2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/F0CS52979.2021.00013

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

A Polynomial Lower Bound on the Number of Rounds for
Parallel Submodular Function Minimization

Deeparnab Chakrabarty
Dartmouth College
Hanover, NH
deeparnab@dartmouth.edu

Abstract—The problem of minimizing a submodular
function (SFM) is a common generalization of several fun-
damental combinatorial optimization problems, including
minimum s-¢ cuts in graphs and matroid intersection. It is
well-known that a submodular function can be minimized
with only poly(N) function evaluation queries where N
denotes the universe size. However, all known polynomial
query algorithms for SFM are highly adaptive, requiring
at least V rounds of adaptivity. A natural question is if
SFM can be efficiently solved in a highly parallel manner,
namely, with poly (V) queries using only poly-logarithmic
rounds of adaptivity. An important step towards under-
standing the adaptivity needed to solve SFM efficiently was
taken in the very recent work of Balkanski and Singer who
showed that any SFM algorithm with poly(N) queries.
This left open the possibility of efficient SFM algorithms
with poly-logarithmic rounds of adaptivity. In this work,
we strongly rule out this possibility by showing that any,
possibly randomized, algorithm for submodular function
minimization making poly(N) queries requires (N Y 3)
rounds of adaptivity. In fact, we show a polynomial
lower bound on the number of rounds of adaptivity even
for algorithms that make up to 2V ° queries, for any
constant § > 0.

Keywords-Submodular Function Minimization; Parallel
Algorithms; Lower Bounds

I. INTRODUCTION

A function f : 2V — 7Z defined over subsets of a
ground set U of N elements is submodular if for any
two sets A C B and an element e ¢ B, the marginal of
eon A, that is, f(AUe) — f(A) is at least f(BUe) —
f(B). The submodular function minimization (SFM)
problem is to find a subset S minimizing f(S) given
only access to an evaluation oracle for the function that
returns the function value on any specified subset. This
is a fundamental discrete optimization problem which

This extended abstract is missing several proofs which can be found
in this version [1]. Since the submission of this paper to FOCS 2021,
we have extended our results to prove a polynomial lower bound on
rounds needed for parallel matroid intersection as well. Details of
this can be found in the full version of this paper available at [2].

Yu Chen
University of Pennsylvania
Philadelphia, PA
chenyu2 @cis.upenn.edu

Sanjeev Khanna
University of Pennsylvania
Philadelphia, PA
sanjeev@cis.upenn.edu

generalizes problems such as minimizing global and s-t
cuts in graphs and hypergraphs, matroid intersection,
and more recently has found many applications in areas
such as image segmentation [9], [10], [35] and speech
analysis [29], [30].

A remarkable fact is that SFM can be solved in poly-
nomial time with polynomially many calls to the eval-
uation oracle. This was first established by Grotschel,
Lovész, and Schrijver [25] using the ellipsoid method.
Since then, a lot of work [18], [27], [45], [43], [28],
[13], [36], [37], [14], [19], [4], [31] has been done trying
to understand the query complexity of SFM. The current
best known algorithms are an O(N3)-query polynomial-
time and an O(N? log N)-query exponential time algo-
rithm by Jiang [31] building on the works [37], [19],
an O(N 2log M)-query and time algorithm by Lee,
Sidford, and Wong [37] where |f(S)| < M for all
S C U, and an O(NM?) query and time algorithm
by Axelrod, Liu, and Sidford [4] improving upon [14].

All the above algorithms are sequential. That is, the
queries made by the algorithms depend on answers to
queries made earlier. More precisely, any SFM algo-
rithm accesses the evaluation oracle in rounds, where
the queries made in a certain round depend only on the
answers to queries made in previous rounds. There is
a trade-off between the number of queries (per round)
made by the algorithm, and the number of rounds
needed to find the answer : there is an obvious 1-
round algorithm which makes all 2"V queries. All known
algorithms which make poly(IN) queries proceed in
Q(N) rounds. Can the number of rounds be substan-
tially decreased (made poly-logarithmic in N)) while still
keeping the number of queries bounded by poly(N)? In
spirit, this is related to the P versus NC question which
at a high-level asks can problems with polynomial time
algorithms be solved by poly-sized circuits with poly-
logarithmic depth. From a practical standpoint, given
the applications of SFM to problems involving huge
data and the availability of computing infrastructure to

2575-8454/21/$31.00 ©2021 IEEE 37
DOI 10.1109/FOCS52979.2021.00013

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

perform parallel computation, the question of parallel
SFM algorithms is very relevant.

For SFM, a study of this question was initiated by
Balkanski and Singer in [8] who proved that any poly-
nomial query SFM algorithm must have Q(log)ﬁ) fgv ~)
rounds of adaptivity. This leaves open the possibility
of polynomial query poly-logarithmic round algorithms.
Indeed for the related problem of submodular function
maximization subject to cardinality constraint, in a dif-
ferent paper [7], Balkanski and Singer showed that the
correct answer is indeed ©(log N). They proved that

with polynomially many queries no constant factor ap-

log N
loglog N

an 1/3-approximation can be obtained in O(log N)-
rounds'. Can the situation be the same for SFM?

In this paper we answer this question in the negative.
We prove a polynomial lower bound on the number of
rounds of any polynomial query SFM algorithm.

proximation is possible with o () rounds, while

Theorem 1. For any constant 6 > 0 and any
1 < ¢ < N'7° any possibly randomized algo-
rithm for SFM on an N element universe making
< NF€ evaluation oracle queries per round and
succeeding with probability > 2/3 must have

<%) rounds-of-adaptivity. This is true
even when the range of the submodular function
is {—N,—N+1,...,N — 1, N}, and even if the
algorithm is allowed to make an additive error of
O(NY/3).

We note that a polynomial lower bound on the number
of rounds holds even if the algorithm is allowed to
make 2V’ queries per round for any 6 > 0, and
the lower bound on the number of rounds is ©(N'/3)
for polynomial query algorithms. Furthermore, since
the range of our functions is [-N,+N] and we rule
out algorithms making additive O(N'/3)-error, we also
obtain an Q(ﬁ)—lower bound on the number of rounds
for e-approximate minimization of submodular func-
tions with range [—1,+1]. In fact, one can modify our
construction (please see full version) slightly to give
an §(1/e) lower bound for e-additive approximation.
We remark that since the functions of Balkanski and
Singer in [8] when scaled to integer values have range
as large as N©() where r = Q(log N/loglog N), it
is not clear if their construction implies any non-trivial
lower bound for approximate SFM. The only previous
work ruling out e-approximate minimizers is another
work of Balkanski and Singer [6] who proved that non-

I'This constant has since been made close to optimal [5], [15], [16],
[21], [22], [38]; see Section I-A for more details.

38

adaptive algorithms, that is single round algorithms,
cannot achieve any non-trivial approximation with poly-
nomially many queries.

Our result shows that in the general query model,
SFM cannot be solved in polynomial time in poly-
logarithmic rounds, even with randomization. This is
in contrast to specific explicitly described succinct
submodular function minimization problems : global
minimum cuts in an undirected graph is in NC [32],
linear and graphic matroid intersection is in RN C [39],
finding minimum s-¢-cuts with poly-bounded capacities
is in RINC [33], etc. Very recently, inspired by some of
these special cases, Gurjar and Rathi [26] defined a class
of submodular functions called linearly representable
submodular functions and gave RINNC algorithms for
the same.

It is not very common to find examples of problems
that require polynomial rounds of adaptivity to achieve
a polynomial query complexity. In a thought provoking
paper [34], Karp, Upfal and Wigderson considered this
question. They proved that any efficient algorithm that
finds a maximum independent set in a matroid with
access to an independence oracle, that is, one which
takes a subset S and returns a Boolean answer of
whether S is independent or not, must proceed in
Q(N'/3) rounds. On the other hand, with access to a
rank oracle which takes S and returns r(S5), the size
of the largest independent set in S (since 7(S) is a
submodular function, this is more in lines with the
evaluation oracle), there is a simple algorithm? which
makes N queries in a single round and finds the optimal
answer. Our lower bound thus provides an example of
the polynomial round lower bound for a much more
general class of query functions.

Our lower bounding submodular functions fall in a
class introduced by Balkanski and Singer [8] which we
call partition submodular functions. Given a partition
P = (Py,...,P.) of the universe U, the value of a
partition submodular function f(S) depends only on the
cardinalities of the |S N P;|’s. In particular, f(S5) =
h(x) where x is an r-dimensional non-negative integer
valued vector with x; := |S N P;|, and h is a discrete
submodular function on a hypergrid. Note that when
r = 1, the function h is a univariate concave function,
while 7 = n captures general submodular functions.
Thus, partition submodular functions form a nice way
of capturing the complexity of a submodular function.

The functions in [8] are partition submodular and they
prove an £(r)-lower bound for their specific functions.

20rder elements as e1, ..., ey and query r({e1,...,e;}) for all

1, and return the points at which the rank changes.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

As we explain in Section II, their construction idea has
a bottleneck of » = O(log N), and thus cannot prove a
polynomial lower bound. Our lower bound functions are
also partition submodular, and we also prove an ()
lower bound though we get r to be polynomially large
in the size of the universe.

A. Related Work

The rounds-of-adaptivity versus query complexity
question has seen a lot of recent work on submodular
function maximization. As mentioned before, Balkanski
and Singer [7] introduced this problem in the con-
text of maximizing a non-negative monotone submod-
ular function f(S) subject to a cardinality constraint
|S| < k. This captures NP-hard problems, has a
sequential greedy (1— %)-approximation algorithm [41],
and obtaining anything better requires [40], [46] ex-
ponentially many queries. [7] showed that obtaining

1
even an O Tog) -approximation with polynomially
many queries requires 2 (101;1‘30 ng N) rounds, and gave an

O(log N)-round, polynomial query, %-approximation.
Soon afterwards, several different groups [5], [21],
[23], [16], [15], [22] gave (1 — I — ¢)-approximation
algorithms making polynomially many queries which
run in poly(log N, 1)-rounds, even when the constraint
on which S to pick is made more general. More recently,
Li, Liu and Vondrédk [38] showed that the dependence of
the number of rounds on ¢ (the distance from 1 — 1/¢)
must be a polynomial. Also related is the question of
maximizing a non-negative non-monotone submodular
function without any constraints. It is known that a
random set gives a %—approximation, and a sequential
“double-greedy” %-approximation was given by Buch-
binder, Feldman, Naor, and Schwartz [12], and this
approximation factor is tight [24]. Chen, Feldman, and
Karabasi [17] gave a nice parallel version obtaining an
(3 — €)-approximation in O(2)-rounds.

In the continuous optimization setting, the question of
understanding the “parallel complexity” of minimizing
a non-smooth convex function was first studied by
Nemirovski [42]. In particular, the paper studied the
problem of e-minimizing a bounded-norm convex (non-
smooth) function over the unit /.., ball in /V-dimensions,
and showed that any polynomial query (value oracle or
gradient oracle) algorithm must have Q(N'/31n(1/¢))
rounds of adaptivity. Nemirovski [42] conjectured that
the lower bound should be (NN In(1/e)), and this is
still an open question. When the dependence on ¢ is
allowed to be polynomial, then the sequential vanilla
gradient descent outputs an e-minimizer in O(1/g?)-
rounds (over Euclidean unit norm balls), and the ques-

39

tion becomes whether parallelism can help over gradient
descent in some regimes of €. Duchi, Bartlett, and Wain-
wright [20] showed an O(N'/*/e)-query algorithm
which is better than gradient-descent when V'N.
A matching lower bound in this regime E% = O(VN)
was shown recently by Bubeck et al. [11]. It is perhaps
worth noting that submodular function minimization can
also be thought of as minimizing the Lovéasz extension
which is a non-smooth convex function. Unfortunately,
the domain of interest (the unit cube) has ¢5-radius v/ N,
and the above algorithms do not imply “dimension-
free” e-additive approximations for submodular function
minimization. Currently the best known upper bound is
the sequential O(N/e?)-query algorithm by Axelrod,
Liu, and Sidford [4]. Our work shows that Q(1/e)-
rounds are needed, and it is an interesting open question
whether a poly (N, %)-lower bound can be shown on the
number of rounds, or whether one can achieve efficient
e-approximations in rounds independent of V.

The question of rounds-of-adaptivity versus query
complexity has been asked for many other computa-
tional models, and also is closely related to other fields
such as communication complexity and streaming. We
note a few results which are related to submodular
function minimization. Assadi, Chen, and Khanna [3]
considered the problem of finding the minimum s-¢-cut
in an undirected graph in the streaming setting. They
showed that any p-pass algorithm must take Q(n?/p°)-
space, where n is the number of vertices. Their result
also implied that any sub-polynomial round algorithm
for the s-t-cut submodular function must make Q(n?)
queries; note that with O(n?) queries, the whole graph
can be non-adaptively learned. Rubinstein, Schramm,
and Weinberg [44] considered the global minimum cut
function in an undirected graph, and showed that O(n)
queries suffice, and their algorithm can be made to run
in O(1)-rounds.

R

5 ~

II. TECHNICAL OVERVIEW

In this section, we give a technical overview of
our approach to proving a polynomial lower bound on
the rounds of adaptivity. We start by describing the
Balkanski-Singer [8] framework for proving rounds-of-
adaptivity lower bounds as it serves as a starting point
for our work. Our presentation will first briefly highlight
why the approach taken in [8] can not yield better than
a logarithmic lower bound on the rounds of adaptivity
and then describe the approach we take to sidestep the
logarithmic bottleneck.

The Lower Bound Framework.: Balkanski and
Singer [8] consider a class of submodular functions
which we call partition submodular functions. Given

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

a partition P = (Py,..., P,) of the universe U, a set
function is partition submodular if its value at a subset
S depends only on the cardinalities of the number of
elements it contains from each part. That is, fp(S) =
h(|S N Pyl,...,|S N P.|) for some function h whose
domain is r-dimensional non-negative integer vectors.
The lower bound framework dictates the following three
conditions on the functions h and the resulting partition
submodular function fp.

(P1) The function h is defined such that fp is submod-
ular.

(P2) The last part P, is the unique minimizer of fp. We
also assume fp(0) = h(0,0,...,0) = 0, and thus
fp(P,) is necessarily < 0.

(P3) For any 1 < ¢ < r, even if we know the
identity of the parts P,..., P;_1, a single round
of polynomially many queries tells us nothing
about the identity of the parts P, to P.. More
precisely, a random re-partitioning of the elements
in P;+1UP;1oU- - -UP, will, with high probability,
give the same values to the polynomially many
queries made in the current round.

(P3) is the key property for proving the lower bound.
Let P be the uniform distribution over partitions with
given sizes |Pj| to |P.| which induces a distribution
over submodular functions. By Yao’s lemma it suffices
to show that any (r — 2)-round deterministic algorithm
making polynomially many queries fails to find the
minimizer with any non-trivial probability. (P3) implies
that after (r — 2) rounds of queries and obtaining their
answers, the algorithm cannot distinguish between two
functions fp and fp; where the partitions P and P’
agree on the first (r — 2) parts, but (P._, P.) and
(P!_,, P!) are random re-partitioning of the elements
of P,._1UP,. Since (P2) implies the minimizer of fp is
P, and fp/ is P/, and these will be different with high
probability, any algorithm will make a mistake on one of
them. The non-triviality is therefore in the construction
of the “h” functions, and in particular for how large
an r can one manage while maintaining (P1), (P2), and
(P3).

The Balkanski-Singer Construction: For now, let
us fix a random partition P := (Py,...,P,.) of the
universe U. Given a subset S, let x := (x1, X2, ...,X,),
where x; := |SNP;| be its signature. Before we describe
Balkanski and Singer’s construction, let us understand
what one needs for establishing a condition like (P3).
Consider the case ¢ = 1, that is, the first round of
queries. (P3) requires that the answers should not leak
any information about Py, Ps, ..., P,.

Consider a query .S. Since the partition P is random,

40

we expect S’s signature x to be random as well. More
precisely, we expect |’]§’l}| to be “roughly same” for all
i € [r]. Call such vectors balanced; we are deliberately
not defining them precisely at this point. For (P3) to
hold, we must have that 9;h(x), the marginal increase
in the function upon adding an element from P, is the
same for all 2 < i < r for balanced vectors. Otherwise,
the algorithm can distinguish between different parts.
On the other hand, the marginals cannot be same for all
vectors X, as that would imply the sets P, to P, have
the same value, which would violate the constraint (P2)
since P, is the unique minimizer.

To orchestrate this, Balkanski and Singer use the
idea of masking. All marginals 0;h(x) are between
[—1,1]. In the first round, the masking is done via the
first coordinate E‘ of the signature. At a very high
level, when il is “large”, all the marginals 0;h(x),
for 2 < i < r, take the value —1, while 9;h(x) takes
the value 0. In plain English, if any set S contains a
large fraction of elements from Py, then all elements in
P> U---U P, have marginal —1; the preponderance of
these P; elements masks all the other parts outs, and
only P; distinguishes itself in this round.

X1

More generally one requires this kind of property to
hold recursively as the algorithm discovers P, P, ...
in successive rounds. For any ¢, if one takes a set S such
that % is “large” for some i, then for all elements
e in pafts P;, 7 > i, the marginals are —1. In this
way, they are able to maintain the property (P3). Of
course, one has to be careful about what occurs when
|SNP;|’s are small, and the whole construction is rather
technical, but this aspect described above is key to how
they maintain indistinguishability.

A Logarithmic Bottleneck: Unfortunately, this
powerful masking property is also a bottleneck. One
can argue that the above construction cannot have
r = w(logN). To appreciate this, imagine for the
moment that all marginals are {—1,+1} (they are
not for the Balkanski-Singer construction, but it helps
explain the point). Consider the first round of queries.
If ‘S‘;ﬁll is “large”, say > 0, thenalle € PoU---UP,
give a marginal of —1. How large can this 6 be? If
0> %, then a random set R where every element is
sampled with probability 1/2, will be in a situation
where the elements of P, are not giving a negative
marginal with respect to R. But |[RN P,| =~ |P.|/2,
and by submodularity, this would mean if we consider
P, alone, we do not get negative marginals till we see
half the elements. However, that means f(P,) cannot
be negative, violating (P2).

In sum, for any subset S with |[S N Pi| =~ |P|/2,

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

the marginal of every element in P, U --- U P, with
respect to S must be —1. In particular, this is true even
when S is just half the elements of P, alone. And this
is problematic, as this implies : f(SUP,U---UP,) =
f(S) =>_5|P|. But SUP,U---U P, is not the
minimizer. So f(S) itself must be quite large. But
f(S) < |S| = |P1]/2, since the marginals are at most
+1. In turn, this implies

|P1| = Q(|P2| + - + | Pr]).

The first part is thus required to be much bigger than
the sum of the rest. And recursively, the second part is
bigger than the sum of the rest. And so on. This implies®
r = O(log N) and the strong masking idea cannot give
a polynomial lower bound.

A. Ideas Behind Our Construction

Let us again focus on the first round of queries.
In the Balkanski-Singer construction, whenever x; is
“large” irrespective of how the other x;’s look like,
the marginals 0;h(x) —1 for ¢ > 2. This strong
masking property led to |P;| being much larger than
the sum of the remaining parts so as to compensate for
all the negative marginals coming from the elements in
the other parts.

Our approach is not to set 9;h(x) depending on just
X1, but rather by looking at the whole suffix x; : x,.
More precisely, if x; is “large” (say, even the whole
part Pp), but all the rest are empty, even in that case we
want all marginals 0;h(x) to be in fact +1. Only when
(almost) all coordinates x; are “large”, do we switch to
O;h(x) = —1 for all ¢ > 2. Therefore, in some sense, for
elements of any part to contribute negative to function
value, we must have already picked up a significant
number of elements from that part which contributed
positively which cancel out the negative marginals. This
allows our construction to have all parts of equal size
n = N/r, setting the stage for a polynomial lower
bound.

Although deciding a marginal depending on the suffix
may sound complicated, in the end our lower bound
functions are simple to describe. Indeed, all marginals
are in the set {—1,0,+1} and thus not only do we
prove a polynomial lower bound on exact SFM, we also
prove a poly(1/¢)-lower bound even for e-approximate
SEM. In the rest of this subsection, we give more details
on how the marginals depend on the suffixes. This

31t is not easy to even orchestrate a 2(log N) lower bound this
way. The masking functions that Balkanski-Singer constructed needed
to be quite delicate to preserve submodularity, and in the end, the
sets Pj is in fact r times bigger than the rest. This leads to an
Q(log N/ loglog N) lower bound.

41

discussion is still kept informal and is meant to help the
reader understand the rationale behind the construction.
The full formal details along with all the properties we
need are deferred to Section III, which the reader can
feel free to skip to.

For our lower bound, we construct two partition
submodular functions, fp(S) = h(x) and fj = h*(x),
where (a) the minimizer of fp is the empty set and the
minimizer of f5 is the set P, (satisfying (P2)), and both
these functions satisfy (P3) for 1 < i < r/2, and fur-
thermore, no polynomial query randomized algorithm
using only o(N'1/3/ log'/® N) rounds of adaptivity can
distinguish between these two functions unless it makes
a super-polynomial number of queries. It is easier to
understand the functions h and A* via their marginals.
Here are the properties we desire from these marginal
functions.

o (Submodularity.) Both function’s marginals should
be monotonically decreasing. Thus, once J;h(x)
or 9;h*(x) becomes —1, they should stay —1 for
all y “larger” than x.

e (Unique Minima.) The part P, should be the
unique minimizer for A*. This will restrict how
negative 0;h* can be for j # r. This is in tension
with the previous requirement.

« (Suffix Indistinguishability.) For any x which is ¢-
balanced, that is, x; ~ x;11 ~ -+ - &= X,,, we need
that 0;h*(x) and O;h(x) for such x’s should be
the same for all + + 1 < 5 < r. This is what we
call suffix indistinguishability. This would imply h
and h* would give the same values on all queried
points with high probability.

At any point x, let us first describe the r marginals
O;h(x) for 1 < 4 < r. As mentioned above, the
marginals will be in the set {—1,0,+1}. It is best to
think of this procedure constructively as an algorithm.
Initially, all the r marginals are set to +1. Next, we
select up to two coordinates @ and b in {1,2,...,7},
which depend on the query point x. Given these co-
ordinates, we decrement al/l marginals ¢ < ¢ < r and
all marginals b < ¢ < r by 1. For instance, if r = 5
and we choose the coordinates ¢ = 2 and b = 4 at
some x, then the marginals (91h(x),...,05h(x)) are
(1,0,0,—1,—1). The 4th and 5th coordinate decrement
twice and thus go from 41 to —1, while the 2nd and
3rd coordinate only decrement once and thus go from
+1 to 0. The first coordinate is never decremented in
this example. Note that the vector of marginals when
considered from 1 to r is always in decreasing order.

The crux of the construction is, therefore, in the
choice of the a and the b at a certain point x. These

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

will clearly depend on x, but how? Submodularity tells
us that if we move from x to y = x + e;, then the
a’s and the b’s should only move left, that is, become
smaller; that would ensure decreasing marginals. This in
turn implies that a and b should be defined by the suffix
sums at x. More precisely, if we decide to choose a and
b as the coordinates which maximize some function ¢(-)
which depends on the suffix sums) .., x;, ¢ ranging
from 1 to r, then increasing a coordinate can only move
a’s and b’s to the left. This is precisely what we do, and
now the crux shifts to the choice of this function ¢(-).

Consider an i-balanced vector x. We need that when
all the coordinates are “large”, then the marginals of
h* should be —1; otherwise, P, would not be the
minimizer. Since h and h* should be indistinguishable,
the same should be true for h. On the other hand,
when all the coordinates are “small”, most marginals
of both function should be +1, otherwise U would be
the minimizer. In sum, when the coordinates of x are
“large”, we should have the a and b to the left, close
to 1; this would make most marginals —1. And when
they are small, a and b should be towards the right;
this would make most marginals +1. This motivates the
following rule that we formalize in the next section : we
define r different functions (called ¢;(x) for 1 < ¢ <r)
where the ¢th function ¢;(x) is the sum of (x; —7) over
all coordinates ¢t < ¢ < r where 7 is a “threshold” which
is “close” to n/2. Here n is the size of each part |F;|.
After taking the sum over these coordinates, we further
subtract an“offset” ~. In sum, the functions look like
0(x) = (0, (xi = 7)) = 7.

We choose a and b to be the coordinates such that
¢;(x) is largest. Thus, if the maximizers are to the left
(that is closer to 1), then it must be because many
coordinates are over the threshold 7. In that case,
most marginals are —1. On the other hand, if most
coordinates are under the threshold 7, then a and b’s are
to the right (closer to), and we have most marginals
are +1. This threshold, therefore, ensures that for a
coordinate to give a —1 marginal, it must also, in some
sense, already have contributed lots of +1 as well.
This is precisely how we overcome the geometrically
decaying partition size problem in [8].

What should this threshold 7 be? Ideally, we would
like this threshold to be n/2; that way, for any i it
won’t contribute to the summand of /4, till x; > n/2. In
essence, as x; ranges from 0 to n, the +1 contributions
to the marginal will cancel out the —1 contributions, and
P; won’t have a negative marginal. In reality, we need to
provide a “gap” and set 7 = n/2—g where g = ©(,/n).
This is done because we want Suffix Indistinguishabil-

42

ity to hold not only for perfectly i-balanced vectors but
also for vectors whose values differ by “a few standard
deviations”. More precisely, a random subset should
satisfy Suffix Indistinguishability with high probability,
and choosing this threshold allows us to achieve this
property.

Indeed the fact that this gap g O(y/n) also is
the reason why we cannot get better than N'/3 lower
bound. Indeed, if we take the set S =U = P,U---UP,,
then the first part P; leads to a value of ~ n /2 since it
never gives negative marginals and gives marginal +1
for the first n/2 — g &~ n/2 elements. The remaining
parts, in essence, contribute (n/2—g)—(n/2+g) = —2g
to the function value. More precisely, one can prove that
f(U) =n —O(gr). And thus, if we want f(U) > 0,
we must have n > O(gr). Since g > /n, we get
r < y/n= N3 because N = nr.

We end this informal discussion by describing the
function 2*. It is simply the function h if x, < § —g/4,
butifx, > 5 —g /4, the rth coordinate has marginal —1
irrespective of the other x;’s. This makes P, become
the minimizer of f}; with value —O(g). Since we only
modify the behavior of the last index in going from h
to h*, in the beginning few rounds i and h* behave
similarly. Indeed, if x, > & — g/4, then any i-balanced
vector for ¢ < r/2, has half the coordinates > 5—0(g).
The offset ~ is chosen such that in this case h also has
marginal —1 for the rth coordinate. Thus, h and h* are
indistinguishable in the first /2 rounds. This, in turn,
shows that if an algorithm runs for < /2 rounds, then
it cannot distinguish between these two functions, and
therefore, cannot distinguish between the case when the
minimum value is 0 and the minimum value is —O(g)
—Q(N1/3),

III. LOWER BOUND CONSTRUCTION

We begin by formally defining partition submodular
functions and some properties of such functions. We
then describe in detail the lower bound functions that
we use in the proof of Theorem 1.

A. Partition Submodular Functions

Let U be a universe of elements and P
(P1,...,P.) be a partition of the elements of U. Let
h : ZL, — R be a function whose domain is the
r-dimensional non-negative integer hypergrid. Given

(P, h), one can define a set-function fp : 2V — R
as follows:
fP(SY=h(SNP,...,|SN P (1)

In plain English, the value of fp(S) is a function only
of the number of elements of each part that is present

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

in S. We say that fp is induced by the partition P and
h. A partition submodular function is a submodular
function which is induced by some partition P and some
hypergrid function h.

A function defined by (P, h) is submodular if and
only if / satisfies the same decreasing marginal property
as f. To make this precise, let us settle on some notation.
Throughout the paper, for any integer k, we use [k] to
denote the set {0, 1,...,k}. First, note that the domain
of h is the r-dimensional hypergrid [|Py|] X [|P2|] x
-+« X [|P.|]. For brevity’s sake, we call this dom(h).
We use boldfaced letters like x,y to denote points in
dom(h). When we write x + y we imply coordinate-
wise sum. Given i € {1,...,r}, we use e; to denote the
r-dimensional vector having 1 at the ith coordinate and
0 everywhere else. The function h induces r different
marginal functions defined as

Oih(x) ;= h(x+e;) — h(x) (2)

The domain of 9;h is [|Py|] X [|P2]] X - -+ X [|P;] — 1] x
x| Bl

Definition 1. We call a function h : Z" — R defined
over a integer hypergrid dom(h) (hypergrid) submod-
ular if and only if for every 1 < i < r, for every
x € dom(h) with x; < |P;|, and every 1 < j <'r,
we have

For 1 <i<r,

;h(x) > 0;h(x + €;) 3)

Lemma 1. A set function fp defined by a partition
P and hypergrid function h as in (1) is (partition)
submodular if and only if h is (hypergrid) submodular.

The following lemma shows that minima of partition
submodular functions can be assumed to take all or
nothing of each part.

Lemma 2. Let fp be a partition submodular function
induced by a partition P = (P, ..., P.) and hypergrid
function h. Let O be a maximal by inclusion minimizer
of f. Then, O N P; # 0 implies O N P; = P;.

B. Description of Our Lower Bound Functions

The lower bound functions we construct are partition
submodular functions defined with respect to a partition
P of the universe U of N elements into r parts, P =
(P, ..., P.). The number of parts r is an integer whose
value will be set to be ©(N'/3). Each part P; has the
same size n, where n is an even positive integer such
that nr = N. To define these functions, we need to
define the hypergrid submodular functions.

Let g be an integer which is divisible by 4 and
which is ©(y/n). That is, (% — g) is “many standard
deviations” away from 7, and in particular, any random

43

subset of an n-universe set is within +¢ of the expected
value with all but inverse polynomial probability. As
described in the previous informal discussion, the fol-
lowing linear functions play a key role in the description
of the marginals. Define

r

(e (50

s=t

Forany 1 <t <r, {(x):=

Given x, define a strict order =, where

t x5 if l(x) > ls(x) or fi(x) =4s(x)andt < s

)
Given (4) and (5) at a point x, let {a, b} be the first two
coordinates in the strict order >=. Note that we are not
insisting « is the first coordinate; we are considering
{a,b} as an unordered pair. Now we are ready to
describe our lower bounding functions. First define the
function h : [n|” — Z as follows

A(x) = Il — ((max(0, a(x)) + max(0, £,(x)
©6)

The above function contains the seed of the hardness,
and satisfies (P1) and (P3). However, the above function
is in fact non-negative. To obtain the lower bounding
functions which treats P, specially, define

R L1 ifx, <24
X) =
h(xy) — (x, — (%2 — %)) otherwise
. n
Where’ X = (Xh sy X1, mln(xrv 5 ;7;3))

In Section III-D, we prove that both functions, A and
h* are hypergrid submodular. In Section III-E, we prove
that P, is the unique minimizer of the function f}
defined over any partition P with the h* function, and
that () is the unique minimizer of the function fp defined
using h. In Section III-F, we prove that any polynomial
query algorithm making < r/2 rounds-of-adaptivity
cannot find the part P,; indeed, no such algorithm
can distinguish between a partition submodular function
generated by h and one generated by h*.

C. Marginals

To prove submodularity, it is easier if we establish
the marginals of the function defined in (6). Indeed,
this may even help in understanding these functions. To
this end, define the following indicator functions. For

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

any 1 <t <n and for any 1 <1 < n, define

Ci(x) = {(;1

Ci(x) = C(x) - 1pi>4)

where 1(;>4 is the indicator function taking the value
1 if ¢ > ¢ and O otherwise. Using this notation, we
can describe the r different marginals at x succinctly
as given by the lemma below.

if £;(x) >0
otherwise

and

Lemma 3. Fix x in the domain of h. Let {a,b} be the
first two elements of =« at x. Then,

V1 <i<r, O;ih(x)=1+C!(x)+Ci(x) (Marginals)

It is helpful to interpret these marginals in plain English.
Given a point x, one first finds the first two coordinates
{a,b} in =4. That is, £,(x) and ¢;(x) are the largest
among all coordinates, with ties broken towards smaller
indices. If any of these function values are negative,
throw them away from consideration: the suffixes aren’t
large enough. Next, given a coordinate ¢, the marginal
0;h(x) depends on where 7 lies in respect to a and b (if
they are still in consideration). If 4 is smaller than both,
then the marginal is 1, if ¢ is smaller than one, then the
marginal is 0, if ¢ is greater than or equal to both, the
marginal is —1. This establishes what we wanted in the
informal description.

The proof of the lemma uses the following easy struc-
tural claim which captures how these {a,b}s change
when one increments a coordinate. In particular, it states
that these can only “move left”. This claim will also be
used to establish submodularity of (6).

Claim 1. Let x be any point and let y := x + e;.
Suppose {a,b} are two coordinates such that a >« b
but b -y a. Then, (i) b < i < a, and (ii) lp(y) = Lo (y)-

D. Submodularity

We first prove that h : [n]” — Z is submodular, and
then use this to prove that h* : [n]” — Z is submodular.
The high-level reason why £ is submodular is when one
moves from x to y = x + e;, the first two elements
{a,b} of > can only “move to the left”, that is, become
smaller. And thus, if a coordinate j was larger than
{a, b}, it remains larger when one moves to y.

Lemma 4. Fix x and a coordinate 1 < i < r. Let
y := X+ e;. Let j be any arbitrary coordinate. Then,

9jh(x) = d;h(y) ®)

44

Proof: Let {ay,b1} be the first two elements of
>x. Let {aa, b2} be the first two elements of >,,. From
the definition of the marginals, what we need to show
is

G, (x) + G (x) > CL(y) + G, (v))

For any 1 < ¢ < r, observe that ¢;(y) > /¢;(x), and
thus C¢(x) > Ci(y).

Case 1:: {a1,b1} = {a2,b2}. In this case (9)
follows directly from the above observation.

Case 2:: [{a1,b1} N{az,ba}| = 1. Without loss of
generality, suppose a; = ag and by # bo. First, we get
¢ (x) = C,(x) \Z/ CJ.(y). Second, since

above observation
b1 =x b2 and by >y by, Claim 1(i) gives us by < ¢ < by.
Also, by, (y) > &, (y) > Ly, (x). This im-

ba >y b1 above observation
plies Cp, (x) > Cp,(y). Since by < by, we get that
15,3 = 1gj>p,}. Since C is non-positive, we get
G, (%) = 1555, Coy (%) 2 Liiop,3-Coo(y) = G, (3)-
Case 3:: [{a1,b1} N{az,ba}| = 0. This is anal-
ogous to Case 2. The proof of Cj (x) > Cj (y) is
exactly the same, and the proof of CJ (x) > CJ_(y) is
analogous with “b”s replaced by “a” []

a’s.
Lemma 5. The function h* as defined in (7) is submod-
ular

E. Unique Minima

Given a partition P = (P, ..., P,), let f} be the par-
tition submodular function defined as f5(S) = h*(x)
where x; = |S N P,|. Similarly, define fp(S) := h(x).
Then,

Lemma 6. Suppose the parameters n,g and v chosen
such that 5gr < n. Then the following are true.) is the
unique minimizer of fp achieving the value 0. P, is the

unique minimizer of f3 achieving the value —3%.

F. Suffix Indistinguishability

We now establish the key property about i and h*
which allows us to prove a polynomial lower bound on
the rounds of adaptivity. To do so, we need a definition.

Definition 2. For 1 <1i < r, a point x € [n]" is called
i-balanced if x; — 4 < x; <x;+ £ for all j > i.

Suffix Indistinguishability asserts that two points x
and x’ which are i-balanced, have the same norm, and
which agree on the first ¢ coordinates have the same
function value. We first prove Suffix Indistinguishabil-
ity for h, and then show that if ¢ < %, then h and h*
take the same value on ¢-balanced points, which implies
Suffix Indistinguishability for 2* as well (for i <).

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

Claim 2. Let i < r—2. If x and X' are two i-balanced
points with x; = x; for j < i and ||x||; = ||x'[|,, then

h(x) = h(x').

Proof: First note that for any ¢ € {1,2,...,i+ 1},
l(x) = £4(x'); this follows from the fact that ||x||, =
||x’[]; and that x and x’ agree on the first i-coordinates.
Let {a, b} be the first two elements in > and {a’,’}
be the first two elements in .. Note that if all four of
these are known to be in {1,2,...,i+1}, then we must
have {a,b} = {a’,b'}. This, in turn, implies h(x) =
hix') since], = <],

79

Case I: x; = xj < § — <. Since x and x’ are both
n _ 39

i-balanced, we have x;,x < § — % +&=5-5
for all 5 > 4. This, in turn, implies that for any ¢ >
i, £4(x),4¢(x") are both < & — & = 0, since each
summand in the definition (4) contributes at most %. In
turn, this means that either h(x) = ||x||; and h(x’) =
||x'[|; and thus they are equal since the norms are equal,
or {a,b} and {a’,b'} lie in {1,2,...,i+ 1} and we are
done by the discussion in the first paragraph.
Case 2: x; = x; > § — %g. Since x and x’ are both
i-balanced, we have xj,x;» > 5 —g foral j > i
Thus each term in the summands of (4) is > 0. This, in
turn implies that the maximizers of £;(x), ¢;(x’), both
lie in {1,2,...,7 + 1}. From the argument in the first
paragraph, we get h(x) = h(x'). [
Next, we prove that when ¢ is bounded away from
r, for any i-balanced vector x, we have h*(x) = h(x).
This lemma is useful to prove the indistinguishability
of h* and h.

Lemma 7. If7 <

h(x).

Proof: If x,, < § — ¢, we have h*(x) = h(x) by
definition. So we only need to consider the case when
X > 4§ — % Let k == x, — (% — %), by definition
Ix[l, = [Ix¢|l; + % and h*(x) = h(x;) — k. For any
1 <t <r, we have {,(x) = {;(x}) + k, which means
total orders - and -, are the same. Let {a, b} be the
first two coordinates in both strict orders.

Since x is i-balanced and x, > & — 4

x; > 2-%

5 and X is i-balanced, then h*(x)

5 7. we have
5 — %, and thus, for any j > 4, x; > 5 — 4. Thus,
all summands in (4) for j > ¢ give non-negative contri-
bution. This means both a and b lie in {1,2,...,i+1}.
On the other hand, both ¢;(x) and ¢, (x|) are at least
(r—i—1)4 -9 > 0since i < § — 1. So both £,(x|)
and ¢,(x) are at least 0, which implies that both ¢, (x)

and ¢,(x) are at least 0. Therefore, we have

h*(x) = hixy) =k = (Ixll, = la(x) = bo(xy)) — K
= [Ixlly = fa(x) = fp(x) = h(x).

45

|
Claim 2 and Lemma 7 implies the following Suffix
Indistinguishability property of 2™ and h.

Lemma 8. Let i < 5. If x and x' are two i-balanced
points with x; = x’; for j <i and |x||, = ||X'||,, then

h*(x) = h*(x') = h(x) = h(x').

IV. PROOF OF THE MAIN THEOREM

We now prove lower bounds on the rounds-of-
adaptivity for algorithms which make < N¢ queries per
round for some 1 < ¢ < N9 where § > 0 is a con-
stant. Let n be an even integer and g be an integer divis-
ible by 4 such that 800+/cnlogn > g > 200+/cn logn.
Let r be the largest integer such that gr < n. Finally,
let N = nr. Note that ¢ = O(N'/3(clog N)?/3),
r=0 (%), and n = O(N?/3(clog N)'/3).
Since ¢ < N'79, we get n > ¢N?%/3 > clog N and
thus g > 200clogn.

Let P = (P,..., P.) be a random equipartition of a
universe U with NV elements into parts of size n. Given
a subset S, let the r-dimensional vector x defined as
x; = |S N P;| be the signature of S with respect to
P. We say a query S is i-balanced with respect to P
if the associated signature x is i-balanced. We use the
following simple property of a random equipartition.

Lemma 9. For any integer i € [1,...,(r — 1)], let
Py, Py,,Pi_q be a sequence of (i — 1) sets each
of size m such that for 1 < j < (i — 1), the set
P; is generated by choosing uniformly at random n
elements from U \ (P, U P, U ..P;_1). Let S C
U be any query that is chosen with possibly com-
plete knowledge of P1, Ps, ..., P;_1. Then if we extend
Py, Ps, ..., P,_1 to a uniformly at random equipartition
(P, ..., P,) of U, with probability at least 1 —1/n?*+3,
the query S is i-balanced with respect to the partition
(Py1, Py, ..., P.); here the probability is taken over the
choice of P;, Piyq, ..., P;.

To prove Theorem 1, we use Yao’s minimax lemma.
The distribution over hard functions is as follows. First,
we sample a random equipartition P of the U into
r parts each of size n. Given P and a subset S, let
fp(S) == h(x) and f5(S) := h*(x), where x is the
signature of S with respect to P. Select one of fp
and f7 uniformly at random. This fixes the distribution
over the functions, and this distribution is offered to
a deterministic algorithm. We now prove that any s-
round deterministic algorithm with s < 5 fails to return
the correct answer with probability > 1/3, and this
would prove Theorem 1. In fact, we prove that with
probability > 1—1/n, over the random equipartition P,

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

the deterministic algorithm cannot distinguish between
fp and fp, that is, the answers to all the queries
made by the algorithm are the same on both functions.
This means that the deterministic algorithm errs with
probability > 1 - (1 — 1) > 1. Indeed, since the
minimum values of fp and f} are 0 and —§ for all P’s
(by Lemma 6), and since g = O(N'/3(clog N)?/3),
we also rule out an additive O(N'/?)-approximation.
Since the range of fp and f} are integers in [~N, +N],
we also get an (=55) lower bound on the rounds-of-
adaptivity required to get an e-additive approximation
to SFM of functions in range [—1,+1].

An s-round deterministic algorithm performs a col-
lection of queries QW at every round 1 < / < s with
|Q(4)| < N¢ < n2c Let Ans'® denote the answers
to the queries in Q). The subsets queried in QW
is a deterministic function of the answers given in
Ans(l), cee Ans“—1) After receiving the answers to the
sth round of queries, that is Ans(s), the algorithm must
return the minimizing set S. We now prove that when
P is a random equipartition of U, then with probability
1-— % the answers Ans'®) given to Q@ are the same
for fp and fp, if s < 3.

We view the process of generating the random
equipartition as a game between an adversary and the
algorithm where the adversary reveals the parts one-by-
one. Specifically, the process of generating the random
equipartition will be such that at the start of any round
¢ € [1,...,s], the adversary has only chosen and
revealed to the algorithm the parts Py, P, ..., Py_1, and
at this stage, Py, Py11,..., P, are equally likely to be
any equipartition of U \ (P U P> U ... U Pp_7) into
(r—£+1) parts. By the end of round ¢, the adversary has
committed and revealed to the algorithm the part P, and
the game continues with one caveat. In each round, there
will be a small probability (at most 1/n?) with which
the adversary may “fail”. This occurs at a round / if any
query made by the algorithm on or before round ¢ turns
out to be not ¢-balanced with respect to the sampled
partition at round 4. In that case, the adversary reveals
all remaining parts to the algorithm (consistent with the
answers given thus far), and the game terminates in the
current round ¢ itself with the algorithm winning the
game (that is, the algorithm can distinguish between
fp and f7). The probability of this failure event can
be bound by s/n? < 1/n, summed over all rounds. In
absence of this failure event, by Lemma 7, we know
that the answers will be the same for fp and f; at
the end of the algorithm, concluding the proof. We now
formally describe this process.

At the start of round 1, the adversary samples a

46

uniformly at random equipartition of U, say, 1) =
(Pl(l),PZ(D, ...,Pr(l)). The algorithm reveals its set of
queries for round 1, namely, Q). The adversary an-
swers all queries in Q") in accordance with the partition
', By Lemma 9, since |QM| < n?°, every query
in QM is 1-balanced with respect to the partition
'), with probability at least 1 — 1/n>. If this event
occurs, the adversary reveals Pl(l) to the algorithm, and
continues to the next round. Otherwise, the adversary
reveals the entire partition I'") to the algorithm and the
game terminates.

At the start of round 2, the adversary samples an-
other uniformly at random equipartition of U, say,
r® = (P1(2),P2(2),...,P752)) subject to the constraint
P® = P Note that T'® is a uniformly at random
equipartition of U since Pl(l) was chosen uniformly at
random. The algorithm reveals its set of queries for
round 2, namely, Q(z). Again by Lemma 9, we have
that (i) every query in Q") is 1-balanced with respect
to the partition T'(?), with probability at least 1 — 1/n?,
and (ii) every query in Q(® is 2-balanced with respect
to the partition I'(®), with probability at least 1 — 1/n°.
If this event occurs, the adversary answers all queries in
Q® in accordance with the partition T'(?), and the game
proceeds to the next round. The key insight here is that
by Lemma 8, if a query S € Q) is i-balanced w.r.t.
some partition (P, ..., P.), then the function value on
the query S is completely determined by Py, Ps, ..., P;
and |S|, and does not require knowledge of P, 11, ..., P,.
Furthermore, the value of fp(S) and f5;(S) are the
same. In other words, the function value on query S
remains unchanged, for both f and f*, if we replace
P:=(P,..,P,Py1,..., P) with any other partition
P := (Py,...,P;,P/,,,.., P) such that S remains i-
balanced with respect to P’. So answers to all queries
in QM are the same under both partitions ') and T"(?).
On the other hand, if either (i) or (ii) above does not
occur, the adversary terminates the game and reveals the
entire partition I'™) to the algorithm.

In general, if the game has successfully reached round
¢ < s, then at the start of round ¢, the adversary
samples a uniformly at random equipartition of U, say,
re = (P%@,P%(Z), ...7P1£€)) subject to the constraints
PO = P PP = PP PO = PV Once
again, note that I'¥) is a uniformly at random equipar-
tition of U since Pl(l) was chosen uniformly at random,
PQ(Q) was chosen uniformly at random having fixed
Pl(l), and so on. The algorithm now reveals its set of
queries for round ¢, namely, Q. By Lemma 9, we
have that for any fixed ¢ € [1,...,4], all queries in
Q™ are i-balanced with respect to the partition I'(¥)

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

with probability at least 1 — 1/n® each. Thus with
probability at least 1 — £/n3, for every i € [1,...,/],
all queries in Q") are i-balanced with respect to the
partition ' If this event occurs, the adversary answers
all queries in Q) with respect to the partition I'(“),
and once again, by Lemma 8, answers to all queries in
QMW,Q®,...,Q*~Y remain unchanged if we answer
them using the partition I'). The game then continues
to the next round. Otherwise, with probability at most
¢/n® < 1/n?, the game terminates and the adversary
reveals the entire partition T'*-1) to the algorithm.

Summing up over all rounds 1 through s < & — 1,
the probability that the game reaches round s is at least
1 —s/n? > 1 — 1/n. This, in turn, implies that with
probability > 1— %, the random equipartition P satisfies
the following property : all the queries in Q") are i-
balanced with respect to P for all i € [l..s]. Now,
since s < 5, by Lemma 7 we get that the answers
Ans(l), e Ans®) given to these queries are the same
for fp and f7. Hence the algorithm cannot distinguish
between these two cases. This completes the proof
of Theorem 1.

ACKNOWLEDGEMENTS

This work was supported in part by NSF awards
CCF-1910534, CCF-1926872, CCF-2041920, and CCF-
2045128.

REFERENCES

[1] https://www.cis.upenn.edu/~chenyu2/papers/
parallel-sfm-lowerbound.pdf.

[2] https://arxiv.org/pdf/2111.07474.pdf.

[3] S. Assadi, Y. Chen, and S. Khanna. Polynomial pass
lower bounds for graph streaming algorithms. In Proc.,
ACM Symposium on Theory of Computing (STOC),
pages 265-276, 2019.

[4] B. Axelrod, Y. P. Liu, and A. Sidford. Near-optimal
approximate discrete and continuous submodular func-
tion minimization. In Proc., ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 837-853, 2020.

[5] E. Balkanski, A. Rubinstein, and Y. Singer. An expo-
nential speedup in parallel running time for submodular
maximization without loss in approximation. Proc.,
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 283-302, 2019.

[6] E. Balkanski and Y. Singer. Minimizing a submodular
function from samples. In Adv. in Neu. Inf. Proc. Sys.
(NeurIPS), pages 814-822, 2017.

[7] E. Balkanski and Y. Singer. The adaptive complexity
of maximizing a submodular function. In Proc., ACM
Symposium on Theory of Computing (STOC), pages
1138-1151, 2018.

[8] E. Balkanski and Y. Singer. A lower bound for parallel
submodular minimization. In Proc., ACM Symposium on
Theory of Computing (STOC), pages 130-139, 2020.

[9] Y. Boykov and V. Kolmogorov. = An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 26(9):1124
— 1137, 2004.

[10] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate
energy minimization viagraph cuts. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI),
23(11):1222 — 1239, 2001.

[11] S. Bubeck, Q. Jiang, Y.-T. Lee, Y. Li, and A. Sidford.
Complexity of highly parallel non-smooth convex op-
timization. In Adv. in Neu. Inf. Proc. Sys. (NeurlPS),
pages 13900-13909, 2019.

[12] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz.
A tight linear time (1/2)-approximation for uncon-
strained submodular maximization. SIAM Journal on
Computing (SICOMP), 44(5):1384-1402, 2015.

[13] D. Chakrabarty, P. Jain, and P. Kothari. Provable sub-
modular minimization using Wolfe’s algorithm. In Adv.
in Neu. Inf. Proc. Sys. (NeurlIPS), pages 802-809, 2014.

[14] D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C.
Wong. Subquadratic submodular function minimization.
In Proc., ACM Symposium on Theory of Computing
(STOC), pages 1220-1231, 2017.

[15] C. Chekuri and K. Quanrud. Parallelizing greedy for
submodular set function maximization in matroids and
beyond. In Proc., ACM Symposium on Theory of
Computing (STOC), pages 78-89, 2019.

[16] C. Chekuri and K. Quanrud. Submodular function
maximization in parallel via the multilinear relaxation.
In Proc., ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 303-322, 2019.

[17] L. Chen, M. Feldman, and A. Karbasi. Unconstrained
submodular maximization with constant adaptive com-
plexity. In Proc., ACM Symposium on Theory of Com-
puting (STOC), pages 102-113, 2019.

[18] W. Cunningham. On submodular function minimization.
Combinatorica, 5:185 — 192, 1985.

[19] D. Dadush, L. A. Végh, and G. Zambelli. Geometric
rescaling algorithms for submodular function minimiza-
tion. In Proc., ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 832-848, 2018.

[20] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Ran-
domized smoothing for stochastic optimization. SIAM
Journal on Optimization, 22(2):674-701, 2012.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

A. Ene and H. L. Nguyen. Submodular maximization
with nearly-optimal approximation and adaptivity in
nearly-linear time. Proc., ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 274-282, 2019.

A. Ene, H. L. Nguyen, and A. Vladu. Submodular
maximization with matroid and packing constraints in
parallel. In Proc., ACM Symposium on Theory of
Computing (STOC), pages 90-101, 2019.

M. Fahrbach, V. Mirrokni, and M. Zadimoghaddam.
Submodular maximization with nearly optimal approxi-
mation, adaptivity and query complexity. In Proc., ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
255-273, 2019.

U. Feige, V. Mirrokni, and J. Vondrak. Maximizing
non-monotone submodular functions. SIAM Journal on
Computing (SICOMP), 40(4):1133 — 1153, 2011.

M. Grétschel, L. Lovasz, and A. Schrijver. The ellipsoid
method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1:169-197, 1981.

R. Gurjar and R. Rathi. Linearly representable submod-
ular functions: An algebraic algorithm for minimization.
In Proc., International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 61:1-61:15,
2020.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial
strongly polynomial algorithm for minimizing submodu-
lar functions. Journal of the ACM, 48(4):761-777, 2001.

S. Iwata and J. B. Orlin. A simple combinatorial
algorithm for submodular function minimization. In
Proc., ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1230-1237, 2009.

R. Iyer and J. A. Bilmes. Submodular optimization with
submodular cover and submodular knapsack constraints.
Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 2013.

R. Iyer, S. Jegelka, and J. A. Bilmes. Fast
semidifferential-based submodular function optimiza-
tion. In ICML (3), pages 855-863, 2013.

H. Jiang. Minimizing convex functions with integral
minimizers. In Proc., ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 976-985, 2021.

D. R. Karger and R. Motwani. An NC algorithm for
minimum cuts. SIAM J. Comput., 26(1):255-272, 1997.

R. M. Karp, E. Upfal, and A. Wigderson. Constructing
a perfect matching is in random NC. Combinatorica,
6(1):35-48, 1986.

R. M. Karp, E. Upfal, and A. Wigderson. The complexity
of parallel search. J. Comput. System Sci., 36(2):225-
253, 1988.

[35]

(36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

P. Kohli, M. P. Kumar, and P. H. S. Torr. P3 and
beyond: Move making algorithms for solving higher
order functions. IEEE Trans. Pattern Anal. and Machine
Learning, 31:1-8, 2008.

S. Lacoste-Julien and M. Jaggi. On the global linear
convergence of Frank-Wolfe optimization variants. In
Adv. in Neu. Inf. Proc. Sys. (NeurIPS), 2015.

Y. T. Lee, A. Sidford, and S. C.-W. Wong. A faster cut-
ting plane method and its implications for combinatorial
and convex optimization. Proc., IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1049—
1065, 2015.

W. Li, P. Liu, and J. Vondrédk. A polynomial lower bound
on adaptive complexity of submodular maximization.
In Proc., ACM Symposium on Theory of Computing
(STOC), pages 140-152, 2020.

H. Narayanan, H. Saran, and V. V. Vazirani. Randomized
parallel algorithms for matroid union and intersection,
with applications to arborescences and edge-disjoint
spanning trees. SIAM J. Comput., 23(2):387-397, 1994.

G. L. Nemhauser and L. A. Wolsey. Best algorithms
for approximating the maximum of a submodular set
function. Math. Oper. Res., 3(3):177-188, 1978.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions — I. Math. Programming, 14(1):265-294,
1978.

A. Nemirovski. On parallel complexity of nonsmooth
convex optimization. Journal of Complexity, 10(4):451—
463, 1994.

J. B. Orlin. A faster strongly polynomial time algorithm
for submodular function minimization. Math. Program-
ming, 118(2):237-251, 2009.

A. Rubinstein, T. Schramm, and S. M. Weinberg. Com-
puting exact minimum cuts without knowing the graph.
In Proc., Innovations in Theoretical Computer Science
(ITCS), pages 39:1-39:16, 2018.

A. Schrijver. A combinatorial algorithm minimizing
submodular functions in strongly polynomial time. J.
Combin. Theory Ser. B, 80(2):346-355, 2000.

J. Vondrdk. Symmetry and approximability of sub-
modular maximization problems. SIAM J. Comput.,
42(1):265-304, 2013.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from |IEEE Xplore. Restrictions apply.

