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ARTICLE INFO ABSTRACT

Keywords: Public understanding of home energy use is rife with biases and misunderstandings that can stymie the adoption
Cognitive shortcuts of efficient technologies and conservation practices. Studying how energy experts make energy-related judg-
Intslerv1e}/vs ments can help design decision support tools to correct misperceptions held by novices. Here we conduct in-
ﬁztrlcn;zggz terviews with electrical engineers (n = 10), physicists (n = 10), and energy analysts (n = 10) to document expert

judgments about energy use and to identify their cognitive shortcuts (heuristics) for household energy decision
making. Performance on an energy estimation task confirmed that energy experts have more accurate estimates
of home energy use than novices. We document 24 unique expert heuristics related to device functions, com-
ponents, and observable cues used by experts while making energy-use judgments. A follow-up survey with the
experts indicated that these expert heuristics are generally more accurate than novice heuristics. The library of
heuristics created in this study can be useful additions to education programs designed to improve public energy
literacy and decision making.

Expert elicitation
Decision support

1. Introduction

Residential end-use accounted for 38% of electricity sales in the
United States in 2019 [1]. Efforts to mitigate climate change, among
other causes, stand to substantially benefit from curbing electricity use
through greater uptake of efficiency and conservation measures at the
household level [2,3]. However, productive engagement with the public
about household energy use is complicated by challenges related to
misperceptions of effective ways to conserve energy in our lives.

Public understanding of energy use is rife with systematic and
problematic biases. Commonly, people do not know the difference be-
tween energy and power [4] and do not know what are the most
effective changes they can make to decrease their household energy use.
For example, when asked what is the single most effective thing they can
do to decrease energy use, participants’ modal response has been
“turning off the light” since the 1980s [5-7]. Although turning off the
light is easy to remember, it is not the most effective action one can take
to decrease their energy footprint [2]. Turning off the lights exemplifies
the stark differences between public or “folk” understanding and expert
analysis of effective ways of conserving energy use [2].

Although there are many tools that exist to teach people about what
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are effective energy conservation strategies, they come with varying
degrees of difficulty in accessibility and use. For example, there are high
search costs associated with finding an efficient home or efficient ap-
pliances [8]. Programs like Energy Star use simple decision architecture
(employing effective ways of presenting information and choices) [9,10]
to identify the most efficient appliances in class leads consumers to save
energy and money. A complementary approach to improving public
understanding of energy use lies in correcting the perceptions and
mental models people use to make decisions about energy, and testing
whether that leads to energy savings.

One key element of decision making is the use of heuristics, simple
rules and principles used to make judgments without deliberate and
elaborate analytical reasoning [11]. While heuristic processes can often
yield valid, “good enough” results [12], they can also lead to biased
assessments [13]. (These competing perspectives on heuristics are
sometimes referenced as the “heuristics-and-biases” paradigm associ-
ated with bounded rationality versus the “fast-and-frugal” paradigm
highlighting the adaptive nature of heuristic use [14].) Aiding cognitive
efficiency, heuristics guide our attention, serving to sort cues and
distinguish between critical and non-critical information.

When it comes to novice energy perceptions (i.e., how people
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without professional experience or expertise with energy understand the
topic of energy use), people tend to pay attention to cues that may not be
indicative of the amount of work being done or energy being used by the
device. Past research found that undergraduate participants grouped
appliances based on functionality and size but not in terms of energy use;
some large appliances were perceived to use more energy even though
actual energy use was low [15]. Other work indicates that size is a
primary driver of novice energy estimates [16] and that the frequency
with which people interact with the device is used as a cue to indicate
how much energy it uses [17].

To create a comprehensive catalogue of novice energy heuristics, van
den Broek and Walker [18] asked undergraduate participants to work in
groups to rank order the energy use of items on a list of household ap-
pliances. Through thematic analysis of these group discussions, nine
heuristic themes and 24 separate heuristics were identified. The most
common heuristic themes related to comparisons between devices (e.g.,
devices with related functions use similar amounts of energy, as in DVDs
players and televisions), the time-based aspects of device use (e.g., the
faster a device completes a task, the more total energy it uses), as in a
rapid-boil kettle, and the physical features of devices (e.g., the number
of components a device contains, as in a computer with added drives and
ports). In terms of individual heuristics, the most frequently observed
heuristics focused on duration of use, device category, and heat pro-
duction. Subsequently the authors incorporated one of the more
frequently evoked heuristics, “a good way to estimate how much energy
a household device uses is to think about how much heat it produces”,
into educational materials, and was shown to improve performance by a
new study group on an energy-use rank-ordering task [18].

Folk cues like frequency of use can lead to inaccurate estimates of
energy use [17]. In addition to inaccurate estimates, people also have
incorrect theories for how basic energy systems work. For example,
people commonly use valve-theory to explain how thermostats work, i.
e., the thermostat controls the amount of heat, rather than feedback
theory where the thermostat senses the temperature and turns the
furnace on or off to maintain a given temperature [19].

We use the term cultural heuristic to indicate decision rules that are
salient in our culture but may not be the best or most accurate rules to
follow. “Turning off the lights” is a sticky and salient heuristic and is a
good example of an inaccurate cultural heuristic for the most effective
action to decrease energy use. Cultural heuristics are different from
natural heuristics such as anchoring and insufficient adjustment [13],
which are a function of the way our mind understands and interprets
data (psychophysics).

Cultural heuristics are also distinct from expert heuristics, which are
rules that experts use to distinguish between relevant and irrelevant
information and to navigate difficult decision landscapes. Subject-
matter experts distinguish themselves from novices by virtue of skills
acquired from collecting subject-specific knowledge and practices over
the course of many years of academic and professional experience
[20-22]. Experts develop a range of cognitive benefits and capacities
that improve performance on relevant tasks [23], including more ac-
curate mental representations of domain-specific tasks and protocols
[24] and better problem-solving strategies and strategy selection pro-
cesses [25]. Thus within the domain of energy, an expert would be
considered a person with extensive educational and professional expe-
rience with energy and energy-adjacent subjects.

Across a wide variety of domains, differences in judgments and be-
haviors between experts and novices often stem from differences in
perception. In many cases, these differences in perception themselves
turn on the expert’s deployment of categorical thinking that capture
important domain-relevant principles. Novice judgments are instead
often driven by surface similarities and potentially irrelevant relation-
ships or cues [24,26,27]. We posit that novice energy estimators are
often misled by surface similarities and simplistic heuristics in making
energy estimates, while experts are guided by deeper, more principle-
based causal explanations. Hence, it can be expected that expert
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heuristics, acquired, tested, and used over years of experience, would be
more accurate and effective than novice heuristics in making energy-
related judgments. An example of an expert heuristic in the energy
space is “large appliances that primarily heat or cool things use a lot
more energy than people think” [28]. Participants who were provided
this expert heuristic did better than the control condition in estimating
actual energy use by appliances [28].

It is important to note here that heuristics of all types by their very
nature are cognitive shortcuts that help people navigate complex deci-
sion making or judgment tasks. Even expert heuristics can lead to errors
in judgment. For the example above, there are some large appliances
that heat or cool but use relatively little energy compared to appliances
that do not (e.g., a refrigerator — a large appliance that cools — is rated at
~ 360 W whereas a vacuum cleaner — a smaller appliance that sucks air —
is rated at ~ 800 W). Although heuristics are not perfectly applicable in
every situation, thoughtfully developed heuristics can balance
simplicity (easy of use) and performance (they improve judgment ac-
curacy) such that their overall impact is to improve decision making.

All expertise is not the same. An important component of the domain
of energy use is the heterogeneity of relevant expertise: some experts
build and repair actual devices (electrical engineers), others (physicists)
deal with electricity and magnetism as general phenomena, still others
(energy analysts or technical subject matter experts) must combine
understandings of electrical devices and their principles with an un-
derstanding of usage in context. Thus, to catalog potentially useful
expert heuristics, it is critical to investigate the knowledge and decision
processes of multiple expert groups, as different experts may focus on
different features of energy and energy use.

Here we aim to create a library of expert energy heuristics for the
home and aim to answer three research questions: (1) Do experts in
energy-related fields have more accurate estimates of home energy use
than novices? (2) If so, what are some of the heuristics they use to make
their energy estimates quickly without using back-of-envelope calcula-
tions or basic memory recall? (3) How accurate do the experts find their
own heuristics relative to those associated with novices?

2. Methods
2.1. Recruitment

Expertise relevant to the domain of home energy use can be quite
diverse, and defining expertise is not an exact science. Some people
might deal with electricity and magnetism as a general, conceptual
phenomenon. Others design electrical devices, while still others
combine technical knowledge of devices with an understanding of actual
usage in the home. To cover each of these three prospective types of
energy-relevant expertise, ten experts each were recruited from three
professional categories: electrical engineers, physicists, and energy
analysts.

Markers of expertise include degree of education and amount of
experience [20,29]. Experts in the electrical engineering and physics
were recruited from their respective academic departments of several
colleges and universities located in the American Midwest and South-
east. Each of these experts held a PhD in their field of expertise and 19
out of 20 were tenured professors. Of the 20 experts in these two groups,
the amount of professional (post-education) experience ranged from 8 to
53 years, with a mean length of professional experience of 29 years.

Experts qualified as an energy analyst when their major professional
activity focused on energy use in the home. Energy analysts were
identified through web searches and the authors’ knowledge of the field.
Energy analysts worked in research institutions, energy non-profits,
energy consultancies, and other private-sector groups. As a group, en-
ergy analysts had 10 to 48 years of professional experience (mean 24
years), and all 10 experts held graduate degrees.

Only three of the 30 experts in our sample were female, and the
average age of our participants was 54 years.
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To gain a better understanding of how the participant viewed their
own expertise, we asked participants to describe whether they thought
their expertise in their field was relevant for estimating energy use of
home appliances. Experts rated the relevance of their expertise on a
Likert scale ranging from 1 (“not at all relevant™) to 7 (“highly rele-
vant”). Among electrical engineers, 40% rated their expertise as
“somewhat relevant” and 30% rated their expertise as “mostly relevant.”
Among physicists, 30% rated their expertise as “somewhat relevant” and
20% rated their expertise as “mostly relevant.” Among energy analysts,
40% rated their expertise as “somewhat relevant” and 30% rated their
expertise as “mostly relevant.” No expert deemed their expertise to be
“highly relevant” to the task of estimating appliance energy use.

Our experts also addressed how often they engage with members of
the general public on issues related to personal energy use. For this
question, 20% of electrical engineers, 0% of physicists, and 50% of en-
ergy analysts reported speaking to the public monthly, weekly, or daily.

Finally, 3% of our sample had a professional engineer certification,
10% had received training as an electrician, and none was certified to
conduct home energy audits.

Across all groups, participants were recruited via email. Prospective
recruits received at least one follow-up email message and some
received follow-up visitations at their publicly listed office. All partici-
pants were offered $20 for their participation. Of all participants, 57%
accepted this payment. Our total sample is 30 participants. The sample
size of our study was not based on the saturation of ideas but rather for
an exploratory study to extract and build a first of its kind “heuristics
library” for home energy use. Henceforth, we refer to our participants as
experts.

2.2. Procedure

Data on expert thinking was collected between March 2019 and
August of 2019. Where possible, interviews were conducted in person.
When distance or other constraints made in-person interviews not
feasible (for 15 experts), interviews were conducted over the phone or
via video chat, with quantitative data being collected through an online
survey platform.

Each session had two principal components: first a choice task and
second an appliance estimation task. (This order reverses the presenta-
tion of items in previous work [28].) Experts were also asked a series of
questions about energy use in their personal and professional lives as
well as a set of questions about their background and field of expertise.

Qualitative data was coded and analyzed using NVivo (v12) and
quantitative data was analyzed using R (v3.5.2). Analysis of variance
was used to assess differences in performance between expert categories.
T-tests were conducted to assess the performance of experts and their
heuristics relative to previously established novice baselines [18,28].
Pearson’s correlation coefficient was used to assess the relationship
between measures of expert performance and data about the experts
themselves. For all statistical analyses, a p-value of 0.05 was used as the
threshold for significance.

2.2.1. Choice task

In the choice task, experts were presented with nine sets of two or
three common household devices. For example, one set was a choice
between a window air conditioning unit and an electric oven. For each
set, experts were asked to state which of the presented devices would use
less energy than the other(s) given that all devices were run for the same
length of time. In total, 24 devices were used across the nine choice
tasks, covering the major categories of domestic electricity use: heating
and cooling, water heating, small and large appliances, lighting, and
electronics.

The choice task was paired with protocol analysis, wherein research
participants are asked to think aloud as they perform a task, thereby
providing instantaneous and unfiltered insight into the cognition asso-
ciated with completing the task [30]. In this case, experts were asked to
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verbalize their thinking and thought processes to the best of their abil-
ities while they selected the device that used the least energy in each
choice set. Experts were given practice exercises to accustom them to
thinking aloud [30]. When, in the middle of a given choice task set, an
expert spent a moderate amount of time without speaking, they were
given a gentle prompt to continue vocalizing their thoughts.

2.2.2. Appliance estimation

Following the choice task, experts were asked to provide their esti-
mates of the energy use of 17 household devices. To provide a concrete
reference point for quantifying their judgments about energy use, ex-
perts were told: “A standard incandescent light bulb uses about 100 units
of energy in one hour. When you are asked to estimate units of energy,
please compare each appliance to this light bulb. Think about whether
each appliance below uses less energy or more energy than this light
bulb. Please use this number to help you make your estimates.” (The
term “unit” was used rather than the more technical Watt-hour to be
consistent with previous research on energy estimation by the general
public, which tends to be less fluent with units of energy.) Based on these
instructions, experts were then asked to estimate the units of energy
used by these 17 devices when they are in use for one hour. To compare
expert performance with that of energy “novices,” we examined the
baseline data of the estimation task in previous work [28].

Data collection ended with a set of questions to collect information
about the experts’ sense of numeracy (drawing two items from the
Subjective Numeracy Scale [31]), educational and professional back-
grounds, perception of the applicability of their expertise to assessing
energy use, and demographic profile.

2.3. Coding the choice task

To extract the list of heuristics employed by experts during the choice
task, the verbal reports made by the experts were transcribed and
analyzed. The first layer of analysis entailed developing a coding scheme
to categorize the content of the verbal reports. A codebook was devel-
oped to sort the information used by the experts into primary and sec-
ondary categories. Primary codes were developed for the three general
content areas of the expert interviews: references to (1) observable cues
about energy use, (2) device functions, and (3) device components. (A
fourth primary category was created to catch comments that did not fall
in the areas of the main primary categories.) Each primary code was
disaggregated into several secondary codes, each of which refers to a
more detailed aspect of the primary code’s general theme. For example,
the “Observable Cues” primary code family contained eight secondary
codes, including “hot to touch,” “dims lights/trips circuits,” and “thick
cord.”

This codebook was drafted by a single researcher then modified
based on four rounds of independent coding by two coders. Each round
involved two coders using the codebook to code a single, randomly
selected interview transcript. Following the first two rounds of coding,
qualitative discussions of differences between the two coders guided
revisions to the codebook. After the third and fourth rounds of coding,
unweighted Cohen’s kappa (x) values were calculated to quantify
intercoder agreement [32]. These values were 0.83 and 0.85, respec-
tively, which are generally considered to indicate fairly strong agree-
ment [33]. Following these four rounds of codebook revision, a final
version of the codebook was established. (See Supplementary Table 1.)

Two further rounds of joint coding were performed to assess whether
there was sufficient agreement between two coders to justify using a
single coder for the entirety of the interview data. In each round, three
randomly selected interviews — one from each expert group — were
independently coded by two coders. The threshold of k = 0.8 was un-
derstood as sufficient for single coding [33]. The k value for intercoder
agreement level for the first round of coding was 0.94. A second round of
coding with the same codebook and three new transcripts was
completed to confirm acceptable intercoder reliability had been
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achieved and was replicable (x = 0.80). Based on the high level of
intercoder reliability, a single coder was used to code all the remaining
interviews.

After the expert interviews were coded according to the list of sec-
ondary codes, a second layer of analysis extracted a set of heuristics from
the secondary codes. This extraction was performed by a single
researcher. In this process, all pieces of text with a given secondary code
were first read for whether they stated a rule related to energy use and
then assessed for thematic similarities across the texts. In each secondary
code group, coded quotes were sorted into collections that describe a
similar rule.

The secondary code “hot to touch,” for example, was applied 28
times across 19 separate experts. As these 28 excerpts were read, they
were grouped together when they expressed similar ideas. Within “hot
to touch,” the following quotes were two among several that were seen

Table 1
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as conveying the same idea: “I know that the light bulbs in the digital
projector are pretty intense and they can be, they’re very hot, so you're
drawing quite a bit of power.” (Physicist #9) and “... I know that the
XBox that my son used tends to be warm. Warm tends to tell me it’s using
energy.” (Energy Analyst #8). After reviewing the set of these case-
specific statements, the generalized heuristic: “Devices that become
hot to the touch use more energy than similar devices that do not” was
extracted.

For each thematically similar cluster of quotes, a heuristic was
extracted and defined such that it articulated a general form of the ideas
expressed by the experts. The result was a list of 24 unique heuristics
(see Table 1 below).

Heuristics extracted from the choice task, classification of heuristics, their use by experts, and expert assessment of their accuracy. Note that expert heuristics have been

classified into types, whereas novice heuristics have not (blank in column 2).

(1) Heuristic (2) Type (3) Number of experts who used the heuristic at least ~ (4) Expert assessment of
once (conditional probability in parenthesis: when the  heuristic accuracy (N = 16)
heuristic is used, does the expert choose the correct (1 = mostly inaccurate, 4 =
answer) mostly accurate)
Electrical Physicists (n Energy Mean (SE)
Engineers (n = =10) Analysts (n =
10) 10)

A greater temperature change requires more energy than a smaller Function 3 (50%) 4 (60%) 1 (100%) 3.9 (0.06)

temperature change

Insulation helps to reduce the energy use of devices that heat and cool Component 0 4 (67%) 3 (50%) 3.8 (0.10)

Devices that become hot to the touch use more energy than similar devices  External 7 (91%) 6 (71%) 4 (100%) 3.8(0.11)

that don’t cue

Devices that need to be cooled while they are working use a lot of energy Component 2 (100%) 00 1 (100%) 3.8 (0.11)

LED lights do not use a lot of energy Component 4 (100%) 2 (100%) 1 (100%) 3.7 (0.20)

Heating or cooling something takes a lot of energy Function 6 (71%) 6 (100%) 6 (75%) 3.6 (0.13)

Boiling water and turning it into steam requires a lot of energy Function 5 (50%) 6 (56%) 3 (67%) 3.6 (0.15)

Appliances that move or heat water use a lot of energy Function 7 (0%) 7 (64%) 3 (67%) 3.4 (0.16)

Devices with heating elements use a lot of energy Component 5 (50%) 5 (86%) 7 (71%) 3.4 (0.20)

It takes less energy to heat something with microwaves than with heating Component 5 (100%) 4 (100%) 3 (100%) 3.3(0.25)

elements

Thicker power cords are associated with more energy use External 2 (33%) 1 (25%) 1 (100%) 3.2(0.21)

cue

Producing sound (music) does not require much energy Function 1 (100%) 2 (100%) 1 (100%) 3.1 (0.24)

Devices that plug into a 240-volt outlet use more energy than devices that ~ External 6 (64%) 3 (75%) 4 (100%) 3.1 (0.27)

plug into a standard 120-volt outlet cue

Devices with small or focused functions (for example, a desk lamp) need less Function 9 (72%) 9 (76%) 4 (50%) 3.1 (0.21)

energy than devices that are designed to perform large or broadcast
functions (for example, an overhead lamp)

Devices that "keep up the heat’ or movement consume more energy 3.0 (0.22)

Devices that primarily heat or cool use more energy than devices with a Function 4 (0%) 3 (100%) 2 (25%) 3.0 (0.22)

primary function involving motion

A device that runs on its own circuit uses a lot of energy Component 1 (100%) 0() 0(-) 2.9 (0.20)

Devices that have an initial heating up period consume more energy than 2.8(0.21)

devices that do not

Devices that either make lights dim/flicker or trip circuits when turned on  External 4 (50%) 1 (0%) 1 (100%) 2.8 (0.26)

use a lot of energy cue

Devices that can run on batteries are low energy consumers Component 2 (100%) 3 (100%) 0() 2.8 (0.28)

Electronics that produce graphics (images) use more energy than other Function 4 (75%) 0 4 (100%) 2.8 (0.19)

types of electronics

The larger the plug a device has, the more energy it will use External 1 (100%) 0(-) 00 2.7 (0.24)

cue

Heating takes more energy than cooling Function 00 1 (100%) 0(-) 2.6 (0.26)

Larger devices consume more energy 2.6 (0.16)

Performing a task quickly tends to take more energy than performing that ~ Function 5 (43%) 5 (67%) 3 (25%) 2.5 (0.26)

same task more slowly

Quieter devices use less energy than ones that make noise (for example, a External 2 (100%) 1 (100%) 1 (0%) 2.4 (0.20)

rattle or hum) when they are in operation cue

Devices with a lot of components use more energy 2.4 (0.29)

Devices that charge other devices use more energy 2.1(0.17)

Devices that have an energy label use more energy 2.1 (0.25)

Devices use less energy in the use phase compared to its use in a 2.1(0.21)

*preparation phase’
Cooling takes more energy than heating Function 0() 1 (0%) 0() 2.1 (0.21)
Devices that are related to each other (for example, DVD players and 1.7 (0.24)

televisions) use similar amounts of energy
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2.4. Survey 2: Assessing accuracy of heuristics

To evaluate the accuracy of the 24 heuristics that were extracted
from the interviews as well as the heuristics we elicited from the liter-
ature, we went back to our 30 experts in February 2020 and asked them
to assess each of the heuristics. (See Supplementary Methods 2.) In total,
16 experts responded to the request for further input (response rate =
53%). Using an online survey platform, we provided the experts with a
set of 32 energy use heuristics: the 24 expert-derived heuristics and 8
heuristics extracted from a non-expert population [18] that did not

a. Expert versus novice performances
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overlap with the expert heuristics. These non-expert heuristics were
included to assess how accurate experts find their own heuristics relative
to those associated with novices, which are documented to already be in
popular circulation [18]. The experts were asked to evaluate the general
accuracy of these heuristics on a four-point scale (1 = “mostly inaccu-
rate” to 4 = “highly accurate”).

Note that both surveys are available in the Supplemental Text. This
research was approved by Indiana University’s Internal Review Board at
the Office of Research Administration, and informed consent was
received from all participants.

b. Disaggregated expert and novice performances

1000 A 1000 A
=
=
© 100 100 4
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©
£
= . B
1] / Electrical engineers
10 1 104 / -
7 Physicists
P ’ / All experts Energy analysts
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19~ 11
1 10 100 1000 1 10 100 1000
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c. Slopes d. Understanding e. Scale use
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Fig. 1. Relationship between actual and estimated energy use. a. The estimated values for the 17 household devices, averaged across the 30 expert participants
(orange dots), with the average expert slope line given in orange. The solid black line represents the average novice performance on the estimation task for the
baseline control group in previous work [28]. The dashed line represents a slope of 1, a perfect relationship between estimated and actual energy use. b. The
relationship between estimated and actual energy use for each of three expert groups: electrical engineers (purple), physicists (blue), and energy analysts (green). The
novice reference value from the control group in previous work [28] is presented in black. c. Average estimate slopes for the three expert groups and the novice

reference. d. Average understanding value (correlation between estimated and actua

1 energy use) for the three expert groups and the novice reference. e. Average

scale use value (ratio of standard deviation values for estimated and actual energy use) for the three expert groups and the novice reference. Points and error bars
represent means =+ standard error of the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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3. Results
3.1. Estimation task

Using an energy estimation task [6], we assessed performance by
analyzing the relationship between the experts’ estimated energy use
values and the actual energy use of the corresponding devices. Experts
were asked to estimate the units of energy used by each of 17 devices
under the condition that these devices were in continuous use for one
hour. We asked experts for “units of energy” (stating a 100-W light-bulb
uses 100 units of energy in one hour) rather than wattages to match prior
research and exercises with novices to allow for comparison. We
measured each expert participant’s overall energy estimation ability by
calculating the slope of the best-fit line relating estimated and actual
energy use on logarithmic scales.

The overall average estimation slope of our three expert categories
are shown in Fig. 1a, as is the slope associated with the baseline novice
group from previous work [28], while the mean slopes for the three
expert groups are shown in Fig. 1b and 1c. In previous work [28], the
mean estimation slope for unaided novices was 0.31 (SE 0.02). In
comparison, the mean values of slopes for electrical engineers was 0.61
(SE 0.07), for physicists was 0.67 (SE 0.06), and for energy analysts was
0.62 (SE 0.05). There was no statistically significant difference in the
mean slope values between the three expert groups (F(2,27) = 0.26,p =
0.77, 1% = 0.019, MSe = 0.037). We note that each expert slope value is
below 1, meaning that even the experts tend to overestimate the energy
use of low-use devices and underestimate the energy use of high-use
devices. That said, the expert slopes are far closer to 1 compared with
novice slopes, and on average about twice the novice average slopes.
The mean estimation slope for each expert group was significantly
higher than the non-expert value (electrical engineers: t (9) = 4.16, p <
0.01, physicists: t(9) = 6.20, p < 0.001; energy analysts: t(9) =5.92,p <
0.001).

The estimation slopes can be decomposed into two factors that
comprise estimation accuracy: the correlation between a participant
estimate and the true value, which measures understanding of the rela-
tive energy use of devices; and the ratio of standard deviations of the
estimated and actual energy use values, which measures appropriate use
of a response scale [28]. For both factors, values close to 1 indicate better
performance. Through this decomposition, estimation slopes can be
analyzed to better characterize in what ways experts outperformed
novices in the estimation task.

Decomposition analysis indicates that experts in each group per-
formed better on average than novices in terms of both underlying un-
derstanding of energy use and appropriate use of the response scale
(Fig. 1d and 1e). Novice participants from previous work [28] averaged
an understanding value of 0.54 (SE 0.02), a value substantially lower
than the average for electrical engineers (M = 0.82, SE = 0.04), physi-
cists (M = 0.87, SE = 0.02), and energy analysts (M = 0.82, SE = 0.04).
Similarly, novice participants averaged a scale-use value of 0.56 (SE
0.02), a value that was exceeded by electrical engineers (M = 0.72, SE =
0.06), physicists (M = 0.76, SE 0.06), and energy analysts (M = 0.75, SE
= 0.04). There are no significant differences in understanding (F(2,27)
=0.70,p =0.50, n2 =0.050, MSe = 0.012) or scale-use (F(2,27) =0.12,
p = 0.88, 12 = 0.0090, MSe = 0.031) values between the three expert
groups.

Using a six-point scale (1 = not at all relevant and 6 = highly rele-
vant), experts self-assessed the relevance of their expertise to the task of
estimating the energy use of home appliances. On average, experts
deemed their expertise relevant to estimating appliance energy use (M
= 4.6, SE = 0.26). Self-perception of expertise relevance was a weak
predictor of performance on the energy estimation task (r = 0.24, p =
0.20). The correlation between perceived relevance of expertise and
understanding of device energy use was very low (r = 0.08, p = 0.69),
while the correlation of perceived expertise and scale use was somewhat
higher (r = 0.29, p = 0.12).
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3.2. Choice task

We devised a set of nine choice tasks in which expert participants
were asked to determine which of two or three common household
devices or activities used the least amount of energy when used for the
same amount of time. Each choice task exercise had a designated correct
answer, which was the device in the set that had the lowest average
rated energy use. For example, window air conditioner (~1157 W) was
the correct choice in the set containing it and an electric oven (~3050
W). Across the nine choice task exercises, participants selected the
correct choice 5.6 times on average, with individual scores ranging from
2 to 9 (perfect score). On average, electrical engineers answered 5.0 (SE
= 0.49) choice task questions correctly, physicists scored 5.7 (SE = 0.56)
correct answers, and energy analysts scored 6.0 (SE = 0.30) correct
answers. There was no statistically significant difference in choice task
performance between the three expert groups (F(2,27) =1.22,p = 0.31,
n2 = 0.083, MSe = 2.15). Similar to the estimation task, the correlation
between perceived relevance of expertise and performance on the choice
task was weak (r = 0.10, p = 0.59).

3.3. Relationship between choice and estimation tasks

To assess the connection between the choice task score (9 items, 1 for
correct and O for wrong, M = 5.6, SE 0.27) and estimation task slope (M
= 0.63, SE 0.03), we calculated the correlation between the number of
correct answers given on the choice task and the slopes of the estimation
task. Across all 30 experts, the correlation between choice task score and
estimation slope was quite low (r = 0.06, p = 0.73). There was some
variation of this correlation between expert groups, as the correlation for
electrical engineers was negative (r = —0.18, p = 0.62) while the cor-
relations for physicists (r = 0.17, p = 0.60) and energy analysts (r = 0.31,
p = 0.39) were positive. The negligible overall correlation between
choice task score and estimation slope is consistent with prior research
done that showed that the correlation between the choice task (20 items,
M =12.1, SE 0.12) and estimation slope (control condition M = 0.31, SE
0.01) was also weak and positive (r = 0.20, p < 0.001) in the control
condition [28]. Note that the choice task items were different in the
previous study, which does not allow for perfect comparison with the
data presented here.

3.4. Expert heuristics

To capture expert heuristics, we analyzed the transcripts derived
from the expert interviews using the protocol analysis method to extract
a list of 24 heuristics employed by experts during the choice task (see
heuristics listed in Table 1).

The set of heuristics can be divided into three general types based on
how they relate to thinking about a device’s energy use. The most
common heuristics type relates to function — the tasks that the device is
designed to perform. Eleven of the 24 heuristics belonged to the function
type. Examples of specific device functions highlighted by experts
include heating and cooling, producing sound, and moving water.
Typically, when commenting on functions, experts expressed a general
rule about the absolute or relative energy cost of a function, as in,
“appliances that move or heat water use a lot of energy” or “producing
sound does not require much energy.”

The second most common heuristic type focused on the energy use
by specific components or systems associated with devices. Seven of the
heuristics were of this type. Most of the rules of this type assessed what
could be inferred about the energy use of a device based on the presence
or absence of specific components within the device, as in, “devices that
can run on [small] batteries are low energy consumers.” One rule,
however, related to the household circuit on which a device is powered
(“A device that runs on its own circuit uses a lot of energy”), which can
be thought of as an external “component” rather than an internal one.

The final six heuristics made reference to observable cues that indicate
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higher levels of energy use. These are cues that do not rely on under-
standing the function of a device or on knowing its components, but
rather require making observations about the physical presence or
ambient effects of the device (e.g., its size or whether it gets hot to the
touch when running). The heuristics of this type link the cues to judg-
ments about energy use, as in, “the larger the plug a device has, the more
energy it will use.”

In the 290 instances of heuristic use documented across the 30 expert
interviews, a majority (54%) of the heuristics used were function-based
heuristics. Components (24%) and external cues (22%) heuristics were
both used less frequently on average than function heuristics. There were
some differences between the expert groups in terms of what kinds of
heuristics were used. Relative to other groups, electrical engineers more
frequently used external cues (29% of all heuristic use versus 17% for
physicists and 16% for energy analysts). Physicists were more likely to
reference the function of devices (62% versus 50% for electrical engi-
neers and 51% for energy analysts), while energy analysts were more
likely to employ a heuristic based on the components of the devices in
the choice task (33% versus 20% for electrical engineers and 22% for
physicists). The total number of instances of heuristic use by electrical
engineers (119) and physicists (102) was higher than that of energy
analysts (69).

Success with the choice task required selecting the lowest energy-
using device in a set of two or three devices or activities. Many ex-
perts approached this task by eliminating options they viewed as clearly
using more energy than at least one of the other devices. For example,
many experts noted that an electric space heater (~1290 W) would use
more energy than an electric blanket (~197 W) and so were able to
quickly dismiss the space heater without needing to attend to it closely.
(In the words of one physicist, “So, I'm going to say the blanket’s less
than the space heater just because you’re trying to heat up less. Space
heater is trying to heat up the whole room; the blanket, it’s local heat.”)

To assess the quality of the 24 expert heuristics, we counted the
number of choice task responses where the heuristic was used to reach
the correct answer and divided this sum by the total number of instances
when the heuristic was used (see the third column in Table 1). The
resulting conditional probability — the frequency of arriving at the cor-
rect answer if the heuristic was used — provides a simple measure of
heuristic usefulness, with higher values suggesting that a given heuristic
was useful in reaching a correct judgment in the choice task. The heu-
ristics were associated with varying levels of success in choosing the
correct choice task response. Associated success rates ranged from 0%
(when used, a correct answer was never given, e.g., “cooling takes more
energy than heating™) to 100% (when used, a correct answer was always
given, e.g., “devices that need to be cooled while they are working use a
lot of energy”), with a median success rate of 71%. Only four heuristics
had a success rate less than chance on a two-item choice task (i.e.,
was<50%).

Analyzing how accurate experts are on the choice task is not a
conclusive measure of heuristic quality. Often, multiple heuristics were
used to generate a single choice task response and thus we cannot
directly attribute success or failure in the choice task to a single heuristic
in these cases. The assessment metric does not tell us about the accuracy
of heuristics in isolation, a metric that required the second round of data
collection described below.

3.5. Follow-up survey

We asked the same expert participants to evaluate the general ac-
curacy of the 24 heuristics that emerged from the interviews. We also
included eight (of the 24) novice-derived heuristics identified by other
researchers [18] for evaluation, which were selected so as not to overlap
with the expert heuristics (see Supplementary Table 2 for the entire list
of the novice heuristics). Table 1 (Column 4) provides the complete set
of average expert evaluations of the 32 heuristics. Averaging across the
16 experts who responded to this second survey, 21 of the expert
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heuristics were deemed to be at least somewhat accurate (i.e., they
scored above the neutral mark of 2.5), while 3 heuristics had an average
score on the “inaccurate” end of the scale. In contrast, the majority of
novice-derived heuristics that we used (5 out of 8) were deemed by our
panel of experts to be somewhat inaccurate (i.e., their average score was
below 2.5). Overall, the accuracy evaluation scores for expert heuristics
were significantly higher than those of the novice heuristics (M = 3.1
versus M = 2.4, t(30) = 4.32, p < 0.001).

4. Discussion

On average, expert-level electrical engineers, physicists, and energy
analysts all outperformed the novice baseline on an energy estimation
task. In comparing these performances, we find an affirmative answer to
our first research question: experts in energy-related fields do have more
accurate estimates of home energy use than novices. (Notably, and
consistent with the Dunning-Kruger effect [34], we also find that our
expert sample tended to undervalue the relevance of their expertise to
the estimation task, as evidenced by the modest correlation between
performance and self-rated expertise.) Improving novice understanding
of energy use, and thereby potentially improving the uptake of impactful
conservation and efficiency measures, might in part be achieved by
documenting the heuristics by which experts outperform novices.

Addressing our second research question, we identify 24 unique
expert heuristics used to make judgments about energy use by house-
hold devices. We find that heuristics related to device function were
most prominent in terms of both the number of separate heuristics and
the frequency of heuristic use. This prominence may suggest that sorting
devices into functional categories (e.g., devices that heat or cool and
devices that create motion) is a key technique used by experts for
discriminating between tiers of energy use. Relatedly, temperature
change emerged as a dominant theme, with nine heuristics across the
three heuristic types addressing heating and cooling in one form or
another. Indeed, five of the seven most accurate heuristics (as judged by
expert participants) relate to heat. Altogether, the responses of our ex-
perts suggest that making distinctions between devices that heat or cool
and those that do not is paramount. Creating motion (as with a tread-
mill) and interaction with water (as with a washing machine or water
heater) were two other frequently employed discriminant categories.

Concerning our third research question, we find that, with minor
exceptions, the expert heuristics were judged to be more accurate than a
comparison set of cultural heuristics used by novices [18]. Accordingly,
supplementing or replacing novice heuristics with expert heuristics may
be an effective way of improving public judgment and decision making
concerning home energy use. Past research has demonstrated that an
expert heuristic can be used to improve energy-related estimations [28],
where introducing a single expert heuristic — “large appliances that
primarily heat or cool use a lot more energy than people think” —
improved novice performance on both understanding and scale use in
the energy estimation task.

It is important to note that 13 of the novice heuristics noted in pre-
vious work [18] were similar in content to 6 of the expert heuristics
identified here, including highly accurate heuristics relating to heating.
While this overlap in content suggests that novices may already use
some of the same heuristics as experts, part of what distinguishes nov-
ices and experts is the judicious use of heuristics, that is, knowing when
and how to apply or not apply them. Further, the poor accuracy of
novice-exclusive heuristics confirms past research suggesting that nov-
ices often attend to low-relevance energy-use cues [15-17], which may
compete with more accurate and useful heuristics for salience.

The pool of experts who participated in this research belonged to
three different groups, and this breadth of expertise diversified the data
we collected (consistent with past calls for diversity in eliciting expert
judgments [35]). We anticipated that different expert groups would
bring different vantage points to the issue of home energy use and we
observe modest differences in how experts approached the tasks of
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judging home energy use. For example, energy analysts tended to use
heuristics less than electrical engineers or physicists. Further, each
group, relative to the others, tended to favor a particular type of heu-
ristic (i.e., electrical engineers used observable cues more often, physi-
cists used function heuristics more often, and energy analysts used
component heuristics more often). Despite these differences, each group
outperformed the previously established novice baseline and there was
no significant difference between the three expert groups in the per-
formance on either the estimation task or the choice task.

Given that part of expertise is knowing how to separate relevant and
irrelevant information, the spontaneously generated heuristics may be
considered an indicator of what information our experts deemed most
important in judging energy use. Though the experts came from diverse
backgrounds, there was a general convergence across experts in terms of
the heuristics that were used. Accordingly, our diverse sample of experts
involved in this study provides a form of corroboration that the list of
heuristics contains the critical ideas needed to better assess device en-
ergy use.

The energy estimation task was successful in differentiating between
experts and novices (as shown in Fig. 1). That said, expert performance
on the estimation task was only weakly correlated with the other mea-
sure of judgment aptitude, the choice task. This weak correlation, while
puzzling, suggests that the two tasks may require different judgment
skills or may have been approached in different ways. We hypothesize
that assessing devices simultaneously during the choice task and in
much more real-world settings of energy use may have created noise in
the task leading to lower accuracy. The estimation task required experts
to judge one device at a time without comparing one device to another —
this required thinking of energy use in terms of ratio values, explicitly
deciding for example whether an oven uses two or three times more
energy than a window air conditioner. In contrast, the choice task called
on experts to think ordinally (i.e., ordering as first, second, etc.) about
the energy used by devices, choosing the lowest energy user without
necessary regard for the magnitude of difference between items in the
choice set (e.g., a window air conditioner uses some amount less energy
than an oven). Future research can be designed to more fully investigate
why there is such a low correlation between the estimation and choice
tasks, while keeping in mind that these two measures are distinct in
terms of what judgment processes they may prompt.

This research was conducted as part of a larger effort to improve
public understanding of energy use, to aid the uptake of effective effi-
ciency and conservation measures at the household level. Previous
research has measured energy-use perception accuracy by the general
public [6] and documented the heuristic processes and cues that energy
novices use to make judgments [15,17,18]. A central contribution of our
work to this body of literature is the systematic documentation of expert
energy heuristics. Assuming expert performance on judgment tasks
represents a realistically achievable upper bound for novice perfor-
mance, this research indicates the degree to which novice performance
could be improved. Further, by cataloging a set of expert energy heu-
ristics, our work establishes a set of rules and principles that, when
transferred to novices, may serve to increase the accuracy of energy
understanding and possibly choices.

Further research is required to understand the capacity of the 24
expert heuristics to improve novice energy judgments and real-world
decisions. Such research would first need to determine whether these
expert heuristics are truly helpful decision aids, then to assess the
combination(s) of heuristics that are most effective in improving judg-
ment. We also need to assess whether these heuristics help with real-
world decision making, as decision aids have done in the domains of
healthcare [36,37], investing [38], and marketing [39]. While in theory
access to more high-quality heuristics could lead to greater improve-
ments in performance than access to fewer high-quality heuristics, in
practice performance improvement may plateau at a relatively small
number of heuristics because a larger set of heuristics may become too
difficult to remember or apply appropriately [40-42]. Further, the
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heuristics collected in this study vary in terms of accuracy (as assessed
by experts), breadth (i.e., some can be applied to a wide range of devices
while others are device-specific), and type (i.e., function, components,
and observable cues). Future studies can examine the “ecology” of
heuristics, testing what number and types of heuristics are associated
with the greatest improvements in energy judgment aptitude. If the
collected expert heuristics can improve energy-related decision making,
they may be a useful new component for education programs designed
to foster reduced energy use [8,18].

There are many limitations to our work. First, our sample of experts
was convenience based, and should not be seen as representative of the
three expert groups, which would be challenging to come by. Second,
our sample of examples was heavily skewed towards males, with only
one expert out of ten in each group identifying as female. While we have
no reason to believe our results would have been substantially different,
we nonetheless believe the study would have been improved by greater
gender parity in our sample. Third, the population of experts targeted in
this research was skewed towards those with advanced academic cre-
dentials; additional insights might have come from including those with
different markers of expertise, including electricians and technology
hobbyists. Fourth, the choice task from which the list of heuristics was
extracted focused on energy use by household devices and was not
designed to capture other heuristics relating to general energy-use be-
haviors, such as where to live or what kind of transportation to use
which are important domains for reducing energy use. Fifth, while we
coded specific answers in the choice task as being “correct,” several of
the devices used for the choice task are associated with a range of
wattages. (For example, models of microwaves can range between 700
W and 1400 W.) Accordingly, the assignment of one device as being
“correct” is contingent on assumptions about what comprehends the
prototypical or mean version of the device (see Supplementary Methods
1 for actual energy use values).
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