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Abstract—Blockchain-powered smart systems deployed in dif-
ferent industrial applications promise operational efficiencies and
improved yields, while mitigating significant cybersecurity risks
pertaining to the main application. Associated tradeoffs between
availability and security arise at implementation, however, trig-
gered by the additional resources (e.g., memory, computation)
required by each blockchain-enabled host. This paper applies an
energy-reducing algorithmic engineering technique for Merkle
Tree root calculations, a principal element of blockchain com-
putations, as a means to preserve the promised security benefits
but with less compromise to system availability. Using pyRAPL, a
python library to measure computational energy, we experiment
with both the standard and energy-reduced implementations of
the Merkle Tree for different input sizes (in bytes). Our results
show up to 98% reduction in energy consumption is possible
within the blockchain’s Merkle Tree construction module, such
reductions typically increasing with larger input sizes. The pro-
posed energy-reducing technique is similarly applicable to other
key elements of blockchain computations, potentially affording
even “greener” blockchain-powered systems than implied by only
the Merkle Tree results obtained thus far.

Index Terms—Merkle Tree, Blockchain, Energy.

I. INTRODUCTION

Blockchain technology, popularized by different crypto-

currency systems, is seeing extensive use in different fields.

Advocates for such uses cite the blockchain’s inherent prop-

erties of a decentralized structure alongside enhanced security

with mechanisms for privacy and non-repudiation [1], [2],

[3], [4]. One particularly promoted use case is the Internet of
Things (IoT) [5], [6], [7], which embodies the vision by which

different computing devices may communicate with each other

to map a physically connected world onto its digital mirror.

The IoT vision also motivates prospects of so-called smart
systems [8] e.g., smart cities, smart homes, smart grid, smart

health, smart agriculture. The potential uses and benefits of

smart systems recognizably also raises critical security and

privacy challenges to be addressed, which motivates the vision

of blockchain-powered smart systems.

This research study is supported in part by NSF CPS #1932300, and Cyber
Florida #220408 grants.

Smart and secure systems implemented upon IoT tech-

nology require device inter-connectivity for extended time

frames, delivering continuous data. Such operations demand

constant power supply [8]—within a world that demands more

environmentally-friendly (or “green”) solutions, in general,

IoT realizations also face the challenge of energy efficiency

i.e., minimizing their energy footprint. Thakore et al. [9]

acknowledge the additional energy optimization requirements

that blockchains require when implemented together with IoT.

Depending on the specific type of blockchain-IoT combina-

tion, precise analysis of performance and energy requirements

becomes critical [10]. As an example of these challenging

tradeoffs, consider a particular blockchain-IoT implementation

with a fixed power budget. To be viable for an application that

values autonomy for greater lengths of time, the system must

be configured to make more efficient use of energy. Disabling

the blockchain will certainly save energy, but also weaken

security: it is in such contexts that the exploration of ways to

reduce energy consumption of blockchain functionality alone

can be of tremendous practical significance.

A. Related Work

Energy efficiency in computation is a widely studied topic,

with numerous points-of-view: hardware-specific platforms,

operating systems, hypervisors and containers [11]; software

development and security [12]; and algorithms [13], [14]. En-

ergy measurements are sometimes obtained by uniquely instru-

mented equipment [15], while other times can leverage hard-

ware providers’ Application Programmer Interfaces (APIs) in

which firmware counters are recalled to provide near real-

time information e.g., Running Average Power Limit (RAPL)

technology [16]. Blockchain implementations are actively un-

der study as providing a decentralized ledger (i.e. record of

transactions) by which to optimize energy management in a

variety of scenarios (e.g., generation & distribution [17], [18],

micro-grid networks [19], [20], [21] and smart contracts [22]).

In contrast to our motivation, however, these studies define
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the optimized management objectives such that the energy

footprint of the blockchain itself is out of scope.

There are past studies who also recognize that the

blockchain itself will draw energy away from any symbiotic

system it is integrated with. Examples include Sankaran et

al. [10] and Sanju et al. [23], who perform power mea-

surements and evaluate real experiments on the energy con-

sumption of two different blockchain implementations, namely

Ethereum and Hyperledger. A similar analysis of energy con-

sumption is presented in [15] for XRP validation, which is a

key element of decentralized consensus processes within many

Internet services. A particularly novel theoretical approach

is reported by Fu et al. [24], first modeling a blockchain-

IoT caching infrastructure and posing its energy optimization

within a geometric programming formulation whose solu-

tions allocate resources accordingly. A recent performance

evaluation survey, also conducted by Fu et al. [1], illus-

trates how diverse and sophisticated current implementations

of blockchain ledgers are. Despite this diversity, however,

all existing implementations at their core remain faithful to

Nakamoto’s original blockchain concept [25], within which

the Merkle Tree construction module is essential.

B. Our Scope and Contributions

We study the extent to which Merkle Tree construction, a

principal element of blockchain computations, can be made

more energy efficient. Our approach employs an energy-

reducing algorithmic engineering technique, based upon an

Energy Complexity Model (ECM) proposed by Roy et al. [13],

[14], on the SHA256 encryption algorithm, which is central to

the Merkle Tree. Using pyRAPL, a python library to measure

an executable’s Runtime Average Power Limit, we experiment

with both the standard and energy-reduced implementations of

the Merkle Tree for input sizes (in bytes) that are commonly

seen within blockchain implementations. Our results show

significant reductions in energy consumption, up to 98% but on

average 50% across the tested input sizes. At present, it is only

a conjecture that reduced energy consumption in the Merkle

Tree construction module itself extrapolates to comparable

reduction of a blockchain on the whole. In any case, to

the best of our knowledge our work is the first to address

energy optimization of blockchains by re-engineering the

implementation of one of its component algorithms. Moreover,

the proposed energy-reducing technique is similarly applicable

to other key elements of blockchain computations, potentially

affording even “greener” blockchain-IoT systems than implied

by only the Merkle Tree results obtained thus far.

II. METHODOLOGY

This section describes our application of the Energy Com-

plexity Model (ECM) [13], [14] to the Merle Tree (MT) root

construction module of the blockchain. Described first is the

process by which a block of the blockchain is computed based

on the MT root, in which so-called hash calculations play a

central role, followed by a summary of how the ECM works,

in general. This section ends with a detailed description of

how the central hash calculations of the MT are re-engineered

based on the ECM.

A. Merkle Tree Based Block Generation

A graphic representation of a simple block generation in a

blockchain is shown in Fig. 1. The bottom layer shows the

stored transactions (e.g., T001) for the block, which later are

converted to their SHA256 Hash signatures (e.g., H001) and

represent the Merkle Tree leaves. Merkle Tree root calculations

involves the recursive hash computation starting from these

leaves until a final hash determines the Merkle Tree root

(labeled TX ROOT in Fig. 1).

Figure 1: Basic Block Generation in Blockchain.

Conceptually, the process of Merkle Tree calculation

through hashing can be viewed as a state transition in which

an investment of computational resources is required e.g.,

δt
f(T )−−−→ δt+1 (1)

T = cost[energy, time] (2)

That is, the block generation is represented by the state

transition in (1), which depends upon a function f(T ) with

parameter T denoting the cost as represented by (2). This cost

has two main components: one is the energy consumed by the

hardware devices to compute the hash of the input vectors,

while the other is the execution time of those computations.

This paper strives to reduce the overall transition cost T by

reducing the energy consumption of the hardware devices,

employing a technique based upon the ECM next described.

B. The Energy Complexity Model (ECM)

The ECM developed in [13] is built upon an abstraction of

the Double Data Rate Synchronous Dynamic Random Access

Memory (DDR SDRAM) architecture [26], which is illustrated

in Fig. 2. Main memory in DDR is divided into banks, each of

which contains a certain number of chunks1. Data is allocated

1The term “block” is used in DDR specifications, but we use the term
”chunk” to avoid confusion wiithin our blockchain context.
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over chunks in each bank, and each bank also contains a

special chunk called the sense amplifier. When data needs to

be accessed, the chunk containing the data is fetched into the

sense amplifier of the corresponding bank. The sense amplifier

can only hold one chunk at a time, so the current chunk has

to be put back to its bank before the next one can be fetched

for access. While only one chunk of a particular bank can be

accessed at a time, chunks of different banks (each with their

own sense amplifier) can be accessed in parallel. Therefore, if

the DDR memory is organized into P banks (where P = 4 in

Fig. 2), then P chunks can be accessed at a given time. In the

popular DDR3 architecture, the DDR1 notion of the per-bank

sense amplifier is referred to as the per-bank cache, albeit still

only capable of accessing one chunk at a given time.

Figure 2: Internal DDR SDRAM memory chip block diagram.

The ECM denotes the P banks of a given DDR3 SDRAM

resource by M1,M2, . . . ,MP , each such bank Mi comprised

of multiple chunks of size-B (in bytes) and its own cache Ci.

The illustrative example of Fig. 3 assumes P = 4 banks, as

was the case in Fig. 2, with just four chunks per bank, assign-

ing numerical labels 1, 2, . . . , 16 to the memory’s collection of

data chunks. Heeding the DDR constraint that each cache Ci

may access exactly one chunk at a time, the access patterns

(1, 2, 3, 4) or (5, 6, 7, 8) imply a completely serial execution,

while the access patterns (1, 5, 9, 13) or (3, 8, 10, 13) are each

completely parallel. The authors of [13] discovered two key

properties of DDR memory: firstly, the difference in power

consumption between the same number of chunks accessed

sequentially or in parallel is not significant; however, the

execution time of an algorithm when chunks are accessed in

parallel is significantly lower than when chunks are accessed

sequentially. Because the associated energy consumption de-

pends upon both power and time, it follows that parallelizing

chunk accesses offers the potential for energy reduction of

any algorithm! More formally, as derived by Roy et al. [13],

the energy consumption (in Joules) of an algorithm A with

execution time τ , assuming a P -bank DDR3 architecture with

B bytes per chunk, is given by

E(A) = τ + (P ×B)/I (3)

where I denotes the so-called parallelization index, essentially

the number of parallel block accesses across memory banks

per P block accesses made by A on the whole. That is, under

the ECM, an algorithm’s potential for energy reduction is

inversely proportional to the degree to which it can be re-

engineered for parallelization of its memory accesses.

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

C1 C2 C3 C4

Figure 3: ECM for DDR3 Resource with P = 4 Banks

C. Re-engineering Hash Calculations Using ECM

In this work, we engineer the hash algorithm of Merkle

Tree (MT) construction based on ECM to reduce energy

consumption. First, we briefly describe how any algorithm

A can be parallelized based on ECM. We then illustrate

how MT’s hash calculation, specifically the SHA encryption

algorithm, is re-engineered for parallelization.

1) Parallelizing any algorithm: Given an algorithm A, the

input to A is considered to identify the most common access

sequence in A. The required level of parallelism for the vector

formed by the desired access sequence is then engineered

using a logical mapping over chunks of memory that store

data accessed by A. As mentioned above, the order of chunk

accesses is different for different levels of parallelization. But

the physical location (chunks) of the input in the memory

is static, and is handled by the memory controller of DDR.

Therefore, to implement parallelization of access over physical

chunks, a different page table vector V is generated for each

level of parallelization, which defines the ordering among the

chunks to be accessed (see Fig. 4).

For 1-way access, the page table vector V has the pat-

tern (1, 2, 3, 4, . . .) and for 4-way access it has the pattern

(1, 5, 9, 13, . . .). A function is then created to map the pattern

of the page table vector V to the original physical locations of

the input. Algorithm 1 shows the function to create an ordering

among the chunks. The ordering is based on the way we want

to access the chunks (P -way would mean full parallel access).

The page table is populated by picking chunks with jumps.
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Figure 4: Memory Layout (P = 4) and Role of Page Tables

For P -way access, jumps of P are selected that ensure the

consecutive chunk accesses lie in P different banks. Going

by the above example, for P = 1, jumps of 1 ensure that 4
consecutive chunk accesses lie in the same bank (bank 1 of

Fig. 3). On the other hand, for P = 4, jumps of 4 ensures that

4 consecutive chunk access lie in 4 different banks (banks 1
through 4 of Fig. 3).

Input: Page table vector V, jump amount jump.

factor = 0;

for i = 0 to N
B − 1 do

if i > 1 and (i× jump) mod N
B = 0 then

factor = factor +1;

end
Vi = (i× jump + factor) mod N

B ;

end
Algorithm 1: Create a Page Table for N Chunks

2) Parallelizing SHA Encryption: As described earlier,

Merkle Tree construction performs its hash calculations via re-

peated use of the SHA256 encryption algorithm. Specifically,

as shown in Fig. 5, the input is partitioned into fixed size mes-

sage blocks, presented in sequence to separate compression

functions. This block sequence is identified in correspondence

with the access pattern of the SHA256 algorithm, which we

subject to re-engineering based on the ECM. The input vector,

in a Merkle Tree being the concatenation of three strings

(see Fig. 5), is pre-processed into another vector by applying

Algorithm 1. The mapping is then stored in a page table to

be used in subsequent hash calculations. An example of this

operation for 16 blocks and a parallelization index (jump) of

4 is shown in Fig. 6.

Fig. 7 shows the outcome of re-engineering the SHA256
algorithm based on ECM. In our experimentation, an 8-bank

DDR3 SDRAM is used and the parallelization index is set

to I = 8. This essentially means that for any set of eight

consecutive block access in SHA256, we created a virtual

mapping using techniques described in [14] to ensure that each

size-8 access occurs across all eight banks.

Figure 5: SHA256 for Merkle Tree Calculation

Figure 6: Mapping of SHA Input Blocks based on ECM.

Figure 7: ECM-Enhanced Merkle Tree Calculation

III. EXPERIMENTS

We now proceed to describe computer experiments designed

to quantify the energy savings of the methodology detailed in

the previous section. By virtue of the ECM’s formulation, the

enhanced implementation requires computer hardware using

a DDR RAM architecture. Maximum energy reduction is

promised by a parallelization index taken to equal the number

of memory banks, which depends upon the DDR version: 4
for DDR2, 8 for DDR3 and 16 for DDR4 and higher. The

machine used for our experiments features a 64-bit dual-core
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processor (Intel i5-2410M @ 2900MHz with cache size L2

256KB and L3 3072KB), running Linux Mint version 19.3

with a 8GB DD3 RAM and 500GB SSD storage. We use

pyRAPL, a software toolkit to measure a host machine’s

energy footprint along the execution of a piece of Python

code, to compare energy consumptions between the standard

and ECM-enhanced implementations. pyRAPL is built upon

Intel’s Running Average Power Limit (RAPL) technology that

estimates a CPU’s power consumption; depending on the

hardware and operating system configurations, pyRAPL can

measure energy consumption of the following CPU domains:

CPU socket, GPU, and DRAM [16].

A. Implementation Details and Setup

Our experimental objectives could not be met by using

the SHA256 function in the Hash Python library. This is

because memory management in Python involves a private

heap, containing all objects and data structures. The control of

this private heap is ensured internally by the Python memory

manager, with different components dealing with sharing,

segmentation, pre-allocation or caching. Our ECM-enhanced

implementation of SHA256 requires greater control over

memory allocation than Python’s memory manager permits.

Such low-level control on memory management is possible in

the standard C programming language. We thus implement

the standard and ECM-enhanced versions of the SHA256

algorithm within separate C programs, which are called from

a Python script (upon importing the ctypes module) as

an external routine. This permits the use of pyRAPL for

the needed energy measurements without denying low-level

memory control to implement the ECM-enhanced SHA256

functionality during Merkle Tree calculations.

Our experiments simulated the Merkle Tree calculation with

Python code that runs 103 consecutive two-leaves-input hashes

with pyRAPL invoked. Each execution of the code yields

an energy measurement, but because the instrumentation is

subject to noise we invoke 5000 repetitions and report the

average energy (mean and deviation). Our experiments also

vary the input size (i.e., the compounded-leaf size) to the

Merkle Tree calculations, choosing 1, 64, 96, 128, 512, 1024,

16384 and 262144 bytes motivated as follows:

1) the 1B input is the bare minimum that the ECM permits

for any algorithm [13];

2) the 64B, 96B and 128 inputs are common in blockchain

applications [6];

3) the 512B and 1024B inputs are common in file hashing

applications [27]; while

4) the 16384B and 262144B inputs are common in the

Interplanetary File System (IPFS) [28], [29].

B. Results and Discussion

Recall that our experimental setup features two implemen-

tations of Merkle Tree (MT) calculations, the standard one

(which we label by “O” as it uses the original SHA256)

and the re-engineered one using ECM (which we label by

“E” as it uses the enhanced SHA256), as well as eight

different input sizes. Per implementation and per input size,

our experimental Python script leverages the pyRAPL toolkit

to measure the average energy (mean and deviation over

5000 trials) of simulated Merkle Tree calculations. Fig. ener

summarizes the sixteen average energy measurements in two

bar charts, per input size comparing the Standard MT (O) and

the Enhanced MT (E) average energy (in μJoules). Fig. 8(a)

renders the comparison over the six smallest input sizes (using

a linearly-scaled vertical axis), while Fig. 8(b) is over the

two largest input sizes (using a log-scaled vertical axis). It

is seen that the ECM-enhanced implementation consistently

requires less energy that the standard implementation, the

difference being increasingly significant with the larger input

sizes that befit file hashing applications (i.e., 512B and above)

(but still meaningful for input sizes 64B, 96B and 128B that

befit blockchain applications). This observed dependence on

input size may be a consequence of CPU memory caching.

DRAM memory often allows the memory controller to op-

timise accesses by L1/L2/L3 caching of data. With smaller

inputs, such caching enables parallelization of bank accesses

even in the standard implementation. The comparison for

the 1B input size corroborates this point, where we observe

the enhanced implementation consume more energy than the

standard implementation!

(a) Versus Small Input Sizes (in Bytes)

16384B 262144B

104

105

106

107

E
n
er
g
y
in

μ
J
ou

le
s

Enhanced MT(E)

Standard MT(O)

(b) Versus Large Input Sizes (in Bytes)

Figure 8: Comparison of Average Energy Consumption

Fig. 9 presents the average energy comparison on more

relative terms, namely as a percent reduction achieved by
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the enhanced implementation over the standard implemen-

tation versus all eight input sizes. The energy savings for

the blockchain-motivated input sizes range between 19% and

34%, while the energy savings for the file-system-motivated

input sizes range between 69% and 98%, the case of 16384B

exhibiting that maximum 98% savings. As noted in Fig. 8,

the 1B input renders a savings of -4%, meaning the standard

implementation is more energy-efficient by virtue of the paral-

lelism invoked within the CPU’s L1/L2/L3 cache in this case.

Figure 9: Comparison of Energy Savings

IV. CONCLUSION

This work considers reducing the energy consumption of

Merkle Tree (MT) calculations within blockchains by re-

engineering the core hashing algorithm, namely SHA256 en-

cryption, via the Energy Complexity Model (ECM) [13]. The

ECM-enhanced implementation was compared to the standard

implementation via experimental energy measurements with

various input sizes of practical significance. The results show

up to 34% energy savings are possible for input sizes typically

used by blockchains, while up to 98% is possible for input

sizes used in other applications (e.g., file systems). It remains

conjecture that reduced energy consumption in the Merkle

Tree construction module itself extrapolates to comparable

reduction to the blockchain on the whole. Future work can also

assess the energy saving opportunities in other applications

of Merkle Trees e.g. authentication schemes [29], healthcare

systems [30], embedded systems [31], network protocols [32],

[33]. Also of interest is the exploration of parallelized hash

calculations to reduce energy consumption of the blockchain

Proof-of-Work (PoW) algorithm. Similarly, because the pro-

posed energy-reducing technique and energy measurement

instrumentation may be applicable to other key computations,

similarly “greener” solutions may be possible within Internet-

of-Things (IoT) technology and envisioned smart systems.
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