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Abstract
In this work, an alternative scheme to estimate the resistivity and ionization energy of Al-rich
p-AlGaN epitaxial films is developed using two large-area ohmic contacts. Accordingly, the
resistivities measured using current–voltage measurements were observed to corroborate the
Hall measurements in the Van der Pauw configuration. A free hole concentration of
∼1.5 × 1017 cm−3 and low ionization energy of ∼65 meV in Mg-doped Al0.7Ga0.3N films is
demonstrated. Nearly an order of magnitude lower hydrogen concentration than Mg in the
as-grown AlGaN films is thought to reduce the Mg passivation and enable higher hole
concentrations in Al-rich p-AlGaN films, compared to p-GaN films. The alternate methodology
proposed in this work is expected to provide a simpler pathway to evaluate the electrical
characteristics of Al-rich p-AlGaN films for future III-nitride ultraviolet light emitters.

Keywords: III-nitride, Mg-doped AlGaN, ionization energy, mobility, contact resistance

(Some figures may appear in color only in the online journal)

1. Introduction

Al-rich AlGaN has demonstrated applicability for ultravi-
olet (UV) light emitters used in applications like water ster-
ilization, UV curing, biomedical instrumentation, etc [1, 2].
These emitters require technologically relevant n-type and p-
type resistivities in Al-rich AlGaN films for efficient injec-
tion of electrons and holes into the quantum well(s), where
they recombine. While a low resistivity of <1 Ω cm in Al-
rich n-AlGaN (>60% Al mole fraction) films has been widely
reported [3–5], achieving a desirable resistivity of <10 Ω cm
in Al-rich p-AlGaN films is still a major challenge [6–8].
High resistivity in p-AlGaN has been primarily attributed to

∗
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the high acceptor ionization energy (EA) of Mg, low solu-
bility of Mg leading to its incorporation in electrically inact-
ive sites and relatively low formation energy of compensating
defects such as nitrogen-vacancies and Mg-nitrogen vacancy
complexes [9]. The value of EA is believed to increase lin-
early with Al mole fraction from ∼120–200 meV (x = 0)
[10–12] to ∼510 meV (x = 1) [6] in p-AlxGa1−xN. The res-
ulting low free hole concentration at room temperature (RT)
leads also to a poor ohmic contact formation and a signific-
ant power loss during the device operation [13]. To overcome
this difficulty imposed by high EA in p-AlGaN films, a thin
p-GaN layer is typically used for p-side ohmic contact forma-
tion in III-nitrideUV light emitters [14, 15]. This technique not
only introduces processing complexity but also promotes re-
absorption of emitted light (in the p-GaN layer due to a lower
bandgap), thereby reducing the external quantum efficiency
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[16]. Thus, a direct ohmic contact formation to the Al-rich p-
AlGaN epitaxial films is necessary to achieve highly efficient
UV light emitters. This necessitates the realization of Al-rich
p-AlGaN with a low EA that would result in a high free carrier
concentration [13].

Interestingly, a resistivity of 47 Ω cm and a low ionization
energy of <100 meV was reported by Kinoshita et al [17] for
p-Al0.7Ga0.3N by heavy doping with Mg (∼6 × 1019 cm−3).
The lower ionization energy was tentatively attributed to an
alternate conduction mechanism such as hopping conduction
and shows a pathway to achieve higher conductivity in p-
AlGaN at higher Mg doping concentrations as long as the
compensation is reduced. Two modified approaches have been
recently developed to achieve a higher free carrier concentra-
tion in Al-rich p-AlGaN films. These include the distributed
polarization doping technique, which uses a linearly, com-
positionally graded Mg-doped AlGaN layer [18–20], and the
short period superlattice technique, which uses superlattice
structures consisting of alternate p-AlxGa1−xN/p-AlyGa1−yN
(0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1, x ̸= y) layers [21, 22]. These tech-
niques demand precise control over thickness and composi-
tion in the AlGaN epitaxial films. A few reports have high-
lighted the possibility of achieving a low EA inMg-doped bulk
Al-rich p-AlGaN films [17, 23]. However, poor hole mobil-
ity, due to alloy scattering in Al-rich p-AlGaN [24], along
with poor ohmic contacts restricted the determination of EA

using the traditional DC Hall measurement due to low Hall
voltages.

In this work, we report on the observation of low acceptor
ionization energy of ∼65 meV in Mg-doped p-Al0.7Ga0.3N
epitaxial films measured using ACHall measurements. A sim-
pler methodology (using two large area Ni/Au contacts) to
estimate the EA in Al-rich p-AlGaN films using temperature-
dependent current–voltage (I–V) measurements is shown to
corroborate the Hall measurements. The benefit of a sig-
nificantly larger change in the temperature dependence of
free hole concentration as compared to the hole mobility
is shown to be effective in determining the EA using I–V
measurements.

2. Materials and methods

Mg-doped p-Al0.7Ga0.3N films were grown on sapphire sub-
strates using low-pressure metalorganic vapor phase epitaxy
(LP-MOVPE) [25, 26]. The reactor pressure was kept con-
stant at 20 Torr throughout the growth. The growth consisted
of a 400 nm thick AlN layer, followed by a 600 nm Mg-
doped p-Al0.7Ga0.3N layer. Trimethylaluminum, triethylgal-
lium, and ammonia gas were used as the Al, Ga, and N
precursors, respectively. The film was doped with Mg using
Bis-cyclopentadienyl-magnesium (Cp2Mg) to a doping level
of ∼2 × 1019 cm−3. The p-Al0.7Ga0.3N films were grown at a
temperature of 1100 ◦C in H2 diluent/carrier gas with a total
reactor flow rate of 11 slm. The V/III ratio was kept at 2000 to
minimize the incorporation of V3+

N self-compensating defects
in p-Al0.7Ga0.3N [17]. After the growth, the Mg dopant activ-
ation anneal was performed either in air or N2 ambient. Few

samples were not annealed, whereas the dopant activation tem-
perature used for other samples used in this work will be dis-
cussed later. All the activation anneals were carried out for
20 min. Anneals under air ambient were carried out inside a
tube furnace, whereas anneals under N2 ambient were carried
out inside the LP-MOVPE chamber.

For the large area ohmic contact formation, the activated
p-Al0.7Ga0.3N wafer was cleaned using acetone, methanol,
and DI water, followed by dipping in 1% HF and hot 1:1
HCl:H2O solutions [13]. Conventional photolithography was
used to pattern the contacts on p-Al0.7Ga0.3N layers, followed
by the metal deposition and lift-off. Standard Ni (20 nm)/Au
(40 nm) contacts were deposited using ultra-high vacuum e-
beam evaporation (base pressure: 1 × 10−9 Torr). The con-
tacts were annealed at 600 ◦C for 10 min in air ambient. The
contact geometry consisted of an infinite area contact, a known
diameter large-area contact, and a known separation between
the contacts. In this work, the diameter of the large area con-
tact and the separation between the contacts were chosen to be
600 µm and 100 µm, respectively. For ACHall measurements,
Ni/Au contacts were deposited and annealed on a square-
shaped sample using the Van der Pauw geometry. AC Hall
measurements were performed in an 8400 series LakeShore
AC/DC Hall measurement system using a magnetic field
and excitation field frequency of ∼0.62 T and 100 mHz,
respectively.

For comparing the EA in p-Al0.7Ga0.3N with p-GaN, a p-
GaN reference sample having a similar Mg doping concentra-
tion (∼2× 1019 cm−3) was also grown on a sapphire substrate.
Further details about the p-GaN growth and surface cleaning
procedures can be found elsewhere [10]. Standard Ni/Au con-
tacts with geometry similar to the p-Al0.7Ga0.3N were formed
on p-GaN for I–V (large area contacts) and Hall measurements
(Van der Pauw geometry). Temperature-dependent I–V meas-
urements were performed using Keithley 4200 semiconductor
parameter analyzer. Calculations and curve fittings were car-
ried out using MATLAB software. Doping levels, oxygen and
carbon impurity concentrations were measured using second-
ary ion mass spectroscopy (SIMS) performed by EAG.

3. Results and discussion

The variation of free hole concentration and hole mobility in
p-Al0.7Ga0.3N and the p-GaN reference sample were meas-
ured using Hall measurements, as shown in figure 1(a). A RT
free hole concentration of∼1.5× 1017 cm−3 is obtained in p-
Al0.7Ga0.3N, which increases to 4-5 × 1017 cm−3 at temper-
atures of actual light emitter operation (∼100 ◦C) [10]. The
variation of free hole concentration with temperature (T) in
p-GaN is observed to show a larger slope compared to the p-
Al0.7Ga0.3N. The free hole concentration (p) was fitted using
the following equation to extract EA [10]:

p(p+ND)

NA −ND − p
=
NV

g
exp

(
−EA

kT

)
, (1)

where ND is the compensating donor concentration, NA is
the Mg doping concentration, NV is the effective density of
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Figure 1. The variation of (a) free hole concentration and (b) mobility in p-GaN and p-Al0.7Ga0.3N layers as observed using Hall
measurements.

Figure 2. (a) Contact geometry used to determine EA in p-Al0.7Ga0.3N; (b), (c) I–V characteristics of Ni/Au contacts to p-Al0.7Ga0.3N for
different activation anneal schemes, and (d) current at 50 V through contacts fabricated across the wafers either non-activated or activated
under N2 ambient.

states in the valence band, g is the acceptor degeneracy factor
(g= 4 for holes) and k is the Boltzmann constant. The ioniza-
tion energy for Mg in p-GaN reference wafer was observed to
be ∼120 ± 5 meV, closely resembling the previously repor-
ted values for p-GaN [11, 12]. In contrast, Mg doping in p-
Al0.7Ga0.3N showed an EA of ∼65 ± 8 meV for a similar
temperature range. The corresponding values of ND derived
using the least-square error technique were observed to be
∼1.5 × 1019 cm−3 and ∼5 × 1018 cm−3 in p-AlGaN and p-
GaN, respectively. The mobility follows a rather shallow trend

with temperature change, as observed in figure 1(b). From RT
to ∼85 ◦C, the mobility is observed to be nearly constant,
while the hole concentration changes significantly. Therefore,
the variation in resistivity with temperature is primarily caused
by the change in free hole concentration in the epitaxial films.
This indicates that the variation in sheet resistivity observed in
I–V measurements can also be used to estimate the acceptor
EA. To verify this hypothesis, the resistivity was recorded
using I–V measurements using the contact geometry shown
in figure 2(a). Two large area ohmic contacts were fabricated
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Figure 3. I–V characteristics of Ni/Au contact to (a) p-GaN and (b) p-Al0.7Ga0.3N having the contact geometry shown in figure 2(a).

on the p-GaN and p-Al0.7Ga0.3N to ensure low contact
resistance.

Figures 2(b) and (c) shows the I–V characteristics of
standard Ni/Au ohmic contacts to p-Al0.7Ga0.3N for differ-
ent activation schemes. Unlike p-GaN, p-Al0.7Ga0.3N films
showed reasonable current flow through the Ni/Au contacts
even without activation anneal, as observed in figure 2(b). An
increase in the current was observed after an activation anneal
at 800 ◦C under N2 ambient. Further increase in the activation
anneal temperature in N2 ambient resulted in a lower current
through the contacts, likely due to Mg self-compensation or
formation of vacancy-related complexes [9]. On the contrary,
a conventional activation scheme typically performed for p-
GaN (600 ◦C–700 ◦C in air ambient) was observed to res-
ult in resistive I–V characteristics for p-Al0.7Ga0.3N, shown
in figure 2(c).

The nonlinear threshold-type I–V characteristics can be
attributed to the commonly observed potential barrier at the
metal-semiconductor interface [13]. Up to a certain turn-on
voltage (V turn-on), the current through the metal-semiconductor
interface is restricted by the high contact resistance arising due
to the barrier potential. However, once applied voltage exceeds
V turn-on, the Ni/Au contact starts conducting and the current is
mostly limited by the sheet resistance of the semiconductor. A
higher V turn-on observed for air annealed p-Al0.7Ga0.3Nmay be
due to the formation of a thin AlOx layer after the activation
anneal. The observed increase in V turn-on at higher air anneal
temperatures (in air ambient) further reaffirms the possibility
of forming AlOx. The variations in current through the con-
tacts in different areas of the wafer either without activation
anneal or activation anneal under N2 ambient are highlighted
in figure 2(d). In general, p-Al0.7Ga0.3N film that had an activ-
ation anneal at 800 ◦C under N2 ambient showed a higher cur-
rent compared to any other activation anneal schemes. Thus,
the activation anneal for p-Al0.7Ga0.3Nwas fixed at 800 ◦C for
20 min in N2 ambient for the remaining analyses.

Temperature-dependent I–V characteristics of Ni/Au
ohmic contact to the p-GaN and p-Al0.7Ga0.3N samples hav-
ing the large area contact geometry are shown in figure 3.
Temperature range was limited to ∼400 K so that mobil-
ity remains nearly constant (see figure 1(b)). Significantly

higher hole mobility in p-GaN results in lower sheet resist-
ance and higher current values. However, a higher V turn-on

at the metal/p-Al0.7Ga0.3N interface indicates a larger barrier
potential. At an applied voltage much larger than the V turn-on,
the differential resistance (RDiff) from the I–V characteristics
at different temperatures can be written as:

RDiff = RCI + RCL +RSemi, (2)

where RCI, RCL, and RSemi are the contact resistance of infin-
ite area outer contact, large area inner circular contact, and
the semiconductor sheet resistance of p-GaN or p-Al0.7Ga0.3N,
respectively. The values of RDiff for the p-GaN and p-AlGaN
films were calculated from I–V curves in the range 5–10 V
and 40–50 V, respectively. Since the contacts occupy a large
area, the (RCI + RCL) term of equation (2) can be considered
much lower than the RSemi. Thus, RDiff can be used to estimate
the resistivity of the semiconductor at different temperatures
using the relation [27]:

ρI−V =
RDifftepiF

C
, (3)

where ρI−V is the semiconductor resistivity (in Ω cm) to be
calculated from the temperature-dependent I–V characterist-
ics, tepi is the thickness of the semiconductor epitaxial film, F
is the area factor, and C is a correction factor given as:

F=
2πrS
d

(4)

C=
rs
d
ln

(
rs + d
rs

)
(5)

where rS is the radius of the inner circular contact and d is
the contact separation. For the geometry used in this work,
rs ≈ 330 µm, and d ≈ 100 µm, the values of C and F were
found to be ∼0.9 and ∼18.7, respectively. The resistivities of
p-GaN and p-Al0.7Ga0.3N as calculated from the I–V charac-
teristics using equation (2) and as measured by Hall are shown
in figure 4(a).

The resistivities of p-GaN and p-Al0.7Ga0.3N measured in
theVan der Pauw geometry and calculated from the I–V curves
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Figure 4. (a) Resistivity (ρ) vs 1000/T plot for p-GaN and p-Al0.7Ga0.3N obtained from Van der Pauw and I–V measurements and
(b) ρ−1T−1.5 vs 1/kT plot (up to ∼85 ◦C) where ρ is taken from the I–V measurements.

agree well, indicating the accuracy of the resistivity extrac-
tion methodology using large area contacts. To the 1st-order
approximation (consideringNA andND ≫ p), equation (1) can
be rewritten as:

p≈ (NA −ND)NV

gND
exp

(
−EA

kT

)
. (6)

In the above equation, NA, ND, and g are independent of tem-
perature, whereas NV has a temperature dependence (NV ∝
T1.5). As observed in figure 1(b), the mobility is nearly con-
stant up to ∼85 ◦C. Therefore, multiplying both sides of
the equation (6) with electronic charge (q) and mobility, an
equation relating the resistivity and EA can be written as:

ρ−1T−1.5 ≈ β exp

(
−EA

kT

)
, (7)

where β is a constant term comprising the multiplication of q,
mobility, and all temperature-independent terms of equation
(6), and ρ is the resistivity calculated from the I–V measure-
ments. Therefore, the slope of ln(ρ−1T−1.5) vs 1/kT charac-
teristics can be used to extract the EA if the mobility is con-
stant. Values of EA derived from the temperature-dependent
I–V measurements and equation (7) are ∼105 meV and
∼55 meV for p-GaN and p-Al0.7Ga0.3N, respectively. Error
margin observed in both these values are within ±5 meV.
Both values are in good agreement with the values obtained
using Hall measurements (figure 1(a)). Therefore, I–V meas-
urements using large area contacts offer a simple methodo-
logy to complement the EA in Al-rich p-AlGaN films estim-
ated using Hall measurements.

The low EA observed in Al-rich p-AlGaN films indic-
ates a significant contribution from hole hopping or impur-
ity band conduction mechanism instead of a pure valence
band transport as suggested in [17]. Similar behavior has been
observed in p-type GaN and InGaN films, although at relat-
ively low temperatures [28, 29]. The observation of impurity
band conduction at RT in this study is possibly related to the
low valence band mobility in Al-rich AlGaN, although more
investigation is necessary to quantitatively understand the

Figure 5. Atomic concentration of Mg and H in p-GaN and
p-Al0.7Ga0.3N films; HB and HA represents the H concentration
before and after dopant activation anneal, respectively.

individual contributions from the valence band and impurity
band transport mechanisms. Interestingly, suppressed incor-
poration of H was observed during the growth of p-AlGaN
films. Figure 5 shows the concentration of Mg and H in
p-GaN and p-Al0.7Ga0.3N films measured using SIMS. The
concentration of H in p-GaN closely follows the Mg dop-
ing concentration (figure 5), which is believed to passivate
a majority of the Mg-dopants by forming Mg–H complexes
[30–33]. On the contrary, H concentration in p-Al0.7Ga0.3N
film was observed to be nearly an order of magnitude lower
for a similar Mg doping concentration. Therefore, the dens-
ity of the Mg–H complexes in p-Al0.7Ga0.3N is likely to be
much lower than that of p-GaN, indicating a higher concentra-
tion of non-passivated Mg dopants in as-grown p-Al0.7Ga0.3N.
Accordingly, appreciable conductivity was observed for non-
activated p-Al0.7Ga0.3N films (figures 2(b) and (d)). This con-
trasts with non-activated p-GaN films that are by and large
highly resistive. Further reduction of H concentration in p-
Al0.7Ga0.3N is possible by performing an activation anneal
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Table 1. Recent reports on p, ρ and EA of bulk p-AlGaN films at RT.

Composition p (cm−3)
ρ
(Ω cm)

EA

(meV) Reference

p-Al0.7Ga0.3N ∼1.5 × 1017 ∼91 ∼65 This work
p-Al0.7Ga0.3N 1.3 × 1017 47 47–72 Kinoshita et al

[17]
p-Al0.6Ga0.4N 8.7 × 1017 0.7 ⩽11 Liu et al [9]
p-Al0.4Ga0.6N 3.26 × 1017 — 46 Chen et al [34]
p-Al0.4Ga0.6N 4.97 × 1018 0.93 39 ± 3 Qiu et al [8]

at 800 ◦C under N2 ambient, as observed in figure 5. Des-
pite the low ionization energy, a lower free hole concentra-
tion was observed in p-Al0.7Ga0.3N compared to p-GaN. This
is attributed to a higher density of (non-hydrogen) donor-type
compensating point defects present in the p-Al0.7Ga0.3N films
such as nitrogen-vacancies and Mg nitrogen-vacancy com-
plexes. Indeed, a high ND of 1.5 × 1019 cm−3 was estim-
ated from charge balance fittings to the temperature-dependent
Hall measurements in figure 1(a). Firstly, this is related to
relatively low formation energies of these defects in Al-rich
AlGaN as compared to GaN. Secondly, the high density of
non-passivated Mg atoms would shift the quasi-Fermi level
closer to the valence band during the growth, further reducing
the formation energy of these defects. Furthermore, a high cur-
rent observed in non-activated films (figures 2(b) and (d)) also
indicate that a large number ofMg dopants successfully substi-
tuted the group-III elements in p-Al0.7Ga0.3N during growth.
A comparison of the values of free hole concentration (p), res-
istivity (ρ) and EA obtained in this work with other literat-
ure reports for bulk Mg-doped AlGaN films are highlighted
in table 1.

At this point, it is necessary to highlight the importance
of the I–V measurement methodology developed to estim-
ate the EA in Al-rich p-AlGaN films. The low hole mobil-
ity, likely due to significant alloy scattering or contributions
from hopping transport in p-AlGaN [17] results in relatively
low Hall coefficients. This poses limitations in the accurate
determination of free hole concentration and EA using the
commonly used DC Hall measurements. The AC Hall meas-
urements employed in this work can reliably measure much
lower Hall coefficients by effectively reducing the error com-
ponents involved. It has to be noted that the resistivity extrac-
tion methodology may result in an overestimation of EA if the
mobility variation with temperature is large compared to the
change in carrier concentration, as seen in figure 1. Further-
more, the estimation of EA highlighted in this work may not
be valid for a wider temperature range, as different ionization
or conduction mechanisms dominate at different temperatures
in p-AlGaN [9].

Furthermore, both the n-type and p-type contacts to III-
nitrides are alloyed contacts where the contact resistance is
a strong function of the free carrier concentration in the epi-
taxial film [13, 35], Hall measurements are trustable only
when the contacts used for the measurement possess accept-
able resistivity values. The coincidence in value of EA estim-
ated using Hall measurements and I–V measurements ensures

that Hall measurements performed on Al-rich p-AlGaN films
are trustable, and vice-versa. Thus, the alternate technique
(using large area Ni/Au contacts) used in this work cor-
roborates the resistivity and EA estimated using Hall meas-
urements. It is important to note that low mobility is det-
rimental for lateral devices where the current flow experi-
ences a high semiconductor sheet resistance in high-frequency
switching devices. On the other hand, the presence of a
high free hole concentration coupled with sufficient elec-
tric field can assist significant hole injection into the act-
ive region of vertical and/or quasi-vertical optoelectronic
devices. Finally, while Si-doping in Al-rich AlGaN is already
known to offer EA < 50 meV [4], a low value of EA in
Al-rich p-AlGaN films reported is considered to be instru-
mental in assisting the development of III-nitride UV light
emitters.

4. Conclusions

In this work, a low ionization energy (∼65 meV) is demon-
strated in p-Al0.7Ga0.3N bulk epitaxial films grown using LP-
MOVPE. Unlike p-GaN, nearly an order of magnitude lower
hydrogen concentration compared to the magnesium doping
concentration is observed in p-Al0.7Ga0.3N epitaxial films.
Furthermore, current–voltage measurements using large area
Ni/Au contacts were shown to corroborate the low ionization
energy observed in Al-rich p-AlGaN epitaxial films. Techno-
logically relevant free hole concentration of∼1.5× 1017 cm−3

observed in p-Al0.7Ga0.3N films in this study is prom-
ising toward the development of future III-nitride UV light
emitters.
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