kronecker product in the HP codes.
The QTSs in Table II are the main reason for poor iterative
decoding performance of such family of codes.

We observe that the node degree of the classical parity
check Tanner graph influences the symmetric property of the
stabilizers of the HP code. In Ex. 3, since the classical parity
check code chosen has v = 3 and p = 4 in its Tanner graph,
the variable nodes of the HP code have VN degrees 3 and
4. For the stabilizer in Fig. §, the VNs with degree v = 4
are shown as ® and those with v = 3 as ®. The stabilizer
is not symmetric according to the Definition 5. Suppose the
input syndrome corresponds to all the check nodes in the sub-
graph in error, then an iterative BP or MSA decoder (based on
the update rule) will be able to successfully converge to the
red error pattern. This happens as every ® VN uses messages
from four CNs compared to three CNs for the ® VNs in the
decoding process to successfully converge. Note that the above
statement depends on the update rule chosen. For example, the
red and blue error patterns in the stabilizer are indeed failure
configurations for a simple binary decoding algorithm like
Gallager-B algorithm. The above observation emphasizes the
importance of the decoder in characterizing the harmfulness
of QTSs [18]. In the subsequent section showing applications
of TS analysis, we will use the example of different decoding
schedule that “breaks” such symmetry of the stabilizer.

Tn Table 11, the parameters-(a,b), CYC(x), and Count are listed row-wise
under the column header-Parameters for each QTS.

TABLE II
QTS ENUMERATION IN Hx/Hyz OF [[900, 36, 10]] HP CODE [12]

Parameters | Parameters
Quantum TS Cglé) ():D) Quantum TS C;? ’Cb()z)
Count Count
4,2) 4.4)
228 + 28 426 + 328
720 72
(CN)) (5.4)
26 + 328 4 2210 ﬁ: 428 4 528 4 4210
240 36
(5,3) (5.4)
20 4 28 4 210 528 + 528 + 2210
4080 90
(5,3) (5,5)
328 38
360 5184

V. USING THE QTS TO DESIGN BETTER QLDPC CODES
AND BETTER DECODERS

In this section, we explain practical importance of QTS
analysis by providing two approaches for finite length QLDPC
code/decoder design with QTS knowledge.

A. Improved Code Design

While previous research has observed the issue of sym-
metric degenerate errors [15], [16], there has been no effort
to fully characterize them. Identifying symmetric stabilizers,
particularly of low weight in the QLDPC code is an important
step in quantifying the effect of degenerate errors on iterative
decoding. Removal of symmetry in low-weight stabilizers
present in the Tanner graph, especially during the QLDPC
code design significantly reduces the number of instances
of iterative decoder failure. For example, during the row
removal step in the bicycle code [1] we carefully modify the
original bicycle code to obtain codes wherein the stabilizer
is asymmetric as in Fig. 6(b). The BP decoder will able to
match to the syndrome (dark squares represent unsatisfied
checks) correctly with the red error pattern, in contrast to the
symmetric stabilizer in Fig. 6(a). Similarly, in the case of HP

codes, careful removal of TSs in constituent classical LDPC
codes helps to further optimize rate and minimum distance
properties. Such code design improvements lead to perfor-
mance gains especially in the error floor region for QLDPC
codes. Here, we show an example of such an improved HP
code design with quasi-cyclic (QC) LDPC [33] code for the
constituent classical LDPC code.

1) Improved HP codes without harmful TSs: One of the dis-
advantages of QLDPC codes is that the random code construc-
tion makes the stabilizers highly non-local, requiring arbitrary
qubit-qubit inter-connectivity to perform check operations.
Using QC LDPC code brings structure to the constituent
codes and flexibility in improving finite length QLDPC codes
along with efficient implementation of decoders. Instead of
the random codes which is only optimized for girth g = 6, we
construct QC [40, 10, 12] code with girth 8 and making sure
small trapping sets present in the random code are not present.
The QC code with circulant size @) = 10 is free of harmful
trapping sets and constructed by progressively building the
Tanner graph. Fig. 9 shows improved decoding performance
(flooding BP decoder with ¢,,,, = 100 iterations) in the error
floor regime for the newly constructed HP code.

10° g
10"
E 2
gm' 3
2
2 o
- ,37 o
§ 10 o >
g (o}
[4 4
ai:% 107*¢
105k 0—[20,5,8, g=6
—*—[24,6,10), g =6
‘ ——QC [40,10,12], g =8, Q = 10

102 10
Physical error rate p

Fig. 9. Figure shows the FER performance comparison for the symmetric HP
codes constructed using random constituent codes ([20,5,8] code and [24,6,10]
code in [12]) with the HP code constructed using a trapping set aware QC
[40,10,12] code.

B. Novel Decoder Design

An alternative or complementary approach is to devise
iterative decoders that do not fail for the error patterns in
the QTSs identified for the QLDPC code. This approach
prevalent in classical LDPC decoders (finite alphabet iter-
ative decoding (FAID) algorithms such as in [24]) do not
ignore the topology of the TSs while devising decoder update
rules. Breaking symmetry of messages by using non-linear
message update rules leads to orders of magnitude decoding
error performance improvements [24]. For QLDPC iterative
decoders, the typically used parallel/flooding message update
schedule (in the same iteration all variable/check nodes in
the Tanner graph apply in parallel the same variable/check
update function, respectively) attributes to decoders’ failure
on symmetric degenerate errors. We devise decoder strategy
that corrects these errors by taking into account the topologies
of the symmetric stabilizers in the code. Specifically, we
show that an MSA decoder with sequential message update
schedule (layered decoder as in classical literature [34]) that
uses the knowledge of location of the symmetric stabilizers
in the code as well as other harmful trapping sets improves
the error floor decoding performance. As an intuitive example,
suppose the symmetric stabilizer of weight 6 has support on
variable nodes wviq,...,vg with symmetric degenerate error
patterns: e, es, e3 and ey, e5, eg. A layered decoder with the
update order: starting with VN update of vq, v2, vs, followed
by the check node updates, and then VN update of vy, vs, v
converges to the correct error pattern without getting trapped.
Since the schedule order is with respect to the variable nodes
corresponding to the columns of the H matrix, we refer to
such schedule as column-layered. In addition to fast decoder
convergence in terms of the number of iterations [34], [35],
column-layered decoders break some harmful TSs in classical
LDPC codes [36]. In the following section V-B1, we compare
the two schedules: flooding MSA and layered MSA decoders
for the chosen QLDPC code.

1) Layered Decoding to break QTSs: We employ a specific
layered decoding schedule to break the symmetric stabilizers
in the A1[[254, 28]] code in Fig. 10 using a column layered
schedule. The layered schedule employed here is based on the
circulant-size of the cyclic matrices A and B. The symmetric
trapping sets have clear distinction of red and blue nodes
with respect to these cyclic matrices giving a straight forward
update order: wvi,...,v127 followed by vi2g,...,v254. The
column-layered decoder (MSA with £,,,, = 20 iterations) is
able to decode all the symmetric stabilizer TSs and numerous
classical-type TSs correctly leading to two orders of magnitude
improvement in the error floor regime (low physical error
rates) compared to the flooding MSA decoder.

10° ‘ +
-2 L
= 10
=
B
2
ﬁ
5 104
I
5
o
E
ARTI:
—— Flooding MSA
—=a— Layered MSA

108 ‘
102 10"
Physical error rate p

Fig. 10. Figure shows the FER performance comparison for the A1[[254, 28]]
code using the min-sum algorithm (MSA) for two different schedules:
flooding/parallel and layered schedule. The layered schedule is able to decode
all the symmetric stabilizer TSs and numerous classical-type TSs correctly
leading to two orders of magnitude improvement in the error floor regime
(low physical error rates).

Remark 4: This alternative approach is attractive when the
QLDPC code is fixed and modifying it is not an option (due to
technology or system-level constraints). Clearly, joint code and
decoder design would guarantee further decoding performance
improvement.

VI. SUMMARY AND FUTURE WORK

In this paper, we identified and classified quantum trap-
ping sets using their definition adapted from the classical
error correction to address the syndrome decoding scenario
for QLDPC codes. The knowledge of QTSs is shown to
significantly improve stabilizer code/decoder designs and also
decoder performance in the error floor regimes of practical
finite-length QLDPC codes. Analysis of failure configurations
of the QLDPC codes, which are in fact generalization of the
surface codes will have near-future implications in surface
code designs and their decoders.

In future work, we will analyze finite length performances
of recently proposed QLDPC codes that break the +/n
growing minimum distance barrier [37] based on their QTS
enumeration. We will establish the parent-child relationship
between the harmful sub-graphs and determine their relative
harmfulness. Understanding the effect of neighborhood of the

Tanner graph with respect to the decoder used is not easy,
but important to understand the actual harmful error patterns.
In future work, we plan to modify the expansion-contraction
method [18] to QLDPC codes to obtain the exact set of most
harmful configurations that should be avoided in the Tanner
graph of QLDPC codes. Enumeration of symmetric stabilizers
in QLDPC codes is also an important step towards exploiting
degeneracy to the decoder’s advantage. Approaches used in
classical literature for structured QLDPC code constructions
such as efficient low-weight codeword search are promising
in this direction. In addition, extension of QTS definition to
consider X and Z type errors together (correlated errors) and
non-CSS stabilizer codes in general will set up the framework
to study and explore non-binary quantum trapping sets.

APPENDIX A
ITERATIVE DECODING ALGORITHM

A syndrome-based iterative decoder D is a 6-tuple Dy =
M, 9,(,0,9, <i>), where M is the message alphabets,) is
the same a-priori channel value chosen for all variable nodes,
@,V are the update functions used in variable and check nodes,
and ® is the decision function, and ¢ is the check value
alphabet (for syndrome) with o and 6 as the input and output
syndromes respectively. The alphabets M and) depend on a
decoder type and quantum channel model.

Messages passed in an iterative decoder can be of floating
point precision (floating point BP and MSA) or quantized to
fixed number of levels for practical implementation. For a
quantized decoder with Z levels, the message alphabet M
consists of Z = 2z 4 1 levels to which the message values
are confined to. The message alphabet is defined as follows:
M = {-B,,...,—B1,0,By,...,B,}, where B; € Z+
(positive integers) and B; > B; for any i > j. The sign
of a message m € M can be interpreted as the error estimate
of the variable node for which m is being passed to or from
(positive for zero and negative for one), and the magnitude as
a measure of how reliable the error estimate is. For BSC, the
initial channel value for variable node v; is set as y; = +Y
mapping 0 — Y according to the assumption of zero error
pattern. The variable node message from v; is initialized to
®(y;,0), and in each iteration updated according to the rules
® and W.

The messages passed over the edges of the Tanner graph
(say, at ¢-th iteration-iteration will be indicated as superscript
when required) are denoted as follows: fic, ., and vy, .,
denote a message from check node ¢; to variable node v; and
vice-versa respectively.

Check node message ugf)_wj = \D(n(z_l),ai), where n =
VN (e;)\v;—c; denote all incoming variable node messages to
the check node c¢; except from the variable node v;. Note
that ¥ is a symmetric function, i.e., any permutation of the
function variables leaves the function unchanged. Variable
node message is updated as Vq(,f)ﬁci = @(yj,m(e)), where
M = [In/(v;)\c;—v,; denote all incoming check node messages
to the variable node v; except the message from the check
node c;.

The decision function on v; is computed using all messages
incoming to v; denoted by 1 = finr(y;)—s0,- The decision

function)\gz) = é(l(e),yj) decides the error bit Ej based
. . - . NGO
on the sign using an indicator function as é,” = 1, <0
J
Output syndrome value for i*” check node in the ¢-th iteration

50 — Zke N(ed) €, modulo-2. A check node ¢; is matched

7
only if 6; = o;. If all syndromes are matched, we say that

iterative decoder Dy successfully decoded to output the error
pattern é.

The order of message passing in the Tanner graph is gener-
ally referred to as the updating schedule. Message passing
follows a parallel/flooding schedule where W at all CNs
are updated simultaneously followed by updating ® at all
VNs simultaneously. In contrast, a row (column) layered
schedule performs sequential update of messages in an order.
An iteration of row (column) layered decoder proceeds by
computing a check node (variable node) update function in the
sequence followed by computing neighboring variable node
(check node) function till all check nodes (variable nodes)
are updated. Decision function P computed at each layer
accelerates the decoder convergence significantly.

ACKNOWLEDGMENT

We would like to thank David Declercq, Leonid Pryadko,
and Saikat Guha for helpful discussions and insights. This
work is funded by the NSF under grants SaTC-1813401, CCF-
1855879, ECCS/CCSS-2027844 and NSF-ERC 1941583.

REFERENCES

[1] D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Trans. on Inform. Theory, vol. 50,
no. 10, pp. 2315-2330, Oct. 2004.

[2] P. W. Shor, “Scheme for reducing decoherence in quantum computer
memory,” Phys. Rev. A, vol. 52, pp. R2493-R2496, Oct. 1995.

[3] D. Gottesman, “Fault-tolerant quantum computation with constant over-
head,” Quantum Inform. and Computation, vol. 14, no. 15-16, pp. 1338—
1372, Nov. 2014.

[4] A. A. Kovalev and L. P. Pryadko, “Fault tolerance of quantum low-
density parity check codes with sublinear distance scaling,” Phys. Rev.
A, vol. 87, p. 020304, Feb. 2013.

[5] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “The road
from classical to quantum codes: A hashing bound approaching design
procedure,” IEEE Access, vol. 3, pp. 146-176, 2015.

[6] ——, “Fifteen years of quantum LDPC coding and improved decoding
strategies,” IEEE Access, vol. 3, pp. 2492-2519, 2015.

[7]1 J.-P. Tillich and G. Zemor, “Quantum LDPC codes with positive rate
and minimum distance proportional to n'/2" Proc. IEEE Intl. Symp.
on Inform. Theory, pp. 799-803, Jul. 2009.

[8]1 A. Leverrier, J. Tillich, and G. Zémor, “Quantum expander codes,” in
Proc. IEEE 56th Ann. Symp. on Foundations of Computer Science,
Berkeley, CA, USA, Oct. 2015, pp. 810-824.

[9] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Ann.
Allerton Conf. Commun., Contr. and Comp., Monticello, IL, USA, Sept.
2003, pp. 1426-1435.

[10] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with
good finite length performance,” arXiv:1904.02703, 2019.

[11] B. Vasi¢, D. Nguyen, and S. K. Chilappagari, “Chapter 6 - failures
and error floors of iterative decoders,” in Channel Coding: Theory,
Algorithms, and Applications: Academic Press Library in Mobile and
Wireless Commun. Oxford: Academic Press, 2014, pp. 299-341.

[12] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding across
the quantum LDPC code landscape,” arXiv:2005.07016, 2020.

[13] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Trans. on Inform. Theory, vol. 41,
pp- 1379 — 1396, 10 1995.

[14] M. Baldi, N. Maturo, E. Paolini, and F. Chiaraluce, “On the use of
ordered statistics decoders for low-density parity-check codes in space
telecommand links,” EURASIP J. Wirel. Commun. Netw., vol. 2016, no.
272, pp. 1- 15, 2016.

[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” Quantum Inform. and Computation, vol. 8, no. 10, pp. 987-1000,
Nov. 2008.

A. Rigby, J. C. Olivier, and P. Jarvis, “Modified belief propagation
decoders for quantum low-density parity-check codes,” Phys. Rev.
A, vol. 100, p. 012330, Jul. 2019. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevA.100.012330

J. X. Li and P. O. Vontobel, “Pseudocodeword-based decoding of
quantum stabilizer codes,” arXiv:1903.01202, 2019.

N. Raveendran, D. Declercq, and B. Vasi¢, “A sub-graph expansion-
contraction method for error floor computation,” IEEE Trans. on Com-
mun., vol. 68, no. 7, pp. 3984-3995, 2020.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes
exist,” Phys. Rev. A, vol. 54, pp. 1098-1105, Aug. 1996.

D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D.
dissertation, California Institute of Technology, 1997.

M. M. Wilde, “Logical operators of quantum codes,” Phys. Rev.
A, vol. 79, p. 062322, Jun 2009. [Online]. Available: https:
/Mink.aps.org/doi/10.1103/PhysRevA.79.062322

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

N. Raveendran, P. J. Nadkarni, S. S. Garani, and B. Vasié, “Stochastic
resonance decoding for quantum LDPC codes,” in Proc. IEEE Intl. Conf.
on Commun., May 2017, pp. 1-6.

S. K. Planjery, D. Declercq, L. Danjean, and B. Vasi¢, “Finite alphabet
iterative decoders, Part I: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Trans. on Commun., vol. 61, no. 10,
pp. 4033-4045, Nov. 2013.

M. Karimi and A. Banihashemi, “Efficient algorithm for finding domi-
nant trapping sets of LDPC codes,” IEEE Trans. Inform. Theory, vol. 58,
no. 11, pp. 6942-6958, Nov. 2012.

D. V. Nguyen, S. Chilappagari, M. Marcellin, and B. Vasi¢, “On the
construction of structured LDPC codes free of small trapping sets,” IEEE
Trans. Inform. Theory, vol. 58, no. 4, pp. 2280-2302, Apr. 2012.

S. M. Khatami, L. Danjean, D. V. Nguyen, and B. Vasi¢, “An efficient
exhaustive low-weight codeword search for structured LDPC codes,” in
Proc. Inform. Theory and Applications Workshop, San Diego, CA, USA,
Feb. 10-15 2013, pp. 1 - 10.

Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Construction
of quantum LDPC codes from classical row-circulant QC-LDPCs,” [EEE
Commun. Letters, vol. 20, no. 1, pp. 9-12, Jan. 2016.

M. Hagiwara and H. Imai, “Quantum quasi-cyclic LDPC codes,” in Proc.
IEEE Intl. Symp. on Inform. Theory, Jun. 2007, pp. 806-810.

Y. Xie and J. Yuan, “Reliable quantum LDPC codes over GF(4),” in
Proc. IEEE Globecom Workshops, Dec. 2016, pp. 1-5.

A. A. Kovalev and L. P. Pryadko, “Quantum kronecker sum-
product low-density parity-check codes with finite rate,” Phys.
Rev. A, vol. 88, p. 012311, Jul 2013. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.88.012311

A. Kovalev and L. Pryadko, “Improved quantum hypergraph-product
LDPC codes,” in Proc. IEEE Intl. Symp. on Inform. Theory, Jul. 2012,
pp. 348-352.

M. Fossorier, “Quasicyclic low-density parity-check codes from circu-
lant permutation matrices,” IEEE Trans. on Inform. Theory, vol. 50,
no. 8, pp. 1788-1793, Aug. 2004.

D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE Workshop on Signal Process-
ing Systems, 2004, pp. 107-112.

E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing
schedules for LDPC decoding,” IEEE Trans. on Inform. Theory, vol. 53,
no. 11, pp. 4076-4091, 2007.

N. Raveendran and B. Vasic, “Trapping set analysis of horizontal layered
decoder,” in Proc. IEEE Intl. Conf. Commun., Kansas City, MO, USA,
May 2018, pp. 1-6.

P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear
minimum distance,” arXiv:2012.04068, 2020.

