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Abstract—The problem of minimizing a submodular
function (SFM) is a common generalization of several fun-
damental combinatorial optimization problems, including
minimum s-t cuts in graphs and matroid intersection. It is
well-known that a submodular function can be minimized
with only poly(N) function evaluation queries where N
denotes the universe size. However, all known polynomial
query algorithms for SFM are highly adaptive, requiring
at least N rounds of adaptivity. A natural question is if
SFM can be efficiently solved in a highly parallel manner,
namely, with poly(N) queries using only poly-logarithmic
rounds of adaptivity. An important step towards under-
standing the adaptivity needed to solve SFM efficiently was
taken in the very recent work of Balkanski and Singer who
showed that any SFM algorithm with poly(N) queries.
This left open the possibility of efficient SFM algorithms
with poly-logarithmic rounds of adaptivity. In this work,
we strongly rule out this possibility by showing that any,
possibly randomized, algorithm for submodular function
minimization making poly(N) queries requires Ω̃

(
N1/3

)

rounds of adaptivity. In fact, we show a polynomial
lower bound on the number of rounds of adaptivity even
for algorithms that make up to 2N

1−δ

queries, for any
constant δ > 0.

Keywords-Submodular Function Minimization; Parallel
Algorithms; Lower Bounds

I. INTRODUCTION

A function f : 2U → Z defined over subsets of a

ground set U of N elements is submodular if for any

two sets A ⊆ B and an element e /∈ B, the marginal of

e on A, that is, f(A∪ e)− f(A) is at least f(B ∪ e)−
f(B). The submodular function minimization (SFM)

problem is to find a subset S minimizing f(S) given

only access to an evaluation oracle for the function that

returns the function value on any specified subset. This

is a fundamental discrete optimization problem which

This extended abstract is missing several proofs which can be found
in this version [1]. Since the submission of this paper to FOCS 2021,
we have extended our results to prove a polynomial lower bound on
rounds needed for parallel matroid intersection as well. Details of
this can be found in the full version of this paper available at [2].

generalizes problems such as minimizing global and s-t
cuts in graphs and hypergraphs, matroid intersection,

and more recently has found many applications in areas

such as image segmentation [9], [10], [35] and speech

analysis [29], [30].

A remarkable fact is that SFM can be solved in poly-

nomial time with polynomially many calls to the eval-

uation oracle. This was first established by Grötschel,

Lovász, and Schrijver [25] using the ellipsoid method.

Since then, a lot of work [18], [27], [45], [43], [28],

[13], [36], [37], [14], [19], [4], [31] has been done trying

to understand the query complexity of SFM. The current

best known algorithms are an O(N3)-query polynomial-

time and an O(N2 logN)-query exponential time algo-

rithm by Jiang [31] building on the works [37], [19],

an Õ(N2 logM)-query and time algorithm by Lee,

Sidford, and Wong [37] where |f(S)| ≤ M for all

S ⊆ U , and an Õ(NM2) query and time algorithm

by Axelrod, Liu, and Sidford [4] improving upon [14].

All the above algorithms are sequential. That is, the

queries made by the algorithms depend on answers to

queries made earlier. More precisely, any SFM algo-

rithm accesses the evaluation oracle in rounds, where

the queries made in a certain round depend only on the

answers to queries made in previous rounds. There is

a trade-off between the number of queries (per round)

made by the algorithm, and the number of rounds

needed to find the answer : there is an obvious 1-

round algorithm which makes all 2N queries. All known

algorithms which make poly(N) queries proceed in

Ω(N) rounds. Can the number of rounds be substan-

tially decreased (made poly-logarithmic in N ) while still

keeping the number of queries bounded by poly(N)? In

spirit, this is related to the P versus NC question which

at a high-level asks can problems with polynomial time

algorithms be solved by poly-sized circuits with poly-

logarithmic depth. From a practical standpoint, given

the applications of SFM to problems involving huge

data and the availability of computing infrastructure to
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perform parallel computation, the question of parallel

SFM algorithms is very relevant.

For SFM, a study of this question was initiated by

Balkanski and Singer in [8] who proved that any poly-

nomial query SFM algorithm must have Ω( logN
log logN )

rounds of adaptivity. This leaves open the possibility

of polynomial query poly-logarithmic round algorithms.

Indeed for the related problem of submodular function

maximization subject to cardinality constraint, in a dif-

ferent paper [7], Balkanski and Singer showed that the

correct answer is indeed Θ̃(logN). They proved that

with polynomially many queries no constant factor ap-

proximation is possible with o
(

logN
log logN

)
rounds, while

an 1/3-approximation can be obtained in O(logN)-
rounds1. Can the situation be the same for SFM?

In this paper we answer this question in the negative.

We prove a polynomial lower bound on the number of

rounds of any polynomial query SFM algorithm.

Theorem 1. For any constant δ > 0 and any
1 ≤ c ≤ N1−δ , any possibly randomized algo-
rithm for SFM on an N element universe making
≤ N c evaluation oracle queries per round and
succeeding with probability ≥ 2/3 must have
Ω
(

N1/3

(c logN)1/3

)
rounds-of-adaptivity. This is true

even when the range of the submodular function
is {−N,−N + 1, . . . , N − 1, N}, and even if the
algorithm is allowed to make an additive error of
O(N1/3).

We note that a polynomial lower bound on the number

of rounds holds even if the algorithm is allowed to

make 2N
1−δ

queries per round for any δ > 0, and

the lower bound on the number of rounds is Θ̃(N1/3)
for polynomial query algorithms. Furthermore, since

the range of our functions is [−N,+N ] and we rule

out algorithms making additive O(N1/3)-error, we also

obtain an Ω̃( 1√
ε
)-lower bound on the number of rounds

for ε-approximate minimization of submodular func-

tions with range [−1,+1]. In fact, one can modify our

construction (please see full version) slightly to give

an Ω(1/ε) lower bound for ε-additive approximation.

We remark that since the functions of Balkanski and

Singer in [8] when scaled to integer values have range

as large as NΘ(r) where r = Ω(logN/ log logN), it

is not clear if their construction implies any non-trivial

lower bound for approximate SFM. The only previous

work ruling out ε-approximate minimizers is another

work of Balkanski and Singer [6] who proved that non-

1This constant has since been made close to optimal [5], [15], [16],
[21], [22], [38]; see Section I-A for more details.

adaptive algorithms, that is single round algorithms,

cannot achieve any non-trivial approximation with poly-

nomially many queries.

Our result shows that in the general query model,

SFM cannot be solved in polynomial time in poly-

logarithmic rounds, even with randomization. This is

in contrast to specific explicitly described succinct

submodular function minimization problems : global

minimum cuts in an undirected graph is in NC [32],

linear and graphic matroid intersection is in RNC [39],

finding minimum s-t-cuts with poly-bounded capacities

is in RNC [33], etc. Very recently, inspired by some of

these special cases, Gurjar and Rathi [26] defined a class

of submodular functions called linearly representable
submodular functions and gave RNC algorithms for

the same.

It is not very common to find examples of problems

that require polynomial rounds of adaptivity to achieve

a polynomial query complexity. In a thought provoking

paper [34], Karp, Upfal and Wigderson considered this

question. They proved that any efficient algorithm that

finds a maximum independent set in a matroid with

access to an independence oracle, that is, one which

takes a subset S and returns a Boolean answer of

whether S is independent or not, must proceed in

Ω̃(N1/3) rounds. On the other hand, with access to a

rank oracle which takes S and returns r(S), the size

of the largest independent set in S (since r(S) is a

submodular function, this is more in lines with the

evaluation oracle), there is a simple algorithm2 which

makes N queries in a single round and finds the optimal

answer. Our lower bound thus provides an example of

the polynomial round lower bound for a much more

general class of query functions.

Our lower bounding submodular functions fall in a

class introduced by Balkanski and Singer [8] which we

call partition submodular functions. Given a partition

P = (P1, . . . , Pr) of the universe U , the value of a

partition submodular function f(S) depends only on the

cardinalities of the |S ∩ Pi|’s. In particular, f(S) =
h(x) where x is an r-dimensional non-negative integer

valued vector with xi := |S ∩ Pi|, and h is a discrete

submodular function on a hypergrid. Note that when

r = 1, the function h is a univariate concave function,

while r = n captures general submodular functions.

Thus, partition submodular functions form a nice way

of capturing the complexity of a submodular function.

The functions in [8] are partition submodular and they

prove an Ω(r)-lower bound for their specific functions.

2Order elements as e1, . . . , eN and query r({e1, . . . , ei}) for all
i, and return the points at which the rank changes.
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As we explain in Section II, their construction idea has

a bottleneck of r = O(logN), and thus cannot prove a

polynomial lower bound. Our lower bound functions are

also partition submodular, and we also prove an Ω(r)
lower bound though we get r to be polynomially large

in the size of the universe.

A. Related Work

The rounds-of-adaptivity versus query complexity

question has seen a lot of recent work on submodular

function maximization. As mentioned before, Balkanski

and Singer [7] introduced this problem in the con-

text of maximizing a non-negative monotone submod-

ular function f(S) subject to a cardinality constraint

|S| ≤ k. This captures NP-hard problems, has a

sequential greedy (1− 1
e )-approximation algorithm [41],

and obtaining anything better requires [40], [46] ex-

ponentially many queries. [7] showed that obtaining

even an O
(

1
logN

)
-approximation with polynomially

many queries requires Ω
(

logN
log logN

)
rounds, and gave an

O(logN)-round, polynomial query, 1
3 -approximation.

Soon afterwards, several different groups [5], [21],

[23], [16], [15], [22] gave
(
1− 1

e − ε
)
-approximation

algorithms making polynomially many queries which

run in poly(logN, 1
ε )-rounds, even when the constraint

on which S to pick is made more general. More recently,

Li, Liu and Vondrák [38] showed that the dependence of

the number of rounds on ε (the distance from 1− 1/e)

must be a polynomial. Also related is the question of

maximizing a non-negative non-monotone submodular

function without any constraints. It is known that a

random set gives a 1
4 -approximation, and a sequential

“double-greedy” 1
2 -approximation was given by Buch-

binder, Feldman, Naor, and Schwartz [12], and this

approximation factor is tight [24]. Chen, Feldman, and

Karabasi [17] gave a nice parallel version obtaining an(
1
2 − ε

)
-approximation in O( 1ε )-rounds.

In the continuous optimization setting, the question of

understanding the “parallel complexity” of minimizing

a non-smooth convex function was first studied by

Nemirovski [42]. In particular, the paper studied the

problem of ε-minimizing a bounded-norm convex (non-

smooth) function over the unit �∞ ball in N -dimensions,

and showed that any polynomial query (value oracle or

gradient oracle) algorithm must have Ω̃(N1/3 ln(1/ε))
rounds of adaptivity. Nemirovski [42] conjectured that

the lower bound should be Ω̃(N ln(1/ε)), and this is

still an open question. When the dependence on ε is

allowed to be polynomial, then the sequential vanilla

gradient descent outputs an ε-minimizer in O(1/ε2)-
rounds (over Euclidean unit norm balls), and the ques-

tion becomes whether parallelism can help over gradient

descent in some regimes of ε. Duchi, Bartlett, and Wain-

wright [20] showed an O(N1/4/ε)-query algorithm

which is better than gradient-descent when 1
ε2 ≈

√
N .

A matching lower bound in this regime 1
ε2 = Õ(

√
N)

was shown recently by Bubeck et al. [11]. It is perhaps

worth noting that submodular function minimization can

also be thought of as minimizing the Lovász extension

which is a non-smooth convex function. Unfortunately,

the domain of interest (the unit cube) has �2-radius
√
N ,

and the above algorithms do not imply “dimension-

free” ε-additive approximations for submodular function

minimization. Currently the best known upper bound is

the sequential Õ(N/ε2)-query algorithm by Axelrod,

Liu, and Sidford [4]. Our work shows that Ω(1/ε)-
rounds are needed, and it is an interesting open question

whether a poly(N, 1
ε )-lower bound can be shown on the

number of rounds, or whether one can achieve efficient

ε-approximations in rounds independent of N .

The question of rounds-of-adaptivity versus query

complexity has been asked for many other computa-

tional models, and also is closely related to other fields

such as communication complexity and streaming. We

note a few results which are related to submodular

function minimization. Assadi, Chen, and Khanna [3]

considered the problem of finding the minimum s-t-cut

in an undirected graph in the streaming setting. They

showed that any p-pass algorithm must take Ω̃(n2/p5)-
space, where n is the number of vertices. Their result

also implied that any sub-polynomial round algorithm

for the s-t-cut submodular function must make Ω̃(n2)
queries; note that with O(n2) queries, the whole graph

can be non-adaptively learned. Rubinstein, Schramm,

and Weinberg [44] considered the global minimum cut

function in an undirected graph, and showed that Õ(n)
queries suffice, and their algorithm can be made to run

in O(1)-rounds.

II. TECHNICAL OVERVIEW

In this section, we give a technical overview of

our approach to proving a polynomial lower bound on

the rounds of adaptivity. We start by describing the

Balkanski-Singer [8] framework for proving rounds-of-

adaptivity lower bounds as it serves as a starting point

for our work. Our presentation will first briefly highlight

why the approach taken in [8] can not yield better than

a logarithmic lower bound on the rounds of adaptivity

and then describe the approach we take to sidestep the

logarithmic bottleneck.

The Lower Bound Framework.: Balkanski and

Singer [8] consider a class of submodular functions

which we call partition submodular functions. Given
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a partition P = (P1, . . . , Pr) of the universe U , a set

function is partition submodular if its value at a subset

S depends only on the cardinalities of the number of

elements it contains from each part. That is, fP (S) =
h(|S ∩ P1|, . . . , |S ∩ Pr|) for some function h whose

domain is r-dimensional non-negative integer vectors.

The lower bound framework dictates the following three

conditions on the functions h and the resulting partition

submodular function fP .

(P1) The function h is defined such that fP is submod-
ular.

(P2) The last part Pr is the unique minimizer of fP . We

also assume fP (∅) = h(0, 0, . . . , 0) = 0, and thus

fP (Pr) is necessarily < 0.

(P3) For any 1 ≤ i ≤ r, even if we know the

identity of the parts P1, . . . , Pi−1, a single round

of polynomially many queries tells us nothing

about the identity of the parts Pi+1 to Pr. More

precisely, a random re-partitioning of the elements

in Pi+1∪Pi+2∪· · ·∪Pr will, with high probability,

give the same values to the polynomially many

queries made in the current round.

(P3) is the key property for proving the lower bound.

Let P be the uniform distribution over partitions with

given sizes |P1| to |Pr| which induces a distribution

over submodular functions. By Yao’s lemma it suffices

to show that any (r − 2)-round deterministic algorithm

making polynomially many queries fails to find the

minimizer with any non-trivial probability. (P3) implies

that after (r − 2) rounds of queries and obtaining their

answers, the algorithm cannot distinguish between two

functions fP and fP ′ where the partitions P and P ′

agree on the first (r − 2) parts, but (Pr−1, Pr) and

(P ′r−1, P
′
r) are random re-partitioning of the elements

of Pr−1∪Pr. Since (P2) implies the minimizer of fP is

Pr and fP ′ is P ′r, and these will be different with high

probability, any algorithm will make a mistake on one of

them. The non-triviality is therefore in the construction

of the “h” functions, and in particular for how large

an r can one manage while maintaining (P1), (P2), and

(P3).

The Balkanski-Singer Construction: For now, let

us fix a random partition P := (P1, . . . , Pr) of the

universe U . Given a subset S, let x := (x1,x2, . . . ,xr),
where xi := |S∩Pi| be its signature. Before we describe

Balkanski and Singer’s construction, let us understand

what one needs for establishing a condition like (P3).

Consider the case i = 1, that is, the first round of

queries. (P3) requires that the answers should not leak

any information about P2, P3, . . . , Pr.

Consider a query S. Since the partition P is random,

we expect S’s signature x to be random as well. More

precisely, we expect xi

|Pi| to be “roughly same” for all

i ∈ [r]. Call such vectors balanced; we are deliberately

not defining them precisely at this point. For (P3) to

hold, we must have that ∂ih(x), the marginal increase

in the function upon adding an element from Pi, is the

same for all 2 ≤ i ≤ r for balanced vectors. Otherwise,

the algorithm can distinguish between different parts.

On the other hand, the marginals cannot be same for all
vectors x, as that would imply the sets P2 to Pr have

the same value, which would violate the constraint (P2)

since Pr is the unique minimizer.

To orchestrate this, Balkanski and Singer use the

idea of masking. All marginals ∂ih(x) are between

[−1, 1]. In the first round, the masking is done via the

first coordinate x1

|P1| of the signature. At a very high

level, when x1

|P1| is “large”, all the marginals ∂ih(x),

for 2 ≤ i ≤ r, take the value −1, while ∂1h(x) takes

the value 0. In plain English, if any set S contains a

large fraction of elements from P1, then all elements in

P2 ∪ · · · ∪ Pr have marginal −1; the preponderance of

these P1 elements masks all the other parts outs, and

only P1 distinguishes itself in this round.

More generally one requires this kind of property to

hold recursively as the algorithm discovers P1, P2, . . .
in successive rounds. For any i, if one takes a set S such

that
|S∩Pi|
|Pi| is “large” for some i, then for all elements

e in parts Pj , j > i, the marginals are −1. In this

way, they are able to maintain the property (P3). Of

course, one has to be careful about what occurs when

|S∩Pi|’s are small, and the whole construction is rather

technical, but this aspect described above is key to how

they maintain indistinguishability.

A Logarithmic Bottleneck: Unfortunately, this

powerful masking property is also a bottleneck. One

can argue that the above construction cannot have

r = ω(logN). To appreciate this, imagine for the

moment that all marginals are {−1,+1} (they are

not for the Balkanski-Singer construction, but it helps

explain the point). Consider the first round of queries.

If
|S∩P1|
|P1| is “large”, say ≥ θ, then all e ∈ P2 ∪ · · · ∪Pr

give a marginal of −1. How large can this θ be? If

θ � 1
2 , then a random set R where every element is

sampled with probability 1/2, will be in a situation

where the elements of Pr are not giving a negative

marginal with respect to R. But |R ∩ Pr| ≈ |Pr|/2,

and by submodularity, this would mean if we consider

Pr alone, we do not get negative marginals till we see

half the elements. However, that means f(Pr) cannot

be negative, violating (P2).

In sum, for any subset S with |S ∩ P1| ≈ |P1|/2,

40

Authorized licensed use limited to: Dartmouth College. Downloaded on March 15,2022 at 20:04:47 UTC from IEEE Xplore.  Restrictions apply. 



the marginal of every element in P2 ∪ · · · ∪ Pr with

respect to S must be −1. In particular, this is true even
when S is just half the elements of P1 alone. And this

is problematic, as this implies : f(S ∪P2 ∪ · · · ∪Pr) =
f(S) −∑r

i=2 |Pi|. But S ∪ P2 ∪ · · · ∪ Pr is not the

minimizer. So f(S) itself must be quite large. But

f(S) ≤ |S| ≈ |P1|/2, since the marginals are at most

+1. In turn, this implies

|P1| = Ω(|P2|+ · · ·+ |Pr|).
The first part is thus required to be much bigger than

the sum of the rest. And recursively, the second part is

bigger than the sum of the rest. And so on. This implies3

r = O(logN) and the strong masking idea cannot give

a polynomial lower bound.

A. Ideas Behind Our Construction

Let us again focus on the first round of queries.

In the Balkanski-Singer construction, whenever x1 is

“large” irrespective of how the other xi’s look like,

the marginals ∂ih(x) = −1 for i ≥ 2. This strong

masking property led to |P1| being much larger than

the sum of the remaining parts so as to compensate for

all the negative marginals coming from the elements in

the other parts.

Our approach is not to set ∂ih(x) depending on just

x1, but rather by looking at the whole suffix x1 : xr.

More precisely, if x1 is “large” (say, even the whole

part P1), but all the rest are empty, even in that case we

want all marginals ∂ih(x) to be in fact +1. Only when

(almost) all coordinates xi are “large”, do we switch to

∂ih(x) = −1 for all i ≥ 2. Therefore, in some sense, for

elements of any part to contribute negative to function

value, we must have already picked up a significant

number of elements from that part which contributed

positively which cancel out the negative marginals. This

allows our construction to have all parts of equal size

n = N/r, setting the stage for a polynomial lower

bound.

Although deciding a marginal depending on the suffix

may sound complicated, in the end our lower bound

functions are simple to describe. Indeed, all marginals

are in the set {−1, 0,+1} and thus not only do we

prove a polynomial lower bound on exact SFM, we also

prove a poly(1/ε)-lower bound even for ε-approximate

SFM. In the rest of this subsection, we give more details

on how the marginals depend on the suffixes. This

3It is not easy to even orchestrate a Ω(logN) lower bound this
way. The masking functions that Balkanski-Singer constructed needed
to be quite delicate to preserve submodularity, and in the end, the
sets P1 is in fact r times bigger than the rest. This leads to an
Ω(logN/ log logN) lower bound.

discussion is still kept informal and is meant to help the

reader understand the rationale behind the construction.

The full formal details along with all the properties we

need are deferred to Section III, which the reader can

feel free to skip to.

For our lower bound, we construct two partition

submodular functions, fP (S) = h(x) and f∗P = h∗(x),
where (a) the minimizer of fP is the empty set and the

minimizer of f∗P is the set Pr (satisfying (P2)), and both
these functions satisfy (P3) for 1 ≤ i < r/2, and fur-

thermore, no polynomial query randomized algorithm

using only o(N1/3/ log1/3 N) rounds of adaptivity can

distinguish between these two functions unless it makes

a super-polynomial number of queries. It is easier to

understand the functions h and h∗ via their marginals.

Here are the properties we desire from these marginal

functions.

• (Submodularity.) Both function’s marginals should

be monotonically decreasing. Thus, once ∂jh(x)
or ∂jh

∗(x) becomes −1, they should stay −1 for

all y “larger” than x.

• (Unique Minima.) The part Pr should be the

unique minimizer for h∗. This will restrict how

negative ∂jh
∗ can be for j 
= r. This is in tension

with the previous requirement.

• (Suffix Indistinguishability.) For any x which is i-
balanced, that is, xi ≈ xi+1 ≈ · · · ≈ xr, we need

that ∂jh
∗(x) and ∂jh(x) for such x’s should be

the same for all i + 1 ≤ j ≤ r. This is what we

call suffix indistinguishability. This would imply h
and h∗ would give the same values on all queried

points with high probability.

At any point x, let us first describe the r marginals

∂ih(x) for 1 ≤ i ≤ r. As mentioned above, the

marginals will be in the set {−1, 0,+1}. It is best to

think of this procedure constructively as an algorithm.

Initially, all the r marginals are set to +1. Next, we

select up to two coordinates a and b in {1, 2, . . . , r},
which depend on the query point x. Given these co-

ordinates, we decrement all marginals a ≤ i ≤ r and

all marginals b ≤ i ≤ r by 1. For instance, if r = 5
and we choose the coordinates a = 2 and b = 4 at

some x, then the marginals (∂1h(x), . . . , ∂5h(x)) are

(1, 0, 0,−1,−1). The 4th and 5th coordinate decrement

twice and thus go from +1 to −1, while the 2nd and

3rd coordinate only decrement once and thus go from

+1 to 0. The first coordinate is never decremented in

this example. Note that the vector of marginals when

considered from 1 to r is always in decreasing order.

The crux of the construction is, therefore, in the

choice of the a and the b at a certain point x. These
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will clearly depend on x, but how? Submodularity tells

us that if we move from x to y = x + ei, then the

a’s and the b’s should only move left, that is, become

smaller; that would ensure decreasing marginals. This in

turn implies that a and b should be defined by the suffix
sums at x. More precisely, if we decide to choose a and

b as the coordinates which maximize some function φ(·)
which depends on the suffix sums

∑
i≥t xi, t ranging

from 1 to r, then increasing a coordinate can only move

a’s and b’s to the left. This is precisely what we do, and

now the crux shifts to the choice of this function φ(·).
Consider an i-balanced vector x. We need that when

all the coordinates are “large”, then the marginals of

h∗ should be −1; otherwise, Pr would not be the

minimizer. Since h and h∗ should be indistinguishable,

the same should be true for h. On the other hand,

when all the coordinates are “small”, most marginals

of both function should be +1, otherwise U would be

the minimizer. In sum, when the coordinates of x are

“large”, we should have the a and b to the left, close

to 1; this would make most marginals −1. And when

they are small, a and b should be towards the right;

this would make most marginals +1. This motivates the

following rule that we formalize in the next section : we

define r different functions (called �t(x) for 1 ≤ t ≤ r)

where the tth function �t(x) is the sum of (xi−τ) over

all coordinates t ≤ i ≤ r where τ is a “threshold” which

is “close” to n/2. Here n is the size of each part |Pi|.
After taking the sum over these coordinates, we further

subtract an“offset” γ. In sum, the functions look like

�t(x) := (
∑r

i=t(xi − τ))− γ.

We choose a and b to be the coordinates such that

�t(x) is largest. Thus, if the maximizers are to the left

(that is closer to 1), then it must be because many
coordinates are over the threshold τ . In that case,

most marginals are −1. On the other hand, if most

coordinates are under the threshold τ , then a and b’s are

to the right (closer to r), and we have most marginals

are +1. This threshold, therefore, ensures that for a

coordinate to give a −1 marginal, it must also, in some

sense, already have contributed lots of +1 as well.

This is precisely how we overcome the geometrically

decaying partition size problem in [8].

What should this threshold τ be? Ideally, we would

like this threshold to be n/2; that way, for any i it

won’t contribute to the summand of �t till xi ≥ n/2. In

essence, as xi ranges from 0 to n, the +1 contributions

to the marginal will cancel out the −1 contributions, and

Pi won’t have a negative marginal. In reality, we need to

provide a “gap” and set τ = n/2−g where g = Θ̃(
√
n).

This is done because we want Suffix Indistinguishabil-

ity to hold not only for perfectly i-balanced vectors but

also for vectors whose values differ by “a few standard

deviations”. More precisely, a random subset should

satisfy Suffix Indistinguishability with high probability,

and choosing this threshold allows us to achieve this

property.

Indeed the fact that this gap g = Θ̃(
√
n) also is

the reason why we cannot get better than N1/3 lower

bound. Indeed, if we take the set S = U = P1∪· · ·∪Pr,

then the first part P1 leads to a value of ≈ n/2 since it

never gives negative marginals and gives marginal +1
for the first n/2 − g ≈ n/2 elements. The remaining

parts, in essence, contribute (n/2−g)−(n/2+g) = −2g
to the function value. More precisely, one can prove that

f(U) = n − Θ(gr). And thus, if we want f(U) > 0,

we must have n > Θ(gr). Since g ≥ √
n, we get

r ≤ √n = N1/3 because N = nr.

We end this informal discussion by describing the

function h∗. It is simply the function h if xr < n
2 −g/4,

but if xr ≥ n
2−g/4, the rth coordinate has marginal −1

irrespective of the other xj’s. This makes Pr become

the minimizer of f∗P with value −Θ(g). Since we only

modify the behavior of the last index in going from h
to h∗, in the beginning few rounds h and h∗ behave

similarly. Indeed, if xr > n
2 − g/4, then any i-balanced

vector for i ≤ r/2, has half the coordinates ≥ n
2−O(g).

The offset γ is chosen such that in this case h also has

marginal −1 for the rth coordinate. Thus, h and h∗ are

indistinguishable in the first r/2 rounds. This, in turn,

shows that if an algorithm runs for < r/2 rounds, then

it cannot distinguish between these two functions, and

therefore, cannot distinguish between the case when the

minimum value is 0 and the minimum value is −Θ(g) =
−Ω(N1/3).

III. LOWER BOUND CONSTRUCTION

We begin by formally defining partition submodular

functions and some properties of such functions. We

then describe in detail the lower bound functions that

we use in the proof of Theorem 1.

A. Partition Submodular Functions

Let U be a universe of elements and P =
(P1, . . . , Pr) be a partition of the elements of U . Let

h : Z
r
≥0 → R be a function whose domain is the

r-dimensional non-negative integer hypergrid. Given

(P, h), one can define a set-function fP : 2U → R

as follows:

fP (S) = h (|S ∩ P1|, . . . , |S ∩ Pr|) (1)

In plain English, the value of fP (S) is a function only

of the number of elements of each part that is present
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in S. We say that fP is induced by the partition P and

h. A partition submodular function is a submodular

function which is induced by some partition P and some

hypergrid function h.

A function defined by (P, h) is submodular if and

only if h satisfies the same decreasing marginal property

as f . To make this precise, let us settle on some notation.

Throughout the paper, for any integer k, we use [k] to

denote the set {0, 1, . . . , k}. First, note that the domain

of h is the r-dimensional hypergrid [|P1|] × [|P2|] ×
· · · × [|Pr|]. For brevity’s sake, we call this dom(h).
We use boldfaced letters like x,y to denote points in

dom(h). When we write x + y we imply coordinate-

wise sum. Given i ∈ {1, . . . , r}, we use ei to denote the

r-dimensional vector having 1 at the ith coordinate and

0 everywhere else. The function h induces r different

marginal functions defined as

For 1 ≤ i ≤ r, ∂ih(x) := h(x+ ei)− h(x) (2)

The domain of ∂ih is [|P1|]× [|P2|]× · · ·× [|Pi| − 1]×
· · · × [|Pr|].
Definition 1. We call a function h : Zr → R defined
over a integer hypergrid dom(h) (hypergrid) submod-
ular if and only if for every 1 ≤ i ≤ r, for every
x ∈ dom(h) with xi < |Pi|, and every 1 ≤ j ≤ r,
we have

∂jh(x) ≥ ∂jh(x+ ei) (3)

Lemma 1. A set function fP defined by a partition
P and hypergrid function h as in (1) is (partition)
submodular if and only if h is (hypergrid) submodular.

The following lemma shows that minima of partition

submodular functions can be assumed to take all or

nothing of each part.

Lemma 2. Let fP be a partition submodular function
induced by a partition P = (P1, . . . , Pr) and hypergrid
function h. Let O be a maximal by inclusion minimizer
of f . Then, O ∩ Pi 
= ∅ implies O ∩ Pi = Pi.

B. Description of Our Lower Bound Functions

The lower bound functions we construct are partition

submodular functions defined with respect to a partition

P of the universe U of N elements into r parts, P =
(P1, . . . , Pr). The number of parts r is an integer whose

value will be set to be Θ̃(N1/3). Each part Pi has the

same size n, where n is an even positive integer such

that nr = N . To define these functions, we need to

define the hypergrid submodular functions.

Let g be an integer which is divisible by 4 and

which is Θ̃(
√
n). That is,

(
n
2 − g

)
is “many standard

deviations” away from n
2 , and in particular, any random

subset of an n-universe set is within ±g of the expected

value with all but inverse polynomial probability. As

described in the previous informal discussion, the fol-

lowing linear functions play a key role in the description

of the marginals. Define

For any 1 ≤ t ≤ r, �t(x) :=
r∑

s=t

(
xs −

(n
2
− g

))
−gr

4
(4)

Given x, define a strict order �x where

t �x s if �t(x) > �s(x) or �t(x) = �s(x) and t < s
(5)

Given (4) and (5) at a point x, let {a, b} be the first two

coordinates in the strict order �x. Note that we are not

insisting a is the first coordinate; we are considering

{a, b} as an unordered pair. Now we are ready to

describe our lower bounding functions. First define the

function h : [n]r → Z as follows

h(x) = ‖x‖1−
(
max(0, �a(x))+max(0, �b(x))

)
(6)

The above function contains the seed of the hardness,

and satisfies (P1) and (P3). However, the above function

is in fact non-negative. To obtain the lower bounding

functions which treats Pr specially, define

h∗(x) =

{
h(x) if xr ≤ n

2 − g
4

h(x↓)−
(
xr −

(
n
2 − g

4

))
otherwise

where,x↓ :=
(
x1, . . . ,xr−1,min(xr,

n

2
− g

4
)
)

(7)

In Section III-D, we prove that both functions, h and

h∗ are hypergrid submodular. In Section III-E, we prove

that Pr is the unique minimizer of the function f∗P
defined over any partition P with the h∗ function, and

that ∅ is the unique minimizer of the function fP defined

using h. In Section III-F, we prove that any polynomial

query algorithm making < r/2 rounds-of-adaptivity

cannot find the part Pr; indeed, no such algorithm

can distinguish between a partition submodular function

generated by h and one generated by h∗.

C. Marginals

To prove submodularity, it is easier if we establish

the marginals of the function defined in (6). Indeed,

this may even help in understanding these functions. To

this end, define the following indicator functions. For
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any 1 ≤ t ≤ n and for any 1 ≤ i ≤ n, define

Ct(x) =

{
−1 if �t(x) ≥ 0

0 otherwise

and

Ci
t(x) = Ct(x) · 1{i≥t}

where 1{i≥t} is the indicator function taking the value

1 if i ≥ t and 0 otherwise. Using this notation, we

can describe the r different marginals at x succinctly

as given by the lemma below.

Lemma 3. Fix x in the domain of h. Let {a, b} be the
first two elements of �x at x. Then,

∀1 ≤ i ≤ r, ∂ih(x) = 1+Ci
a(x)+Ci

b(x) (Marginals)

It is helpful to interpret these marginals in plain English.

Given a point x, one first finds the first two coordinates

{a, b} in �x. That is, �a(x) and �b(x) are the largest

among all coordinates, with ties broken towards smaller

indices. If any of these function values are negative,

throw them away from consideration: the suffixes aren’t

large enough. Next, given a coordinate i, the marginal

∂ih(x) depends on where i lies in respect to a and b (if

they are still in consideration). If i is smaller than both,

then the marginal is 1, if i is smaller than one, then the

marginal is 0, if i is greater than or equal to both, the

marginal is −1. This establishes what we wanted in the

informal description.

The proof of the lemma uses the following easy struc-

tural claim which captures how these {a, b}s change

when one increments a coordinate. In particular, it states

that these can only “move left”. This claim will also be

used to establish submodularity of (6).

Claim 1. Let x be any point and let y := x + ei.
Suppose {a, b} are two coordinates such that a �x b
but b �y a. Then, (i) b ≤ i < a, and (ii) �b(y) = �a(y).

D. Submodularity

We first prove that h : [n]r → Z is submodular, and

then use this to prove that h∗ : [n]r → Z is submodular.

The high-level reason why h is submodular is when one

moves from x to y = x + ei, the first two elements

{a, b} of � can only “move to the left”, that is, become

smaller. And thus, if a coordinate j was larger than

{a, b}, it remains larger when one moves to y.

Lemma 4. Fix x and a coordinate 1 ≤ i ≤ r. Let
y := x+ ei. Let j be any arbitrary coordinate. Then,

∂jh(x) ≥ ∂jh(y) (8)

Proof: Let {a1, b1} be the first two elements of

�x. Let {a2, b2} be the first two elements of �y. From

the definition of the marginals, what we need to show

is

Cj
a1
(x) + Cj

b1
(x) ≥ Cj

a2
(y) + Cj

b2
(y) (9)

For any 1 ≤ t ≤ r, observe that �t(y) ≥ �t(x), and

thus Ct(x) ≥ Ct(y).
Case 1:: {a1, b1} = {a2, b2}. In this case (9)

follows directly from the above observation.

Case 2:: |{a1, b1}∩{a2, b2}| = 1. Without loss of

generality, suppose a1 = a2 and b1 
= b2. First, we get

Cj
a1
(x) = Cj

a2
(x) ≥︸︷︷︸

above observation

Cj
a2
(y). Second, since

b1 �x b2 and b2 �y b1, Claim 1(i) gives us b2 ≤ i < b1.

Also, �b2(y) ≥︸︷︷︸
b2	yb1

�b1(y) ≥︸︷︷︸
above observation

�b1(x). This im-

plies Cb1(x) ≥ Cb2(y). Since b2 < b1, we get that

1{j≥b2} ≥ 1{j≥b1}. Since C is non-positive, we get

Cj
b1
(x) = 1{j≥b1}·Cb1(x) ≥ 1{j≥b2}·Cb2(y) = Cj

b2
(y).

Case 3:: |{a1, b1} ∩ {a2, b2}| = 0. This is anal-

ogous to Case 2. The proof of Cj
b1
(x) ≥ Cj

b2
(y) is

exactly the same, and the proof of Cj
a1
(x) ≥ Cj

a2
(y) is

analogous with “b”s replaced by “a”s.

Lemma 5. The function h∗ as defined in (7) is submod-
ular

E. Unique Minima

Given a partition P = (P1, . . . , Pr), let f∗P be the par-

tition submodular function defined as f∗P (S) = h∗(x)
where xi = |S ∩ Pi|. Similarly, define fP (S) := h(x).
Then,

Lemma 6. Suppose the parameters n, g and r chosen
such that 5gr ≤ n. Then the following are true. ∅ is the
unique minimizer of fP achieving the value 0. Pr is the
unique minimizer of f∗P achieving the value − g

2 .

F. Suffix Indistinguishability

We now establish the key property about h and h∗

which allows us to prove a polynomial lower bound on

the rounds of adaptivity. To do so, we need a definition.

Definition 2. For 1 ≤ i < r, a point x ∈ [n]r is called
i-balanced if xi − g

8 ≤ xj ≤ xi +
g
8 for all j > i.

Suffix Indistinguishability asserts that two points x
and x′ which are i-balanced, have the same norm, and

which agree on the first i coordinates have the same

function value. We first prove Suffix Indistinguishabil-

ity for h, and then show that if i < r
2 , then h and h∗

take the same value on i-balanced points, which implies

Suffix Indistinguishability for h∗ as well (for i < r
2 ).
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Claim 2. Let i ≤ r−2. If x and x′ are two i-balanced
points with xj = x′j for j ≤ i and ‖x‖1 = ‖x′‖1, then
h(x) = h(x′).

Proof: First note that for any t ∈ {1, 2, . . . , i+1},
�t(x) = �t(x

′); this follows from the fact that ‖x‖1 =
‖x′‖1 and that x and x′ agree on the first i-coordinates.

Let {a, b} be the first two elements in �x and {a′, b′}
be the first two elements in �x′ . Note that if all four of

these are known to be in {1, 2, . . . , i+1}, then we must

have {a, b} = {a′, b′}. This, in turn, implies h(x) =
h(x′) since ‖x‖1 = ‖x′‖1.

Case 1: xi = x′i < n
2 − 7g

8 . Since x and x′ are both

i-balanced, we have xj ,x
′
j < n

2 − 7g
8 + g

8 = n
2 − 3g

4
for all j ≥ i. This, in turn, implies that for any t ≥
i, �t(x), �t(x

′) are both ≤ gr
4 − gr

4 = 0, since each

summand in the definition (4) contributes at most g
4 . In

turn, this means that either h(x) = ‖x‖1 and h(x′) =
‖x′‖1 and thus they are equal since the norms are equal,

or {a, b} and {a′, b′} lie in {1, 2, . . . , i+1} and we are

done by the discussion in the first paragraph.

Case 2: xi = x′i ≥ n
2 − 7g

8 . Since x and x′ are both

i-balanced, we have xj ,x
′
j ≥ n

2 − g for all j ≥ i.
Thus each term in the summands of (4) is ≥ 0. This, in

turn implies that the maximizers of �t(x), �t(x
′), both

lie in {1, 2, . . . , i + 1}. From the argument in the first

paragraph, we get h(x) = h(x′).
Next, we prove that when i is bounded away from

r, for any i-balanced vector x, we have h∗(x) = h(x).
This lemma is useful to prove the indistinguishability

of h∗ and h.

Lemma 7. If i < r
2 and x is i-balanced, then h∗(x) =

h(x).

Proof: If xr ≤ n
2 − g

4 , we have h∗(x) = h(x) by

definition. So we only need to consider the case when

xr ≥ n
2 − g

4 . Let k := xr −
(
n
2 − g

4

)
, by definition

‖x‖1 = ‖x↓‖1 + k and h∗(x) = h(x↓) − k. For any

1 ≤ t ≤ r, we have �t(x) = �t(x↓) + k, which means

total orders �x and �x↓ are the same. Let {a, b} be the

first two coordinates in both strict orders.

Since x is i-balanced and xr ≥ n
2 − g

4 , we have

xi ≥ n
2− 3g

8 , and thus, for any j ≥ i, xj ≥ n
2− g

2 . Thus,

all summands in (4) for j ≥ i give non-negative contri-

bution. This means both a and b lie in {1, 2, . . . , i+1}.
On the other hand, both �i(x↓) and �i+1(x↓) are at least

(r− i− 1) g2 − gr
4 ≥ 0 since i ≤ r

2 − 1. So both �a(x↓)
and �b(x↓) are at least 0, which implies that both �a(x)
and �b(x) are at least 0. Therefore, we have

h∗(x) = h(x↓)− k =
(‖x↓‖1 − �a(x↓)− �b(x↓)

)− k

= ‖x‖1 − �a(x)− �b(x) = h(x).

Claim 2 and Lemma 7 implies the following Suffix

Indistinguishability property of h∗ and h.

Lemma 8. Let i < r
2 . If x and x′ are two i-balanced

points with xj = x′j for j ≤ i and ‖x‖1 = ‖x′‖1, then
h∗(x) = h∗(x′) = h(x) = h(x′).

IV. PROOF OF THE MAIN THEOREM

We now prove lower bounds on the rounds-of-

adaptivity for algorithms which make ≤ N c queries per

round for some 1 ≤ c ≤ N1−δ where δ > 0 is a con-

stant. Let n be an even integer and g be an integer divis-

ible by 4 such that 800
√
cn log n ≥ g ≥ 200

√
cn log n.

Let r be the largest integer such that gr ≤ n. Finally,

let N = nr. Note that g = Θ(N1/3(c logN)2/3),

r = Θ
(

N1/3

(c logN)1/3

)
, and n = Θ(N2/3(c logN)1/3).

Since c ≤ N1−δ , we get n > cN2δ/3 > c logN and

thus g ≥ 200c log n.

Let P = (P1, . . . , Pr) be a random equipartition of a

universe U with N elements into parts of size n. Given

a subset S, let the r-dimensional vector x defined as

xi := |S ∩ Pi| be the signature of S with respect to

P . We say a query S is i-balanced with respect to P
if the associated signature x is i-balanced. We use the

following simple property of a random equipartition.

Lemma 9. For any integer i ∈ [1, . . . , (r − 1)], let
P1, P2, ..., Pi−1 be a sequence of (i − 1) sets each
of size n such that for 1 ≤ j ≤ (i − 1), the set
Pj is generated by choosing uniformly at random n
elements from U \ (P1 ∪ P2 ∪ ...Pj−1). Let S ⊂
U be any query that is chosen with possibly com-
plete knowledge of P1, P2, ..., Pi−1. Then if we extend
P1, P2, ..., Pi−1 to a uniformly at random equipartition
(P1, ..., Pr) of U , with probability at least 1−1/n2c+3,
the query S is i-balanced with respect to the partition
(P1, P2, ..., Pr); here the probability is taken over the
choice of Pi, Pi+1, ..., Pr.

To prove Theorem 1, we use Yao’s minimax lemma.

The distribution over hard functions is as follows. First,

we sample a random equipartition P of the U into

r parts each of size n. Given P and a subset S, let

fP (S) := h(x) and f∗P (S) := h∗(x), where x is the

signature of S with respect to P . Select one of fP
and f∗P uniformly at random. This fixes the distribution

over the functions, and this distribution is offered to

a deterministic algorithm. We now prove that any s-

round deterministic algorithm with s < r
2 fails to return

the correct answer with probability > 1/3, and this

would prove Theorem 1. In fact, we prove that with

probability ≥ 1−1/n, over the random equipartition P ,
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the deterministic algorithm cannot distinguish between

fP and f∗P , that is, the answers to all the queries

made by the algorithm are the same on both functions.

This means that the deterministic algorithm errs with

probability ≥ 1
2 · (1 − 1

n ) > 1
3 . Indeed, since the

minimum values of fP and f∗P are 0 and − g
2 for all P ’s

(by Lemma 6), and since g = Θ(N1/3(c logN)2/3),
we also rule out an additive O(N1/3)-approximation.

Since the range of fP and f∗P are integers in [−N,+N ],

we also get an Ω̃( 1
ε0.5 ) lower bound on the rounds-of-

adaptivity required to get an ε-additive approximation

to SFM of functions in range [−1,+1].

An s-round deterministic algorithm performs a col-

lection of queries Q(�) at every round 1 ≤ � ≤ s with

|Q(�)| ≤ N c ≤ n2c. Let Ans(�) denote the answers

to the queries in Q(�). The subsets queried in Q(�)

is a deterministic function of the answers given in

Ans(1), . . . ,Ans(�−1). After receiving the answers to the

sth round of queries, that is Ans(s), the algorithm must

return the minimizing set S. We now prove that when

P is a random equipartition of U , then with probability

1 − 1
n , the answers Ans(�) given to Q(�) are the same

for fP and f∗P , if s < r
2 .

We view the process of generating the random

equipartition as a game between an adversary and the

algorithm where the adversary reveals the parts one-by-

one. Specifically, the process of generating the random

equipartition will be such that at the start of any round

� ∈ [1, . . . , s], the adversary has only chosen and

revealed to the algorithm the parts P1, P2, ..., P�−1, and

at this stage, P�, P�+1, ..., Pr are equally likely to be

any equipartition of U \ (P1 ∪ P2 ∪ ... ∪ P�−1) into

(r−�+1) parts. By the end of round �, the adversary has

committed and revealed to the algorithm the part P�, and

the game continues with one caveat. In each round, there

will be a small probability (at most 1/n2) with which

the adversary may “fail”. This occurs at a round � if any

query made by the algorithm on or before round � turns

out to be not �-balanced with respect to the sampled

partition at round �. In that case, the adversary reveals

all remaining parts to the algorithm (consistent with the

answers given thus far), and the game terminates in the

current round � itself with the algorithm winning the

game (that is, the algorithm can distinguish between

fP and f∗P ). The probability of this failure event can

be bound by s/n2 ≤ 1/n, summed over all rounds. In

absence of this failure event, by Lemma 7, we know

that the answers will be the same for fP and f∗P at

the end of the algorithm, concluding the proof. We now

formally describe this process.

At the start of round 1, the adversary samples a

uniformly at random equipartition of U , say, Γ(1) =

(P
(1)
1 , P

(1)
2 , ..., P

(1)
r ). The algorithm reveals its set of

queries for round 1, namely, Q(1). The adversary an-

swers all queries in Q(1) in accordance with the partition

Γ(1). By Lemma 9, since |Q(1)| ≤ n2c, every query

in Q(1) is 1-balanced with respect to the partition

Γ(1), with probability at least 1 − 1/n3. If this event

occurs, the adversary reveals P
(1)
1 to the algorithm, and

continues to the next round. Otherwise, the adversary

reveals the entire partition Γ(1) to the algorithm and the

game terminates.

At the start of round 2, the adversary samples an-

other uniformly at random equipartition of U , say,

Γ(2) = (P
(2)
1 , P

(2)
2 , ..., P

(2)
r ) subject to the constraint

P
(2)
1 = P

(1)
1 . Note that Γ(2) is a uniformly at random

equipartition of U since P
(1)
1 was chosen uniformly at

random. The algorithm reveals its set of queries for

round 2, namely, Q(2). Again by Lemma 9, we have

that (i) every query in Q(1) is 1-balanced with respect

to the partition Γ(2), with probability at least 1− 1/n3,

and (ii) every query in Q(2) is 2-balanced with respect

to the partition Γ(2), with probability at least 1− 1/n3.

If this event occurs, the adversary answers all queries in

Q(2) in accordance with the partition Γ(2), and the game

proceeds to the next round. The key insight here is that

by Lemma 8, if a query S ∈ Q(i) is i-balanced w.r.t.

some partition (P1, ..., Pr), then the function value on

the query S is completely determined by P1, P2, ..., Pi

and |S|, and does not require knowledge of Pi+1, ..., Pr.

Furthermore, the value of fP (S) and f∗P (S) are the

same. In other words, the function value on query S
remains unchanged, for both f and f∗, if we replace

P := (P1, ..., Pi, Pi+1, ..., Pr) with any other partition

P ′ := (P1, ..., Pi, P
′
i+1, .., P

′
r) such that S remains i-

balanced with respect to P ′. So answers to all queries

in Q(1) are the same under both partitions Γ(1) and Γ(2).

On the other hand, if either (i) or (ii) above does not

occur, the adversary terminates the game and reveals the

entire partition Γ(1) to the algorithm.

In general, if the game has successfully reached round

� ≤ s, then at the start of round �, the adversary

samples a uniformly at random equipartition of U , say,

Γ(�) = (P
(�)
1 , P

(�)
2 , ..., P

(�)
r ) subject to the constraints

P
(�)
1 = P

(1)
1 , P

(�)
2 = P

(2)
2 , ..., P

(�)
�−1 = P

(�−1)
�−1 . Once

again, note that Γ(�) is a uniformly at random equipar-

tition of U since P
(1)
1 was chosen uniformly at random,

P
(2)
2 was chosen uniformly at random having fixed

P
(1)
1 , and so on. The algorithm now reveals its set of

queries for round �, namely, Q(�). By Lemma 9, we

have that for any fixed i ∈ [1, . . . , �], all queries in

Q(i) are i-balanced with respect to the partition Γ(�)
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with probability at least 1 − 1/n3 each. Thus with

probability at least 1 − �/n3, for every i ∈ [1, . . . , �],
all queries in Q(i) are i-balanced with respect to the

partition Γ(�). If this event occurs, the adversary answers

all queries in Q(�) with respect to the partition Γ(�),

and once again, by Lemma 8, answers to all queries in

Q(1),Q(2), ...,Q(�−1) remain unchanged if we answer

them using the partition Γ(�). The game then continues

to the next round. Otherwise, with probability at most

�/n3 ≤ 1/n2, the game terminates and the adversary

reveals the entire partition Γ(�−1) to the algorithm.
Summing up over all rounds 1 through s ≤ r

2 − 1,

the probability that the game reaches round s is at least

1 − s/n2 ≥ 1 − 1/n. This, in turn, implies that with

probability ≥ 1− 1
n , the random equipartition P satisfies

the following property : all the queries in Q(i) are i-
balanced with respect to P for all i ∈ [1..s]. Now,

since s ≤ r
2 , by Lemma 7 we get that the answers

Ans(1), . . . ,Ans(s) given to these queries are the same

for fP and f∗P . Hence the algorithm cannot distinguish

between these two cases. This completes the proof

of Theorem 1.
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