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Abstract—With the emergence of software defined radio (SDR) 

where a computer program defines transceivers’ physical layer 
functions, waveforms can change dynamically. SDR benefits new 
protocol deployment, enabling smart wireless communication 
applications. However, SDR makes it easier to mimic authorized 
transmission, leaving wireless networks vulnerable to spoofing 
attacks. This work explores ways to detect such radio frequency 
(RF) anomalies. Specifically, a machine-learning structure called 
convolutional neural network (CNN) possesses merits of local 
perception and shift invariance, matching the characteristics of 
our sampled SDR data. Therefore, we design a CNN for detection 
of RF anomalies. Furthermore, a physical unclonable function 
(PUF) provides physical-layer security by identifying a device 
analogous to human fingerprint. Our CNN extracts waveform 
features as well as PUFs of transmission devices, from which we 
train and validate a classification model. The trained model can 
detect and identify spoofed signals. As proof-of-concept 
experiments, we generate RF signals with Ettus Universal 
Software Radio Peripherals (USRPs) and GNU Radio software. 
We then use the dataset to train our CNN classification model that 
analyzes features of the RF signals and the USRPs’ PUFs. To 
expand the robustness of our CNN model in cluttered RF 
environments typical in the Internet of Things (IoT), we generate 
satellite signals of Automatic Dependent Surveillance – Broadcast 
(ADS-B) for aircraft tracking. The testing results confirm the 
promise of machine-learning PUF-based security enforcement in 
cluttered RF environments. 

Keywords—Cyber security, wireless communication security, 
physical-layer security, physical unclonable function (PUF), 
machine learning to spoofing detection, detecting radio frequency 
(RF) anomalies, securing software defined radio (SDR), protecting 
integrity of the Internet of Things (IoT). 

I. INTRODUCTION 
Many wireless communication technologies operate in the 

same band of radio frequency (RF) spectrum: e.g., Wi-Fi, 
Bluetooth, and Zigbee occupy the same 100 MHz band from 2.4 
GHz to 2.5 GHz. Radio interference occurs frequently. Ever 
growing devices such as commercial drones and personal 
wearables connect to the Internet of Things (IoT), cluttering RF 
environments. Software defined radio (SDR) solves interference 
issues with complex spectrum sharing. As illustrated in Figure 
1, an aircraft uses a surveillance radar called Mode-S to share its 
information derived from Global Positioning System (GPS) 
with other aircrafts and a ground station. 

GPS Satelite 

 
 

 
Ground Station  

Figure 1: An Example of a Cluttered RF Environment in Mode-S 
 

However, SDR plays a double-edged sword. Its ability to 
switch channel and modify behavior makes the IoT vulnerable 
to spoofing attacks. Moreover, physical-layer security becomes 
paramount to safeguard wireless communications in an era when 
IoT surround our world. Analog to human interactions, a listener 
identifies a speaker by physical characteristics, such as unique 
voice features, rather than contents spoken. The latter can be 
fabricated at higher/software layers despite using cryptographic 
memory authentication. 

Functioning as a human fingerprint, RF fingerprint is a radio 
transmission characteristic of a device, which depends on the 
transmitter chain due to its unique manufacturing process 
imperfections. It differs from a wireless channel fingerprint, a 
random mapping based on temporal factors such as location and 
propagation characteristics. RF fingerprint has been utilized for 
keyless authentication, a receiver (Rx) identifying a transmitter 
(Tx) without the need for the two devices to share a secret key. 
This unique and static input-output characteristic is hardly 
replicable, even by the same manufacturer. RF fingerprint 
authentication algorithms have two categories: transient and 
modulation. Transient implementations classify transmitted 
signals by amplitude/phase characterization of the signal 
envelope. Modulation implementations classify by frequency 
offset, sync correlation, etc. However, the simulatability 
condition limits the performance of RF fingerprint 
authentication, i.e. authentication is possible if and only if the 
adversary cannot simulate the legitimate channel. While 
evaluating such basic limits of RF fingerprint authentication 
using Information Theory, Gungor and Koksal [1] devised a 
graphical approach to check the simulatability region and 
recommended several methods to enhance the security strength. 
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Any rate less than Shannon capacity can achieve reliable 
communication. Erasure and error probabilities of 
impersonation and substitution attacks correlate to RF channel 
statistics. Additional analysis at Rx can aid authentication. 

Like dynamic biometric augmenting fingerprint in human 
identification, Physical Unclonable Function (PUF) is a black-
box challenge-response system, r = f(c). It maps input domain 
to output range called challenge-response pairs (CRPs), but the 
internal parameters of f(.) are hidden from users. Such 
parameters represent physical characteristics of the integrated 
circuit (IC) from manufacturing process imperfections, such as 
the variability of a circuit’s internal gate delay. PUF 
applicability in security relies on the difficulty of measuring and 
estimating these parameters as well as the difficulty of 
manufacturing chips with the same set of parameters. The 
domain of f(.) or the number of unique challenges c that a PUF 
can process sets apart two types of PUFs, each with different 
security applications. Weak PUFs support a small number of 
challenges (in some cases only a single challenge) and can be 
applied for Secure Key Generation, which is out of the scope of 
this paper. Strong PUFs support a large number of challenges 
(ideally, exponential in the number of challenge bits) so that 
complete determination/measurement of all CRPs within a 
limited timeframe becomes infeasible. Therefore, strong PUFs 
can provide low-cost authentication [2]. 

Figure 2 depicts a two-phase protocol of an authenticator 
(Rx) identifying devices with strong PUF (Txs). First for 
bootstrap, Rx directly contacts each Tx to build a table of CRPs. 
When ready for authentication, Rx issues a c for rs, checks 
match to identify Txs, and removes the c from the CRP table to 
prevent replay attacks. Comparing to traditional cryptographic 
authentications, PUF authentication does not require Txs with 
secure nonvolatile memory, anti-tamper mechanism, or 
additional circuitry for crypto acceleration. However, basic PUF 
authentications still need secure storage for CRPs on Rx, posting 
the same vulnerability as traditional cryptographic memory 
authentications. Additionally, the restriction of using each CRP 
once demands a large memory to store the CRP table. Likewise, 
PUF authentications face side-channel attacks. Besides the two 
factors of computational intractability aforementioned, the 
security of a strong PUF requires an additional difficulty of 
predicting PUF behavior based on past CRPs [2]. 

To eliminate PUF’s scalability problem with CRP table, Rx 
adopts a compact model from machine learning to emulate PUF 
challenge-response behavior rather than stores a CRP table [2]. 
Tx data that we sampled exhibit localized characteristics and 
shift invariant, in accordance with the merits of a specific 
machine learning model called convolutional neural networks 
(CNN). Although an adversary can spoof an authentication 
sequence from observations, Rx chooses a one-time random 
challenge and computes the response matching Tx’s. Morehouse 
and Zhou [3] built and trained a PUF-based CNN model for Rx 
that can identify RF Txs with accuracy above 90%. This work 
demonstrates the ability of Morehouse-Zhou model to detect RF 
anomalies in a cluttered RF environment. We use universal 
software radio peripherals (USRPs) along with GNU Radio 
software to form a RF environment. An attacker imitates one of 
USRPs. An Rx using our CNN classification model can detect 
the attacker with accuracy at least 97%. 

 

c 

r1                 r2                        rn 

        …     
Figure 2: Strong PUF for basic authentication 

 

Our major contributions include: 

1) A single central Rx effectively detects RF anomalies 
among multiple distributed Txs in a cluttered RF 
environment. The setting serves well to IoT applications. 

2) There is no extra hardware for PUF implementation at Tx 
by exploiting a device’s inherent variations resulting from 
process variability (on-chip) and component tolerance (on-
board) for each Tx. The model at Rx compensates Rx non-
ideality and accounts for variability of data channel. 

3) Our proof-of-concept experiments confirm the alignment of 
CNN’s locality with the characteristics of our dataset, 
suitable to wireless communication security. The work 
justifies the call for data-centric machine learning. 

The rest of the paper is organized as follow: Section II 
describes related work. Section III introduces the adopted 
system model. Section IV designs a CNN architecture. Section 
V describes the proof-of-concept experiments while VI 
discusses the results. Section VII concludes the paper. 

II. RELATED WORK 
Traditional approaches to RF fingerprinting focused on 

algorithms, relying on domain experts to extract features of RF 
transmitter imperfections. Expert-driven RF fingerprinting was 
neither reliable (affected by environment distortions) nor 
scalable (unable to consider all possible scenarios). Data-driven 
approaches, specifically deep learning, can learn features from 
RF signals, achieving better performance and higher scalability. 
Youssef et al [4] explored the efficacy of machine learning to 
RF signal processing, particularly for PF fingerprinting. Four 
ML algorithms were evaluated: support vector machines 
(SVM), deep neural nets (DNN), convolutional neural nets 
(CNN), and DNN with multi-stage training (MST). Their first 
machine learning algorithm, SVM with 2 different 
configurations, is non-deep-learning while the rest three are 
deep-learning, resulting five models. We focus on their deep 
learning models in our review. Starting from a conventional 
DNN of two fully-connected hidden layers as the base model 
trained with the first-order stochastic gradient, Youssef et al 
extended it, respectively, in model structuring to CNN of two 
convolutional layers and in model training to MST with a 
second-order update called Levenberg-Marquardt (LM) 
method. Their goal of DNN and CNN tests the ability to 
distinguish among known transmitters while the goal of MST 

Txn: 
rn = fn(c) 

Tx2: 
r2 = f2(c) 

Tx1: 
r1 = f1(c) 

Rx: CRP table 
 r1 r2 … rn 

c1     
c2     
…     
cexp     
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tests the ability to extend the model to capture novel devices via 
incremental learning, a special kind of transfer learning. 
Transfer learning takes a model trained to perform task A as a 
starting point and retrains it for a new model to perform another 
task B. Incremental learning enables the new model to perform 
both tasks A and B, adapting new data without forgetting its 
existing knowledge. Youssef et al ranked various deep learning 
approaches to study RF domain in performance (accuracy) and 
scalability (CPU time) using a methodical and repeatable real-
world experimentation and commercial-off-the-shelf (COTS) 
WiFi transceiver platform. Future work includes extending to 
more challenging conditions, testing robustness, and addressing 
complex valued artificial neural networks. 

Chatterjee et al [5] combined PUF concept with RF 
fingerprinting. A RF-PUF framework, for a Machine Learning 
equipped Receiver (ML-Rx), was proposed to authenticate 
wireless transmitters (Tx) in real time by exploiting manufacture 
process imperfections in Tx. It is the first work in an asymmetric 
IoT network of multiple distributed Txs and a single central Rx 
for low-cost, preamble-less, intrinsic PUF-based authentication 
of IoT nodes. The feasibility study of RF-PUF showed that the 
inherent RF properties arising from the manufacturing process 
in a wireless node can be exploited as a strong PUF for device 
authentication in asymmetric IoT networks without any 
additional hardware at the Tx. The Rx, using in-situ light-weight 
supervised machine learning, can detect up to 10,000 Txs with 
about 99% accuracy. They also validated RF-PUF by physical 
implementation with two software defined radios (SDR) to 
emulate multiple unique Txs and an on-board microprocessor in 
Rx to deploy artificial neural networks. Future work includes 
improving Rx signature compensation, circuit techniques to 
implement erasability and certifiability, formal or experimental 
validation of protection against attacks, and stability analysis. 

Physical-layer characteristics used in spoofing detection 
schemes for wireless communications belong to two categories: 
RF/hardware features and channel/location variances. 
RF/hardware category, based on distinctive patterns in 
modulation domain of RF signals that different transceivers emit 
like I/Q origin offset, performs well but needs a high-end signal 
analyzer. Channel/location category, taking channel state 
information (CSI) and location-specific features such as 
received signal strength (RSS), costs less but cannot detect 
attackers close to the legitimate transmitter. Wang et al 
discovered that Signal-to-Noise Ratio (SNR) traces obtained in 
sector level sweep (SLS) process are different even for the same 
type of IEEE 802.11ad devices [6]. Such work is the first to 
explore SLS SNR traces in 60GHz mmWave off-the-shelf 
devices to detect spoofing attack for IEEE 802.11ad networks. 
Machine-learning classification has been applied to detect 
spoofing attacks with high efficacy at low cost. SLS SNR traces 
are influenced by both Tx location and hardware impairment 
while readily obtainable without extra circuits. The machine 
learning framework stacks a backpropagation network (BN) 
with a forward propagation network (FN) as generative 
adversarial networks (GANs) for small sample learning and fast 
model construction, achieved 98% detection accuracy. 

Morehouse and Zhou [3] demonstrated the feasibility of 
using convolutional neural networks (CNN) to identify RF 
devices by classifying raw baseband signals without the need of 

data preprocessing. The CNN architecture in [3] included 
convolution for feature extraction, batch normalization to 
increase training speed and accuracy, ReLU for activation, 
pooling for data reduction, fully connected for dimension 
reduction, and softmax for classification. The prototype 
generated a dataset by using three transmitters (one USRP N210 
and two PLUTO SDRs), each 80K frames received by a USRP 
N210 were used to train its CNN in MATLAB for 1.5 hours. 
The experiment yielded 92.5% testing accuracy at identifying 
different types of SDR devices (USRP and PLUTO) and 
individual devices of the same type (two PLUTOs), all radios 
being identified above 85% accuracy with the range in their 
accuracy differences about 8%. Future work includes real-time 
identification of new devices by incremental learning, testing the 
CNN’s prediction confidence, and vulnerability analysis of the 
CNN to spoofing and jamming. 

CNN is the most widely used deep learning technique for 
grid-like data such as image segmentation and computer vision. 
CNN’s advantages of local/neighboring data correlation and 
global/hierarchical feature combination enables CNN to learn 
features automatically from raw data. CNN’s another advantage 
of weight sharing makes it efficient in terms of memory and 
computation complexity. As an efficient and automatic feature 
extractor, CNN is also widely used for time-series data, 
outperforming traditional machine learning techniques on 
speech recognition tasks and natural language processing. The 
basic CNN structure has three stages of components. The first is 
multiple layers of convolutional kernels where each neuron 
computes a weighted sum of input tensors by sliding kernel, 
pooling to down sample for reduction in feature-map size by 
extracting a combination of invariant features, and fully 
connected at the end of the network to globally analyze the local 
features from the preceding layers and non-linearly combine 
selected features for classification. The second component is 
mapping functions, often called activation function that serves 
as a decision function with non-linearity added to learn intricate 
patterns. The last component is regulatory units: batch 
normalization unifying the distribution of feature-map values by 
setting them to zero mean and unit variance; dropout eliminating 
the cause of overfitting by randomly skipping some connections 
within a network. Building and training a CNN is more like an 
art than a science currently. It involves many aspects, to name a 
few: modification of processing units, optimization of 
parameters and hyper-parameters, design of pattern blocks, 
selection of layers and their connectivity, and choice of 
architectures. The last aspect of CNN architectures can have 
seven categories: spatial exploitation, depth based, multi-path, 
width-based, feature-map (channel on features), channel 
boosting (channel on input), and attention [7]. Therefore, we 
adopt a CNN to learn features of RF signals and devices’ PUFs. 
By trial and error, we modify and retrain Morehouse-Zhou PUF-
based CNN classification model to search for a good model that 
detects RF anomalies in a cluttered RF environment. 

While powerful for modeled PUF authentication, machine 
learning is also a double-edged sword. Sharma et al simulated 
the catastrophes caused by attacks on a machine learning model 
in the Internet-of-Vehicles with adversarial examples [8]. 
Recent vulnerability studies of PUFs to modeling attacks are 
alarming. Particularly according to Khalafalla et al [9], 
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modeling attacks with deep learning easily broke the security of 
strong PUFs immune to traditional machine learning models 
such as support vector machines and single-layer artificial 
neural networks, with accuracy about 99% trained in minutes. 
This research shaken the ground of security applications rest on 
strong PUF’s unpredictability and unclonability. Therefore, new 
PUF architectures were suggested to countermeasure deep 
learning attacks. 

III. ADOPTED SYSTEM MODEL 
We adopt a CRP model trained from machine learning, 

instead of a CRP table in Rx, for a system model to detect 
spoofing attacks. As shown in Figure 3, our system contains a 
CRP model in Rx that identifies Txs with strong PUFs. An 
adversary (A) launches attacks, for example, by spoofing Tx1 
signals after observing its behavior to fool Rx. As part of 
handshaking before a communication session, Rx issues a 
challenge c, and a Txi that wants to join the session presents its 
credential for authentication by sending its response ri = fi(c). 
As per the prior agreement Fi(.), Rx accepts the legitimate 
response ri from Txi matching the specific CRP Fi(c) while 
rejects A’s spoofed response r1� . 

 
c 

r1�                    r1                 r2                      rn 

       …   
Figure 3: System Model to detect spoofing attacks 

 
The system involves a two-phase protocol as a model-based 

authenticator. Before the authentication phase described above, 
Rx first goes through its bootstrapping phase by generating a 
database of CRPs with Txs in a secure environment. The CRP 
dataset is used to train and validate a machine learning model. 
After testing the trained model to assess its efficacy, Rx discards 
the CRP dataset and deploys the CRP model ready for the 
authentication phase. 

A, on the other hand, also goes through its bootstrapping 
phase by stealthily collecting the RF signals and CRPs of the 
targeted device, say Tx1. Likewise, A deploys its model ready to 
launch spoofing attacks r1�  = 𝐹𝐹1� (c). An arms-race runs between Rx 
and A; A fools Rx for acceptance as Tx1 while Rx detects the 
presence of A. Both A and Rx improve its own functionality, 
similar to a generative adversarial network (GAN) where A as 
generator and Rx as discriminator are trained independently. 

IV. PROPOSED CNN ARCHITECTURE 
We propose Morehouse-Zhou PUF-based CNN model [3] 

for the CRP model at Rx. Figure 4 shows the architecture of our 
CNN-Rx. A convolution layer (CL) for automatic feature 
extraction is followed with a regulatory unit of batch 

normalization, a mapping function of ReLU activation, and a 
pooling. This process repeats six times, each increasing the filter 
size to explore correlation among neighboring inputs at coarser 
granularity. The process ends with a fully connected layer (FC) 
for non-linear combination before the final softmax activation to 
classify Txi or Abnormal. The depth of CNN-Rx architecture is 
1 CL × 6 + 1 FC = 7. 

       
 
 

                        
×6 

 
 
 
 
 
 

Figure 4: CNN-Rx Architecture 
 

We retrain Morehouse-Zhou CNN model on our new PUFs 
dataset including RF anomalies for CNN-Rx to improve its 
detection accuracy. The initial imbalance between normal and 
abnormal data may affect the performance of CNN-Rx with 
bias. As more anomaly data becomes available, CNN-Rx will 
improve its detection rate. 

V. PROOF-OF-CONCEPT EXPERIMENTS 
Figure 5 illustrates the experiment setup. Five USRPs on the 

UMassD SDR Server are used, as labeled in the figure. CNN-
Rx uses a USRP N210 for collecting CRPs with three licensed 
Txs at the bootstrapping phase and for hosting the trained CNN 
model for the authentication phase. MATLAB deep learning 
toolbox runs on a Linux server to train the CNN model with the 
CRP dataset collected at the bootstrapping phase. The three 
licensed Txs are USRP N210s. A also uses a USRP N210 to 
eavesdrop the RF signals of the targeted device, Tx1 in this 
study, and retransmits the signals to fool CNN-Rx. 

 
Figure 5: Experiment Setup 

Txn 
rn = fn(c) 

Tx2 
r2 = f2(c) 

Tx1 
r1 = f1(c) 

A 
 

r1�  = 𝐹𝐹1� (c) 

Rx: CPR model 
 

�

𝐹𝐹1
𝐹𝐹2
⋮
𝐹𝐹𝑛𝑛

� (𝑐𝑐) =? �

𝑟𝑟1
𝑟𝑟2
⋮
𝑟𝑟𝑛𝑛

�   ⇒   ↓r1�  

pool activate normalize convolve 

 softmax 

fully connect Abnormal 

Txi 

CNN-Rx 
    A 
    Tx1 
    Tx2 
    Tx3 

Train CNN-Rx in MATLAB 
CRPs ⇒ [Fi] classification 

 
Generate Python code: CNN-Rx 
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In designing experiments, we follow the machine learning 
workflow that starts with collecting data to train a model for a 
system and ends with deploying that model in the system. This 
process spirals to assure a trustworthy AI system. Our work 
observes the trend of data-centric AI that shifts the focus from 
tuning hyperparameters as model-centric approach to improving 
data quality [10]. Utilizing the team’s domain knowledge in 
signal processing and cyber security, we collect and prepare 
good data instead of big data. This new paradigm also helps us 
gain better insights of the data and the problems at hand. 

A. Data Collection and Preparation 

We use five USRP N210s to operate as one receiver and four 
transmitters. Each transmitter sends the same signal multiple 
times: a frame of 1,024 Automatic Dependent Surveillance–
Broadcast (ADS-B) sample signals for 40,000 times. Signals are 
not collected simultaneously in order to differentiate the PUFs 
of individual devices. Figure 6 shows a data sample. 

 
Figure 6: Data Sample 

 
We use GNU Radio Companion, a framework to design, 

simulate, and deploy SDR systems. Figure 7 shows the 
flowgraphs of our entire system model for the USRPs to send 
and receive signals. GNU Radio Companion offers a versatile 
coding GUI where blocks can be linked together to program an 
SDR. Each flowgraph can be converted to a Python code. The 
File Source inputs the premade ADS-B signals into GNU Radio. 
This signal is repeated until the user manually stops the program. 
The fading model implements a frequency shift and can simulate 
a variety of channel impediments. The phase noise generator 
adds Gaussian noise to the signal given a specified magnitude 
and alpha. The USRP sink transmits the signal to the USRP 
source which writes the output as a binary file. The sink and 
source blocks have parameters determining the SDR IP address, 
sampling rate, and channel center frequency among many 
others. A CNN trained in MATLAB then determines which 
signal came from which SDR to identify spoofs. 

 
Figure 7: GNU Radio Flowgraphs 

 
The four transmitters are labeled “USRP1”, “USRP2”, 

“USRP3”, and “Unknown”. After basic data collection, we 
prepare datasets progressively for increasing impediments to 
boost model resilience. Six versions of datasets, shown in Table 
2, are prepared. The first version takes three USRPs to 
categorize which radio a signal comes from. The second version 
adds fading model, simulating the doppler effect for the three 
transmitters moving relative to the receiver. The third version 
adds the “Unknown” to the second for anomaly detection. The 
fourth version includes phase noise generator to further distort 
the signal. Various magnitudes of Gaussian noise are applied to 
the same signal, but it concludes that such additions yield little 
effect on network accuracy. Given a wide range of noise, the 
CNN’s decisions remained similar. We further investigate the 
independency of the devices’ RF features and PUFs from their 
labeling. In fifth and sixth versions, one device changes its label 
to “USRP1”; CNN-Rx still can distinguish this device and the 
other device despite their same label. 

Each of the trainings converges quickly and consistently 
reaches ~99% after five epochs. As shown later in Figure 8 of 
Section VI Results, the training and validation curves closely 
follow each other in both accuracy and loss, which indicates the 
high quality of our data as sufficient and similar. 

B. Model Training and Deployment 
Each version of our datasets is randomly divided into 94-3-

3% parts for training, validation, and testing. Table 1 shows the 
hyperparameter setting. 

Table 1: Hyperparameters for Training CNN-Rx 

Hyperparameter Value 

Initial Learning Rate 0.02 

Learn Rate Drop Period 1 

Learn Rate Drop Factor 10% 

Learning Rate Schedule piecewise 

L2 Regularization 10-4 

Momentum 0.9 

Shuffle every epoch 

Number of Epochs 5 

Mini Batch Size 256 

Validation Data {Signals, Labels} 

Validation Frequency �
# of Training Labels

Mini Batch Size
� 

Execution Environment auto 
 

Table 2 summarizes our training scenarios for six versions 
of our datasets. Each training took more than 40 minutes to 
converge. Each dataset contains 120,000 or 160,000 frames as 
each device provides 40,000. 
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Table 2: Training Scenarios 

DV # Dataset Version Trained Network 

1 3 USRPs & 40,000 frames each trainedNetwork.mat 

2 3 USRPs & 40,000 frames each, 
doppler effect trainedNetwork1.mat 

3 4 USRPs & 40,000 frames each, 
doppler effect trainedNetwork2.mat 

4 
4 USRPs & 40,000 frames each,  
doppler effect,  
50mag Gaussian noise 

trainedNetwork3.mat 

5 

4 USRPs & 40,000 frames each,  
doppler effect,  
50mag Gaussian noise,  
change 1 USRP 

trainedNetwork4.mat 

6 

3 USRPs & 40,000 frames each,  
doppler effect,  
50mag Gaussian noise,  
change 1 USRP 

trainedNetwork5.mat 

 

VI. RESULTS AND DISCUSSION 
Table 3 shows the training results from all six datasets, 

agreeing with our hypotheses of Sub-Section V-A summarized 
in Table 2. Dataset 4 yields the most interesting Network 3. 

Table 3: Results from All Dataset Versions 

Dataset Version # Trained Network Accuracy 

1 trainedNetwork.mat 0.9999 

2 trainedNetwork1.mat 0.9995 

3 trainedNetwork2.mat 0.9142 

4 trainedNetwork3.mat 0.9009 

5 trainedNetwork4.mat 0.9192 

6 trainedNetwork5.mat 0.9324 
 

Figure 8 is a training screenshot with Dataset 4 for Network 
3: validation closely follows training in both accuracy and loss. 

 
Figure 8: Training Curve for Network 3 

 

Figure 9 shows the confusion matrix of trainedNetwork3’s 
results in details. The matrix indicates that the CNN’s 
predictions often align with the labeled ground truth when 
validating on 120 of each class. Though fairly accurate, the 
network sometimes miscategorized USRP2 or Unknown. This 
may be due to USRP2 and Unknown having similar PUFs. 
USRP3’s high accuracy may indicate that its PUF is most 
dissimilar from the other devices. 

 
Figure 9: Confusion Matrix for Network 3 

 

To test our CNN models trained with six versions of datasets. 
We add another USRP N210 and label it “Unknown2” as a new 
attacker. Each CNN network is tested against several short 
sample signals. The test cases evaluate if the network can 
identify the three specified transmitters as well as two attackers 
from a signal of less than 5 seconds. “Unknown1” is an attacker 
each CNN is trained on, but “Unknown2” is an attacker a CNN 
has never seen. Each sample in the signal is categorized so 
confidence is determined as the percent of the CNN’s final 
prediction to all samples in the signal. Table 4 summarizes 
trainedNetwork3’s predictions and confidence to the signal test 
cases. Most of the specified devices are correctly identified. The 
unknown devices are also confidently categorized. Various 
signal lengths are evaluated and have little effect on network 
performance. 

Table 4: Signal Test Cases & Results for Network 3 

<5 seconds output9 identified USRP1 as USRP1, 1 

<5 seconds output10 identified USRP2 as USRP1, 1 

<5 seconds output11 identified USRP3 as USRP3, 0.6254 

<5 seconds output13 identified USRP3 as USRP3, 0.9867 

<5 seconds output7 identified Unknown1 as Unknown, 0.9029 

>5 seconds output12 identified Unknown2 as Unknown, 1 
 

VII. CONCLUSION AND FUTURE WORK 
This work, as a sequel of Morehouse-Zhou PUF-based CNN 

model that identifies RF devices [3], updates their CNN model 
for detection of RF anomalies in a cluttered RF environment. 
We form an aircraft tracking system with USRPs that generate 
ADS-B signals carrying the information about aircrafts’ 
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locations and velocities. Data collected provide a new dataset to 
train a customized CNN for classifying both RF signals from 
each Tx and its unique USRP PUF. The experimental results 
demonstrate the effectiveness of Morehouse-Zhou PUF-based 
CNN model as an authentication system with the presence of 
attackers in a cluttered RF environment. The system expects 
work well for securing IoT applications besides the airport 
example environment. 

The merits of such a detection system include no extra 
hardware for the additional physical-layer security because each 
Tx inherits PUF as device variation resulting from process 
variability (on-chip) and component tolerance (on-board). The 
only cost to the ability of detecting RF anomalies among many 
distributed Txs is software deployment at a single central Rx, a 
setting typical to IoT applications. Our proof-of-concept 
experiments also confirm the alignment of the locality merits 
possessed by CNN model with the characteristics of the dataset 
collected, a finding explorable to other wireless communication 
security services. Our work also demonstrates the assurance of 
trustworthy products by shifting from model-centric towards 
data-centric machine learning. 

In future development, we will achieve several goals. Firstly, 
we will develop and test our detection system in real time using 
new form of machine learning hardware like field-
programmable gate arrays (FPGA). Next, we will optimize our 
PUF-based CNN model, specifically trainedNetwork3, to 
reduce error rate. Thirdly, we will explore the deployment stage 
of machine learning lifecycle by designing experiments to test 
our CNN model in real physical setting of drones. We will also 
extend our model’s resilience for anomalies detection against 
modeling attacks with machine learning by exploring GAN. 
Last but not the least, our work will contribute to the field of 
machine learning in general for deep learning interpretability 
through data-centric approach. 
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