
1

Trapping Sets of Quantum LDPC Codes
Nithin Raveendran∗, and Bane Vasić†

Department of Electrical and Computer Engineering

Center for Quantum Networks

University of Arizona, Tucson, AZ 85721
∗nithin@email.arizona.edu, †vasic@ece.arizona.edu

Abstract—Iterative decoders for finite length quantum low-
density parity-check (QLDPC) codes are attractive because their
hardware complexity scales only linearly with the number of
physical qubits. However, they are impacted by short cycles,
detrimental graphical configurations known as trapping sets
(TSs) present in a code graph as well as symmetric degeneracy of
errors. These factors significantly degrade the decoder decoding
probability performance, and cause so-called error floor. In this
paper, we establish a systematic methodology by which one can
identify and classify quantum trapping sets (QTSs) according
to their topological structure and decoder used. Conventional
definition of a TS from classical error correction is generalized
to address the syndrome decoding scenario for QLDPC codes.
We show that the knowledge of QTSs can be used to design better
QLDPC code and decoder. Frame error rate improvements of two
orders of magnitude in the error floor regime are demonstrated
for some practical finite-length QLDPC codes without requiring
any post-processing.

I. INTRODUCTION

Quantum low-density parity check (QLDPC) codes are

an important class of quantum error correction (QEC) [1],

[2] codes that can realize scalable fault-tolerant quantum

computers (FTQCs) with a finite multiplicative overhead [3].

In addition, they have finite asymptotic rates with non-zero

fault-tolerant thresholds [4], and support low-complexity iter-

ative decoding. The existing QLDPC code literature primarily

focuses on constructing asymptotically good code families

with improved minimum distance scaling with the block

length and higher code rates, as well as on designing better

iterative decoding algorithms [5]–[8]. However, QLDPC codes

implemented in practical QEC systems will be of finite length,

and will exhibit performance degradation due to failure of

iterative decoders to converge to a correct error pattern. This

phenomenon specific to finite-length codes is well understood

in classical literature, but its analysis and precise mathematical

characterization is completely missing in the QEC literature.

The convergence failure manifests itself as an error floor of

the decoding probability of error [9] at low physical error

rate levels – an operating regime for large scale FTQCs –

and is observed in all state-of-the-art iterative message-passing

decoders for QLDPC codes such as belief propagation (BP),

min-sum algorithm (MSA) and their variants [10], [11].

A typical approach in QEC literature to reduce the error

floor of the above decoding algorithms is to couple them with

ordered statistics decoding (OSD) and post-processing [10],

[12]. However, although exhibiting good performance, this

technique is too complex to implement in hardware due to

the high complexity of the OSD algorithm [13] which scales

cubically with the code dimension (see Eq. 4 in [14]). In

contrast, philosophy of our approach and our ultimate goal is

to develop message-passing decoders for QLDPC codes which

do not require a post-processing step to achieve strong error

correction.

Iterative message-passing decoder operates on a Tanner

graph which is the graphical representation of a parity check

matrix of the underlying code. Error floor is attributed to the

presence of specific topologies of sub-graphs in the Tanner

graph generically referred to as trapping sets (TSs) that are

detrimental to iterative decoders. Since a trapping set depends

both on the topology of the sub-graph and on the decoder, one

must understand key differences of QEC, specifically QLDPC

codes and decoding with respect to classical error correction.

The first difference comes as the fact that the stabilizer

commutativity/symplectic inner product (SIP) requirement for

the parity check matrices introduces additional code construc-

tion constraints resulting in unavoidable cycles in the Tanner

graph. Furthermore, QLDPC codes are known to be highly

degenerate, i.e., their minimum distance is higher than the

weight of their stabilizers. From the decoder perspective, this

implies that the decoders need to account for degenerate

errors which has no equivalent in classical error correction.

However, iterative algorithms based on BP are sub-optimal in

the presence of cycles and, also, are not capable of correcting

all degenerate errors [15], [16]. Another key difference from

classical LDPC decoding stems from the inability to directly

measure qubits for error correction. Hence, iterative message-

passing algorithms used for decoding of QLDPC codes are

modified to only make use of the syndrome information to

infer the error introduced by the channel. How the classi-

cal trapping sets definition accommodates a syndrome-based

decoder is not clearly understood. As we show, degenerate

errors having no classical analogy introduces new failure

configurations unique to the QLDPC codes. The approach

presented in this paper accounts for these key differences and

their implications.

Failure configurations of QLDPC codes are relatively un-

known when compared to the classical trapping set research.

One major drawback of BP as pointed out in [17] is that

the decoding ability of BP is typically limited by the row

weight of the parity-check matrix due to the SIP constraint

and identifies pseudo-codeword structures for cycle codes.

However, generalization from cycle codes to QLDPC codes

is non-trivial.

2

In this paper, we define quantum trapping sets (QTSs) by

investigating into failure configurations for syndrome based

iterative message passing algorithms. The quantum trapping

set formulation is modified to the syndrome decoding scenario

for QLDPC codes considering Pauli X and Z errors separately.

We identify QTSs of prominent QLDPC codes and show that

the QTSs must be analyzed in conjunction with the particular

iterative decoder used along with their location in the Tanner

graph [18]. Message update rules and scheduling strategies are

also identified that help to decoder escape from such trapping

sets improving the error floor performance.

The rest of this paper is organized as follows. In Section

II, we introduce QLDPC codes using the stabilizer formalism

reviewing some basic notations and then discuss the syndrome

decoding problem and classical trapping sets. In Section

III, we analyze the different failure configurations, relation

between trapping sets and decoder/error correction properties.

We also formally define quantum trapping sets and describe

the methodology used to identify those specifically for Calder-

bank, Shor, Steane (CSS) codes [19]. Trapping sets of some

classes of CSS codes are analyzed in Section IV. Based on

these analyses, we present simulation results which briefly

explore two strategies of code and decoder improvement. We

explore CSS code constructions without some of the harmful

configurations and also compare performance of trapping set-

aware decoding strategies in Section V followed by concluding

remarks and future research directions in Section VI.

II. PRELIMINARIES

A. Stabilizer Formalism

Stabilizer codes, the quantum analog of classical linear

codes, are the most common type of QEC codes considered

in both theory and practice. An Jn, k, dK quantum stabilizer

code maps k qubit quantum state |φ〉 to an entangled n-qubit

codeword |ψ〉 (a unit vector in the 2n-dimensional Hilbert

space) and is defined as a 2k-dimensional subspace of the

Hilbert space which is a common +1 eigenspace of the

stabilizer group S . The n-qubit codeword |ψ〉 is stabilized

by all stabilizer elements in S . i.e., sj |ψ〉 = + |ψ〉 for any

sj ∈ S . We denote a generator set of a given stabilizer group

S by the set S = {s1, s2, . . . , sm}. The stabilizer generators

form the m = n − k rows of the corresponding stabilizer

matrix Hp whose entries are the single-qubit Pauli matrices

I2 = [1 0
0 1],X = [0 1

1 0],Z =
[

1 0
0 −1

]

, and Y = ıXZ =
[

0 −ı
ı 0

]

.

Kronecker products of n single-qubit Paulis and scalars ıκ,

where κ ∈ Z4 = {0, 1, 2, 3} forms the n-qubit Pauli group Pn,

of which the stabilizer group S is a commutative subgroup that

contains only Hermitian Paulis and excludes −In. The weight

w(P) of a Pauli operator P ∈ Pn is the number of qubits

on which it applies a non-identity Pauli matrix. A QLDPC

code is a stabilizer code with all stabilizer generators having

low weight. Analogous to the classical minimum distance,

Jn, k, dK code have logical operators L ∈ Pn\S that commutes

with all si having minimum weight d. Like the codeword

generators, the logical operators of the code map an n-qubit

codeword to another. Logical group L is generated by k logical

X generators: LX = {lx1, lx2, . . . , lxk} and k logical Z

generators: LZ = {lz1, lz2, . . . , lzk} obtained by using either

Gottesman’s [20] or Wilde’s algorithm [21].

The stabilizers commute with each other following the

commutativity relation between two n-qubit Pauli operators

P and Q defined as follows:

P ◦Q :=

n
∏

j=1

Pj◦Qj , where Pj◦Qj = ±1 if PjQj = ±PjQj .

P and Q commutes if P ◦ Q = +1 and anti-commutes if

P ◦ Q = −1. Every logical generators commute with the

stabilizers and Lxi commutes with every other generators

except with Lzi ∀i ∈ {1, k}.

B. Stabilizers as binary parity checks

An alternative binary representation maps Pauli matrices to

binary tuples as follows: I2 → (0, 0), X → (1, 0), Z →
(0, 1), Y → (1, 1). More generally, binary representation of

an n-qubit Pauli operator P will be a binary vector of length

2n of the form p = (px,pz), where px and pz are of length

n each with ones at positions of X- and Z-Pauli components

respectively. Such a mapping aids in construction of quantum

stabilizer codes using extensive classical coding literature. The

binary representation Hb of the stabilizer matrix of dimension

m× 2n given by

Hb =
[

HX | HZ

]

, (1)

where HX and HZ represent binary parity check matrices

used for error correction. Each row in Hb denotes a stabilizer

generator, and a pair of corresponding columns in HX and

HZ represent a qubit. Equivalent to the commutativity relation

defined for Pauli operators, the stabilizer generators commute

with each other based on the symplectic inner product (SIP) in

their binary representation [22]. Any two rows p = (px,pz)
and q = (qx, qz) of

[

HX | HZ

]

must satisfy p � q :=
mod (pxq

T
z
+ pzb

T
x
, 2) = 0. This leads to the condition

HXH
T
Z +HZH

T
X = 0, (2)

where the right hand side (0) is an m × m zero matrix, T
denotes the transpose of a matrix and operations (addition and

multiplication) are done modulo-2. We will refer to Eq. (2) as

the SIP constraint.

C. Decoding Problem

For binary decoding, typically considered channel model

of a depolarizing channel is isomorphic to two independent

binary symmetric channels (BSCs), a simplified model if the

correlation between bit and phase flip error is ignored. The

BSCs for X and Z errors have a cross-over probability of 2p/3
[1], decoded using HZ and HX, respectively. Let e = (ex, ez)
be the binary representation of a Pauli error acting on the n
qubits. The corresponding syndrome is computed as

σ = [σx, σz]

= [mod (HZ.e
T
x
, 2), mod (HX.e

T
z
, 2)].

All-zero syndrome (σ = 0̄) indicates that all the stabilizers

commute with the error pattern (undetectable error), whereas

3

non-zero entries/ones in σ indicate that some stabilizer gener-

ators anti-commute with the error pattern (detectable error). A

syndrome based decoder’s task is to estimate the error pattern

ê whose syndrome σ̂ matches with the initial input syndrome

σ. If σ̂ = σ, the estimated error pattern ê is applied to reverse

the error e introduced by the channel. Error correction process

is successful if ê = e⊕h, where h ∈ rowspace(Hb), i.e., if the

code word is recovered up to a stabilizer (ê⊕e is a stabilizer,

where ⊕ denotes pairwise XOR). Error correction fails when

the decoder is unable to find an error pattern that matches the

syndrome σ or when the decoding process results in a logical

or miss-correction error. A logical error occurs if ê ⊕ e is

a logical operator such that post error correction state is a

codeword different from the original codeword. We can detect

a logical error if Pauli representation of ê⊕ e anti-commutes

with any of the 2k logical generators.

D. Iterative Decoding of CSS codes

Although the syndrome decoding paradigm is applicable

to any class of quantum codes, trapping set analysis in this

paper is focused on QLDPC families: hypergraph product (HP)

codes [7], bicycle codes [1] and generalized bicycle codes

[10] representing the CSS class of codes [19]. An attractive

property of CSS codes constructed from two classical codes

C1 and C2, where C⊥
2 ⊆ C1 is that the parity check matrix

can be written in a separable form: Hb =

[

HX 0
0 HZ

]

. CSS-

QLDPC codes have a sparse matrix Hb with the SIP constraint:

HZ.H
T
X = 0.

We can perform error correction for the X and Z er-

rors separately using HZ and HX matrices, respectively.

The corresponding input syndromes are obtained as σx =
mod (HZ.e

T
x
, 2) and σz = mod (HX.e

T
z
, 2), respectively.

For simplicity going forward, we use H , L and σ, e for the

parity check matrix, logical generator matrix, input syndrome

and channel error vector, respectively.

The stabilizer generator matrix/parity check matrix H is

the bi-adjacency matrix of a bipartite Tanner graph G =
(V ∪ C,E), where V represents the set of n qubit/variable

nodes (VNs), C is the set of m stabilizer generators/check

nodes (CNs) and E is the set of edges between them. CN

ci ∈ C and VN vj ∈ V are neighbors if there is an edge

(vj , ci) ∈ E between the nodes, corresponding to the non-

zero entry in the parity check matrix Hci,vj = 1. Diagram-

matically, Tanner graphs are drawn with circles representing

VNs, squares representing CNs and solid-lines representing

the edges. Let us denote the set of CNs connected to a VN

vj by N (vj), and |N (vj)|, where | · | denotes cardinality, is

referred to as the degree of the VN vj . Similarly, we can

define the neighbor set and the degree of a CN ci as N (ci)
and |N (ci)|, respectively. A (γ, ρ) QLDPC code have a sparse

stabilizer matrix with the variable and stabilizer degree upper-

bounded by γ and ρ respectively. For a subset of VNs, say

K ⊆ V, N (K) denotes the set of CN neighbors. The induced

sub-graph G(K) is the graph containing the nodes K ∪N (K)
along with the edges {(x, y) ∈ F : x ∈ K, y ∈ N (K)}.

The girth, g, of the Tanner graph G is the length of the

shortest cycle in G. Denote the number of cycles of length g,

g+2, . . . by χg , χg+2, . . ., respectively. If G has χg , χg+2, . . .
cycles of length g, g+2, . . ., then the cycle enumerator series

CYC(x) =
∑

r≥0

χrx
r defines the cycle profile of G.

The goal of a syndrome based iterative decoder Ds is to

output an error pattern that matches the input syndrome. This

is different from the traditional iterative decoder D that uses

the channel information as initial likelihoods to recover the

codeword matching to an all-zero syndrome. Starting from an

input syndrome σ and an all-zero error vector estimate, Ds

performs a finite number `max of iterations of decoding over

the Tanner graph. The messages are passed over the edges

of the Tanner graph from check nodes to their neighboring

variable nodes and vice-versa at every iteration of message

passing decoding. Decoder update rules and message alphabet

size can be of varying complexity ranging from the simplest

binary message passing algorithms such as Gallager-B [23] to

finite alphabet iterative decoders [24], and MSA or BP using

floating point messages [1]. Also, schedule of message passing

in Ds can be implemented with a flooding/parallel schedule or

a layered/serial schedule. Trapping set analysis presented here

is applicable for all such decoder implementations. We discuss

a generic syndrome based iterative decoder in Appendix A for

completeness. Based on the update rules, Ds outputs an error

vector estimate ê(`) = (ê
(`)
1 , ê

(`)
2 , . . . , ê

(`)
n) and corresponding

output syndrome σ̂(`) = (σ̂
(`)
1 , σ̂

(`)
2 , . . . , σ̂

(`)
m). We refer to

ê
(`)
j /σ̂

(`)
i as the value of the variable/check node vj /ci at

iteration ` ≤ `max. We conclude that Ds is successful if

the output syndrome σ̂(`) is equal to the input syndrome σ

(we also say that syndromes are matched). Then, the n-length

error pattern ê(`) is decided as the most likely error pattern.

The iterative procedure is halted if successfully matched or if

`max number of iterations is reached. At the end of iterative

decoding, syndrome decoding process is successful if the

syndromes are matched. Otherwise, the decoding is said to

have failed.

E. Classical Trapping Sets

A classical trapping set example is shown in Fig. 1 illustrat-

ing failure of a classical iterative decoder D on a small sub-

graph inside the Tanner graph. Let us consider a simple binary

message passing decoder - Gallager-B decoder which performs

XOR operation at the check nodes and a majority voting at

the variable nodes. More precisely, the outgoing check node

message over an edge is computed as the XOR of extrinsic

(all incoming messages except the edge for the message is

updated) variable node messages. The outgoing variable node

message is the majority value among incoming extrinsic check

node messages and the channel value. The messages passed

over corresponding edges are marked next to the directed

arrows in the figure. All-zero transmitted codeword has errors

only on three variable nodes (v2, v4, v5 - shaded circles •)

as shown in Fig. 1. The decoder is unable to converge to the

all-zero codeword. In fact, the decoder oscillates from error

pattern (v2, v4, v5) to (v1, v3) and back as its output during

the decoding iterations, thus failing to converge.

A classical iterative decoder is said to converge correctly

if the decoder output word for any ` ≤ `max matches to the

10

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 9. Figure shows the FER performance comparison for the symmetric HP
codes constructed using random constituent codes ([20,5,8] code and [24,6,10]
code in [12]) with the HP code constructed using a trapping set aware QC
[40,10,12] code.

B. Novel Decoder Design

An alternative or complementary approach is to devise

iterative decoders that do not fail for the error patterns in

the QTSs identified for the QLDPC code. This approach

prevalent in classical LDPC decoders (finite alphabet iter-

ative decoding (FAID) algorithms such as in [24]) do not

ignore the topology of the TSs while devising decoder update

rules. Breaking symmetry of messages by using non-linear

message update rules leads to orders of magnitude decoding

error performance improvements [24]. For QLDPC iterative

decoders, the typically used parallel/flooding message update

schedule (in the same iteration all variable/check nodes in

the Tanner graph apply in parallel the same variable/check

update function, respectively) attributes to decoders’ failure

on symmetric degenerate errors. We devise decoder strategy

that corrects these errors by taking into account the topologies

of the symmetric stabilizers in the code. Specifically, we

show that an MSA decoder with sequential message update

schedule (layered decoder as in classical literature [34]) that

uses the knowledge of location of the symmetric stabilizers

in the code as well as other harmful trapping sets improves

the error floor decoding performance. As an intuitive example,

suppose the symmetric stabilizer of weight 6 has support on

variable nodes v1, . . . , v6 with symmetric degenerate error

patterns: e1, e2, e3 and e4, e5, e6. A layered decoder with the

update order: starting with VN update of v1, v2, v3, followed

by the check node updates, and then VN update of v4, v5, v6
converges to the correct error pattern without getting trapped.

Since the schedule order is with respect to the variable nodes

corresponding to the columns of the H matrix, we refer to

such schedule as column-layered. In addition to fast decoder

convergence in terms of the number of iterations [34], [35],

column-layered decoders break some harmful TSs in classical

LDPC codes [36]. In the following section V-B1, we compare

the two schedules: flooding MSA and layered MSA decoders

for the chosen QLDPC code.

1) Layered Decoding to break QTSs: We employ a specific

layered decoding schedule to break the symmetric stabilizers

in the A1[[254, 28]] code in Fig. 10 using a column layered

schedule. The layered schedule employed here is based on the

circulant-size of the cyclic matrices A and B. The symmetric

trapping sets have clear distinction of red and blue nodes

with respect to these cyclic matrices giving a straight forward

update order: v1, . . . , v127 followed by v128, . . . , v254. The

column-layered decoder (MSA with `max = 20 iterations) is

able to decode all the symmetric stabilizer TSs and numerous

classical-type TSs correctly leading to two orders of magnitude

improvement in the error floor regime (low physical error

rates) compared to the flooding MSA decoder.

10
-2

10
-1

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 10. Figure shows the FER performance comparison for the A1[[254, 28]]
code using the min-sum algorithm (MSA) for two different schedules:
flooding/parallel and layered schedule. The layered schedule is able to decode
all the symmetric stabilizer TSs and numerous classical-type TSs correctly
leading to two orders of magnitude improvement in the error floor regime
(low physical error rates).

Remark 4: This alternative approach is attractive when the

QLDPC code is fixed and modifying it is not an option (due to

technology or system-level constraints). Clearly, joint code and

decoder design would guarantee further decoding performance

improvement.

VI. SUMMARY AND FUTURE WORK

In this paper, we identified and classified quantum trap-

ping sets using their definition adapted from the classical

error correction to address the syndrome decoding scenario

for QLDPC codes. The knowledge of QTSs is shown to

significantly improve stabilizer code/decoder designs and also

decoder performance in the error floor regimes of practical

finite-length QLDPC codes. Analysis of failure configurations

of the QLDPC codes, which are in fact generalization of the

surface codes will have near-future implications in surface

code designs and their decoders.

In future work, we will analyze finite length performances

of recently proposed QLDPC codes that break the
√
n

growing minimum distance barrier [37] based on their QTS

enumeration. We will establish the parent-child relationship

between the harmful sub-graphs and determine their relative

harmfulness. Understanding the effect of neighborhood of the

11

Tanner graph with respect to the decoder used is not easy,

but important to understand the actual harmful error patterns.

In future work, we plan to modify the expansion-contraction

method [18] to QLDPC codes to obtain the exact set of most

harmful configurations that should be avoided in the Tanner

graph of QLDPC codes. Enumeration of symmetric stabilizers

in QLDPC codes is also an important step towards exploiting

degeneracy to the decoder’s advantage. Approaches used in

classical literature for structured QLDPC code constructions

such as efficient low-weight codeword search are promising

in this direction. In addition, extension of QTS definition to

consider X and Z type errors together (correlated errors) and

non-CSS stabilizer codes in general will set up the framework

to study and explore non-binary quantum trapping sets.

APPENDIX A

ITERATIVE DECODING ALGORITHM

A syndrome-based iterative decoder Ds is a 6-tuple Ds =
(M,Y, ζ,Φ,Ψ, Φ̂), where M is the message alphabets, Y is

the same a-priori channel value chosen for all variable nodes,

Φ,Ψ are the update functions used in variable and check nodes,

and Φ̂ is the decision function, and ζ is the check value

alphabet (for syndrome) with σ and σ̂ as the input and output

syndromes respectively. The alphabets M and Y depend on a

decoder type and quantum channel model.

Messages passed in an iterative decoder can be of floating

point precision (floating point BP and MSA) or quantized to

fixed number of levels for practical implementation. For a

quantized decoder with Z levels, the message alphabet M
consists of Z = 2z + 1 levels to which the message values

are confined to. The message alphabet is defined as follows:

M = {−Bz, . . . ,−B1, 0, B1, . . . , Bz}, where Bi ∈ Z+
(positive integers) and Bi > Bj for any i > j. The sign

of a message m ∈ M can be interpreted as the error estimate

of the variable node for which m is being passed to or from

(positive for zero and negative for one), and the magnitude as

a measure of how reliable the error estimate is. For BSC, the

initial channel value for variable node vi is set as yi = +Y
mapping 0 → Y according to the assumption of zero error

pattern. The variable node message from vi is initialized to

Φ(yi,0), and in each iteration updated according to the rules

Φ and Ψ.

The messages passed over the edges of the Tanner graph

(say, at `-th iteration-iteration will be indicated as superscript

when required) are denoted as follows: µci→vj and νvj→ci

denote a message from check node ci to variable node vj and

vice-versa respectively.

Check node message µ
(`)
ci→vj = Ψ(n(`−1), σi), where n =

νN (ci)\vj→ci denote all incoming variable node messages to

the check node ci except from the variable node vj . Note

that Ψ is a symmetric function, i.e., any permutation of the

function variables leaves the function unchanged. Variable

node message is updated as ν
(`)
vj→ci = Φ(yj ,m

(`)), where

m = µN (vj)\ci→vj
denote all incoming check node messages

to the variable node vj except the message from the check

node ci.
The decision function on vj is computed using all messages

incoming to vj denoted by l = µN (vj)→vj
. The decision

function λ
(`)
j = Φ̂(l(`), yj) decides the error bit Êj based

on the sign using an indicator function as ê
(`)
j = 1

λ
(`)
j

<0
.

Output syndrome value for ith check node in the `-th iteration

σ̂
(`)
i =

∑

k∈N (ci)
êk modulo-2. A check node ci is matched

only if σ̂i = σi. If all syndromes are matched, we say that

iterative decoder Ds successfully decoded to output the error

pattern ê.

The order of message passing in the Tanner graph is gener-

ally referred to as the updating schedule. Message passing

follows a parallel/flooding schedule where Ψ at all CNs

are updated simultaneously followed by updating Φ at all

VNs simultaneously. In contrast, a row (column) layered

schedule performs sequential update of messages in an order.

An iteration of row (column) layered decoder proceeds by

computing a check node (variable node) update function in the

sequence followed by computing neighboring variable node

(check node) function till all check nodes (variable nodes)

are updated. Decision function Φ̂ computed at each layer

accelerates the decoder convergence significantly.

ACKNOWLEDGMENT

We would like to thank David Declercq, Leonid Pryadko,

and Saikat Guha for helpful discussions and insights. This

work is funded by the NSF under grants SaTC-1813401, CCF-

1855879, ECCS/CCSS-2027844 and NSF-ERC 1941583.

REFERENCES

[1] D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for
quantum error correction,” IEEE Trans. on Inform. Theory, vol. 50,
no. 10, pp. 2315–2330, Oct. 2004.

[2] P. W. Shor, “Scheme for reducing decoherence in quantum computer
memory,” Phys. Rev. A, vol. 52, pp. R2493–R2496, Oct. 1995.

[3] D. Gottesman, “Fault-tolerant quantum computation with constant over-
head,” Quantum Inform. and Computation, vol. 14, no. 15–16, pp. 1338–
1372, Nov. 2014.

[4] A. A. Kovalev and L. P. Pryadko, “Fault tolerance of quantum low-
density parity check codes with sublinear distance scaling,” Phys. Rev.

A, vol. 87, p. 020304, Feb. 2013.
[5] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “The road

from classical to quantum codes: A hashing bound approaching design
procedure,” IEEE Access, vol. 3, pp. 146–176, 2015.

[6] ——, “Fifteen years of quantum LDPC coding and improved decoding
strategies,” IEEE Access, vol. 3, pp. 2492–2519, 2015.

[7] J.-P. Tillich and G. Zemor, “Quantum LDPC codes with positive rate
and minimum distance proportional to n1/2,” Proc. IEEE Intl. Symp.

on Inform. Theory, pp. 799–803, Jul. 2009.
[8] A. Leverrier, J. Tillich, and G. Zémor, “Quantum expander codes,” in

Proc. IEEE 56th Ann. Symp. on Foundations of Computer Science,
Berkeley, CA, USA, Oct. 2015, pp. 810–824.

[9] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Ann.

Allerton Conf. Commun., Contr. and Comp., Monticello, IL, USA, Sept.
2003, pp. 1426–1435.

[10] P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with
good finite length performance,” arXiv:1904.02703, 2019.

[11] B. Vasić, D. Nguyen, and S. K. Chilappagari, “Chapter 6 - failures
and error floors of iterative decoders,” in Channel Coding: Theory,

Algorithms, and Applications: Academic Press Library in Mobile and

Wireless Commun. Oxford: Academic Press, 2014, pp. 299–341.
[12] J. Roffe, D. R. White, S. Burton, and E. T. Campbell, “Decoding across

the quantum LDPC code landscape,” arXiv:2005.07016, 2020.
[13] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes

based on ordered statistics,” IEEE Trans. on Inform. Theory, vol. 41,
pp. 1379 – 1396, 10 1995.

[14] M. Baldi, N. Maturo, E. Paolini, and F. Chiaraluce, “On the use of
ordered statistics decoders for low-density parity-check codes in space
telecommand links,” EURASIP J. Wirel. Commun. Netw., vol. 2016, no.
272, pp. 1– 15, 2016.

12

[15] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” Quantum Inform. and Computation, vol. 8, no. 10, pp. 987–1000,
Nov. 2008.

[16] A. Rigby, J. C. Olivier, and P. Jarvis, “Modified belief propagation
decoders for quantum low-density parity-check codes,” Phys. Rev.

A, vol. 100, p. 012330, Jul. 2019. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevA.100.012330

[17] J. X. Li and P. O. Vontobel, “Pseudocodeword-based decoding of
quantum stabilizer codes,” arXiv:1903.01202, 2019.

[18] N. Raveendran, D. Declercq, and B. Vasić, “A sub-graph expansion-
contraction method for error floor computation,” IEEE Trans. on Com-

mun., vol. 68, no. 7, pp. 3984–3995, 2020.
[19] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes

exist,” Phys. Rev. A, vol. 54, pp. 1098–1105, Aug. 1996.
[20] D. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D.

dissertation, California Institute of Technology, 1997.
[21] M. M. Wilde, “Logical operators of quantum codes,” Phys. Rev.

A, vol. 79, p. 062322, Jun 2009. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.79.062322

[22] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition, 10th ed. New York, NY, USA:
Cambridge University Press, 2011.

[23] N. Raveendran, P. J. Nadkarni, S. S. Garani, and B. Vasić, “Stochastic
resonance decoding for quantum LDPC codes,” in Proc. IEEE Intl. Conf.

on Commun., May 2017, pp. 1–6.
[24] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasić, “Finite alphabet

iterative decoders, Part I: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Trans. on Commun., vol. 61, no. 10,
pp. 4033–4045, Nov. 2013.

[25] M. Karimi and A. Banihashemi, “Efficient algorithm for finding domi-
nant trapping sets of LDPC codes,” IEEE Trans. Inform. Theory, vol. 58,
no. 11, pp. 6942–6958, Nov. 2012.

[26] D. V. Nguyen, S. Chilappagari, M. Marcellin, and B. Vasić, “On the
construction of structured LDPC codes free of small trapping sets,” IEEE

Trans. Inform. Theory, vol. 58, no. 4, pp. 2280–2302, Apr. 2012.
[27] S. M. Khatami, L. Danjean, D. V. Nguyen, and B. Vasić, “An efficient

exhaustive low-weight codeword search for structured LDPC codes,” in
Proc. Inform. Theory and Applications Workshop, San Diego, CA, USA,
Feb. 10–15 2013, pp. 1 – 10.

[28] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “Construction
of quantum LDPC codes from classical row-circulant QC-LDPCs,” IEEE

Commun. Letters, vol. 20, no. 1, pp. 9–12, Jan. 2016.
[29] M. Hagiwara and H. Imai, “Quantum quasi-cyclic LDPC codes,” in Proc.

IEEE Intl. Symp. on Inform. Theory, Jun. 2007, pp. 806–810.
[30] Y. Xie and J. Yuan, “Reliable quantum LDPC codes over GF(4),” in

Proc. IEEE Globecom Workshops, Dec. 2016, pp. 1–5.
[31] A. A. Kovalev and L. P. Pryadko, “Quantum kronecker sum-

product low-density parity-check codes with finite rate,” Phys.

Rev. A, vol. 88, p. 012311, Jul 2013. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.88.012311

[32] A. Kovalev and L. Pryadko, “Improved quantum hypergraph-product
LDPC codes,” in Proc. IEEE Intl. Symp. on Inform. Theory, Jul. 2012,
pp. 348–352.

[33] M. Fossorier, “Quasicyclic low-density parity-check codes from circu-
lant permutation matrices,” IEEE Trans. on Inform. Theory, vol. 50,
no. 8, pp. 1788–1793, Aug. 2004.

[34] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE Workshop on Signal Process-

ing Systems, 2004, pp. 107–112.
[35] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-passing

schedules for LDPC decoding,” IEEE Trans. on Inform. Theory, vol. 53,
no. 11, pp. 4076–4091, 2007.

[36] N. Raveendran and B. Vasic, “Trapping set analysis of horizontal layered
decoder,” in Proc. IEEE Intl. Conf. Commun., Kansas City, MO, USA,
May 2018, pp. 1–6.

[37] P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear
minimum distance,” arXiv:2012.04068, 2020.

