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Abstract—With the emergence of software defined radio (SDR)
where a computer program defines transceivers’ physical layer
functions, waveforms can change dynamically. SDR benefits new
protocol deployment, enabling smart wireless communication
applications. However, SDR makes it easier to mimic authorized
transmission, leaving wireless networks vulnerable to spoofing
attacks. This work explores ways to detect such radio frequency
(RF) anomalies. Specifically, a machine-learning structure called
convolutional neural network (CNN) possesses merits of local
perception and shift invariance, matching the characteristics of
our sampled SDR data. Therefore, we design a CNN for detection
of RF anomalies. Furthermore, a physical unclonable function
(PUF) provides physical-layer security by identifying a device
analogous to human fingerprint. Qur CNN extracts waveform
features as well as PUFs of transmission devices, from which we
train and validate a classification model. The trained model can
detect and identify spoofed signals. As proof-of-concept
experiments, we generate RF signals with Ettus Universal
Software Radio Peripherals (USRPs) and GNU Radio software.
We then use the dataset to train our CNN classification model that
analyzes features of the RF signals and the USRPs’ PUFs. To
expand the robustness of our CNN model in cluttered RF
environments typical in the Internet of Things (IoT), we generate
satellite signals of Automatic Dependent Surveillance — Broadcast
(ADS-B) for aircraft tracking. The testing results confirm the
promise of machine-learning PUF-based security enforcement in
cluttered RF environments.

Keywords—Cyber security, wireless communication security,
physical-layer security, physical unclonable function (PUF),
machine learning to spoofing detection, detecting radio frequency
(RF) anomalies, securing software defined radio (SDR), protecting
integrity of the Internet of Things (IoT).

I. INTRODUCTION

Many wireless communication technologies operate in the
same band of radio frequency (RF) spectrum: e.g., Wi-Fi,
Bluetooth, and Zigbee occupy the same 100 MHz band from 2.4
GHz to 2.5 GHz. Radio interference occurs frequently. Ever
growing devices such as commercial drones and personal
wearables connect to the Internet of Things (IoT), cluttering RF
environments. Software defined radio (SDR) solves interference
issues with complex spectrum sharing. As illustrated in Figure
1, an aircraft uses a surveillance radar called Mode-S to share its
information derived from Global Positioning System (GPS)
with other aircrafts and a ground station.
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However, SDR plays a double-edged sword. Its ability to
switch channel and modify behavior makes the IoT vulnerable
to spoofing attacks. Moreover, physical-layer security becomes
paramount to safeguard wireless communications in an era when
IoT surround our world. Analog to human interactions, a listener
identifies a speaker by physical characteristics, such as unique
voice features, rather than contents spoken. The latter can be
fabricated at higher/software layers despite using cryptographic
memory authentication.

Functioning as a human fingerprint, RF fingerprint is a radio
transmission characteristic of a device, which depends on the
transmitter chain due to its unique manufacturing process
imperfections. It differs from a wireless channel fingerprint, a
random mapping based on temporal factors such as location and
propagation characteristics. RF fingerprint has been utilized for
keyless authentication, a receiver (Rx) identifying a transmitter
(Tx) without the need for the two devices to share a secret key.
This unique and static input-output characteristic is hardly
replicable, even by the same manufacturer. RF fingerprint
authentication algorithms have two categories: transient and
modulation. Transient implementations classify transmitted
signals by amplitude/phase characterization of the signal
envelope. Modulation implementations classify by frequency
offset, sync correlation, etc. However, the simulatability
condition limits the performance of RF fingerprint
authentication, i.e. authentication is possible if and only if the
adversary cannot simulate the legitimate channel. While
evaluating such basic limits of RF fingerprint authentication
using Information Theory, Gungor and Koksal [1] devised a
graphical approach to check the simulatability region and
recommended several methods to enhance the security strength.
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Any rate less than Shannon capacity can achieve reliable
communication. Erasure and error probabilities of
impersonation and substitution attacks correlate to RF channel
statistics. Additional analysis at Rx can aid authentication.

Like dynamic biometric augmenting fingerprint in human
identification, Physical Unclonable Function (PUF) is a black-
box challenge-response system, » = f{c). It maps input domain
to output range called challenge-response pairs (CRPs), but the
internal parameters of f{.) are hidden from users. Such
parameters represent physical characteristics of the integrated
circuit (IC) from manufacturing process imperfections, such as
the variability of a circuit’s internal gate delay. PUF
applicability in security relies on the difficulty of measuring and
estimating these parameters as well as the difficulty of
manufacturing chips with the same set of parameters. The
domain of f{’) or the number of unique challenges ¢ that a PUF
can process sets apart two types of PUFs, each with different
security applications. Weak PUF's support a small number of
challenges (in some cases only a single challenge) and can be
applied for Secure Key Generation, which is out of the scope of
this paper. Strong PUFs support a large number of challenges
(ideally, exponential in the number of challenge bits) so that
complete determination/measurement of all CRPs within a
limited timeframe becomes infeasible. Therefore, strong PUFs
can provide low-cost authentication [2].

Figure 2 depicts a two-phase protocol of an authenticator
(Rx) identifying devices with strong PUF (Txs). First for
bootstrap, Rx directly contacts each Tx to build a table of CRPs.
When ready for authentication, Rx issues a ¢ for rs, checks
match to identify Txs, and removes the ¢ from the CRP table to
prevent replay attacks. Comparing to traditional cryptographic
authentications, PUF authentication does not require Txs with
secure nonvolatile memory, anti-tamper mechanism, or
additional circuitry for crypto acceleration. However, basic PUF
authentications still need secure storage for CRPs on Rx, posting
the same vulnerability as traditional cryptographic memory
authentications. Additionally, the restriction of using each CRP
once demands a large memory to store the CRP table. Likewise,
PUF authentications face side-channel attacks. Besides the two
factors of computational intractability aforementioned, the
security of a strong PUF requires an additional difficulty of
predicting PUF behavior based on past CRPs [2].

To eliminate PUF’s scalability problem with CRP table, Rx
adopts a compact model from machine learning to emulate PUF
challenge-response behavior rather than stores a CRP table [2].
Tx data that we sampled exhibit localized characteristics and
shift invariant, in accordance with the merits of a specific
machine learning model called convolutional neural networks
(CNN). Although an adversary can spoof an authentication
sequence from observations, Rx chooses a one-time random
challenge and computes the response matching Tx’s. Morehouse
and Zhou [3] built and trained a PUF-based CNN model for Rx
that can identify RF Txs with accuracy above 90%. This work
demonstrates the ability of Morehouse-Zhou model to detect RF
anomalies in a cluttered RF environment. We use universal
software radio peripherals (USRPs) along with GNU Radio
software to form a RF environment. An attacker imitates one of
USRPs. An Rx using our CNN classification model can detect
the attacker with accuracy at least 97%.
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Figure 2: Strong PUF for basic authentication

Our major contributions include:

1) A single central Rx effectively detects RF anomalies
among multiple distributed Txs in a cluttered RF
environment. The setting serves well to IoT applications.

2) There is no extra hardware for PUF implementation at Tx
by exploiting a device’s inherent variations resulting from
process variability (on-chip) and component tolerance (on-
board) for each Tx. The model at Rx compensates Rx non-
ideality and accounts for variability of data channel.

3) Our proof-of-concept experiments confirm the alignment of
CNN’s locality with the characteristics of our dataset,
suitable to wireless communication security. The work
justifies the call for data-centric machine learning.

The rest of the paper is organized as follow: Section II
describes related work. Section III introduces the adopted
system model. Section IV designs a CNN architecture. Section
V describes the proof-of-concept experiments while VI
discusses the results. Section VII concludes the paper.

II.  RELATED WORK

Traditional approaches to RF fingerprinting focused on
algorithms, relying on domain experts to extract features of RF
transmitter imperfections. Expert-driven RF fingerprinting was
neither reliable (affected by environment distortions) nor
scalable (unable to consider all possible scenarios). Data-driven
approaches, specifically deep learning, can learn features from
RF signals, achieving better performance and higher scalability.
Youssef et al [4] explored the efficacy of machine learning to
RF signal processing, particularly for PF fingerprinting. Four
ML algorithms were evaluated: support vector machines
(SVM), deep neural nets (DNN), convolutional neural nets
(CNN), and DNN with multi-stage training (MST). Their first
machine learning algorithm, SVM with 2 different
configurations, is non-deep-learning while the rest three are
deep-learning, resulting five models. We focus on their deep
learning models in our review. Starting from a conventional
DNN of two fully-connected hidden layers as the base model
trained with the first-order stochastic gradient, Youssef et al
extended it, respectively, in model structuring to CNN of two
convolutional layers and in model training to MST with a
second-order update called Levenberg-Marquardt (LM)
method. Their goal of DNN and CNN tests the ability to
distinguish among known transmitters while the goal of MST
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tests the ability to extend the model to capture novel devices via
incremental learning, a special kind of transfer learning.
Transfer learning takes a model trained to perform task A as a
starting point and retrains it for a new model to perform another
task B. Incremental learning enables the new model to perform
both tasks A and B, adapting new data without forgetting its
existing knowledge. Youssef et al ranked various deep learning
approaches to study RF domain in performance (accuracy) and
scalability (CPU time) using a methodical and repeatable real-
world experimentation and commercial-off-the-shelf (COTS)
WiFi transceiver platform. Future work includes extending to
more challenging conditions, testing robustness, and addressing
complex valued artificial neural networks.

Chatterjee et al [S] combined PUF concept with RF
fingerprinting. A RF-PUF framework, for a Machine Learning
equipped Receiver (ML-Rx), was proposed to authenticate
wireless transmitters (Tx) in real time by exploiting manufacture
process imperfections in Tx. It is the first work in an asymmetric
IoT network of multiple distributed Txs and a single central Rx
for low-cost, preamble-less, intrinsic PUF-based authentication
of IoT nodes. The feasibility study of RF-PUF showed that the
inherent RF properties arising from the manufacturing process
in a wireless node can be exploited as a strong PUF for device
authentication in asymmetric IoT networks without any
additional hardware at the Tx. The Rx, using in-situ light-weight
supervised machine learning, can detect up to 10,000 Txs with
about 99% accuracy. They also validated RF-PUF by physical
implementation with two software defined radios (SDR) to
emulate multiple unique Txs and an on-board microprocessor in
Rx to deploy artificial neural networks. Future work includes
improving Rx signature compensation, circuit techniques to
implement erasability and certifiability, formal or experimental
validation of protection against attacks, and stability analysis.

Physical-layer characteristics used in spoofing detection
schemes for wireless communications belong to two categories:
RF/hardware features and channel/location variances.
RF/hardware category, based on distinctive patterns in
modulation domain of RF signals that different transceivers emit
like 1/Q origin offset, performs well but needs a high-end signal
analyzer. Channel/location category, taking channel state
information (CSI) and location-specific features such as
received signal strength (RSS), costs less but cannot detect
attackers close to the legitimate transmitter. Wang et al
discovered that Signal-to-Noise Ratio (SNR) traces obtained in
sector level sweep (SLS) process are different even for the same
type of IEEE 802.11ad devices [6]. Such work is the first to
explore SLS SNR traces in 60GHz mmWave off-the-shelf
devices to detect spoofing attack for IEEE 802.11ad networks.
Machine-learning classification has been applied to detect
spoofing attacks with high efficacy at low cost. SLS SNR traces
are influenced by both Tx location and hardware impairment
while readily obtainable without extra circuits. The machine
learning framework stacks a backpropagation network (BN)
with a forward propagation network (FN) as generative
adversarial networks (GANs) for small sample learning and fast
model construction, achieved 98% detection accuracy.

Morehouse and Zhou [3] demonstrated the feasibility of
using convolutional neural networks (CNN) to identify RF
devices by classifying raw baseband signals without the need of
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data preprocessing. The CNN architecture in [3] included
convolution for feature extraction, batch normalization to
increase training speed and accuracy, ReLU for activation,
pooling for data reduction, fully connected for dimension
reduction, and softmax for classification. The prototype
generated a dataset by using three transmitters (one USRP N210
and two PLUTO SDRs), each 80K frames received by a USRP
N210 were used to train its CNN in MATLAB for 1.5 hours.
The experiment yielded 92.5% testing accuracy at identifying
different types of SDR devices (USRP and PLUTO) and
individual devices of the same type (two PLUTOs), all radios
being identified above 85% accuracy with the range in their
accuracy differences about 8%. Future work includes real-time
identification of new devices by incremental learning, testing the
CNN’s prediction confidence, and vulnerability analysis of the
CNN to spoofing and jamming.

CNN is the most widely used deep learning technique for
grid-like data such as image segmentation and computer vision.
CNN’s advantages of local/neighboring data correlation and
global/hierarchical feature combination enables CNN to learn
features automatically from raw data. CNN’s another advantage
of weight sharing makes it efficient in terms of memory and
computation complexity. As an efficient and automatic feature
extractor, CNN is also widely used for time-series data,
outperforming traditional machine learning techniques on
speech recognition tasks and natural language processing. The
basic CNN structure has three stages of components. The first is
multiple layers of convolutional kernels where each neuron
computes a weighted sum of input tensors by sliding kernel,
pooling to down sample for reduction in feature-map size by
extracting a combination of invariant features, and fully
connected at the end of the network to globally analyze the local
features from the preceding layers and non-linearly combine
selected features for classification. The second component is
mapping functions, often called activation function that serves
as a decision function with non-linearity added to learn intricate
patterns. The last component is regulatory units: batch
normalization unifying the distribution of feature-map values by
setting them to zero mean and unit variance; dropout eliminating
the cause of overfitting by randomly skipping some connections
within a network. Building and training a CNN is more like an
art than a science currently. It involves many aspects, to name a
few: modification of processing units, optimization of
parameters and hyper-parameters, design of pattern blocks,
selection of layers and their connectivity, and choice of
architectures. The last aspect of CNN architectures can have
seven categories: spatial exploitation, depth based, multi-path,
width-based, feature-map (channel on features), channel
boosting (channel on input), and attention [7]. Therefore, we
adopt a CNN to learn features of RF signals and devices’ PUFs.
By trial and error, we modify and retrain Morehouse-Zhou PUF-
based CNN classification model to search for a good model that
detects RF anomalies in a cluttered RF environment.

While powerful for modeled PUF authentication, machine
learning is also a double-edged sword. Sharma et al simulated
the catastrophes caused by attacks on a machine learning model
in the Internet-of-Vehicles with adversarial examples [8].
Recent vulnerability studies of PUFs to modeling attacks are
alarming. Particularly according to Khalafalla et al [9],
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modeling attacks with deep learning easily broke the security of
strong PUFs immune to traditional machine learning models
such as support vector machines and single-layer artificial
neural networks, with accuracy about 99% trained in minutes.
This research shaken the ground of security applications rest on
strong PUF’s unpredictability and unclonability. Therefore, new
PUF architectures were suggested to countermeasure deep
learning attacks.

III.  ADOPTED SYSTEM MODEL

We adopt a CRP model trained from machine learning,
instead of a CRP table in Rx, for a system model to detect
spoofing attacks. As shown in Figure 3, our system contains a
CRP model in Rx that identifies Txs with strong PUFs. An
adversary (A) launches attacks, for example, by spoofing Tx;
signals after observing its behavior to fool Rx. As part of
handshaking before a communication session, Rx issues a
challenge ¢, and a Tx; that wants to join the session presents its
credential for authentication by sending its response r; = fi(c).
As per the prior agreement Fi(.), Rx accepts the legitimate
response 7; from Tx; matching the specific CRP Fj(c) while
rejects A’s spoofed response 7.

Rx: CPR model
F1 rl
Iiz ©=|7 = in
E, T
e
A A A
Tr T, Trn
Tx; Tx, TXn
1= filc) 72 = fo(c) 7 = falc)

Figure 3: System Model to detect spoofing attacks

The system involves a two-phase protocol as a model-based
authenticator. Before the authentication phase described above,
Rx first goes through its bootstrapping phase by generating a
database of CRPs with Txs in a secure environment. The CRP
dataset is used to train and validate a machine learning model.
After testing the trained model to assess its efficacy, Rx discards
the CRP dataset and deploys the CRP model ready for the
authentication phase.

A, on the other hand, also goes through its bootstrapping
phase by stealthily collecting the RF signals and CRPs of the
targeted device, say Tx;. Likewise, A deploys its model ready to
launch spoofing attacks 7; = F;(c). An arms-race runs between Rx
and A; A fools Rx for acceptance as Tx; while Rx detects the
presence of A. Both A and Rx improve its own functionality,
similar to a generative adversarial network (GAN) where A as
generator and Rx as discriminator are trained independently.

IV. PROPOSED CNN ARCHITECTURE

We propose Morehouse-Zhou PUF-based CNN model [3]
for the CRP model at Rx. Figure 4 shows the architecture of our
CNN-Rx. A convolution layer (CL) for automatic feature
extraction is followed with a regulatory unit of batch
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normalization, a mapping function of ReLU activation, and a
pooling. This process repeats six times, each increasing the filter
size to explore correlation among neighboring inputs at coarser
granularity. The process ends with a fully connected layer (FC)
for non-linear combination before the final sofimax activation to
classify Tx; or Abnormal. The depth of CNN-Rx architecture is
ICLx6+1FC=7.

fully connect Abnormal

Figure 4: CNN-Rx Architecture

We retrain Morehouse-Zhou CNN model on our new PUFs
dataset including RF anomalies for CNN-Rx to improve its
detection accuracy. The initial imbalance between normal and
abnormal data may affect the performance of CNN-Rx with
bias. As more anomaly data becomes available, CNN-Rx will
improve its detection rate.

V. PROOF-OF-CONCEPT EXPERIMENTS

Figure 5 illustrates the experiment setup. Five USRPs on the
UMassD SDR Server are used, as labeled in the figure. CNN-
Rx uses a USRP N210 for collecting CRPs with three licensed
Txs at the bootstrapping phase and for hosting the trained CNN
model for the authentication phase. MATLAB deep learning
toolbox runs on a Linux server to train the CNN model with the
CRP dataset collected at the bootstrapping phase. The three
licensed Txs are USRP N210s. A also uses a USRP N210 to
eavesdrop the RF signals of the targeted device, Tx; in this
study, and retransmits the signals to fool CNN-Rx.

‘ *

Train CNN-Rx in MATLAB
CRPs = [F/] classification

Generate Python code: CNN-Rx

Figure 5: Experiment Setup
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In designing experiments, we follow the machine learning
workflow that starts with collecting data to train a model for a
system and ends with deploying that model in the system. This
process spirals to assure a trustworthy Al system. Our work
observes the trend of data-centric Al that shifts the focus from
tuning hyperparameters as model-centric approach to improving
data quality [10]. Utilizing the team’s domain knowledge in
signal processing and cyber security, we collect and prepare
good data instead of big data. This new paradigm also helps us
gain better insights of the data and the problems at hand.

A. Data Collection and Preparation

We use five USRP N210s to operate as one receiver and four
transmitters. Each transmitter sends the same signal multiple
times: a frame of 1,024 Automatic Dependent Surveillance—
Broadcast (ADS-B) sample signals for 40,000 times. Signals are
not collected simultaneously in order to differentiate the PUFs
of individual devices. Figure 6 shows a data sample.

DataSet DataSet.LUSRPSet
Data5et.USRPSet]
Fields Y9 data  [l7 modType |eol  label
1 . |'BPSKE! Ix1 categon
2 . |'BPSK Ix1 categori..
3 . 'BPSK Ix1 categon
4 . 'BRSK Ix1 categori..
5 . 'BPSK Ix1 categori..
] . 'BRSK Ix1 categori..
T . 'BPSK Ix1 categori..
a . |'BPSK Ix1 categori..
9 . |'BPSK Ix1 categon
10 . |'BPSK Ix1 categori..
11 . 'BPSK Ix1 categori..
12 . |'BPSK Ix1 categori..
13 . 'BPSK Ix1 categor..
14 21024 dow... |'BPSK Ix1 categori..

Figure 6: Data Sample

We use GNU Radio Companion, a framework to design,
simulate, and deploy SDR systems. Figure 7 shows the
flowgraphs of our entire system model for the USRPs to send
and receive signals. GNU Radio Companion offers a versatile
coding GUI where blocks can be linked together to program an
SDR. Each flowgraph can be converted to a Python code. The
File Source inputs the premade ADS-B signals into GNU Radio.
This signal is repeated until the user manually stops the program.
The fading model implements a frequency shift and can simulate
a variety of channel impediments. The phase noise generator
adds Gaussian noise to the signal given a specified magnitude
and alpha. The USRP sink transmits the signal to the USRP
source which writes the output as a binary file. The sink and
source blocks have parameters determining the SDR IP address,
sampling rate, and channel center frequency among many
others. A CNN trained in MATLAB then determines which
signal came from which SDR to identify spoofs.
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Figure 7: GNU Radio Flowgraphs

[ Phase Noise Generator
Nolse Magnitude: S0

Flle Source
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Repeat: 1es

TSB tag name:

The four transmitters are labeled “USRP1”, “USRP2”,
“USRP3”, and “Unknown”. After basic data collection, we
prepare datasets progressively for increasing impediments to
boost model resilience. Six versions of datasets, shown in Table
2, are prepared. The first version takes three USRPs to
categorize which radio a signal comes from. The second version
adds fading model, simulating the doppler effect for the three
transmitters moving relative to the receiver. The third version
adds the “Unknown” to the second for anomaly detection. The
fourth version includes phase noise generator to further distort
the signal. Various magnitudes of Gaussian noise are applied to
the same signal, but it concludes that such additions yield little
effect on network accuracy. Given a wide range of noise, the
CNN’s decisions remained similar. We further investigate the
independency of the devices’ RF features and PUFs from their
labeling. In fifth and sixth versions, one device changes its label
to “USRP1”; CNN-Rx still can distinguish this device and the
other device despite their same label.

Each of the trainings converges quickly and consistently
reaches ~99% after five epochs. As shown later in Figure 8 of
Section VI Results, the training and validation curves closely
follow each other in both accuracy and loss, which indicates the
high quality of our data as sufficient and similar.

B. Model Training and Deployment

Each version of our datasets is randomly divided into 94-3-
3% parts for training, validation, and testing. Table 1 shows the
hyperparameter setting.

Table 1: Hyperparameters for Training CNN-Rx
Value

Hyperparameter

Initial Learning Rate 0.02

Learn Rate Drop Period 1

Learn Rate Drop Factor 10%

Learning Rate Schedule | piecewise

L2 Regularization 10

Momentum 0.9

Shuffle every epoch
Number of Epochs 5

Mini Batch Size 256

Validation Data {Signals, Labels}

Validation Frequency

# of Training LabelsJ
Mini Batch Size

Execution Environment

auto

Table 2 summarizes our training scenarios for six versions
of our datasets. Each training took more than 40 minutes to
converge. Each dataset contains 120,000 or 160,000 frames as
each device provides 40,000.
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Table 2: Training Scenarios

DV # Dataset Version Trained Network

1 3 USRPs & 40,000 frames each trainedNetwork.mat

5 3 USRPs & 40,000 frames each, trainedNetwork 1 mat
doppler effect

3 4 USRPs & 40,000 frames each, trainedNetwork2.mat
doppler effect
4 USRPs & 40,000 frames each,

4 doppler effect, trainedNetwork3.mat

50mag Gaussian noise

4 USRPs & 40,000 frames each,
doppler effect,

5 ; . trainedNetwork4.mat
50mag Gaussian noise,
change 1 USRP
3 USRPs & 40,000 frames each,

6 doppler effect, trainedNetwork5.mat

50mag Gaussian noise,

change 1 USRP

VI. RESULTS AND DISCUSSION

Table 3 shows the training results from all six datasets,
agreeing with our hypotheses of Sub-Section V-A summarized
in Table 2. Dataset 4 yields the most interesting Network 3.

Table 3: Results from All Dataset Versions

Dataset Version # Trained Network Accuracy
1 trainedNetwork.mat 0.9999
2 trainedNetwork 1.mat 0.9995
3 trainedNetwork2.mat 0.9142
4 trainedNetwork3.mat 0.9009
5 trainedNetwork4.mat 0.9192
6 trainedNetwork5.mat 0.9324

Figure 8 is a training screenshot with Dataset 4 for Network
3: validation closely follows training in both accuracy and loss.

aa.ac.nen

Results

) Validation accuracy. 99.86%
to } / —_ _© Kl Training finished: Reached final fteration
/
// Training Time
80 / Start time: 27-Jul-2021 11:15:05
& / Elapsedtime: 41 min 3 sec
60 Training Cycle
Epoch: 404
40 Iteration; 1760 of 1760
lterations per epoch: 440
Maxirmum iterations: 1760
20
Validation
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Frequency: 440 fterations
0 n .
o 500 1000 1500 Patience: Inf
Rteration P O S T
Accuracy
1.5 Training (smoothed)
Training
AR — — ® — — Vaidation
A
\\ Loss
25 \ =————— Training (smoothed)
b}
Training
och Y Epoch 2 Epoch 3 Epoch 4
0 e e e = — @Fin — — @ — — Valdation

0 500 1000 1500
Figure 8: Training Curve for Network 3
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Figure 9 shows the confusion matrix of trainedNetwork3’s
results in details. The matrix indicates that the CNN’s
predictions often align with the labeled ground truth when
validating on 120 of each class. Though fairly accurate, the
network sometimes miscategorized USRP2 or Unknown. This
may be due to USRP2 and Unknown having similar PUFs.
USRP3’s high accuracy may indicate that its PUF is most
dissimilar from the other devices.

Transmitter Identification Confusion Matrix

USRP1 9

USRP2 1 2 2.5%

True Class

USRP3 0

Unknown 1 2 2.5%

USRP1 USRP2 USRP3 Unknown
Predicted Class
Figure 9: Confusion Matrix for Network 3

To test our CNN models trained with six versions of datasets.
We add another USRP N210 and label it “Unknown2” as a new
attacker. Each CNN network is tested against several short
sample signals. The test cases evaluate if the network can
identify the three specified transmitters as well as two attackers
from a signal of less than 5 seconds. “Unknown1” is an attacker
each CNN is trained on, but “Unknown2” is an attacker a CNN
has never seen. Each sample in the signal is categorized so
confidence is determined as the percent of the CNN’s final
prediction to all samples in the signal. Table 4 summarizes
trainedNetwork3’s predictions and confidence to the signal test
cases. Most of the specified devices are correctly identified. The
unknown devices are also confidently categorized. Various
signal lengths are evaluated and have little effect on network
performance.

Table 4: Signal Test Cases & Results for Network 3
identified USRP1 as USRPI, 1

identified USRP2 as USRPI, 1

identified USRP3 as USRP3, 0.6254
identified USRP3 as USRP3, 0.9867
identified Unknownl1 as Unknown, 0.9029
identified Unknown?2 as Unknown, 1

<5 seconds output9

<5 seconds output10

<5 seconds outputl 1

<5 seconds outputl3

<5 seconds output?

>5 seconds outputl2

VII. CONCLUSION AND FUTURE WORK

This work, as a sequel of Morehouse-Zhou PUF-based CNN
model that identifies RF devices [3], updates their CNN model
for detection of RF anomalies in a cluttered RF environment.
We form an aircraft tracking system with USRPs that generate
ADS-B signals carrying the information about aircrafts’
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locations and velocities. Data collected provide a new dataset to
train a customized CNN for classifying both RF signals from
each Tx and its unique USRP PUF. The experimental results
demonstrate the effectiveness of Morehouse-Zhou PUF-based
CNN model as an authentication system with the presence of
attackers in a cluttered RF environment. The system expects
work well for securing IoT applications besides the airport
example environment.

The merits of such a detection system include no extra
hardware for the additional physical-layer security because each
Tx inherits PUF as device variation resulting from process
variability (on-chip) and component tolerance (on-board). The
only cost to the ability of detecting RF anomalies among many
distributed Txs is software deployment at a single central Rx, a
setting typical to IoT applications. Our proof-of-concept
experiments also confirm the alignment of the locality merits
possessed by CNN model with the characteristics of the dataset
collected, a finding explorable to other wireless communication
security services. Our work also demonstrates the assurance of
trustworthy products by shifting from model-centric towards
data-centric machine learning.

In future development, we will achieve several goals. Firstly,
we will develop and test our detection system in real time using
new form of machine learning hardware like field-
programmable gate arrays (FPGA). Next, we will optimize our
PUF-based CNN model, specifically trainedNetwork3, to
reduce error rate. Thirdly, we will explore the deployment stage
of machine learning lifecycle by designing experiments to test
our CNN model in real physical setting of drones. We will also
extend our model’s resilience for anomalies detection against
modeling attacks with machine learning by exploring GAN.
Last but not the least, our work will contribute to the field of
machine learning in general for deep learning interpretability
through data-centric approach.
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