
On Generalizing Static Node Embedding to Dynamic Settings

ABSTRACT

Temporal graph embedding has been widely studied due to its

superiority in tasks such as prediction and recommendation. De-

spite the advancement in algorithms and novel frameworks such

as deep learning, there has been relatively little work on systemati-

cally studying the properties of temporal network models and their

cornerstones, the graph time-series representations that are used

in these approaches. This paper aims to fill this gap by introduc-

ing a general framework that extends an arbitrary existing static

embedding approach to handle dynamic tasks, and conducting a

systematic study of seven base static embedding methods and six
temporal network models. Our framework generalizes static node

embeddings derived from the time-series representation of stream

data to the dynamic setting by modeling the temporal dependencies

with classic models such as the reachability graph. While previ-

ous works on dynamic modeling and embedding have focused on

representing a stream of timestamped edges using a time-series

of graphs based on a specific time-scale (e.g., 1 month), we intro-

duce the notion of an 𝜖-graph time-series that uses a fixed number

of edges for each graph, and show its superiority in practical set-

tings over the standard solution. From the 42 methods that our

framework subsumes, we find that leveraging the new 𝜖-graph

time-series representation and capturing temporal dependencies

with the proposed reachability or summary graph tend to perform

well. Furthermore, the new dynamic embedding methods based on

our framework perform comparably and on average better than

the state-of-the-art embedding methods designed specifically for

temporal graphs in link prediction tasks. We expect our results and

findings to be useful for the design of new embedding methods and

predictive models for temporal networks.

1 INTRODUCTION

Real-world networks that record the interaction between entities

have grown rapidly, for example, the Internet [5], various online

social networks (e.g., Facebook, Snapchat), citation networks in

academia [14]. Specifically, when nodes and edges continuously

change over time with addition, deletion (e.g., a phone call, an

email, or physical proximity between two entities), we have a par-

ticular type of evolving network structure. Learning an appropriate

network representation (embedding) that accurately captures the

temporal dynamics and temporal structural properties of these

entities is important for many downstream time-series forecast-

ing/prediction tasks such as recommendation and entity resolution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Most recent research efforts devoted in the field follow the common

pipeline: given a time-series of graphs, G = {𝐺1, · · · ,𝐺𝑘 , · · · ,𝐺𝑇 },
modeling the individual graph structures (within-snapshot prop-

erty) along with the temporal dependency (across-snapshot rela-

tion), and deriving node embeddings that incorporate both perspec-

tives. While these works show advantage from various perspectives,

the promising performance comes at the cost of time and model

complexity, such as introducing extra transition variables to reflect

the temporal dependency between snapshots [8], or latent weights

on edges between snapshots [18, 24].

In this work, we propose a general framework that simplifies

the above process and can generalize any static embedding method

to a more powerful and predictive dynamic embedding method

without introducing transitional variables. The framework consists

of three components: (C1) a graph time-series representation, (C2)

a temporal network model that appropriately models and weights

the temporal dependencies in the graph time-series, and (C3) a base

embedding method to learn a time-series of embeddings along with

a fusion mechanism to derive the final temporal node embeddings.

The framework is highly expressive as any unique combination of

C1-C3 gives rise to a new dynamic embedding method.

While previous works on dynamic modeling and embedding

have focused on representing the stream of timestamped edges [17]

using a time-series of graphs based on a specific time-scale 𝜏 (e.g.,
𝜏 = 1 hour, or 1 month) [7, 8, 14, 24, 25, 29], we instead propose

the notion of an 𝜖-graph time-series that uses a fixed number of

edges for each graph in the time-series. Theoretically, by fixing the

number of edges to be 𝜖 in each graph, we ensure that every graph

in the sequence has an equal probability of giving rise to the same

exact distribution of higher-order graphlets and other structural

patterns
1
, and therefore, the new 𝜖-graph time-series forces the

models to avoid capturing simple trivial differences due to edge

counts, and instead, allow the models to capture actual structural
changes to the graphs over time.

We also introduce a number of important temporal models that

can be leveraged over any graph time-series representation of the

edge stream. The first temporal model is based on the notion of a

temporal reachability graph (TRG). TRG is derived by transforming

a dynamic graph into a static graph where an edge from 𝑢 to 𝑤

indicates a temporal walk. The second temporal model is called

a weighted temporal summary graph (TSG). Notably, a weighted

temporal summary graph captures the temporal recurrence and

recency of links by appropriately weighting links with respect to a

function 𝑓 that assigns larger weights to links that are more recent

and recurrent whereas links that occur in the more distant past are

assigned lower weights. All temporal models can leverage either

the new 𝜖-graph or 𝜏-graph time-series representation.

This paper aims to provide a systematic exploration of the most

useful graph time-series representations and temporal network

1
This is in contrast to graphs with different amounts of edges. E.g., given two

arbitrary graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) where |𝐸1 | ≪ |𝐸2 |, then the

counts of all 𝑘 ∈ {3, 4, . . .}-node network motifs (graphlets) in𝐺2 are almost surely

larger than𝐺1 .

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

models (used to incorporate the temporal dependencies into base

embedding methods) in downstream temporal prediction tasks. To

the best of our knowledge, this is the first work of this kind. Our pri-

mary findings are: (1) node embeddings derived from the 𝜖-graphs

outperforms the 𝜏-graph time-series in the predictive task with

higher stableness, and (2) by composing the static node embedding

approaches with classic temporal models such as TRG or TSG, our

proposed framework performs comparably or even better than re-

cent dynamic embedding approaches with less complexity. Based on

these findings, we hope that this work will benefit future research

on developing and evaluating better dynamic embedding methods,

as well as practitioners who deploy temporal graph embedding

in various applications due to its simplicity and effectiveness in

performance. Our main contributions are as follows:

• General Framework.We describe a general framework for

leveraging graph stream data and classic temporal network

models for prediction-based applications that can generalize

any static graph embedding method.

• Powerful Graph Time-series Representation.We intro-

duce the notion of a 𝜖-graph time-series and show its supe-

riority over the conventional way of discretizing the edge

stream based on the application time-scale (e.g., hour, day).

• Systematic Study. Our framework allows us to systemati-

cally study 42 dynamic node embeddings by combining time-

series representations, temporal network models, and static

methods. Strikingly, our empirical analysis on 8 real-world

networks shows that our framework achieves comparable or

better predictive performance than existing state-of-the-art,

but more complex, dynamic node embedding methods.

2 RELATED WORK

Snapshot-based approaches. Most temporal embedding approaches

break down the graph into graph-time series based on the appli-

cation time-scale (1 month, etc.) up to a certain point 𝑘 , and then

derive features from them to make inference on graphs at 𝑘 + 1.
One direction is to look into the most recent snapshot, for instance,

DANE [16] proposes to embed both nodes and the associated at-

tributes in the graph by minimizing the loss of reconstruction of the

snapshot at a given times point 𝑘 : 1
2
Σ𝑖, 𝑗A

(𝑘)
𝑖 𝑗
| |𝑦𝑖 −𝑦 𝑗 | |2, and update

the embeddings for snapshot at 𝑘 + 1 based on the change of graph

structure and node attributes. DynGEM [8] adopts the deep auto-

encoder to generate the nonlinear embeddings from the snapshot

at 𝑘 while addressing stability. TIMERS [28] models the relative

changes in adjacency matrices between snapshots and leverages

incremental SVD to derive embeddings. A more popular direc-

tion is to track back a certain number of snapshots from the time

point 𝑘 by deriving node embeddings from each individual tracked

snapshot and then merging them through specific operation. Dyn-

graph2vec [7] leverage totally 𝑙 snapshots to predict the snapshot

at 𝑘 + 1. It leverages various deep architectures (i.e., auto-encoder,
RNN) to derive latent features by minimizing loss of reconstruc-

tion error: | |𝑓 (A𝑘−𝑙+1, · · · ,A𝑘) − A𝑘+1 | |2𝐹 . tNodeEmbed [25] is an

end-to-end framework based on node embeddings derived from

individual snapshots using static methods. The embeddings are

merged by minimizing the loss of specific tasks (i.e., link prediction

and node classification) through LSTM. DySAT [24] leverages the

Table 1: Qualitative comparison of existing embedding methods on

temporal graphs. The graph time-series representation used by the

method (application time-scale, or fixed number of edges), the type

of temporalmodel used, and type of embedding fusion used (if any).

Representation Temporal Model

Time-scale (𝜏) #Edges (𝜖) Snapshot Weighting Emb. Fusion

DANE [16] ✓ ✗ ✓ ✗ ✗
DynGem [8] ✓ ✗ ✓ ✗ ✓
TIMERS [28] ✓ ✗ ✓ ✗ ✗
Dynagraph2vec [7] ✓ ✗ ✓ ✗ ✓
tNodeEmbed [25] ✓ ✗ ✓ ✓ ✓
EvolveGCN [18] ✓ ✗ ✓ ✓ ✓
DySAT [24], DyHATR [27] ✓ ✗ ✓ ✗ ✓
our framework [24] ✓ ✓ ✓ ✓ ✓

notion of self-attention to compute node representations by jointly

employing graph structural property and temporal dynamics. Sim-

ilarly, DyHATR [27] proposes a the hierarchical attention model

to capture both the heterogeneity and temporal attention using

GRU/LSTM to model the temporal evolution. EvolveGCN [18] uses

GCN to generate node embeddings for the past snapshots, and

learns the hidden parameters for the next using GRU/LSTM. Unlike

the above methods that jointly explore the graph structural changes

with the evolution of the #edges, our proposed 𝜖-graph time series

does not require the specification of time-scales.

Sequential-interaction-based approaches. There is another line of
works that studies the sequential interaction between nodes in the

graph. CTDNE [17] is the first approach to learn embeddings di-

rectly from the stream of timestamped edges at the finest temporal

granularity. In that work, they proposed the notion of temporal

walks and used it for embeddings [17]. More recently, node2bits [11]

expanded on this idea by incorporating features in the temporal

walks and hashing them. Alternatively, some other work has mod-

eled the node-specific temporal dynamics as the point process

where the probability of interaction is represented through dif-

ferent intensity functions. HTNE [30] proposes to model the node

evolution through the Hawkes process. JODIE[13] models the se-

quential interaction in bipartite graphs to predict the change of

embedding trajectory over time instead of interaction probability.

CTDNE, HTNE and JODIE are designed to handle continuously

sequential data, which is not the scope of this paper.

3 DATA

In this study we adopt a variety of real-world temporal networks

from SNAP [15] and NR [20]. We provide the brief description of

enron and bitcoin as follows, and refer the interested reader to

Section 8 of the supplementary material for completed descriptions.

Table 2: Network statistics and properties

Data |𝑉 | |𝐸 | Type Timespan

enron 151 50,572 Unipartite 38 months

bitcoin 3,783 24,186 Unipartite 63 months

wiki-elec 7118 107,071 Unipartite 47 months

stackoverflow 24,818 506,550 Tripartite 79 months

fb-forum 899 33,720 Unipartite 24 weeks

reallity-call 6,809 52,050 Unipartite 16 weeks

wiki-edit 8,227 157,474 Bipartite 32 days

contacts-dublin 10,972 415,912 Unipartite 69 days

2

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

• enron2 records email exchanging between empolyees of

Enron from May, 1999 to June, 2002.

• bitcoin3 is a who-trusts-whom network of people who

trade using bitcoins from Nov, 2010 to Feb., 2017. We study

the user connectivity by dropping the edge signs.

We summarize the graph statistics and temporal timespans in

Table 2, and analyze the sequential graph statistics of three graphs

over time. As the timespans vary from 32 days to 79 months, we

adopt the time-scale following Table 2 to get the sequential graph

time-series. We visualize 2 graph statistics, the number of edges |𝑉 |
and the average degree on 3 datasets with different time-scales in

Figure 1, which are contacts-dublin (day), wiki-elec (month),

and fb-forum (week). In the figure, we also visualize the same graph

statistics using a different time-series representation by fixing the

number of edges in each snapshot to
|𝐸 |
𝑇
, where 𝑇 denotes the

timespan following the corresponding time-scale. For example, for

wiki-elec, this number is
107 701

47
in each snapshot. From Figure 1,

we compare the temporal patterns of the two time-series and it can

be seen following the fixed edge count in each snapshot gives more

stable temporal pattern using both graph statistics. We discuss this

new graph time-series in detail in Section 5.1. Besides, in this work,

we focus on exploring the impacts of graph structures and temporal

dependency between snapshots to the predictive tasks, thus we do

not leverage node features such as geographic location or content.

10 20 30 40 50 60
time

0

500

1000

1500

2000

2500

3000

|E
|

ia-contacts-dublin

G- (6 hours)
G-

Fixed timespan
Fixed edge count

10 20 30 40 50 60
time

0

0.5

1

1.5

av
er

ag
e

de
gr

ee

ia-contacts-dublin

G- (6 hours)
G-

Fixed timespan
Fixed edge count
Fixed timespan
Fixed edge count

5 10 15 20
time

0

2000

4000

6000

8000

|E
|

fb-forum

G- (1 week)
G-

Fixed timespan
Fixed edge count

5 10 15 20
time

0

2

4

6

8

10

12

av
er

ag
e

de
gr

ee

fb-forum

G- (1 week)
G-

Fixed timespan
Fixed edge count

Figure 1: Graphproperties (#edge and average degree) over two time-

series representation (fixed timespans vs. fixed edge count). Fixing

the edge number gives more stable temporal patterns while fixing

the timespans shows higher fluctuation.

4 PRELIMINARIES

We summarize symbols and notations used in this work in Table 3.

Some important notions are given as follows.

Definition 1 (Temporal Graph). Let 𝑉 be a set of vertices, and
𝐸 ⊆ 𝑉 ×𝑉 × R+ be the set of temporal edges between vertices in 𝑉 .
Each edge (𝑢, 𝑣, 𝑡) has a unique time 𝑡 ∈ R+.

When edges represent contacts—a phone call or physical proximity—

between two entities at a specific point in time, we have a particular

2
http://networkrepository.com

3
https://snap.stanford.edu/data/

Table 3: Summary of notation

Symbol Definition

G = {𝐺𝑘 } a graph time-series with snapshots indexed by 𝑘 .

𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘) a directed and weighted temporal network from G with

|𝑉𝑘 | nodes and |𝐸𝑘 | temporal edges

A𝑘 adjacency matrix for graph 𝐺𝑘 in G.
𝐺𝑅 = (𝑉 , 𝐸𝑅) the weighted temporal reachability graph

𝑁𝑅
𝑖

the set of nodes that are temporally reachable from node 𝑖

𝜏/𝜖 window size representing the timespan / number of edges

𝛼 the decay factor in the temporal summary graph model

𝜃 the decay factor in the temporal embedding smoothing

𝑓 arbitrary base embedding method

Z |𝑉 | × 𝑑 embedding matrix

type of evolving network structure [2]. A temporal walk in such a

network represents a sequence of contacts that obeys time. That is,

if each edge represents a contact between two entities, then a path

represents a feasible route for a piece of information.

Definition 2 (Temporal Walks). A temporal walk from 𝑢 to
𝑤 in 𝐺 = (𝑉 , 𝐸) is a sequence of edges 𝑒1, . . . , 𝑒𝑘 such that 𝑒1 =

(𝑢1, 𝑢2, 𝑡1), . . . , 𝑒𝑘 = (𝑢𝑘 , 𝑢𝑘+1, 𝑡𝑘) where 𝑡 𝑗 < 𝑡 𝑗+1 for all 𝑗 = 1 to
𝑘 . We say that 𝑢 is temporally connected to 𝑤 if there exists such a
temporal walk.

This definition echoes the standard definition of a path, but

adds the additional constraint that paths must respect time, i.e.,

follow the directionality of time. Temporal walks are inherently

asymmetric because of the directionality of time. The notion of

temporal walks has been recently used in embedding methods [17].

5 FRAMEWORK

The framework in this paper provides a fundamental basis for study-

ing different temporal network representations and the utility of

these for generalizing existing static embedding methods to tem-

poral network data. The overview is shown in Figure 2. Firstly,

given the continuous stream of timestamped edges, we derive the

time-series of graphs (Section 5.1). Then, we use one of the tem-

poral network models to incorporate the temporal dependencies

of the graph-based time-series (Section 5.2). Lastly, our framework

generalizes existing embedding methods and effectively enables

the new dynamic variants of these methods to learn more accurate

and appropriate time-dependent embeddings. (Section 5.3).

5.1 Graph Time-Series Representations

We formally introduce two approaches for deriving a time-series of

graphs from the stream of timestamped edges. For clarity, we use

𝑘 to index the snapshots in the time-series in this section to avoid

mixing with the timestamp 𝑡 associated with an edge 𝑒 .

5.1.1 𝜏-graph time-series. The 𝜏-graph time-series representation

is used by the vast majority of previous work [7, 10].

Definition 3 (𝜏-graph time-series). Given a temporal network
G=(V, E) representing a continuous edge stream with time-stamped
edges 𝐸, we define a graph time-series G𝜏 = {𝐺1, . . . ,𝐺𝑘 , . . .} such
that 𝐺1 consists of all edges within the first time scale (period) 𝑠 , 𝐺2

consists of all edges within the next time period 𝑠 , and so on. Thus, each
graph contains edges within a specific period of time. More formally,
let 𝑡0 denote the timestamp of the first edge in the temporal network

3

http://networkrepository.com
https://snap.stanford.edu/data/

Conference’17, July 2017, Washington, DC, USA

Figure 2: Framework Overview. In the first component of the framework (Sec. 5.1), we derive a time-series of graphs from the stream of

timestamped edges using either an application-specific time-scale 𝜏 (e.g., 1 day) or a fixed number of edges 𝜖 for each graph in the time-series.

Next, given the {𝜏, 𝜖 }-graph time-series representation, we incorporate the temporal dependencies and weights with a temporal network

model from Sec. 5.2. Finally, we use an arbitrary base embedding method to learn a time-series of embeddings and then leverage a temporal

fusion mechanism to obtain the final temporal embeddings (Sec. 5.3).

(stream of timestamped edges) and 𝜏 is the application time-scale
(e.g., 1 month), then

𝐸𝑘 =
{
(𝑖, 𝑗, 𝑡) ∈ 𝐸 | 𝑡0 + 𝑘𝜏 > 𝑡 ≥ 𝑡0 + (𝑘 − 1)𝜏

}
(1)

5.1.2 𝜖-graph time-series. While most work uses the previous ap-

proach for deriving the graph time-series, we introduce a new

alternative based on the idea of using a fixed number of edges. In

particular, we propose a new approach that derives a time-series

of graphs G𝜖 = {𝐺1, . . . ,𝐺𝑘 , . . .} such that each 𝐺𝑘 consists of 𝜖

edges (Definition 4) and therefore |𝐸𝑘 | = 𝜖,∀𝑘 . More formally,

Definition 4 (𝜖-graph time-series). Given a temporal net-
work 𝐺 = (𝑉 , 𝐸) representing a continuous edge stream 𝐸 with
timestamped edges and let 𝜖 denote a fixed number of temporal
edges in the stream (ordered by time), we define a graph time-series
G𝜖 = {𝐺1, . . . ,𝐺𝑘 , . . .} such that |𝐸𝑘 | = 𝜖 , for all 𝑘 = 1, 2, Hence,
𝐺1 = (𝐸1,𝑉) consists of the first 𝜖 edges 𝐸1 = {𝑒1, 𝑒2, . . . , 𝑒𝜖 } whereas
𝐺2 consists of the next 𝜖 edges 𝐸2 = {𝑒𝜖+1, . . . , 𝑒2𝜖 }, and so on. More
formally, 𝐸𝑘 is defined as follows:

𝐸𝑘 =

𝑘𝜖⋃
𝑖=(𝑘−1)𝜖+1

𝑒𝑖 =
{
𝑒 (𝑘−1)𝜖+1, . . . , 𝑒𝑘𝜖

}
(2)

Note in both cases 𝐸1 ∪ · · · ∪ 𝐸𝑘 ∪ · · · = 𝐸. Since the proposed
𝜖-graph time-series controls for the number of edges over time,

embedding methods can more appropriately model and capture the

actual change in the structural properties and subgraph patterns

over time, as opposed to just the frequency of edges that is captured

by the 𝜏-graph time-series representation used in previous work.

Another advantage of the 𝜖-graph time-series representation is

that it preserves the sequential order of timestamped edges without
suffering from the structural instability of the graph due to the some-

times drastic difference in edge counts from one time to the next.

As observed in Fig. 1, while the 𝜖-graph time-series representation

has a fixed number of edges over time, conventionally-used 𝜏 repre-

sentation can significantly deviate with large spikes even between

consecutive graphs in the series. If a graph time-series representa-

tion is unable to capture the simplest 1st-order subgraph structures

(edges), then by definition it cannot capture higher-order subgraph

structures that are built on such lower-order ones. Hence, the pro-

posed 𝜖-graph time-series representation effectively models the

structural changes between graphs whereas the 𝜏-graph time-series

captures changes in edge frequencies for a fixed application-specific
time-scale such as 1 day or 1 hour.

5.2 Temporal Network Models

Now we introduce temporal network models that incorporate the

temporal dependencies into the graph time-series representations

to learn more effective time-dependent embeddings.

5.2.1 Snapshot Graph (SG)Model. This model simply leverages the

{𝜏, 𝜖}-graph time-series representation directly without encoding

any additional temporal information into the representation. Hence,

the temporal information (edge timestamps) associated with the

edges in any graph 𝐺𝑘 ∈ G is effectively ignored/discarded. For

example, 𝑒1 and 𝑒2 are considered to occur simultaneously if they

fall into the same snapshot, even though 𝑒2 comes later than 𝑒1
in the actual time-series. Therefore, this model incorporates the

temporal dependencies at the level of the graph, i.e., we only know

that edges in 𝐺𝑘−1 occurred before 𝐺𝑘 .

5.2.2 Temporal Summary Graph (TSG) Model. The temporal sum-

mary graph model incorporates the temporal dependencies by de-

riving a weighted summary graph from the graph-based time series

G [23] where the more recent edges are assigned larger weights

than those in the distant past. More formally, letA1,A2, ...,A𝑘 , ...,A𝑇

be a time-series of adjacency matrices of the graph time-series con-

structed using either Definition 3 or Definition 4. Furthermore, let

A𝑘 (𝑖, 𝑗) denote the (𝑖, 𝑗) entry ofA𝑘 . We define the generalweighted
temporal summary graph (TSG) model as S =

∑𝑇
𝑘=1

𝑓 (A𝑘 , 𝛼), where
𝑓 is a decay function for temporally weighting the edges (nonze-

ros), 𝛼 is the decay factor ranging in (0, 1), 𝑇 is the total number

of graphs in the time-series, and S is the weighted temporal sum-

mary graph. In this work, we define 𝑓 as an exponential decay

function [23], then we obtain

S =
∑𝑇
𝑘=1
(1 − 𝛼)𝑇−𝑘A𝑘 (3)

and the weight for an edge (𝑖, 𝑗) is simply S(𝑖, 𝑗) =
∑𝑇
𝑘=1
(1 −

𝛼)𝑇−𝑘A𝑘 (𝑖, 𝑗). Alternatively, instead of using all available graphs

in the initial time-series, we can use only the 𝐿 most recent graphs.

For example, suppose G𝜖 = {𝐺𝑘 }𝑇𝑘=1 = {𝐺1, . . . ,𝐺𝑇 } is an 𝜖-graph
time-series with 𝑇 graphs. Instead of using all 𝑇 graphs, we can

4

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

(a) A temporal graph (b) TRG (c) Weighed TRG

Figure 3: A toy temporal graph (a) and its temporal reachabil-

ity modeling TRG (b) and WTRG (c). (b) An edge in the vanilla

TRG represents a temporally-valid walk. The red edges represents

the length-2 walks {𝐴, 𝐵,𝐶 } and {𝐴, 𝐵, 𝐷 } in the original graph (c)

WTRG extends TRG by assigning weights to indicate the temporal

closeness e.g., {𝐴, 𝐵,𝐶 } has higher weights than {𝐴, 𝐵, 𝐷 } as𝐶 is tem-

porally closer to 𝐴 than 𝐷 (Δ𝑡𝐴𝐶 < Δ𝑡𝐴𝐷), which reflects stronger

temporal continuity.

leverage only the most recent 𝐿 graphs, hence,

G𝜖 = {𝐺𝑘 }𝑇𝑘=𝑇−𝐿+1 = {𝐺𝑇−𝐿+1, . . . ,𝐺𝑇 } (4)

The idea of leveraging only the most recent graphs in the time-

series was first explored in [23] and can be applied to any of the

proposed temporal models in this section.

5.2.3 Temporal Reachability Graph (TRG) Model. The temporal

reachability graph (TRG) is a graph derived from the timestamped

edge stream where a link is added between two nodes if they are

temporally connected. More formally, an edge (𝑢, 𝑣) in the TRG

model indicates the existence of a temporal walk from 𝑢 to 𝑣 in the

original graph. The formal definition is given as follows.

Definition 5 (Temporal Reachability Graph). Given an inter-
val I ∈ R+, the temporal reachability graph 𝐺𝑅 = (𝑉 , 𝐸𝑅) is defined
as a directed graph where the edge (𝑢, 𝑣) ∈ 𝐸𝑅 denotes the existence
of a temporal walk leaving 𝑢 and arriving 𝑣 within that interval. We
denote the number of edges in I as 𝜔 (which could be defined based
on {𝜏, 𝜖}-graph time-series).

A TRG is a static unweighted graph where each edge indicates

a temporally-valid walk reaching from the source to the destina-

tion. However, it does not capture the strength of reachability. For

example in Fig. 3a, the walk {𝐴, 𝐵,𝐶} takes two timestamps while

{𝐴, 𝐵, 𝐷} takes four. Intuitively 𝐷 is harder to reach than 𝐶 from

node𝐴 due to less temporal continuity. Vanilla TRG fails to capture

such property since all the edges are equally important (shown

in 3b). This would potentially affect the proximity-based embed-

ding methods as they are based on the closeness of nodes in the

graph. To overcome this drawback, we propose an extension of

TRG called Weighted TRG (WTRG) that encapsulates the strength

of reachability in the graph weights. We define the strength of

reachability between a pair of nodes (𝑖, 𝑗) as a function of both the

number of temporally-valid paths and the timestamp difference.

The weighting function is given as follows.

𝑔𝑖, 𝑗 =
∑

𝑤∈W 𝑒−(Δ𝑡𝑖,𝑗 |𝑤) (5)

where 𝑤 is a specific temporally-valid walk from 𝑖 to 𝑗 , and Δ𝑡𝑖, 𝑗
denotes the temporal delay reaching from 𝑖 to 𝑗 along that walk. We

depict the process of deriving WTRG in Algorithm 1. The corner-

stone of the algorithm is the temporally-reachable neighborhood

𝑁𝑅
𝑖
that records nodes that are reached by 𝑖 and the latest times-

tamps associated with temporal paths. We formally define 𝑁𝑅
𝑖
as:

Algorithm 1 Weighted Temporal Reachability Graph

1: procedure TemporalReach(𝐺 = (𝑉 , 𝐸))
2: Set 𝐸𝑅 = ∅, sort 𝐸𝑇 in reverse time order

3: while next edge (𝑖, 𝑗, 𝑡) ∈ 𝐸 do

4: for (𝑘, 𝑡𝑘) ∈ 𝑁𝑅
𝑗
do

5: 𝐸𝑅 ← 𝐸𝑅 ∪ {(𝑖, 𝑘) }
6: 𝑔𝑖,𝑘 = 𝑔𝑖,𝑘 + 𝑒−(𝑡𝑘−𝑡)
7: 𝑁𝑅

𝑖
← 𝑁𝑅

𝑖
∪ {(𝑘, 𝑡𝑘) }

8: 𝐸𝑅 ← 𝐸𝑅 ∪ {(𝑖, 𝑗) }
9: 𝑔𝑖,𝑗 = 𝑔𝑖,𝑗 + 1 ⊲ Δ𝑡𝑖,𝑗 = 0 as 𝑖, 𝑗 are adjacent

10: 𝑁𝑅
𝑖
← 𝑁𝑅

𝑖
∪ {(𝑗, 𝑡) }

11: end while

12: return𝐺𝑅 = (𝑉 , 𝐸𝑅, 𝑔)

Definition 6 (Temporally reachable neighborhood). Given
a node 𝑖 , its temporally reachable neighborhood 𝑁𝑅

𝑖
is defined as the

set of tuples {(𝑗, 𝑡 𝑗)} where 𝑗 is the node reachable from 𝑖 following a
temporally-valid walk and 𝑡 𝑗 is the timestamp of the edge reaching 𝑗
in that walk.

Given an input temporal edge (𝑖, 𝑗, 𝑡), Algorithm 1 loops through

reachable neighbors in 𝑁𝑅
𝑖

to add edges in 𝐸𝑅 and updates the

weights based on Eq. (5) (line 5-8). It also adds (𝑖, 𝑗) to the WTRG

as well as the immediate weight (line 9-11). Overall, the compu-

tational complexity of the algorithm is O(|𝐸 |max𝑑 (𝑁𝑅)), where
max𝑑 (𝑁𝑅) is the maximum degree of a node in WTRG. While

the derived WTRG can be dense with huge amounts of reachable

neighbors, we show that this number is bounded by 𝜔 , which is the

size of the interval associated with the WTRG (Section 10 of the

supplementary material). Accordingly, the computational complex-

ity of the algorithm is denoted as O(|𝐸 |𝜔). We follow Algorithm 2

to combine the embeddings over the graph time-series.

5.3 Temporal Embeddings

5.3.1 Base embedding methods. Given the graph time-series rep-

resentation and temporal model (Section 5.1-5.2), the proposed

approach can leverage any existing static embedding method to

derive time-dependent node embeddings that capture the impor-

tant temporal dependencies between the nodes as well as the tem-

poral structural (role-based) and proximity-based properties [22].

We use the proposed framework to generalize a wide variety of

static base embedding methods including both community-based

and role-based structural node embedding methods [22]. Namely,

they are: (1) LINE [26], (2) Node2vec [9], (3) Graph2Gaussian [3],

(4) struc2vec [19], (5) Role2vec [1], (6) Graphwave [6], and (7)mul-

tilens [12]. We provide the detailed configuration of each individual

method in Section 9 for reproducibility of the experiments. Among

these static methods, approaches (1-3) are community/proximity-

based and (4-6) are role-based. Method (7) is a hybrid that is based

on structural similarity of node-central subgraphs.

5.3.2 Temporal fusion. Given the time-series of node embeddings

{Z𝑘 }𝑇𝑘=1, we explore two temporal fusion techniques.

Concatenation: Given a time-series of embeddings, one simple

approach to obtain a final embedding is to concatenate the em-

beddings as follows: Z =
[
Z1 · · ·Z𝑇

]
. We could further weight the

embeddings based on temporal recency, i.e., under-weighting node

embeddings that occur in the distant past since they are not as

important as the more recent ones for prediction.

5

Conference’17, July 2017, Washington, DC, USA

Algorithm 2 General Framework for Temporal Embeddings

Input: 𝜖 or 𝜏 for deriving the graph time-series representation, base em-

bedding method 𝑓 (e.g., GraphWave, role2vec)

1: Construct a graph time-series G = {𝐺1,𝐺2, . . . ,𝐺𝑇 } using a graph

time-series representation {𝜏, 𝜖 } from Section 5.1.

2: Initialize Z0 to all zeros

3: for each𝐺𝑘 ∈ G do ⊲ for 𝑘 = 1, 2, . . .

4: Use Alg. 1 to derive the temporal reachability graph for𝐺𝑘

5: Compute node embedding matrix Z𝑘 using the base embedding

method 𝑓 with the temporal reachability graph from Alg. 1

6: Concatenate or aggregate (using sum, mean, etc.) the embedding

matrix, e.g., Z̄𝑘 = (1 − 𝜃)Z̄𝑘−1 + 𝜃Z𝑘 where Z̄𝑘 is the temporally

weighted embedding using the above exponential weighting kernel

K(·) and 0 ≤ 𝜃 ≤ 1 is a hyperparameter controlling the importance

of past information relative to more recent (Section 5.3.2).

7: return Z̄𝑘 (temporally weighted embeddings using K and 𝜃) or
Z =

[
Z1 Z2 · · · Z𝑇

]
(concatenated embeddings)

Temporallyweighting:This technique aggregates (e.g., sum,mean)

the embedding matrix, e.g., Z̄𝑘 = (1 − 𝜃)Z̄𝑘−1 + 𝜃Z𝑘 where Z̄𝑘 is

the temporally weighted embedding using the above exponential

weighting kernel K(·). 0 ≤ 𝜃 ≤ 1 is a hyperparameter controlling

the importance of past information relative to more recent.

6 EXPERIMENTS

In this section, we systematically investigate the effectiveness of

each component in the framework, i.e., the different graph time-

series representations (Section 6.3, temporal network models (Sec-

tion 6.4), and the new dynamic node embedding methods general-

ized using the proposed framework (Section 6.5). More specifically,

we aim to explore the following research questions:

• Q1 How well does the widely-used 𝜏-graph time-series rep-

resentation perform comparing with the proposed 𝜖-graph

time-series?

• Q2 How effective is the proposed WTRG model comparing

with the vanilla TRGmodel?What temporal models are most

useful for incorporating temporal dependencies into static

embedding methods?

• Q3 Are the dynamic embedding methods generalized via

the framework useful for temporal prediction? How do they

compare to the state-of-the-art dynamic methods?

6.1 Experimental Setup

6.1.1 Data. We learn node embeddings from the graph time-series

starting from roughly
1

3
of the timespans. For example, for the

bitcoin dataset, we train the classifier based on node embeddings

derived from month 20 to month 25 out of 63 months, inclusive.

This ensures that there are sufficient edges for training. For all

datasets, we perform training on the first 6 graphs and predict

links on the 7th graph. Depending on the time-scale shown in Ta-

ble 2, they represent 6 months (enron, bitcoin, wiki-elec
and overflow), weeks (fb-forum and reality-call), or days
(wiki-edit and contact-dublin). We create evaluation examples

from the links in the 7th graph and an equal number of randomly

sampled pairs of unconnected nodes as negative samples [24].

6.1.2 Model configuration and variants. We consider the task of

link prediction over time and systematically compare the perfor-

mance of different temporal network models and representations.

Given a set of timestamped edges up to timestamp 𝑇 , i.e., G =

{𝐺1, · · ·𝐺𝑇 }, the temporal link prediction task aims to predict the

future links that will form in 𝐺𝑇+1. We first follow the conven-

tional setup to construct the 𝜏-graph time-series G𝜏 = {𝐺1, · · ·𝐺𝑇 }
for model training and 𝐺𝑇+1 for testing, where each snapshot

𝐺𝑘 (𝑘 ∈ {1, 2, · · · ,𝑇 }) represents edges that occur within a con-

sistent time scale shown in Table 2. Then we construct the 𝜖-

graph time-series representation G𝜖 . For fair comparison, we set

𝜖 = |𝐸𝑇+1 | to ensure the trained models based on both 𝜖- and

𝜏-based temporal networks are used to predict links in the same

hold-out test set 𝐺𝑇+1. Thus, graphs in the 𝜖-graph time-series

G𝜖 = {𝐺1, . . . ,𝐺𝑇 } and𝐺𝑇+1 are also consistent with respect to the

𝜖 representation, where |𝐸1 | = |𝐸2 | = · · · = |𝐸𝑇+1 |.
For each {𝜖, 𝜏}-graph time-series representation, we select a

temporal network model from {𝑆𝐺,𝑇𝑆𝐺,𝑊𝑇𝑅𝐺} and a base em-

bedding method using the framework. Therefore, we have totally 6

dynamic variants: {𝑆𝐺-𝜖 ,𝑇𝑆𝐺-𝜖 ,𝑊𝑇𝑅𝐺-𝜖 , 𝑆𝐺-𝜏 ,𝑇𝑆𝐺-𝜏 ,𝑊𝑇𝑅𝐺-𝜏}.
To train the classifier, we applying these dynamic variants to derive

node embeddings and feed them to the logistic regression model

for prediction with regularization strength 1.0 and stopping criteria

10
−4
. Following [4], we concatenate the node embeddings z𝑖 and

z𝑗 to obtain an edge embedding z𝑖 𝑗 =
[
z𝑖 z𝑗

]
. For temporal fusion,

we use the temporally weighting technique from Section 5.3.2 with

𝜃 = 0.8 for dimensional consistency. The TSG decay parameter

𝛼 is set to 0.8 for computational fairness. For all experiments, we

perform 3 runs and report the average.

For reproducibility, we provide the detailed configuration of both

the base and dynamic graph embedding methods in Section 9 of the

supplementary material. Also, we will make the source code and

the complete experimental results public upon paper acceptance.

6.2 WTRG vs. TRG

We first study the effectiveness of WTRG model over the vanilla

TRG model. As WTRG incorporates the strength of reachability

in edge weights, we consider embedding methods that handles

weighted graphs, namely, they are node2vec, struc2vec and mul-

tilens. We run both methods on two datasets using both TRG and

WTRG with 𝜏-graph time series as shown in Table 4.

The first observation from Table 4 is that structure-based embed-

ding methods tend to outperform node2vec, the proximity-based

method. In addition, we observe that WTRG improves most embed-

ding methods in link prediction, except for node2vec on wiki-elec

Table 4: Performance of WTRG over TRG on 𝜏-graph time series

bitcoin wiki-elec
Method Metric TRG WTRG TRG WTRG

node2vec

AUC 0.9214 0.9239 0.7348 0.7344

ACC 0.8294 0.8412 0.6171 0.6144

F1 0.8285 0.8408 0.5909 0.5889

struc2vec

AUC 0.9274 0.9301 0.7840 0.7933

ACC 0.7959 0.8109 0.6583 0.6703

F1 0.7925 0.8081 0.6388 0.6534

multilens

AUC 0.9226 0.9389 0.8106 0.8143

ACC 0.8656 0.8793 0.7438 0.7539

F1 0.8655 0.8792 0.7385 0.7493

6

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

dataset. One possible reason is that the random walker in WTRG

are more likely to visit nodes that are close in time, and thus limit-

ing the derived embeddings to incorporate distant neighborhood

information. We put this deep study of WTRG in the future work.

Nevertheless, for embedding methods that are based on structural

information,WTRG outperforms TRG by 0.8% in AUC ,1.3% in ACC,

and 1.4% in F1 score on average. As we observe that the WTRG

model tends to outperform the vanilla TRG model, we use WTRG

in the rest of the experiments.

6.3 Fixed #edges (𝜖) vs. time-scale (𝜏)

In this section, we investigate the effectiveness of different graph

time-series representations (Q1). Due to the massive amount of

experimental results, we first define 2 evaluation metrics for this

experiment. These newly proposed measurement are for readers to

have a clear overview of the comparison results across all compo-

nents in the proposed framework across all the datasets.

We first evaluate the general performance of each temporal

model through the mean ranking (and std) across all datasets and

embedding methods in terms of the AUC, ACC and F1 score. We

leverage the following metrics to better interpret the results. Let

y𝑗𝑘 ∈ R |M | denote the vector of AUC (or ACC, F1) scores of the

temporal modelsM for an embedding method 𝑓𝑗 ∈ F and graph

dataset 𝑘 . Further, let 𝜋 (y𝑗𝑘 , 𝑀𝑖) denote the rank of the temporal

model𝑀𝑖 ∈ M for a given embedding method 𝑓𝑗 and graph dataset

𝑑𝑘 ∈ D. The mean rank is computed as

MR𝑖 =
1

|D||F |
∑

𝑑𝑘 ∈D

∑
𝑓𝑗 ∈F

𝜋 (y𝑗𝑘 , 𝑀𝑖) (6)

Therefore, smaller values of MR indicate better model performance.

We report the results in Table 5. In addition to the general perfor-

mance, we also provide an intuitive ranking based on the number

of times each model performs the best following [21]. This metric

𝑠𝑖 reflects the occurrence of temporal model𝑀𝑖 to be optimal:

𝑠𝑖 =
∑

𝑑𝑘 ∈D

∑
𝑓𝑗 ∈F
I
{
𝜋 (y𝑗𝑘 , 𝑀𝑖) = 1

}
(7)

where I{𝜋 (y𝑗𝑘 , 𝑀𝑖) = 1} returns 1 if 𝜋 (y𝑗𝑘 , 𝑀𝑖) = 1 and 0 otherwise.

I{𝜋 (y𝑗𝑘 , 𝑀𝑖) = 1} indicates that the temporal model 𝑀𝑖 performs

best for the given graph dataset 𝑑𝑘 and base embedding method 𝑓𝑗 .

Thus, 𝑠𝑖 denotes the total score of model𝑀𝑖 based on the number

of times temporal model𝑀𝑖 appeared first in the ranking across all

base embedding methods and graph datasets.

Performance. Based on the results shown in Table 5, our first

observation is that the top-3 temporal models are those that use

the proposed 𝜖-graph time-series representation. These models

perform comparably well in terms of AUC, ACC and F1 and are

in general better than 𝜏-graph time-series representation used in

previous work. This finding indicates the general effectiveness of

𝜖-graph time-series in representing the temporal network. We also

compute an overall score by summing over each 𝑠𝑖 for all evaluation

criterion (bottom row in Table 6). We observe that the top models

are 𝜖-based, which demonstrate the effectiveness of 𝜖-graph time-

series in capturing the graph structural changes over edge frequency
changes in prediction tasks.

Table 5:Mean rank (and std.) of the temporal networkmodels across

all base embeddingmethods and graphs based on AUC, ACC and F1,

lower is better. The top-3 temporal networkmodels are based on the

new 𝜖-graph time-series representation (fixed #edges)

Temporal Mean Rank (MR)

Model AUC ACC F1

WTRG-𝜖 2.30 ± 2.16 2.73 ± 1.95 2.66 ± 1.90
TSG-𝜖 2.43 ± 1.84 2.61 ± 2.19 2.70 ± 2.24
SG-𝜖 2.57 ± 1.64 2.66 ± 1.86 2.59 ± 1.88

WTRG-𝜏 2.80 ± 1.96 2.80 ± 1.98 2.86 ± 1.99
SG-𝜏 2.95 ± 1.91 2.84 ± 1.87 2.82 ± 1.83

TSG-𝜏 3.63 ± 1.75 3.46 ± 1.87 3.45 ± 1.80
SG 4.32 ± 1.88 3.89 ± 1.91 3.93 ± 1.94

Sensitivity Analysis. We also conduct a parameter sensitivity

analysis on two datasets, bitcoin and fb-forum, to evaluate the

impact of different values of 𝜏 and 𝜖 on the overall performance. For

bitcoin, we train our model on temporal data spanning 6 months

and test on the 7th month. Forfb-forum, we train on 12 weeks

and test on the 13rd week. We create the 𝜏-graph time series using

different scales (e.g., months, weeks, days), and generate the same

number of 𝜖-graphs with equal number of edges. Based on the result

shown in Figure 4, we observe that our model running on the 𝜖-

graph time series consistently outperforms the 𝜏-graph time series,

while being more robust. This also indicates that in practice, the

𝜖-graph time series can be used as an alternative to create temporal

graph snapshots for various mining tasks, especially in preliminary

graph analysis when the optimal timescale is undetermined.

(a) Prediction performance on bitcoin (b) Prediction performance on fb-forum

Figure 4: Sensitivity analysis. Link prediction performance on 𝜏-

and 𝜖-graph. The 𝜏-graphs are created based on different timescales,

the 𝜖-graphs are created via equal division. mo.: month. wk.: week.

Result 1. Overall, the proposed 𝜖-graph time-series represen-

tation based on a fixed number of edges outperforms the time-scale

𝜏-graph time-series across different scales, while being more robust.

6.4 Temporal Model Comparison

To answer Q2, we follow the formulation in Section 6.3 to quanti-

tatively evaluate and rank the temporal models according to their

effectiveness in prediction. We show the complete performance of

temporal network models that perform the best following Equa-

tion (7) with respect to individual datasets in Table 6 to supplement

the mean ranking in Table 5.

Notably, the TSG-𝜖 model has the highest # of first ranks across

all datasets, especially on datasets with short timespans (i.e., wiki-edit
and contacts). It also has the highest # of first ranking, in terms of

ACC and F1, which indicates that this model is generally promising

but at the same time less stable than the other 𝜖-based models. We

also confirm this finding in Table 5 as it shows relatively higher

variance of ranking. WTRG-𝜖 performs the second best and is a

7

Conference’17, July 2017, Washington, DC, USA

Table 6: Temporal model performance across the temporal graphs.

Each (𝑖, 𝑗) is the # of times temporal model𝑀𝑗 ∈ M in graph𝐺𝑖 per-

formed best comparing to the other models across all base embed-

dingmethods 𝑓 ∈ F and evaluation criterion.We bold the temporal

model that performs best overall for each graph.

TSG-𝜖 WTRG-𝜖 SG-𝜖 SG-𝜏 WTRG-𝜏 SG TSG-𝜏

bitcoin 6 6 4 5 0 0 0

stackoverflow 1 4 3 3 9 0 1

enron 4 1 1 3 8 4 0

wiki-elec 2 6 7 6 0 0 0

fb-forum 10 10 0 1 0 0 0

wiki-edit 7 3 2 3 2 2 2

reality-call 1 0 2 4 6 4 4

contacts-dublin 9 2 8 1 1 0 0

overall score 40 32 27 26 26 10 7

close second to TSG-𝜖 on datasets with long timespans. This is po-

tentially due to how they model the temporal recency: TSG models

the past information with exponential decay (3), while WTRG mod-

els it with the absolute temporal difference (5). Thus, TSG could

still capture the temporal evolution within a relatively short period

of time. Nevertheless, both TSG and WTRG perform well on all

datasets even though spikes and flucation are observed such as

fb-forum (Figure 1). It can be seen that there is not a single tempo-

ral model that prevails across all datasets. On the other hand, the

WTRG model tends to performs well regardless of the timescales

in graph representation, while TSG model tends to perform well

on graphs with short timespans. Besides, the temporal models that

are combined with the proposed 𝜖-graph time-series representation

tend to outperform their other 𝜏-counterparts, which is consistent

with our previous findings from Section 6.3.

Result 2. Out of all models, WTRG-𝜖 and TSG-𝜖 tend to per-

form the best. Empirically, WTRG-𝜖 is more stable overall (Table 5)

and TSG-𝜖 performs well on datasets with short timespans (Table 6).

6.5 Dynamic Embeddings: Variants vs. SOTA

To answer Q3, we first use the framework to derive new dynamic

embedding methods (by selecting the representation, temporal

model, base embedding method, etc.), then we compare their per-

formance to the state-of-the-art dynamic embedding methods on

all 8 datasets. One would presumably expect that the state-of-the-

art methods for dynamic node embeddings will outperform the

dynamic embedding methods generalized by our framework. This

is because the state-of-the-art methods are typically more complex

and have been designed specifically for learning such dynamic node

embeddings. We use 9 recent state-of-the-art dynamic methods dur-

ing 2017 ∼ 2020 as baselines, including CTDNE [17], node2bits [11],

DANE [16], DynGem [8] TIMERS [28], DynAE/DynAERNN [7],

DySAT [24], DyHATR [27], and EvolveGCN[18].

Figure 5 shows the mean AUC for each method where the aver-

age is taken over all graphs investigated. As representative dynamic

embedding methods from the proposed framework, we use 4 dy-

namic embedding variants of struc2vec (s2v-TSG-𝜖/𝜏 , s2v-WTRG-

𝜖/𝜏) and 4 variants of MultiLENS (ML-TSG-𝜖/𝜏 , ML-WTRG-𝜖/𝜏).
Strikingly, we observe that the dynamic embedding methods from

the framework perform comparably or even better than the state-of-

the-art methods that are designed particularly for temporal graphs

and time-series prediction. In particular, ML-TSG-𝜖 performs best

Figure 5: Predictive results of the dynamic embeddingmethods and

our framework. Our proposed framework approximates well to ap-

proaches specifically designed for temporal graphs with compara-

ble or even better performance (ML = multilens, s2v = struc2vec).

with a mean gain of 12.34% followed by s2v-TSG-𝜖 with a gain

in AUC of 10.97%. Also, we note that our proposed framework is

computationally efficient. Taking multilens as an base embedding

method, our proposed framework has the computational complex-

ity O(|𝐸 | |G|) where |G| is the number of graphs in the time-series,

and the number of parameters to learn is O(|𝑉 | |G|). This is also
validated empirically throughout our experiment.

Result 3. The dynamic embeddings derived from our frame-

work leveraging conventional static embedding methods (Section 5)

perform better than state-of-the-art dynamic embedding methods.

Notably, in this experiment we do not aim to show substantial

improvement of our framework over all the dynamic approaches,

especially those based on deep learning, since node features are

not used. Instead, these results show that our proposed framework

could capture the graph structures and temporal dependency at least

as good as those recent dynamic approaches with less complexity

(i.e., no transitional or latent variables), Unlike methods that are

based on complex models as “black boxes”, the components of

our proposed framework are easy-to-understand, which further

motivates its usage for practitioners in predictive applications.

7 CONCLUSION

Despite the recent increasing interest in temporal networks in the

field of representation learning, there has been relatively little work

that systematically studies the properties of temporal network mod-

els and their cornerstones, the graph time-series representations.

This works attempts to fill this gap by proposing a general yet pow-

erful framework. Specifically, we introduce the notion of 𝜖-graph

time-series to address data imbalance that arise with the tradi-

tional way of deriving a graph time-series based on a—sometimes

arbitrary—time-scale (e.g., 1 day or 1 week).We find that the 𝜖-graph

time-series is beneficial to most existing embeddingmethods in tem-

poral link prediction. Furthermore, our proposed framework gives

rise to new dynamic embedding methods by combining these graph

time-series representations, temporal models, and base static em-

bedding methods. We find that although there is no single temporal

model (or embedding method) that could prevail on any dataset, our

proposedWTRGmodel and TSGmodel along with the 𝜖 time-series

tend to perform the best across all datasets studied.We further show

that these dynamic embedding approaches from our framework

outperform recent, powerful dynamic embedding methods.

8

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. This material is

partially based upon work supported by the National Science Foundation

under CAREER Grant No. IIS 1845491 and Army Young Investigator Award

No. W911NF1810397, an Adobe Digital Experience research faculty award,

and Amazon, Google, and Facebook faculty awards. Any opinions, findings,

and conclusions or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views of funding parties.

9

Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] N. K. Ahmed, R. A. Rossi, R. Zhou, J. B. Lee, X. Kong, T. L. Willke, and H. Eldardiry.

Learning role-based graph embeddings. In IJCAI StarAI, 2018.
[2] S. Bhadra and A. Ferreira. Complexity of connected components in evolving

graphs and the computation of multicast trees in dynamic networks. ADHOC-
NOW, pages 259–270, 2003.

[3] A. Bojchevski and S. Günnemann. Deep gaussian embedding of graphs: Unsu-

pervised inductive learning via ranking. In ICLR, 2018.
[4] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global

structural information. In CIKM, pages 891–900. ACM, 2015.

[5] K. G. Coffman and A. M. Odlyzko. Growth of the internet. In Optical fiber
telecommunications IV-B, pages 17–56. Elsevier, 2002.

[6] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Learning structural node

embeddings via diffusion wavelets. In KDD, pages 1320–1329. ACM, 2018.

[7] P. Goyal, S. R. Chhetri, and A. Canedo. dyngraph2vec: Capturing network dy-

namics using dynamic graph representation learning. Knowledge-Based Systems,
page 104816, 2019.

[8] P. Goyal, N. Kamra, X. He, and Y. Liu. Dyngem: Deep embedding method for

dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.
[9] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In

KDD, pages 855–864, 2016.
[10] R. Hisano. Semi-supervised graph embedding approach to dynamic link predic-

tion, 2016.

[11] D. Jin, M. Heimann, R. Rossi, and D. Koutra. node2bits: Compact time-and

attribute-aware node representations for user stitching. In ECML PKDD, page 22,
2019.

[12] D. Jin, R. A. Rossi, E. Koh, S. Kim, A. Rao, and D. Koutra. Latent network

summarization: Bridging network embedding and summarization. In KDD. ACM,

2019.

[13] S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory

in temporal interaction networks. In KDD, pages 1269–1278. ACM, 2019.

[14] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws,

shrinking diameters and possible explanations. In KDD, 2005.
[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/data, June 2014.

[16] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu. Attributed network embedding

for learning in a dynamic environment. In CIKM, pages 387–396. ACM, 2017.

[17] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim. Continuous-

time dynamic network embeddings. InWWW BigNet, 2018.
[18] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,

T. Schardl, and C. Leiserson. Evolvegcn: Evolving graph convolutional networks

for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5363–5370, 2020.

[19] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. Struc2vec: Learning node

representations from structural identity. In KDD, 2017.
[20] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph

analytics and visualization. In AAAI, 2015.
[21] R. A. Rossi, N. K. Ahmed, H. Eldardiry, and R. Zhou. Similarity-based multi-label

learning. In IJCNN, pages 1–8, 2018.
[22] R. A. Rossi, D. Jin, S. Kim, N. K. Ahmed, D. Koutra, and J. B. Lee. From community

to role-based graph embeddings. In arXiv:1908.08572, 2019.
[23] R. A. Rossi and J. Neville. Time-evolving relational classification and ensemble

methods. In PAKDD, volume 7301, pages 1–13. Springer, 2012.

[24] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural represen-

tation learning on dynamic graphs via self-attention networks. In WSDM, pages

519–527, 2020.

[25] U. Singer, I. Guy, and K. Radinsky. Node embedding over temporal graphs. In

IJCAI, pages 4605–4612, 7 2019.
[26] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale

Information Network Embedding. InWWW, pages 1067–1077, 2015.

[27] H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin. Modeling dynamic hetero-

geneous network forlink prediction using hierarchical attentionwith temporal

rnn. In Proceedings of the 2020 European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020.

[28] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu. Timers: Error-bounded svd restart

on dynamic networks. In AAAI, 2018.
[29] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dynamic network embedding

by modeling triadic closure process. In AAAI, 2018.
[30] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu. Embedding temporal network

via neighborhood formation. In KDD, pages 2857–2866, 2018.

10

http://snap.stanford.edu/data

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

Supplementary Material for Reproducibility

8 DATA DESCRIPTION

The detailed description of the experimental graph datasets is given

as follows.

• enron4 records email exchanging between empolyees of

Enron from May, 1999 to June, 2002.

• bitcoin5 is a who-trusts-whom network of people who

trade using bitcoins from Nov, 2010 to Feb., 2017. We study

the user connectivity by dropping the edge signs.

• wiki-elec4 contains the voting history based on theWikipedia

page edit history from Mar., 2004 to Jan., 2008.

• stackoverflow5 is a temporal network consisting of three

types of interactions on the stack exchange web site Math

Overflow: a user answers questions, a user comments on

questions, and a user comments on answers.

• wiki-edit6 is a public bipartite dataset containing onemonth

of edits made by users in the Wikipedia page.

• fb-forum4 is the Facebook-like Forum network that records

users’ activity in the forum.

• contacts-dublin4 is a human contact networkwhere nodes

represent humans and edges between them represent prox-

imity (i.e., contacts in the physical world).

• reality-call4 is a subgraph of the reality mining study.

Nodes are participants and edges are phone calls.

9 BASE AND DYNAMIC EMBEDDING

METHOD CONFIGURATION

We configured all the base methods to achieve the best performance

according to the respective papers. For all the static methods based

on random walks (i.e., node2vec, struc2vec), we perform 20 walks

with the maximum walk length 𝐿 = 20. For node2vec, we perform

grid search over 𝑝, 𝑞 ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [9] and

report the best performance. For LINE and Multi-Lens, we incorpo-

rate 2nd-order proximity in the graph. For role2vec, we leverage

the node degree as the feature for roles. For Graphwave, we per-

form the method to automatically select the scaling parameter with

exact heat kernel matrix calculation. We set the final embedding

with dimension 𝐾 = 128 for evaluation, and leverages the weighted

summation fusion approach so that the embedding dimensions of

individual graphs are fixed to be the same.

For the state-of-the-art dynamic embedding methods, we follow

the configuration given by the paper/code repository. Specifically,

for CTDNE, we set #walks= 10, the walking length 𝐿 = 20. For

node2bits, we perform short-term temporal random-walk with

scope to be 3. The the #walks and the walking length are set to

be the same as CTDNE. For DANE, we leverage both the offline

computation model to derive node embeddings based on the first 6

graphs, and the online model to derive node embeddings for the

6th graph based on the first 5. We set the intermediate embedding

dimensions to be 100 for both models and report the best perfor-

mance. For TIMERS, we set the tolerance threshold value that is

used to restart the optimal SVD calculation to be 0.17 as provided in

4
http://networkrepository.com

5
https://snap.stanford.edu/data/

6
https://github.com/srijankr/jodie

the code repository. For DyAE/DyAERNN, we leverage the 2-layer

auto-encoder/decoder with 400 and 200 units, respectively. We set

the regularization hyperparameter to be 10
−6
, bounding ratio for

number of units in consecutive layers to be 0.3 as suggested in the

paper, and perform grid search in the range of ±10% of the default

value. In the learning stage, the sgd learning rate is set to be 10
−6

with minibatch size to be 100. Lastly, for DySAT, we leverage the

base model and perform grid search on the default hyperparameters

in the range of ±10% of the default values.

10 COMPUTATIONAL COMPLEXITY OF

WTRG

In this section we detail the computational complexity in deriving

WTRG by showing the following property.

Property 1. The number of edges in𝐺𝑅 is bounded by the number
of temporally-valid walks in 𝐺 .

Based on Def. 5, an edge (𝑢, 𝑣) ∈ 𝐸𝑅 indicates a temporally-

valid walk reaching from 𝑢 to 𝑣 in 𝐺 . However, this edge could

correspond to multiple unique temporal walks with different in-

termediate nodes and associated timestamps, therefore, |𝐸𝑅 | is no
more than the number of temporally-valid walks in 𝐺 .

Let 𝑁𝑅
𝑖
denote the temporally reachable nodes of 𝑖 , Δ(𝐺𝑅) =

max{𝑑 (𝑁𝑅
1
), . . . , 𝑑 (𝑁𝑅

𝑛)} is the maximum degree of a node in 𝐺𝑅 ,

and 𝜔 is the window size. Then

|𝑁𝑅
𝑖 | ≤ Δ(𝐺𝑅) ≤ 𝜔 (8)

According to Def. 5, a TRG is comprised by edges within the interval

with size 𝜔 . These edges comprise upto 𝜔 different temporal walks

originating from a specific node 𝑖 . Therefore, based on Property 1,

the number of edges originating from node 𝑖 is bounded by the

number of temporally-valid walks, which is 𝜔 .

11 COMPLETE EXPERIMENTAL RESULTS

In this section, we show the complete experimental results using the

both the dynamic approaches generated from our proposed frame-

work, and the state-of-the-art approaches specifically designed to

handle dynamic graphs. In total, we perform 3 runs of the exper-

iments on 8 dynamic graphs and report the average AUC, ACC

and F1 metrics with the standard deviation. The dynamic meth-

ods generated from our proposed framework include 7 base static

embedding methods coupled with 6 temporal models as well as

the static form, i.e., not using the temporal information. We also

include 7 state-of-the-art dynamic embedding approaches.We lever-

age Equation (6) and Equation (7) to aggregate the extensive results

for interpretation. In Table 7, we only show the complete results

on the first 3 datasets used in this work due to the space limit.

11

http://networkrepository.com
https://snap.stanford.edu/data/
https://github.com/srijankr/jodie

Conference’17, July 2017, Washington, DC, USA

Table 7: Complete experimental results on the first 3 datasets. The values are represented using percentage %.

Base Temporal bitcoin stackoverflow enron
Method Model AUC ACC F1 AUC ACC F1 AUC ACC F1

Node2vec

Static 89.05 ± 0.44 76.74 ± 0.70 75.89 ± 0.74 95.97 ± 0.02 84.34 ± 0.16 84.09 ± 0.17 76.11 ± 0.75 70.19 ± 0.88 69.96 ± 0.93
SG-𝜏 93.80 ± 0.62 86.63 ± 0.20 86.58 ± 0.20 96.11 ± 0.05 88.00 ± 0.14 87.94 ± 0.15 80.44 ± 0.85 72.03 ± 0.42 72.02 ± 0.43

WTRG-𝜏 95.15 ± 0.45 88.71 ± 0.61 88.65 ± 0.63 96.45 ± 0.05 89.67 ± 0.34 89.65 ± 0.35 79.78 ± 0.48 72.63 ± 0.67 72.62 ± 0.68
SG-𝜖 95.08 ± 0.63 88.76 ± 0.67 88.74 ± 0.67 96.11 ± 0.05 88.13 ± 0.29 88.08 ± 0.29 78.37 ± 0.36 69.02 ± 0.72 68.86 ± 0.75

WTRG-𝜖 95.89 ± 0.19 89.82 ± 0.47 89.79 ± 0.48 96.51 ± 0.02 89.41 ± 0.09 89.37 ± 0.09 78.37 ± 1.28 70.93 ± 0.30 70.91 ± 0.30
TSG-𝜏 89.37 ± 0.40 76.79 ± 1.02 75.97 ± 1.12 96.08 ± 0.04 84.65 ± 0.25 84.42 ± 0.26 76.43 ± 1.50 70.35 ± 1.74 70.17 ± 1.83
TSG-𝜖 90.46 ± 0.05 77.15 ± 0.09 76.37 ± 0.09 96.18 ± 0.02 84.69 ± 0.17 84.45 ± 0.19 77.83 ± 0.39 70.95 ± 0.32 70.86 ± 0.34

LINE

Static 87.58 ± 0.00 75.86 ± 0.00 75.11 ± 0.00 97.08 ± 0.00 91.41 ± 0.00 91.39 ± 0.00 76.19 ± 0.00 69.85 ± 0.00 69.70 ± 0.00
SG-𝜏 89.75 ± 0.00 82.48 ± 0.00 82.46 ± 0.00 96.79 ± 0.00 91.87 ± 0.00 91.87 ± 0.00 81.84 ± 0.00 74.21 ± 0.00 74.06 ± 0.00

WTRG-𝜏 89.49 ± 0.00 82.24 ± 0.00 82.24 ± 0.00 96.95 ± 0.00 91.92 ± 0.00 91.92 ± 0.00 81.89 ± 0.00 73.63 ± 0.00 73.49 ± 0.00
SG-𝜖 89.18 ± 0.00 83.49 ± 0.00 83.48 ± 0.00 96.96 ± 0.00 91.85 ± 0.00 91.85 ± 0.00 80.38 ± 0.00 72.45 ± 0.00 72.36 ± 0.00

WTRG-𝜖 91.68 ± 0.00 84.81 ± 0.00 84.81 ± 0.00 96.79 ± 0.00 91.48 ± 0.00 91.48 ± 0.00 82.71 ± 0.00 73.23 ± 0.00 73.18 ± 0.00
TSG-𝜏 87.59 ± 0.00 76.48 ± 0.00 75.86 ± 0.00 97.25 ± 0.00 91.44 ± 0.00 91.42 ± 0.00 76.21 ± 0.00 68.05 ± 0.00 67.74 ± 0.00
TSG-𝜖 89.28 ± 0.00 76.71 ± 0.00 75.99 ± 0.00 97.23 ± 0.00 91.26 ± 0.00 91.23 ± 0.00 75.22 ± 0.00 67.28 ± 0.00 67.06 ± 0.00

Struc2vec

Static 91.56 ± 0.16 81.70 ± 0.28 81.40 ± 0.33 96.99 ± 0.02 84.82 ± 0.17 84.57 ± 0.17 80.33 ± 0.44 73.31 ± 0.89 73.20 ± 0.94
SG-𝜏 95.19 ± 0.59 87.83 ± 0.68 87.78 ± 0.68 96.92 ± 0.05 88.38 ± 0.29 88.30 ± 0.30 81.95 ± 0.86 72.10 ± 1.74 71.90 ± 1.83

WTRG-𝜏 92.10 ± 0.97 84.22 ± 1.36 84.19 ± 1.35 96.66 ± 0.10 88.12 ± 1.00 88.04 ± 1.03 81.66 ± 1.31 72.61 ± 1.33 72.41 ± 1.36
SG-𝜖 96.37 ± 0.68 89.85 ± 0.25 89.83 ± 0.25 97.01 ± 0.04 88.39 ± 0.11 88.30 ± 0.11 82.62 ± 0.56 73.42 ± 0.69 73.27 ± 0.71

WTRG-𝜖 92.42 ± 0.33 83.78 ± 0.65 83.74 ± 0.65 96.67 ± 0.14 87.50 ± 0.59 87.40 ± 0.60 81.44 ± 0.79 72.98 ± 0.92 72.89 ± 0.90
TSG-𝜏 91.61 ± 0.16 81.93 ± 0.13 81.65 ± 0.15 96.95 ± 0.03 84.92 ± 0.11 84.67 ± 0.11 80.76 ± 0.51 72.55 ± 0.49 72.44 ± 0.49
TSG-𝜖 92.17 ± 0.07 81.85 ± 0.75 81.46 ± 0.79 97.16 ± 0.03 84.67 ± 0.15 84.38 ± 0.16 81.77 ± 0.18 74.88 ± 1.69 74.81 ± 1.72

Role2vec

Static 85.02 ± 0.04 76.27 ± 0.24 75.49 ± 0.24 92.10 ± 0.15 84.00 ± 0.05 83.77 ± 0.05 72.12 ± 1.31 66.77 ± 0.80 66.70 ± 0.82
SG-𝜏 94.90 ± 0.84 87.77 ± 0.63 87.73 ± 0.63 95.45 ± 0.11 85.26 ± 0.14 85.15 ± 0.16 74.09 ± 1.09 66.59 ± 0.71 66.48 ± 0.72

WTRG-𝜏 93.07 ± 1.11 85.64 ± 1.12 85.63 ± 1.12 95.51 ± 0.05 88.27 ± 0.71 88.24 ± 0.72 78.85 ± 1.17 71.38 ± 1.82 71.32 ± 1.85
SG-𝜖 93.33 ± 0.66 85.70 ± 0.96 85.68 ± 0.97 95.34 ± 0.20 83.94 ± 0.06 83.67 ± 0.07 76.11 ± 1.15 67.76 ± 1.71 67.52 ± 1.75

WTRG-𝜖 93.59 ± 0.33 86.81 ± 1.13 86.78 ± 1.12 95.90 ± 0.08 86.89 ± 0.85 86.79 ± 0.87 76.41 ± 2.22 68.34 ± 2.62 68.28 ± 2.67
TSG-𝜏 85.50 ± 0.26 75.96 ± 0.43 75.16 ± 0.44 92.36 ± 0.05 84.00 ± 0.03 83.76 ± 0.03 71.45 ± 2.11 66.29 ± 1.73 66.15 ± 1.82
TSG-𝜖 86.03 ± 0.20 75.78 ± 0.88 75.01 ± 0.91 93.13 ± 0.10 83.80 ± 0.06 83.52 ± 0.07 75.79 ± 1.59 69.71 ± 1.81 69.67 ± 1.84

Graphwave

Static 91.73 ± 0.00 77.96 ± 0.00 77.25 ± 0.00 96.89 ± 0.00 84.49 ± 0.00 84.26 ± 0.00 77.55 ± 0.00 71.88 ± 0.00 71.84 ± 0.00
SG-𝜏 99.13 ± 0.00 91.90 ± 0.00 91.85 ± 0.00 96.84 ± 0.00 84.49 ± 0.00 84.26 ± 0.00 74.25 ± 0.00 65.48 ± 0.00 65.11 ± 0.00

WTRG-𝜏 99.13 ± 0.00 91.36 ± 0.00 91.29 ± 0.00 96.89 ± 0.00 84.51 ± 0.00 84.28 ± 0.00 75.52 ± 0.00 67.69 ± 0.00 67.52 ± 0.00
SG-𝜖 99.48 ± 0.00 91.12 ± 0.00 91.05 ± 0.00 97.07 ± 0.00 84.25 ± 0.00 83.97 ± 0.00 71.94 ± 0.00 62.35 ± 0.00 61.81 ± 0.00

WTRG-𝜖 99.42 ± 0.00 89.88 ± 0.00 89.77 ± 0.00 97.07 ± 0.00 84.25 ± 0.00 83.97 ± 0.00 74.38 ± 0.00 65.08 ± 0.00 64.83 ± 0.00
TSG-𝜏 91.98 ± 0.00 77.26 ± 0.00 76.46 ± 0.00 96.96 ± 0.00 84.49 ± 0.00 84.26 ± 0.00 76.77 ± 0.00 70.50 ± 0.00 70.45 ± 0.00
TSG-𝜖 91.96 ± 0.00 76.56 ± 0.00 75.76 ± 0.00 96.99 ± 0.00 84.25 ± 0.00 83.97 ± 0.00 78.24 ± 0.00 71.35 ± 0.00 71.31 ± 0.00

G2G

Static 85.16 ± 0.87 76.37 ± 0.91 75.97 ± 1.02 93.15 ± 0.10 83.80 ± 0.11 83.66 ± 0.12 75.67 ± 0.15 71.01 ± 0.38 70.92 ± 0.39
SG-𝜏 72.64 ± 1.56 67.63 ± 1.51 67.61 ± 1.52 92.94 ± 0.18 86.95 ± 0.28 86.94 ± 0.28 76.99 ± 0.73 70.28 ± 0.98 70.05 ± 1.08

WTRG-𝜏 80.32 ± 0.92 72.04 ± 1.15 72.04 ± 1.15 95.64 ± 0.30 90.30 ± 0.17 90.29 ± 0.17 79.12 ± 0.43 70.87 ± 1.14 70.82 ± 1.21
SG-𝜖 71.66 ± 3.08 67.00 ± 2.46 66.96 ± 2.47 92.32 ± 0.51 86.58 ± 0.41 86.58 ± 0.41 76.75 ± 0.35 70.15 ± 0.72 69.94 ± 0.84

WTRG-𝜖 77.97 ± 1.37 71.08 ± 2.18 71.07 ± 2.18 95.37 ± 0.24 90.67 ± 0.38 90.65 ± 0.39 77.85 ± 0.48 70.73 ± 0.80 70.64 ± 0.81
TSG-𝜏 85.59 ± 0.91 76.20 ± 0.66 75.75 ± 0.66 93.27 ± 0.32 83.91 ± 0.54 83.77 ± 0.57 74.97 ± 0.44 70.26 ± 0.61 70.16 ± 0.63
TSG-𝜖 87.20 ± 0.87 77.98 ± 0.72 77.63 ± 0.76 93.83 ± 0.10 84.03 ± 0.19 83.86 ± 0.19 75.65 ± 0.12 69.56 ± 0.57 69.47 ± 0.63

Multilens

Static 91.28 ± 0.00 81.85 ± 0.00 81.63 ± 0.00 97.12 ± 0.00 90.24 ± 0.00 90.19 ± 0.00 80.12 ± 0.00 71.11 ± 0.00 70.83 ± 0.00
SG-𝜏 82.43 ± 0.00 75.47 ± 0.00 75.06 ± 0.00 96.95 ± 0.00 92.98 ± 0.00 92.98 ± 0.00 81.12 ± 0.00 73.80 ± 0.00 73.68 ± 0.00

WTRG-𝜏 84.48 ± 0.00 77.80 ± 0.00 77.55 ± 0.00 96.97 ± 0.00 92.16 ± 0.00 92.15 ± 0.00 80.28 ± 0.00 74.25 ± 0.00 74.10 ± 0.00
SG-𝜖 89.56 ± 0.00 80.22 ± 0.00 79.99 ± 0.00 97.24 ± 0.00 92.84 ± 0.00 92.84 ± 0.00 81.58 ± 0.00 74.12 ± 0.00 74.00 ± 0.00

WTRG-𝜖 87.33 ± 0.00 79.13 ± 0.00 78.94 ± 0.00 96.79 ± 0.00 92.56 ± 0.00 92.55 ± 0.00 81.46 ± 0.00 72.58 ± 0.00 72.37 ± 0.00
TSG-𝜏 91.28 ± 0.00 81.85 ± 0.00 81.63 ± 0.00 97.12 ± 0.00 90.24 ± 0.00 90.19 ± 0.00 80.12 ± 0.00 71.11 ± 0.00 70.83 ± 0.00
TSG-𝜖 92.50 ± 0.00 82.01 ± 0.00 81.67 ± 0.00 97.18 ± 0.00 89.84 ± 0.00 89.78 ± 0.00 81.59 ± 0.00 72.70 ± 0.00 72.43 ± 0.00

CTDNE

-

92.70 ± 0.12 86.29 ± 0.14 86.24 ± 0.14 97.43 ± 0.01 91.81 ± 0.22 91.79 ± 0.22 67.84 ± 2.64 63.74 ± 1.32 63.72 ± 1.34
Node2bits 88.97 ± 0.16 80.69 ± 0.48 80.43 ± 0.51 97.01 ± 0.03 90.85 ± 0.15 90.82 ± 0.15 83.95 ± 0.19 76.25 ± 0.35 76.25 ± 0.35

DANE 73.84 ± 0.00 67.29 ± 0.00 64.92 ± 0.00 75.31 ± 0.00 74.13 ± 0.00 73.22 ± 0.00 86.02 ± 0.00 76.21 ± 0.00 76.17 ± 0.00
TIMERS 63.50 ± 0.00 61.68 ± 0.00 58.83 ± 0.00 96.30 ± 0.00 89.00 ± 0.00 88.93 ± 0.00 87.72 ± 0.00 79.78 ± 0.00 79.77 ± 0.00
DynAE 61.41 ± 0.21 58.57 ± 0.00 55.36 ± 0.00 73.23 ± 0.94 71.57 ± 0.26 70.82 ± 0.31 76.90 ± 1.23 70.65 ± 1.64 70.62 ± 1.66

DynAERNN 57.30 ± 3.93 58.36 ± 0.46 54.83 ± 0.61 72.48 ± 0.92 71.20 ± 1.32 70.34 ± 1.63 59.10 ± 0.31 57.64 ± 1.16 57.55 ± 1.11
DySAT 61.08 ± 0.12 58.10 ± 0.68 58.09 ± 0.68 92.97 ± 1.14 84.06 ± 0.97 84.15 ± 1.51 86.75 ± 0.01 79.83 ± 0.03 79.82 ± 0.03

12

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Preliminaries
	5 Framework
	5.1 Graph Time-Series Representations
	5.2 Temporal Network Models
	5.3 Temporal Embeddings

	6 Experiments
	6.1 Experimental Setup
	6.2 WTRG vs. TRG
	6.3 Fixed #edges () vs. time-scale ()
	6.4 Temporal Model Comparison
	6.5 Dynamic Embeddings: Variants vs. SOTA

	7 Conclusion
	Acknowledgments
	References
	8 Data description
	9 Base and dynamic embedding method configuration
	10 Computational Complexity of WTRG
	11 Complete Experimental Results

