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Abstract

®

CrossMark

Process chemical potential control and dislocation reduction were implemented to control

oxygen concentration in N-polar GaN layers grown on sapphire substrates via metal organic
chemical vapor deposition (MOCVD). As process supersaturation was changed from ~30 to
3400, the formation energy of the oxygen point defect increased, which resulted in a 25-fold

decrease in oxygen incorporation. Reducing dislocations by approximately a factor of 4 (to

~10° cm—?) allowed for further reduction of oxygen incorporation to the low-10'7 cm™

3 range.

Smooth N-polar GaN layers with low oxygen content were achieved by a two-step process,
whereas first a 1 pm thick smooth N-polar layer with high oxygen concentration was grown,
followed by low oxygen concentration layer grown at high supersaturation.

Keywords: oxygen, impurity, semiconductor, nitride, chemical potential, defect

(Some figures may appear in colour only in the online journal)

Gallium nitride is a wide bandgap semiconductor that has gen-
erated great interest in the field of rf and high-power electron-
ics [1, 2]. Being non-centrosymmetric, c-oriented films can be
grown in two different polar orientations, gallium-polar (0001)
or nitrogen-polar (000-1). The GaN wurtzite crystal structure
shows a deviation from the ideal wurtzite crystal structure,
giving rise to a spontaneous lattice polarization. It is the dir-
ection of this dipole which defines the polar orientation of
the film [3]. Traditionally, smooth epitaxial films with low
impurity incorporation were grown in the Ga-polar orienta-
tion while N-polar films inherently grew with a rough sur-
face morphology and high unintentional impurity levels. Des-
pite these drawbacks, N-polar epitaxial films have recently
attracted interest due to their applications in HEMTs with bet-
ter 2DEG confinement and scaling [4], and many challenges
of the N-polar epitaxy, including inversion domains (IDs),
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rough, hexagonal-hillock surface morphology, and uninten-
tional incorporation of oxygen as a shallow donor have been
mitigated or overcome[2]. Various studies have shown the
dependence of growth conditions, such as V/III ratio and
H,/N, diluent gas ratio (F-ratio) on the surface morphology
and unintentional impurity incorporation for both polarities
of GaN [5-9]. These efforts highlight a paradox in the path-
way toward achieving N-polar GaN films with a smooth sur-
face morphology and low unintentional oxygen incorporation.
The growth conditions that are required to mitigate oxygen
incorporation lead to a rough surface morphology, and those
that lead to a smooth surface result in high oxygen incorpor-
ation [2, 5, 6, 8—15]. The reduction of background impurities
has largely been addressed via empirical approaches for each
impurity being considered.

This work successfully addresses both challenges simul-
taneously: smooth N-polar GaN with low oxygen incorpor-
ation. In order to achieve this, a morphology control layer

© 2021 IOP Publishing Ltd
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is implemented in conjunction with chemical potential con-
trol (CPC) of the process that mitigates unintentional oxygen
incorporation. The CPC approach relates chemical potentials
of the growth species and point defects, providing a pathway
to maximize the formation energy of unwanted point defects,
and thus minimize their incorporation into the GaN film [16].
This model was first developed to control carbon incorpor-
ation in Ga-polar GaN and further demonstrated for com-
pensation control in Si-doped AlGaN [17]. The results of this
work demonstrate the generality of the CPC framework and
its applicability across different materials systems and point
defects.

Control of the supersaturation (and thus chemical potential
of On) can be achieved by the choice of growth temperature,
diluent gas, V/III ratio, as well as growth pressure. The rela-
tionship between these growth parameters and supersaturation
for the case of GaN and AlGaN has been previously described
by Mita et al and Washiyama et al [5, 6, 18] N-Polar GaN films
were grown on sapphire substrates with a miscut of 2° along
the m-direction in a vertical, cold-walled, rf-heated, low pres-
sure MOCVD reactor. A pressure of 20 Torr, growth temper-
ature of 1100 °C, and a metalorganic flow (triethylgallium) of
18 zmol min~!, with a total flow of 7.5 slm were maintained as
constants. The growth process was performed as follows: the
substrate was treated first with an H, etch for 7 min at 1100 °C,
followed by a 4 min nitridation step at 945 °C. This nitrida-
tion step is essential for obtaining a N-polar film [3, 19-24].
A 20 nm-thick low temperature GaN buffer is then deposited
and annealed under N; and NHj3 at 1100 °C for 6 min. Finally,
1 pm thick N-polar GaN films were grown with V/III ratios
varying from 100 to 2000 by adjusting the NH; flow within
the range of 0.3 slm to 6 slm under both H, and N, diluent
gases.

Since oxygen acts as a shallow donor in N-polar GaN,
the oxygen concentration was estimated from the free carrier
concentration obtained by Hall measurements [2], using an
Ecopia-3000 Hall Effect Measurement System. The measure-
ments were done at room temperature in the van der Pauw geo-
metry using indium contacts. The carbon concentration in the
N-polar GaN films was about two orders of magnitude lower
than the oxygen concentration [9], thus, the compensation was
assumed to be negligible.

Screw and edge dislocation densities were estimated from
the full width at half maxima (FWHM) of the x-ray (002) and
(302) omega rocking curves, respectively, using the equation

p= %;72 [25], where 3 is the FWHM in angular units, and
b is the Burgers vector of the dislocation. The measurement
was performed with a Philips X’Pert MRD with a Cu K, x-ray
source in a double crystal configuration. The surface mor-
phology and roughness of the films were analyzed using an
Asylum Research MFP-3D atomic force microscope (AFM)
in tapping mode. The RMS roughness values were obtained
from a 90 x 90 pm? scan area.

As previously described, the reduction of oxygen in the
film is achieved by implementing CPC. The model provides
a relationship between the change in supersaturation and the
equilibrium partial pressures of Ga and N in the gas phase,
as well as the formation energy of point defects in the film

[16]. The point defect of interest in this work is oxygen as
a nitrogen substitutional impurity. First, it is necessary to
relate the partial pressures of the limiting reactant species
that affect supersaturation during MOCVD growth. In this
case, this is considered for gallium, thus the supersaturation is
given by:

P, — PG, AP,
- )

(1)
PGa PGa

0Ga —
where Pg, is the input partial pressure of the Ga species,
and Pg, is the equilibrium vapor pressure of Ga over GaN at
growth temperature. The chemical potential of gallium relat-
ive to its standard state is then related to the supersaturation as

[iGa ~ —kTIn (1 + o). 2)

At equilibrium, the change in chemical potentials of gallium
and nitrogen for a binary alloy are related by

A/j/Ga + A,U/N = 07 (3)
thus,
A,uN = —A/J,Ga. (4)

By calculating the change in chemical potential of gallium, the
change in chemical potential of nitrogen is known via equation
(4). For the case of oxygen as a nitrogen substitutional impur-
ity, the chemical potentials relate to the energy of formation
of the point defect through

E'(ON) = Ewet (Ox) + pin — pio + [Er + Ev],  (5)

where E..; (On) A is the free energy of the crystal with a single
oxygen point defect compared to the free energy of an ideal
crystal, Ep is the Fermi energy with respect to the valence band
maximum, and Evy is the valence band energy. The boundary
phase of oxygen is not known and is assumed to be either O,
or Ga,0s.

From equations (5) and (4), considering a change in the
nitrogen chemical potential through change in the growth
conditions,

AE' (Ox) = (Apn) assuming O, boundary phase (110 = 0)
(6)

Or,

1
AE' (Oy) = (3Auo> assuming Ga, 03 boundary phase
x (3ApN +2Auga = 0). )

It is clear that in either case, the formation energy increases
with increase in nitrogen chemical potential. Using the rela-
tionship in equation (2), the change in the formation energy is
hence proportional to:

AE' (Oy) x Tln (UP) : (8)

a0
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where e, is the input supersaturation and oy is the super-
saturation at a reference growth condition. It is important to
note that the formation energy of oxygen point defect depends
also on Ep, which is assumed to be pinned and constant at
the surface of GaN. This relationship illustrates the available
process ‘knobs’ to achieve the desired suppression of oxygen
incorporation.

The thermodynamic supersaturation in the gas phase was
calculated from growth temperature, partial pressures of gas
species, choice of diluent gas, total flow rate, and reactor pres-
sure, using a previously established framework [6, 16, 18, 26].
In addition to these input parameters, calculating the super-
saturation requires an estimate of the ammonia decomposi-
tion efficiency, usually referred to as the o parameter. This
parameter is reactor, pressure, flow rate, and temperature
dependent and is estimated by thermodynamic analysis and
fitting of experimental data as described by Washiyama et al
[16, 18]

The change in the chemical potential of nitrogen (Apun)
was calculated relative to a reference state with a low super-
saturation value of 30, achieved under H, diluent and a V/III
ratio of 100. For this reference state, the oxygen incorpora-
tion into the film was mid-10'" cm~3. Higher supersaturations
and pn, needed to increase the formation energy of the oxy-
gen point defect according to equation (6), were achieved by
increasing the V/III ratio under H, diluent or by replacing H,
diluent for N,.

Figure 1 shows the measured oxygen concentration as a
function of supersaturation and Apy for 1 pum thick N-polar
GaN films with a dislocation density of ~4 x 10° cm™2. As
the V/III ratio was changed from 100 to 2000 under H, dilu-
ent (supersaturation increased from ~30 to 1800), the oxygen
incorporation in the film decreased by more than one order
of magnitude, to mid-10'® cm™3. A further increase of super-
saturation to ~3400 was achieved at a V/III ratio of 2000 by
swapping the diluent gas for N, which further reduced the
oxygen concentration to 2 x 10'® cm™3, as shown by the green
data point in figure 1

In addition to the process conditions, it was found disloca-
tions played an important role in unintentional oxygen incor-
poration into the N-polar GaN films [27]. As illustrated in
figure 2, the oxygen concentration decreases by one order of
magnitude as the dislocation density decreased by about a
factor of four. The dislocation density was reduced first by
increasing the thickness of the N-polar GaN films under high
supersaturation (3400) from 1 pm to 2.6 pum, which resulted
in a 1.5x edge dislocation density reduction [28-32]. A fur-
ther reduction by a factor of two was achieved by increasing
the miscut of the sapphire substrate from 2° to 4°. A similar
dependence of dislocation density on wafer miscut in N-polar
GaN films was observed by Shen et al [33] and Keller er al
[28] It is interesting to note that previous work by Fichten-
baum et al showed no correlation between the sapphire wafer
miscut and oxygen concentration in the N-polar GaN films [9].

For Al-rich AlGaN, it has been shown that dislocations
impacted both impurity incorporation as well as compensa-
tion, which was reflected in a simultaneous decrease in the
free carrier concentration and their mobility [27]. As can be
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Figure 1. Measured oxygen concentration—corresponding to the
carrier concentration, and mobility as a function of o, and Aun.
The connecting lines are a to guide the eye only.
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Figure 2. Oxygen concentration and mobility as a function of edge
dislocation density. The connecting lines are a to guide the eye only.

seen in both figures 1 and 2, as the n-type carrier concentration
decreases, mobility increases, indicating insignificant com-
pensation. As expected for an uncompensated semiconductor
and seen in figure 2, as the impurity concentration decreases
by an order of magnitude, the mobility more than doubles to
225 cm? V s~ !, Thus, through the reduction of the dislocation
density, the oxygen concentration in the N-polar GaN was fur-
ther reduced by one order of magnitude to 2 x 10'7 cm™3.

In addition to low oxygen concentration, a smooth sur-
face morphology is desired for the realization of N-polar GaN
based devices. However, this presents a challenge due to the
fact that a smooth N-polar surface requires growth under low
supersaturation and, as shown by this work, a low uninten-
tional oxygen incorporation requires a high supersaturation
[5]. This conflicting requirement was solved by an engineered
structure, as shown in figure 3-left. First, a 1 pum thick sur-
face morphology control layer (SMCL) was grown under a low
supersaturation, followed by a 1 um thick layer grown at high
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Surface

Epitaxial Film

Sapphire

Figure 3. (left) Engineered growth structure for smooth N-polar GaN, (center) surface morphology of the SMCL (RMS roughness 3 nm),

(right) step-bunched morphology of the low oxygen layer: RMS roughness = 7 nm, [O] = 2 x 10" cm

supersaturation. The unintentional oxygen incorporation in the
SMCL was high, however, the surface was relatively smooth,
with an RMS roughness value of 3 nm (from 90 x 90 pm?
scan), as shown in figure 3-center. The second layer, grown
under high supersaturation, retained the step-bunched mor-
phology of the SMCL layer with an RMS roughness of 7 nm
(figure 3-right) and low unintentional oxygen incorporation.
It is interesting to note that if this low oxygen concentration
layer were grown directly on a sapphire substrate, it would be
characterized by a high density of hexagonal hillocks and an
RMS roughness of a few hundred nm [5].

A CPC framework, relating the supersaturation to the form-
ation energy of the oxygen point defect, and dislocation reduc-
tion processes were implemented to mitigate unintentional
oxygen incorporation in N-polar GaN films. CPC reduced the
oxygen incorporation from mid-10' cm~3 to low-10'® cm 3.
Decreasing the dislocation density by about a factor of four
resulted in further reduction of oxygen incorporation and val-
ues as low as 2 x 10'7 cm~3 were demonstrated. N-Polar GaN
layers featuring a smooth surface and low oxygen concentra-
tion were achieved through the implementation of a surface
morphology control layer.
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