On Generalizing Static Node Embedding to Dynamic Settings

ABSTRACT

Temporal graph embedding has been widely studied due to its
superiority in tasks such as prediction and recommendation. De-
spite the advancement in algorithms and novel frameworks such
as deep learning, there has been relatively little work on systemati-
cally studying the properties of temporal network models and their
cornerstones, the graph time-series representations that are used
in these approaches. This paper aims to fill this gap by introduc-
ing a general framework that extends an arbitrary existing static
embedding approach to handle dynamic tasks, and conducting a
systematic study of seven base static embedding methods and six
temporal network models. Our framework generalizes static node
embeddings derived from the time-series representation of stream
data to the dynamic setting by modeling the temporal dependencies
with classic models such as the reachability graph. While previ-
ous works on dynamic modeling and embedding have focused on
representing a stream of timestamped edges using a time-series
of graphs based on a specific time-scale (e.g., 1 month), we intro-
duce the notion of an e-graph time-series that uses a fixed number
of edges for each graph, and show its superiority in practical set-
tings over the standard solution. From the 42 methods that our
framework subsumes, we find that leveraging the new e-graph
time-series representation and capturing temporal dependencies
with the proposed reachability or summary graph tend to perform
well. Furthermore, the new dynamic embedding methods based on
our framework perform comparably and on average better than
the state-of-the-art embedding methods designed specifically for
temporal graphs in link prediction tasks. We expect our results and
findings to be useful for the design of new embedding methods and
predictive models for temporal networks.

1 INTRODUCTION

Real-world networks that record the interaction between entities
have grown rapidly, for example, the Internet [5], various online
social networks (e.g., Facebook, Snapchat), citation networks in
academia [14]. Specifically, when nodes and edges continuously
change over time with addition, deletion (e.g., a phone call, an
email, or physical proximity between two entities), we have a par-
ticular type of evolving network structure. Learning an appropriate
network representation (embedding) that accurately captures the
temporal dynamics and temporal structural properties of these
entities is important for many downstream time-series forecast-
ing/prediction tasks such as recommendation and entity resolution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Most recent research efforts devoted in the field follow the common
pipeline: given a time-series of graphs, G = {G1,--- ,Gg, -+ ,Gr},
modeling the individual graph structures (within-snapshot prop-
erty) along with the temporal dependency (across-snapshot rela-
tion), and deriving node embeddings that incorporate both perspec-
tives. While these works show advantage from various perspectives,
the promising performance comes at the cost of time and model
complexity, such as introducing extra transition variables to reflect
the temporal dependency between snapshots [8], or latent weights
on edges between snapshots [18, 24].

In this work, we propose a general framework that simplifies
the above process and can generalize any static embedding method
to a more powerful and predictive dynamic embedding method
without introducing transitional variables. The framework consists
of three components: (C1) a graph time-series representation, (C2)
a temporal network model that appropriately models and weights
the temporal dependencies in the graph time-series, and (C3) a base
embedding method to learn a time-series of embeddings along with
a fusion mechanism to derive the final temporal node embeddings.
The framework is highly expressive as any unique combination of
C1-C3 gives rise to a new dynamic embedding method.

While previous works on dynamic modeling and embedding
have focused on representing the stream of timestamped edges [17]
using a time-series of graphs based on a specific time-scale 7 (e.g.,
7 = 1 hour, or 1 month) [7, 8, 14, 24, 25, 29], we instead propose
the notion of an e-graph time-series that uses a fixed number of
edges for each graph in the time-series. Theoretically, by fixing the
number of edges to be € in each graph, we ensure that every graph
in the sequence has an equal probability of giving rise to the same
exact distribution of higher-order graphlets and other structural
patterns!, and therefore, the new e-graph time-series forces the
models to avoid capturing simple trivial differences due to edge
counts, and instead, allow the models to capture actual structural
changes to the graphs over time.

We also introduce a number of important temporal models that
can be leveraged over any graph time-series representation of the
edge stream. The first temporal model is based on the notion of a
temporal reachability graph (TRG). TRG is derived by transforming
a dynamic graph into a static graph where an edge from u to w
indicates a temporal walk. The second temporal model is called
a weighted temporal summary graph (TSG). Notably, a weighted
temporal summary graph captures the temporal recurrence and
recency of links by appropriately weighting links with respect to a
function f that assigns larger weights to links that are more recent
and recurrent whereas links that occur in the more distant past are
assigned lower weights. All temporal models can leverage either
the new e-graph or 7-graph time-series representation.

This paper aims to provide a systematic exploration of the most
useful graph time-series representations and temporal network

IThis is in contrast to graphs with different amounts of edges. E.g., given two
arbitrary graphs G; = (V,E;) and G2 = (Va, E;) where |E;| < |E;|, then the
counts of all k € {3,4,...}-node network motifs (graphlets) in G, are almost surely
larger than Gj.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

models (used to incorporate the temporal dependencies into base
embedding methods) in downstream temporal prediction tasks. To
the best of our knowledge, this is the first work of this kind. Our pri-
mary findings are: (1) node embeddings derived from the e-graphs
outperforms the 7-graph time-series in the predictive task with
higher stableness, and (2) by composing the static node embedding
approaches with classic temporal models such as TRG or TSG, our
proposed framework performs comparably or even better than re-
cent dynamic embedding approaches with less complexity. Based on
these findings, we hope that this work will benefit future research
on developing and evaluating better dynamic embedding methods,
as well as practitioners who deploy temporal graph embedding
in various applications due to its simplicity and effectiveness in
performance. Our main contributions are as follows:

o General Framework. We describe a general framework for
leveraging graph stream data and classic temporal network
models for prediction-based applications that can generalize
any static graph embedding method.

e Powerful Graph Time-series Representation. We intro-
duce the notion of a e-graph time-series and show its supe-
riority over the conventional way of discretizing the edge
stream based on the application time-scale (e.g., hour, day).

e Systematic Study. Our framework allows us to systemati-
cally study 42 dynamic node embeddings by combining time-
series representations, temporal network models, and static
methods. Strikingly, our empirical analysis on 8 real-world
networks shows that our framework achieves comparable or
better predictive performance than existing state-of-the-art,
but more complex, dynamic node embedding methods.

2 RELATED WORK

Snapshot-based approaches. Most temporal embedding approaches
break down the graph into graph-time series based on the appli-
cation time-scale (1 month, etc.) up to a certain point k, and then
derive features from them to make inference on graphs at k + 1.
One direction is to look into the most recent snapshot, for instance,
DANE [16] proposes to embed both nodes and the associated at-
tributes in the graph by minimizing the loss of reconstruction of the
snapshot at a given times point k: %ziJAg‘C) [lyi — y;l 2, and update
the embeddings for snapshot at k + 1 based on the change of graph
structure and node attributes. DynGEM [8] adopts the deep auto-
encoder to generate the nonlinear embeddings from the snapshot
at k while addressing stability. TIMERS [28] models the relative
changes in adjacency matrices between snapshots and leverages
incremental SVD to derive embeddings. A more popular direc-
tion is to track back a certain number of snapshots from the time
point k by deriving node embeddings from each individual tracked
snapshot and then merging them through specific operation. Dyn-
graph2vec [7] leverage totally / snapshots to predict the snapshot
at k + 1. It leverages various deep architectures (i.e., auto-encoder,
RNN) to derive latent features by minimizing loss of reconstruc-
tion error: ||f(Ag_re1, -+ > Ag) — Ak+1||%. tNodeEmbed [25] is an
end-to-end framework based on node embeddings derived from
individual snapshots using static methods. The embeddings are
merged by minimizing the loss of specific tasks (i.e., link prediction
and node classification) through LSTM. DySAT [24] leverages the

Table 1: Qualitative comparison of existing embedding methods on
temporal graphs. The graph time-series representation used by the
method (application time-scale, or fixed number of edges), the type
of temporal model used, and type of embedding fusion used (if any).

REPRESENTATION TEMPORAL MODEL

Time-scale (r) #Edges (€) Snapshot Weighting Emb. Fusion

DANE [16]

DynGem [8]

TIMERS [28]
Dynagraph2vec [7]
tNodeEmbed [25]
EvolveGCN [18]

DySAT [24], DyHATR [27]
our framework [24]

NISSSNANANSN
N> > X X% X X X
NSSSSNSNASNS
AR NN Y
AR NN N Y

notion of self-attention to compute node representations by jointly
employing graph structural property and temporal dynamics. Sim-
ilarly, DyHATR [27] proposes a the hierarchical attention model
to capture both the heterogeneity and temporal attention using
GRU/LSTM to model the temporal evolution. EvolveGCN [18] uses
GCN to generate node embeddings for the past snapshots, and
learns the hidden parameters for the next using GRU/LSTM. Unlike
the above methods that jointly explore the graph structural changes
with the evolution of the #edges, our proposed e-graph time series
does not require the specification of time-scales.

Sequential-interaction-based approaches. There is another line of
works that studies the sequential interaction between nodes in the
graph. CTDNE [17] is the first approach to learn embeddings di-
rectly from the stream of timestamped edges at the finest temporal
granularity. In that work, they proposed the notion of temporal
walks and used it for embeddings [17]. More recently, node2bits [11]
expanded on this idea by incorporating features in the temporal
walks and hashing them. Alternatively, some other work has mod-
eled the node-specific temporal dynamics as the point process
where the probability of interaction is represented through dif-
ferent intensity functions. HTNE [30] proposes to model the node
evolution through the Hawkes process. JODIE[13] models the se-
quential interaction in bipartite graphs to predict the change of
embedding trajectory over time instead of interaction probability.
CTDNE, HTNE and JODIE are designed to handle continuously
sequential data, which is not the scope of this paper.

3 DATA

In this study we adopt a variety of real-world temporal networks
from SNAP [15] and NR [20]. We provide the brief description of
enron and bitcoin as follows, and refer the interested reader to
Section 8 of the supplementary material for completed descriptions.

Table 2: Network statistics and properties

Data V] |E| Type Timespan
enron 151 50,572 Unipartite 38 months
bitcoin 3,783 24,186 Unipartite 63 months
wiki-elec 7118 107,071 Unipartite 47 months
stackoverflow 24,818 506,550 Tripartite 79 months
fb-forum 899 33,720 Unipartite 24 weeks
reallity-call 6,809 52,050 Unipartite 16 weeks
wiki-edit 8,227 157,474 Bipartite 32 days
contacts-dublin 10,972 415912 Unipartite 69 days

On Generalizing Static Node Embedding to Dynamic Settings

e enron? records email exchanging between empolyees of

Enron from May, 1999 to June, 2002.

e bitcoin? is a who-trusts-whom network of people who
trade using bitcoins from Nov, 2010 to Feb., 2017. We study
the user connectivity by dropping the edge signs.

We summarize the graph statistics and temporal timespans in
Table 2, and analyze the sequential graph statistics of three graphs
over time. As the timespans vary from 32 days to 79 months, we
adopt the time-scale following Table 2 to get the sequential graph
time-series. We visualize 2 graph statistics, the number of edges |V|
and the average degree on 3 datasets with different time-scales in
Figure 1, which are contacts-dublin (day), wiki-elec (month),
and fb-forum (week). In the figure, we also visualize the same graph
statistics using a different time-series representation by fixing the
number of edges in each snapshot to @, where T denotes the
timespan following the corresponding time-scale. For example, for
wiki-elec, this number is 1017701 in each snapshot. From Figure 1,
we compare the temporal patterns of the two time-series and it can
be seen following the fixed edge count in each snapshot gives more
stable temporal pattern using both graph statistics. We discuss this
new graph time-series in detail in Section 5.1. Besides, in this work,
we focus on exploring the impacts of graph structures and temporal
dependency between snapshots to the predictive tasks, thus we do
not leverage node features such as geographic location or content.

dubli

ia-contacts-dublin 15
3000

Fixed timespan
Fixed edge count

Fixed timespan
Fixed edge count

2500
2000

T 1500

1000

average degree

500

10 20 30 40 50 60 10 20 30 40 50 60
time time

fb-forum

fb-forum 12

Fixed timespan |
—— Fixed edge count 10

8000

Fixed timespan
——— Fixed edge count

6000

T 4000

average degree
>

4 \/x\\\/\/\

2

2000

0 0
5 10 15 20 5 10 15 20

time time
Figure 1: Graph properties (#edge and average degree) over two time-

series representation (fixed timespans vs. fixed edge count). Fixing
the edge number gives more stable temporal patterns while fixing
the timespans shows higher fluctuation.

4 PRELIMINARIES

We summarize symbols and notations used in this work in Table 3.
Some important notions are given as follows.

DEFINITION 1 (TEMPORAL GRAPH). Let V be a set of vertices, and
E C VXV xR* be the set of temporal edges between vertices in V.
Each edge (u,v,t) has a unique timet € R*.

When edges represent contacts—a phone call or physical proximity—

between two entities at a specific point in time, we have a particular

2http://networkrepository.com
Shttps://snap.stanford.edu/data/

Conference’17, July 2017, Washington, DC, USA

Table 3: Summary of notation

Symbol Definition

G = {Gr} a graph time-series with snapshots indexed by k.
Gy = (Vi,Er) a directed and weighted temporal network from G with
[Vi| nodes and |Ey| temporal edges

Ag adjacency matrix for graph G in G.

Gr = (V,ER) the weighted temporal reachability graph

NiR the set of nodes that are temporally reachable from node i
/e window size representing the timespan / number of edges
a the decay factor in the temporal summary graph model

0 the decay factor in the temporal embedding smoothing

f arbitrary base embedding method

Z |V| X d embedding matrix

type of evolving network structure [2]. A temporal walk in such a
network represents a sequence of contacts that obeys time. That is,
if each edge represents a contact between two entities, then a path
represents a feasible route for a piece of information.

DEFINITION 2 (TEMPORAL WALKS). A temporal walk from u to
w in G = (V,E) is a sequence of edges e1, ..., e such that e; =
(ur, uz,t1), ..., e, = (U, ujs1, ty) wheretj < tjyq forall j =1 to
k. We say that u is temporally connected to w if there exists such a
temporal walk.

This definition echoes the standard definition of a path, but
adds the additional constraint that paths must respect time, i.e.,
follow the directionality of time. Temporal walks are inherently
asymmetric because of the directionality of time. The notion of
temporal walks has been recently used in embedding methods [17].

5 FRAMEWORK

The framework in this paper provides a fundamental basis for study-
ing different temporal network representations and the utility of
these for generalizing existing static embedding methods to tem-
poral network data. The overview is shown in Figure 2. Firstly,
given the continuous stream of timestamped edges, we derive the
time-series of graphs (Section 5.1). Then, we use one of the tem-
poral network models to incorporate the temporal dependencies
of the graph-based time-series (Section 5.2). Lastly, our framework
generalizes existing embedding methods and effectively enables
the new dynamic variants of these methods to learn more accurate
and appropriate time-dependent embeddings. (Section 5.3).

5.1 Graph Time-Series Representations

We formally introduce two approaches for deriving a time-series of
graphs from the stream of timestamped edges. For clarity, we use
k to index the snapshots in the time-series in this section to avoid
mixing with the timestamp t associated with an edge e.

5.1.1 t-graph time-series. The r-graph time-series representation
is used by the vast majority of previous work [7, 10].

DEFINITION 3 (7-GRAPH TIME-SERIES). Given a temporal network
G=(V, E) representing a continuous edge stream with time-stamped
edges E, we define a graph time-series G* = {Gy,...,Gy, ...} such
that Gi consists of all edges within the first time scale (period) s, G2
consists of all edges within the next time period s, and so on. Thus, each
graph contains edges within a specific period of time. More formally,
let ty denote the timestamp of the first edge in the temporal network

http://networkrepository.com
https://snap.stanford.edu/data/

Conference’17, July 2017, Washington, DC, USA

B IR

uhming

€ graph time-series

Temporal edges

Graph Time-series Representations

Snapshot Graph (SG-T) Model

Temporal Network Models

° . |
(}»o—»o)t\.) {TAE AL, At Aty

Aty Aty Ats Base Embedding

Method (static)]
+ |]
.—»o + N]
+ HEE
hd A4
Aty Atz Ats mm= =
Weighted Temporal Reachability .)
(WTRG-T) Model Weighted sum Max pooling

Temporal Embeddings

Figure 2: Framework Overview. In the first component of the framework (Sec. 5.1), we derive a time-series of graphs from the stream of
timestamped edges using either an application-specific time-scale 7 (e.g, 1 day) or a fixed number of edges ¢ for each graph in the time-series.

Next, given the {7, e}-graph time-series representation, we incorporate the temporal dependencies and weights with a temporal network
model from Sec. 5.2. Finally, we use an arbitrary base embedding method to learn a time-series of embeddings and then leverage a temporal

fusion mechanism to obtain the final temporal embeddings (Sec. 5.3).

(stream of timestamped edges) and t is the application time-scale
(e.g., 1 month), then

Ep={(ij,t) €E|to+kr >t >to+ (k- 1)1} (1)

5.1.2 e-graph time-series. While most work uses the previous ap-
proach for deriving the graph time-series, we introduce a new
alternative based on the idea of using a fixed number of edges. In
particular, we propose a new approach that derives a time-series
of graphs G¢ = {Gj,...,Gg, ...} such that each Gy consists of €
edges (Definition 4) and therefore |E| = €, Vk. More formally,

DEFINITION 4 (€-GRAPH TIME-SERIES). Given a temporal net-
work G = (V,E) representing a continuous edge stream E with
timestamped edges and let € denote a fixed number of temporal
edges in the stream (ordered by time), we define a graph time-series
G¢ ={Gy,...,Gy, ...} such that |Ei| = ¢, forallk = 1,2,. ... Hence,
Gy = (E1,V) consists of the first € edges E1 = {e1, €2, ..., ec} whereas
G consists of the next € edges Ey = {ee+1, . . ., €2¢}, and so on. More
formally, Ey. is defined as follows:

ke
Ey = U ei = {e(k-t)ests- - Che) @)
i=(k—1)e+1
Note in both cases E; U --- U Ex U - - - = E. Since the proposed

e-graph time-series controls for the number of edges over time,
embedding methods can more appropriately model and capture the
actual change in the structural properties and subgraph patterns
over time, as opposed to just the frequency of edges that is captured
by the r-graph time-series representation used in previous work.
Another advantage of the e-graph time-series representation is
that it preserves the sequential order of timestamped edges without
suffering from the structural instability of the graph due to the some-
times drastic difference in edge counts from one time to the next.
As observed in Fig. 1, while the e-graph time-series representation
has a fixed number of edges over time, conventionally-used 7 repre-
sentation can significantly deviate with large spikes even between
consecutive graphs in the series. If a graph time-series representa-
tion is unable to capture the simplest 1st-order subgraph structures
(edges), then by definition it cannot capture higher-order subgraph
structures that are built on such lower-order ones. Hence, the pro-
posed e-graph time-series representation effectively models the
structural changes between graphs whereas the 7-graph time-series

captures changes in edge frequencies for a fixed application-specific
time-scale such as 1 day or 1 hour.

5.2 Temporal Network Models

Now we introduce temporal network models that incorporate the
temporal dependencies into the graph time-series representations
to learn more effective time-dependent embeddings.

5.2.1 Snapshot Graph (SG) Model. This model simply leverages the
{r, €}-graph time-series representation directly without encoding
any additional temporal information into the representation. Hence,
the temporal information (edge timestamps) associated with the
edges in any graph G € G is effectively ignored/discarded. For
example, e; and ey are considered to occur simultaneously if they
fall into the same snapshot, even though e comes later than e;
in the actual time-series. Therefore, this model incorporates the
temporal dependencies at the level of the graph, i.e, we only know
that edges in Gj._; occurred before Gy.

5.2.2 Temporal Summary Graph (TSG) Model. The temporal sum-
mary graph model incorporates the temporal dependencies by de-
riving a weighted summary graph from the graph-based time series
G [23] where the more recent edges are assigned larger weights
than those in the distant past. More formally, let Aj, Ag, ..., Ag, ..., AT
be a time-series of adjacency matrices of the graph time-series con-
structed using either Definition 3 or Definition 4. Furthermore, let
Ay (i, j) denote the (i, j) entry of Ax. We define the general weighted
temporal summary graph (TSG) model as S = 215:1 f(Ag, @), where
f is a decay function for temporally weighting the edges (nonze-
ros), a is the decay factor ranging in (0, 1), T is the total number
of graphs in the time-series, and S is the weighted temporal sum-
mary graph. In this work, we define f as an exponential decay
function [23], then we obtain

S=3]_ (1-a)T7FA, (3)
and the weight for an edge (i, j) is simply S(i,j) = Zzzl(l -
a)T=K A (i, j). Alternatively, instead of using all available graphs
in the initial time-series, we can use only the L most recent graphs.
For example, suppose G€ = {Gk}z:1 ={Gy,...,Gr} is an e-graph
time-series with T graphs. Instead of using all T graphs, we can

On Generalizing Static Node Embedding to Dynamic Settings

0~

3

(a) A temporal graph (b) TRG

(c) Weighed TRG

Figure 3: A toy temporal graph (a) and its temporal reachabil-
ity modeling TRG (b) and WTRG (c). (b) An edge in the vanilla
TRG represents a temporally-valid walk. The red edges represents
the length-2 walks {A, B,C} and {A, B,D} in the original graph (c)
WTRG extends TRG by assigning weights to indicate the temporal
closeness e.g., {A, B, C} has higher weights than {A, B, D} as Cis tem-
porally closer to A than D (Atac < Atap), which reflects stronger
temporal continuity.

leverage only the most recent L graphs, hence,

G ={Gi}t_r 11y = {GT-L+1.....GT} ()

The idea of leveraging only the most recent graphs in the time-
series was first explored in [23] and can be applied to any of the
proposed temporal models in this section.

5.2.3 Temporal Reachability Graph (TRG) Model. The temporal
reachability graph (TRG) is a graph derived from the timestamped
edge stream where a link is added between two nodes if they are
temporally connected. More formally, an edge (u,v) in the TRG
model indicates the existence of a temporal walk from u to v in the
original graph. The formal definition is given as follows.

DEFINITION 5 (TEMPORAL REACHABILITY GRAPH). Given an inter-
val I € R*, the temporal reachability graph Gg = (V, ER) is defined
as a directed graph where the edge (u,v) € Eg denotes the existence
of a temporal walk leaving u and arriving v within that interval. We
denote the number of edges in I as w (which could be defined based
on {t, €}-graph time-series).

A TRG is a static unweighted graph where each edge indicates
a temporally-valid walk reaching from the source to the destina-
tion. However, it does not capture the strength of reachability. For
example in Fig. 3a, the walk {A, B, C} takes two timestamps while
{A, B, D} takes four. Intuitively D is harder to reach than C from
node A due to less temporal continuity. Vanilla TRG fails to capture
such property since all the edges are equally important (shown
in 3b). This would potentially affect the proximity-based embed-
ding methods as they are based on the closeness of nodes in the
graph. To overcome this drawback, we propose an extension of
TRG called Weighted TRG (WTRG) that encapsulates the strength
of reachability in the graph weights. We define the strength of
reachability between a pair of nodes (i, j) as a function of both the
number of temporally-valid paths and the timestamp difference.
The weighting function is given as follows.

Gij = Dweaw e~ BtislW) (5)

where w is a specific temporally-valid walk from i to j, and At; j
denotes the temporal delay reaching from i to j along that walk. We
depict the process of deriving WTRG in Algorithm 1. The corner-
stone of the algorithm is the temporally-reachable neighborhood
N. lR that records nodes that are reached by i and the latest times-
tamps associated with temporal paths. We formally define NI.R as:

Conference’17, July 2017, Washington, DC, USA

Algorithm 1 Weighted Temporal Reachability Graph

1: procedure TEMPORALREACH(G = (V,E))

2 Set Eg = 0, sort ET in reverse time order
3 while next edge (i, j,¢) € E do

4 for (k. t) € NJR do

5 Er « ERU {(i,k)}

6 Gik = gi +e ()

7 NE « NRU {(k. 1)}

8: Er < ERU{(i,/)}

9: gij =9ij+1 > At;j =0 as i, j are adjacent
10: NR <~ NRU{(, 1)}

11: end while

12: return Gr = (V, ER, 9)

DEFINITION 6 (TEMPORALLY REACHABLE NEIGHBORHOOD). Given
a node i, its temporally reachable neighborhood NiR is defined as the
set of tuples {(j, tj)} where j is the node reachable from i following a
temporally-valid walk and t; is the timestamp of the edge reaching j
in that walk.

Given an input temporal edge (i, j, t), Algorithm 1 loops through
reachable neighbors in NlR to add edges in Er and updates the
weights based on Eq. (5) (line 5-8). It also adds (i, j) to the WTRG
as well as the immediate weight (line 9-11). Overall, the compu-
tational complexity of the algorithm is O(|E| max d(NR)), where
max d(NX) is the maximum degree of a node in WTRG. While
the derived WTRG can be dense with huge amounts of reachable
neighbors, we show that this number is bounded by w, which is the
size of the interval associated with the WTRG (Section 10 of the
supplementary material). Accordingly, the computational complex-
ity of the algorithm is denoted as O(|E|w). We follow Algorithm 2
to combine the embeddings over the graph time-series.

5.3 Temporal Embeddings

5.3.1 Base embedding methods. Given the graph time-series rep-
resentation and temporal model (Section 5.1-5.2), the proposed
approach can leverage any existing static embedding method to
derive time-dependent node embeddings that capture the impor-
tant temporal dependencies between the nodes as well as the tem-
poral structural (role-based) and proximity-based properties [22].
We use the proposed framework to generalize a wide variety of
static base embedding methods including both community-based
and role-based structural node embedding methods [22]. Namely,
they are: (1) LINE [26], (2) Node2vec [9], (3) Graph2Gaussian [3],
(4) struc2vec [19], (5) Role2vec [1], (6) Graphwave [6], and (7) mul-
tilens [12]. We provide the detailed configuration of each individual
method in Section 9 for reproducibility of the experiments. Among
these static methods, approaches (1-3) are community/proximity-
based and (4-6) are role-based. Method (7) is a hybrid that is based

on structural similarity of node-central subgraphs.
5.3.2 Temporal fusion. Given the time-series of node embeddings

{Zk}zzl, we explore two temporal fusion techniques.
Concatenation: Given a time-series of embeddings, one simple
approach to obtain a final embedding is to concatenate the em-
beddings as follows: Z = [Z; - - - Z7 |. We could further weight the
embeddings based on temporal recency, i.e., under-weighting node
embeddings that occur in the distant past since they are not as
important as the more recent ones for prediction.

Conference’17, July 2017, Washington, DC, USA

Algorithm 2 General Framework for Temporal Embeddings

Input: € or 7 for deriving the graph time-series representation, base em-
bedding method f (e.g., GraphWave, role2vec)

1: Construct a graph time-series G = {G1,Gg, ..., Gr} using a graph
time-series representation {7, €} from Section 5.1.

2: Initialize Z to all zeros

3. for each G € G do >fork=1,2,...
4 Use Alg. 1 to derive the temporal reachability graph for G

5: Compute node embedding matrix Zy using the base embedding
method f with the temporal reachability graph from Alg. 1

6: Concatenate or aggregate (using sum, mean, etc.) the embedding
matrix, e.g., Zr = (1 — 0)Zx_; + 0Z; where Zj. is the temporally
weighted embedding using the above exponential weighting kernel
K(-)and 0 < 6 < 1isahyperparameter controlling the importance
of past information relative to more recent (Section 5.3.2).

7: return Z; (temporally weighted embeddings using K and 6) or
Z= [Z1Zy - Z7] (concatenated embeddings)

Temporally weighting: This technique aggregates (e.g., sum, mean)
the embedding matrix, e.g., Zy = (1 — 0)Zy_; + 0Z; where Z is
the temporally weighted embedding using the above exponential
weighting kernel K(-). 0 < § < 1is a hyperparameter controlling
the importance of past information relative to more recent.

6 EXPERIMENTS

In this section, we systematically investigate the effectiveness of
each component in the framework, i.e., the different graph time-
series representations (Section 6.3, temporal network models (Sec-
tion 6.4), and the new dynamic node embedding methods general-
ized using the proposed framework (Section 6.5). More specifically,
we aim to explore the following research questions:

e Q1 How well does the widely-used 7-graph time-series rep-
resentation perform comparing with the proposed e-graph
time-series?

e Q2 How effective is the proposed WTRG model comparing
with the vanilla TRG model? What temporal models are most
useful for incorporating temporal dependencies into static
embedding methods?

e Q3 Are the dynamic embedding methods generalized via
the framework useful for temporal prediction? How do they
compare to the state-of-the-art dynamic methods?

6.1 Experimental Setup

6.1.1 Data. We learn node embeddings from the graph time-series
starting from roughly % of the timespans. For example, for the
bitcoin dataset, we train the classifier based on node embeddings
derived from month 20 to month 25 out of 63 months, inclusive.
This ensures that there are sufficient edges for training. For all
datasets, we perform training on the first 6 graphs and predict
links on the 7th graph. Depending on the time-scale shown in Ta-
ble 2, they represent 6 months (enron, bitcoin, wiki-elec
and overflow), weeks (fb-forum and reality-call), or days
(wiki-edit and contact-dublin). We create evaluation examples
from the links in the 7th graph and an equal number of randomly
sampled pairs of unconnected nodes as negative samples [24].

6.1.2 Model configuration and variants. We consider the task of
link prediction over time and systematically compare the perfor-
mance of different temporal network models and representations.
Given a set of timestamped edges up to timestamp T, ie, G =
{Gj, - - Gr}, the temporal link prediction task aims to predict the
future links that will form in Gr,;. We first follow the conven-
tional setup to construct the r-graph time-series G* = {Gy, - - - G}
for model training and Gty for testing, where each snapshot
Gi(k € {1,2,---,T}) represents edges that occur within a con-
sistent time scale shown in Table 2. Then we construct the e-
graph time-series representation G¢. For fair comparison, we set
€ = |ET41]| to ensure the trained models based on both e- and
7-based temporal networks are used to predict links in the same
hold-out test set Gr4;. Thus, graphs in the e-graph time-series
G€ = {Gy,...,Gr} and Gr41 are also consistent with respect to the
€ representation, where |Eq| = |E2| = -+ - = |E741]-

For each {e, r}-graph time-series representation, we select a
temporal network model from {SG, TSG, WTRG} and a base em-
bedding method using the framework. Therefore, we have totally 6
dynamic variants: {SG-¢, TSG-¢, WTRG-¢, SG-t, TSG-t, WTRG-1}.
To train the classifier, we applying these dynamic variants to derive
node embeddings and feed them to the logistic regression model
for prediction with regularization strength 1.0 and stopping criteria
107, Following [4], we concatenate the node embeddings z; and
zj to obtain an edge embedding z;; = [zZ; Zj] For temporal fusion,
we use the temporally weighting technique from Section 5.3.2 with
0 = 0.8 for dimensional consistency. The TSG decay parameter
a is set to 0.8 for computational fairness. For all experiments, we
perform 3 runs and report the average.

For reproducibility, we provide the detailed configuration of both
the base and dynamic graph embedding methods in Section 9 of the
supplementary material. Also, we will make the source code and
the complete experimental results public upon paper acceptance.

6.2 WTRG vs. TRG

We first study the effectiveness of WTRG model over the vanilla
TRG model. As WTRG incorporates the strength of reachability
in edge weights, we consider embedding methods that handles
weighted graphs, namely, they are node2vec, struc2vec and mul-
tilens. We run both methods on two datasets using both TRG and
WTRG with 7-graph time series as shown in Table 4.

The first observation from Table 4 is that structure-based embed-
ding methods tend to outperform node2vec, the proximity-based
method. In addition, we observe that WTRG improves most embed-
ding methods in link prediction, except for node2vec on wiki-elec

Table 4: Performance of WTRG over TRG on 7-graph time series

bitcoin wiki-elec

Method Metric TRG WTRG | TRG WTRG
AUC 0.9214 0.9239 | 0.7348 0.7344
node2vec ACC 0.8294 0.8412 | 0.6171 0.6144
F1 0.8285 0.8408 | 0.5909 0.5889

AUC 0.9274 0.9301 | 0.7840 0.7933
struc2vec ACC 0.7959 0.8109 0.6583 0.6703
F1 0.7925 0.8081 | 0.6388 0.6534

AUC 0.9226 0.9389 | 0.8106 0.8143

multilens ACC 0.8656 0.8793 | 0.7438 0.7539
F1 0.8655 0.8792 | 0.7385 0.7493

On Generalizing Static Node Embedding to Dynamic Settings

dataset. One possible reason is that the random walker in WTRG
are more likely to visit nodes that are close in time, and thus limit-
ing the derived embeddings to incorporate distant neighborhood
information. We put this deep study of WTRG in the future work.
Nevertheless, for embedding methods that are based on structural
information, WTRG outperforms TRG by 0.8% in AUC,1.3% in ACC,
and 1.4% in F1 score on average. As we observe that the WTRG
model tends to outperform the vanilla TRG model, we use WTRG
in the rest of the experiments.

6.3 Fixed #edges (€) vs. time-scale (1)

In this section, we investigate the effectiveness of different graph
time-series representations (Q1). Due to the massive amount of
experimental results, we first define 2 evaluation metrics for this
experiment. These newly proposed measurement are for readers to
have a clear overview of the comparison results across all compo-
nents in the proposed framework across all the datasets.

We first evaluate the general performance of each temporal
model through the mean ranking (and std) across all datasets and
embedding methods in terms of the AUC, ACC and F1 score. We
leverage the following metrics to better interpret the results. Let
Yjk € RIMI denote the vector of AUC (or ACC, F1) scores of the
temporal models M for an embedding method f; € # and graph
dataset k. Further, let 7(y j, M;) denote the rank of the temporal
model M; € M for a given embedding method f; and graph dataset
dr € D. The mean rank is computed as

1
MR; = W Z Z ”(ij’Mi) (6)

dreD feF

Therefore, smaller values of MR indicate better model performance.
We report the results in Table 5. In addition to the general perfor-
mance, we also provide an intuitive ranking based on the number
of times each model performs the best following [21]. This metric
s; reflects the occurrence of temporal model M; to be optimal:

si=) >, Hrlyue M) =1} Y]

dreD fieF

where {7 (y jx, M;) = 1} returns 1if 7 (y ., M;) = 1and 0 otherwise.
Hr(y il Mi) = 1} indicates that the temporal model M; performs
best for the given graph dataset dj and base embedding method f;.
Thus, s; denotes the total score of model M; based on the number
of times temporal model M; appeared first in the ranking across all
base embedding methods and graph datasets.

Performance. Based on the results shown in Table 5, our first
observation is that the top-3 temporal models are those that use
the proposed e-graph time-series representation. These models
perform comparably well in terms of AUC, ACC and F1 and are
in general better than 7-graph time-series representation used in
previous work. This finding indicates the general effectiveness of
e-graph time-series in representing the temporal network. We also
compute an overall score by summing over each s; for all evaluation
criterion (bottom row in Table 6). We observe that the top models
are e-based, which demonstrate the effectiveness of e-graph time-
series in capturing the graph structural changes over edge frequency
changes in prediction tasks.

Conference’17, July 2017, Washington, DC, USA

Table 5: Mean rank (and std.) of the temporal network models across
all base embedding methods and graphs based on AUC, ACC and F1,
lower is better. The top-3 temporal network models are based on the
new e-graph time-series representation (fixed #edges)

TEMPORAL MEAN Rank (MR)

MobEL AUC ACC F1
WTRG-¢ 2.30+2.16 2.73£1.95 2.66 +1.90
TSG-¢ 2.43 + 1.84 2.61 +2.19 2.70 + 2.24
SG-¢ 2.57 + 1.64 2.66 £ 1.86 2.59 +1.88
WTRG-7 2.80 £ 1.96 2.80 +1.98 2.86 +1.99
SG-7 2.95+191 2.84 +1.87 2.82+1.83
TSG-7 3.63 £ 1.75 3.46 £ 1.87 3.45+£1.80
SG 4.32+1.88 3.89 +£1.91 3.93+1.94

Sensitivity Analysis. We also conduct a parameter sensitivity
analysis on two datasets, bitcoin and fb-forum, to evaluate the
impact of different values of 7 and € on the overall performance. For
bitcoin, we train our model on temporal data spanning 6 months
and test on the 7th month. Forfb-forum, we train on 12 weeks
and test on the 13rd week. We create the 7-graph time series using
different scales (e.g., months, weeks, days), and generate the same
number of e-graphs with equal number of edges. Based on the result
shown in Figure 4, we observe that our model running on the e-
graph time series consistently outperforms the r-graph time series,
while being more robust. This also indicates that in practice, the
e-graph time series can be used as an alternative to create temporal
graph snapshots for various mining tasks, especially in preliminary
graph analysis when the optimal timescale is undetermined.

1.00 . 1.00
—_~ "\A_,__’.\‘ .
S)
209 % 095 e
8 @
€090 £ 0.90
© @
£ £
% 0.85 T-graph 2085 T-graph
a == &-graph 2 —— egraph
0% 5. 6 7 7 2 0.80
(65200 (7 20 e 47 70380, 605 1 2 4.
o)’ m . BTy, 8 ot
0), "o, k) 5’4//() k) o o)) ”m,) /30% (gday)
£(T) £(T)

(a) Prediction performance on bitcoin (b) Prediction performance on fb-forum

Figure 4: Sensitivity analysis. Link prediction performance on z-
and e-graph. The r-graphs are created based on different timescales,
the e-graphs are created via equal division. mo.: month. wk.: week.

REsULT 1. Overall, the proposed e-graph time-series represen-
tation based on a fixed number of edges outperforms the time-scale
7-graph time-series across different scales, while being more robust.

6.4 Temporal Model Comparison

To answer Q2, we follow the formulation in Section 6.3 to quanti-
tatively evaluate and rank the temporal models according to their
effectiveness in prediction. We show the complete performance of
temporal network models that perform the best following Equa-
tion (7) with respect to individual datasets in Table 6 to supplement
the mean ranking in Table 5.

Notably, the TSG-¢ model has the highest # of first ranks across
all datasets, especially on datasets with short timespans (i.e., wiki-edit
and contacts). It also has the highest # of first ranking, in terms of
ACC and F1, which indicates that this model is generally promising
but at the same time less stable than the other e-based models. We
also confirm this finding in Table 5 as it shows relatively higher
variance of ranking. WTRG-€ performs the second best and is a

Conference’17, July 2017, Washington, DC, USA

Table 6: Temporal model performance across the temporal graphs.
Each (i, j) is the # of times temporal model M; € M in graph G; per-
formed best comparing to the other models across all base embed-
ding methods f € ¥ and evaluation criterion. We bold the temporal
model that performs best overall for each graph.

TSG-e WTRG-¢ SG-¢ SG-r WTRG-r SG TSG-7

bitcoin 6 [3 4 5 0 0 0
stackoverflow 1 4 3 3 9 0 1
enron 4 1 1 3 8 4 0

wiki-elec 2 6 7 6 0 0 0
fb-forum 10 10 0 1 0 0 0
wiki-edit 7 3 2 3 2 2 2
reality-call 1 0 2 4 6 4 4
contacts-dublin 9 2 8 1 1 0 0
overall score 40 32 27 26 26 10 7

close second to TSG-¢ on datasets with long timespans. This is po-
tentially due to how they model the temporal recency: TSG models
the past information with exponential decay (3), while WTRG mod-
els it with the absolute temporal difference (5). Thus, TSG could
still capture the temporal evolution within a relatively short period
of time. Nevertheless, both TSG and WTRG perform well on all
datasets even though spikes and flucation are observed such as
fb-forum (Figure 1). It can be seen that there is not a single tempo-
ral model that prevails across all datasets. On the other hand, the
WTRG model tends to performs well regardless of the timescales
in graph representation, while TSG model tends to perform well
on graphs with short timespans. Besides, the temporal models that
are combined with the proposed e-graph time-series representation
tend to outperform their other 7-counterparts, which is consistent
with our previous findings from Section 6.3.

REesuLT 2. Out of all models, WTRG-¢ and TSG-¢ tend to per-
form the best. Empirically, WTRG-¢ is more stable overall (Table 5)
and TSG-¢ performs well on datasets with short timespans (Table 6).

6.5 Dynamic Embeddings: Variants vs. SOTA

To answer Q3, we first use the framework to derive new dynamic
embedding methods (by selecting the representation, temporal
model, base embedding method, etc.), then we compare their per-
formance to the state-of-the-art dynamic embedding methods on
all 8 datasets. One would presumably expect that the state-of-the-
art methods for dynamic node embeddings will outperform the
dynamic embedding methods generalized by our framework. This
is because the state-of-the-art methods are typically more complex
and have been designed specifically for learning such dynamic node
embeddings. We use 9 recent state-of-the-art dynamic methods dur-
ing 2017 ~ 2020 as baselines, including CTDNE [17], node2bits [11],
DANE [16], DynGem [8] TIMERS [28], DynAE/DynAERNN [7],
DySAT [24], DyHATR [27], and EvolveGCN[18].

Figure 5 shows the mean AUC for each method where the aver-
age is taken over all graphs investigated. As representative dynamic
embedding methods from the proposed framework, we use 4 dy-
namic embedding variants of struc2vec (s2v-TSG-¢/7, s2v-WTRG-
€/1) and 4 variants of MultiLENS (ML-TSG-¢/7, ML-WTRG-¢/7).
Strikingly, we observe that the dynamic embedding methods from
the framework perform comparably or even better than the state-of-
the-art methods that are designed particularly for temporal graphs
and time-series prediction. In particular, ML-TSG-€ performs best

1.0

0.9 | Proposed approaches |
1

[e4)

0
0

0.5 III IIIIIIII

~

0

o

& & 2 & & AP
e 'Lo‘?e @%«3‘ S & & G ES /\%0 ,\6 ,\9
N - 9 ¢ A
< 0\ é\ N g é\é&@\}@\‘
o ¢ g T TV

Figure 5: Predictive results of the dynamic embedding methods and
our framework. Our proposed framework approximates well to ap-
proaches specifically designed for temporal graphs with compara-
ble or even better performance (ML = multilens, s2v = struc2vec).

with a mean gain of 12.34% followed by s2v-TSG-e with a gain
in AUC of 10.97%. Also, we note that our proposed framework is
computationally efficient. Taking multilens as an base embedding
method, our proposed framework has the computational complex-
ity O(|E||G|) where |G| is the number of graphs in the time-series,
and the number of parameters to learn is O(|V||G|). This is also
validated empirically throughout our experiment.

REsULT 3. The dynamic embeddings derived from our frame-
work leveraging conventional static embedding methods (Section 5)
perform better than state-of-the-art dynamic embedding methods.

Notably, in this experiment we do not aim to show substantial
improvement of our framework over all the dynamic approaches,
especially those based on deep learning, since node features are
not used. Instead, these results show that our proposed framework
could capture the graph structures and temporal dependency at least
as good as those recent dynamic approaches with less complexity
(i.e., no transitional or latent variables), Unlike methods that are
based on complex models as “black boxes”, the components of
our proposed framework are easy-to-understand, which further
motivates its usage for practitioners in predictive applications.

7 CONCLUSION

Despite the recent increasing interest in temporal networks in the
field of representation learning, there has been relatively little work
that systematically studies the properties of temporal network mod-
els and their cornerstones, the graph time-series representations.
This works attempts to fill this gap by proposing a general yet pow-
erful framework. Specifically, we introduce the notion of e-graph
time-series to address data imbalance that arise with the tradi-
tional way of deriving a graph time-series based on a—sometimes
arbitrary—time-scale (e.g., 1 day or 1 week). We find that the e-graph
time-series is beneficial to most existing embedding methods in tem-
poral link prediction. Furthermore, our proposed framework gives
rise to new dynamic embedding methods by combining these graph
time-series representations, temporal models, and base static em-
bedding methods. We find that although there is no single temporal
model (or embedding method) that could prevail on any dataset, our
proposed WTRG model and TSG model along with the € time-series
tend to perform the best across all datasets studied. We further show
that these dynamic embedding approaches from our framework
outperform recent, powerful dynamic embedding methods.

On Generalizing Static Node Embedding to Dynamic Settings Conference’17, July 2017, Washington, DC, USA

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. This material is
partially based upon work supported by the National Science Foundation
under CAREER Grant No. IIS 1845491 and Army Young Investigator Award
No. W911NF1810397, an Adobe Digital Experience research faculty award,
and Amazon, Google, and Facebook faculty awards. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of funding parties.

Conference’17, July 2017, Washington, DC, USA

REFERENCES

(1]
(2]

(3]

[11]

[12]

[13]
[14]

[15]

N. K. Ahmed, R. A. Rossi, R. Zhou,]. B. Lee, X. Kong, T. L. Willke, and H. Eldardiry.
Learning role-based graph embeddings. In IJCAI StarAl 2018.

S. Bhadra and A. Ferreira. Complexity of connected components in evolving
graphs and the computation of multicast trees in dynamic networks. ADHOC-
NOW, pages 259-270, 2003.

A. Bojchevski and S. Giinnemann. Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking. In ICLR, 2018.

S. Cao, W. Ly, and Q. Xu. Grarep: Learning graph representations with global
structural information. In CIKM, pages 891-900. ACM, 2015.

K. G. Coffman and A. M. Odlyzko. Growth of the internet. In Optical fiber
telecommunications IV-B, pages 17-56. Elsevier, 2002.

C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Learning structural node
embeddings via diffusion wavelets. In KDD, pages 1320-1329. ACM, 2018.

P. Goyal, S. R. Chhetri, and A. Canedo. dyngraph2vec: Capturing network dy-
namics using dynamic graph representation learning. Knowledge-Based Systems,
page 104816, 2019.

P. Goyal, N. Kamra, X. He, and Y. Liu. Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
KDD, pages 855-864, 2016.

R. Hisano. Semi-supervised graph embedding approach to dynamic link predic-
tion, 2016.

D. Jin, M. Heimann, R. Rossi, and D. Koutra. node2bits: Compact time-and
attribute-aware node representations for user stitching. In ECML PKDD, page 22,
2019.

D. Jin, R. A. Rossi, E. Koh, S. Kim, A. Rao, and D. Koutra. Latent network
summarization: Bridging network embedding and summarization. In KDD. ACM,
2019.

S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In KDD, pages 1269-1278. ACM, 2019.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws,
shrinking diameters and possible explanations. In KDD, 2005.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

10

[16]
(17]

(18]

[28

[29

(30]

J.Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu. Attributed network embedding
for learning in a dynamic environment. In CIKM, pages 387-396. ACM, 2017.
G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim. Continuous-
time dynamic network embeddings. In WWW BigNet, 2018.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
T. Schardl, and C. Leiserson. Evolvegen: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5363-5370, 2020.

L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. Struc2vec: Learning node
representations from structural identity. In KDD, 2017.

R. A.Rossi and N. K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAL 2015.

R. A. Rossi, N. K. Ahmed, H. Eldardiry, and R. Zhou. Similarity-based multi-label
learning. In IJCNN, pages 1-8, 2018.

R. A. Rossi, D. Jin, S. Kim, N. K. Ahmed, D. Koutra, and J. B. Lee. From community
to role-based graph embeddings. In arXiv:1908.08572, 2019.

R. A. Rossi and J. Neville. Time-evolving relational classification and ensemble
methods. In PAKDD, volume 7301, pages 1-13. Springer, 2012.

A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention networks. In WSDM, pages
519-527, 2020.

U. Singer, I. Guy, and K. Radinsky. Node embedding over temporal graphs. In
IJCAI pages 4605-4612, 7 2019.

J. Tang, M. Qu, M. Wang, M. Zhang,]J. Yan, and Q. Mei. LINE: Large-scale
Information Network Embedding. In WWW, pages 1067-1077, 2015.

H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin. Modeling dynamic hetero-
geneous network forlink prediction using hierarchical attentionwith temporal
rnn. In Proceedings of the 2020 European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020.
Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu. Timers: Error-bounded svd restart
on dynamic networks. In AAAIL 2018.

L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dynamic network embedding
by modeling triadic closure process. In AAAL 2018.

Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu. Embedding temporal network
via neighborhood formation. In KDD, pages 2857-2866, 2018.

http://snap.stanford.edu/data

On Generalizing Static Node Embedding to Dynamic Settings

Supplementary Material for Reproducibility

8 DATA DESCRIPTION

The detailed description of the experimental graph datasets is given

as follows.

e enron? records email exchanging between empolyees of

Enron from May, 1999 to June, 2002.

e bitcoin® is a who-trusts-whom network of people who
trade using bitcoins from Nov, 2010 to Feb., 2017. We study
the user connectivity by dropping the edge signs.

e wiki-elec? contains the voting history based on the Wikipedia
page edit history from Mar., 2004 to Jan., 2008.

e stackoverflow’ is a temporal network consisting of three
types of interactions on the stack exchange web site Math
Overflow: a user answers questions, a user comments on
questions, and a user comments on answers.

e wiki-edit® isa public bipartite dataset containing one month
of edits made by users in the Wikipedia page.

e fb-forum? is the Facebook-like Forum network that records
users’ activity in the forum.

e contacts-dublinisahuman contact network where nodes
represent humans and edges between them represent prox-
imity (i.e., contacts in the physical world).

e reality-call? is a subgraph of the reality mining study.
Nodes are participants and edges are phone calls.

BASE AND DYNAMIC EMBEDDING
METHOD CONFIGURATION

We configured all the base methods to achieve the best performance
according to the respective papers. For all the static methods based
on random walks (i.e., node2vec, struc2vec), we perform 20 walks
with the maximum walk length L = 20. For node2vec, we perform
grid search over p, g € {0.25,0.50, 1, 2, 4} as mentioned in [9] and
report the best performance. For LINE and Multi-Lens, we incorpo-
rate 2nd-order proximity in the graph. For role2vec, we leverage
the node degree as the feature for roles. For Graphwave, we per-
form the method to automatically select the scaling parameter with
exact heat kernel matrix calculation. We set the final embedding
with dimension K = 128 for evaluation, and leverages the weighted
summation fusion approach so that the embedding dimensions of
individual graphs are fixed to be the same.

For the state-of-the-art dynamic embedding methods, we follow
the configuration given by the paper/code repository. Specifically,
for CTDNE, we set #walks= 10, the walking length L = 20. For
node2bits, we perform short-term temporal random-walk with
scope to be 3. The the #walks and the walking length are set to
be the same as CTDNE. For DANE, we leverage both the offline
computation model to derive node embeddings based on the first 6
graphs, and the online model to derive node embeddings for the
6th graph based on the first 5. We set the intermediate embedding
dimensions to be 100 for both models and report the best perfor-
mance. For TIMERS, we set the tolerance threshold value that is

11

Conference’17, July 2017, Washington, DC, USA

used to restart the optimal SVD calculation to be 0.17 as provided in

“http://networkrepository.com
Shttps://snap.stanford.edu/data/
Shttps://github.com/srijankr/jodie
the code repository. For DyAE/DyAERNN, we leverage the 2-layer

auto-encoder/decoder with 400 and 200 units, respectively. We set
the regularization hyperparameter to be 107, bounding ratio for
number of units in consecutive layers to be 0.3 as suggested in the
paper, and perform grid search in the range of +10% of the default
value. In the learning stage, the sgd learning rate is set to be 107°
with minibatch size to be 100. Lastly, for DySAT, we leverage the
base model and perform grid search on the default hyperparameters
in the range of +£10% of the default values.

10 COMPUTATIONAL COMPLEXITY OF
WTRG

In this section we detail the computational complexity in deriving
WTRG by showing the following property.

PROPERTY 1. The number of edges in Gg is bounded by the number
of temporally-valid walks in G.

Based on Def. 5, an edge (u,0) € Ep indicates a temporally-
valid walk reaching from u to v in G. However, this edge could
correspond to multiple unique temporal walks with different in-
termediate nodes and associated timestamps, therefore, |Eg| is no
more than the number of temporally-valid walks in G.

Let NiR denote the temporally reachable nodes of i, A(Gr) =
max{d(Nf), . d(N,If)} is the maximum degree of a node in Gg,
and w is the window size. Then

INF| < A(GR) < @ 8)

According to Def. 5, a TRG is comprised by edges within the interval
with size w. These edges comprise upto w different temporal walks
originating from a specific node i. Therefore, based on Property 1,
the number of edges originating from node i is bounded by the
number of temporally-valid walks, which is .

11 COMPLETE EXPERIMENTAL RESULTS

In this section, we show the complete experimental results using the
both the dynamic approaches generated from our proposed frame-
work, and the state-of-the-art approaches specifically designed to
handle dynamic graphs. In total, we perform 3 runs of the exper-
iments on 8 dynamic graphs and report the average AUC, ACC
and F1 metrics with the standard deviation. The dynamic meth-
ods generated from our proposed framework include 7 base static
embedding methods coupled with 6 temporal models as well as
the static form, i.e., not using the temporal information. We also
include 7 state-of-the-art dynamic embedding approaches. We lever-
age Equation (6) and Equation (7) to aggregate the extensive results
for interpretation. In Table 7, we only show the complete results
on the first 3 datasets used in this work due to the space limit.

http://networkrepository.com
https://snap.stanford.edu/data/
https://github.com/srijankr/jodie

Conference’17, July 2017, Washington, DC, USA

Table 7: Complete experimental results on the first 3 datasets. The values are represented using percentage %.

Base
METHOD

TEMPORAL
MobpEL

‘ AUC

bitcoin
ACC

F1

AUC

stackoverflow

ACC

F1

AUC

enron
ACC

F1

Node2vec

Static
SG-7
WTRG-7
SG-¢e
WTRG-¢
TSG-7
TSG-e

89.05 +0.44
93.80 £ 0.62
95.15 £ 0.45
95.08 £ 0.63
95.89 £0.19
89.37 £ 0.40
90.46 £ 0.05

76.74 £ 0.70
86.63 +£0.20
88.71 £ 0.61
88.76 £ 0.67
89.82 +0.47
76.79 £ 1.02
77.15 £ 0.09

75.89 £0.74
86.58 +0.20
88.65 + 0.63
88.74 = 0.67
89.79 +£0.48
75.97 £1.12
76.37 £ 0.09

95.97 £ 0.02
96.11 = 0.05
96.45 + 0.05
96.11 + 0.05
96.51 +0.02
96.08 + 0.04
96.18 + 0.02

84.34 £0.16
88.00 +£0.14
89.67 £0.34
88.13 £0.29
89.41 £ 0.09
84.65 £ 0.25
84.69 £0.17

84.09 +£0.17
87.94 +£0.15
89.65 = 0.35
88.08 +0.29
89.37 £0.09
84.42 £ 0.26
84.45+0.19

76.11 +0.75
80.44 + 0.85
79.78 +£0.48
78.37 £ 0.36
78.37 £1.28
76.43 £ 1.50
77.83 £0.39

70.19 £ 0.88
72.03 £ 0.42
72.63 £0.67
69.02 +0.72
70.93 £ 0.30
70.35 £ 1.74
70.95 £ 0.32

69.96 + 0.93
72.02 £0.43
72.62 £+ 0.68
68.86 +0.75
70.91 £ 0.30
70.17 £ 1.83
70.86 + 0.34

LINE

Static
SG-7

87.58 £ 0.00
89.75 £ 0.00
89.49 +0.00
89.18 £ 0.00
91.68 £ 0.00
87.59 £ 0.00
89.28 £ 0.00

75.86 = 0.00
82.48 +0.00
82.24 +£0.00
83.49 £ 0.00
84.81 £ 0.00
76.48 +0.00
76.71 £ 0.00

75.11 £ 0.00
82.46 = 0.00
82.24 +0.00
83.48 +0.00
84.81+0.00
75.86 + 0.00
75.99 +0.00

97.08 = 0.00
96.79 = 0.00
96.95 + 0.00
96.96 + 0.00
96.79 = 0.00
97.25 +0.00
97.23 +£0.00

91.41 £ 0.00
91.87 £ 0.00
91.92 £ 0.00
91.85 £ 0.00
91.48 £0.00
91.44 +0.00
91.26 £ 0.00

91.39 £ 0.00
91.87 +0.00
91.92 +0.00
91.85 £ 0.00
91.48 £ 0.00
91.42 +0.00
91.23 +£0.00

76.19 £ 0.00
81.84 +0.00
81.89 +0.00
80.38 = 0.00
82.71 £ 0.00
76.21 +0.00
75.22 +0.00

69.85 + 0.00
74.21 £ 0.00
73.63 £ 0.00
72.45 £ 0.00
73.23 £0.00
68.05 + 0.00
67.28 = 0.00

69.70 £ 0.00
74.06 £ 0.00
73.49 £+ 0.00
72.36 £+ 0.00
73.18 £ 0.00
67.74 = 0.00
67.06 £ 0.00

Struc2vec

SG-7
WTRG-7
SG-€
WTRG-¢
TSG-7
TSG-¢

91.56 £ 0.16
95.19 £ 0.59
92.10 £ 0.97
96.37 £ 0.68
92.42 £0.33
91.61+0.16
92.17 £ 0.07

81.70 £ 0.28
87.83 £ 0.68
84.22 +£1.36
89.85 £ 0.25
83.78 £ 0.65
81.93 +£0.13
81.85+0.75

81.40 +£0.33
87.78 £ 0.68
84.19 +1.35
89.83 £ 0.25
83.74 + 0.65
81.65+0.15
81.46 £ 0.79

96.99 + 0.02
96.92 + 0.05
96.66 + 0.10
97.01 £ 0.04
96.67 +0.14
96.95 +0.03
97.16 £ 0.03

84.82 +0.17
88.38 +£0.29
88.12 £ 1.00
88.39 £0.11
87.50 £ 0.59
84.92 £0.11
84.67 £0.15

84.57 £0.17
88.30 +0.30
88.04 +1.03
88.30 £ 0.11
87.40 = 0.60
84.67 +£0.11
84.38 £0.16

80.33 +0.44
81.95+0.86
81.66 + 1.31
82.62 £ 0.56
81.44+0.79
80.76 = 0.51
81.77 £0.18

73.31 £0.89
72.10 £ 1.74
72.61 £ 1.33
73.42 £ 0.69
72.98 £0.92
72.55 £ 0.49
74.88 £ 1.69

73.20 £ 0.94
71.90 £ 1.83
72.41 £ 1.36
73.27 £0.71
72.89 +0.90
72.44 +0.49
74.81+1.72

Role2vec

Static
SG-7
WTRG-7
SG-¢
WTRG-€
TSG-7
TSG-¢€

85.02 £ 0.04
94.90 £ 0.84
93.07 £1.11
93.33 £ 0.66
93.59 £0.33
85.50 £ 0.26
86.03 £ 0.20

76.27 £0.24
87.77 £0.63
85.64 +£1.12
85.70 = 0.96
86.81 +1.13
75.96 + 0.43
75.78 £ 0.88

75.49 £ 0.24
87.73 £0.63
85.63 £ 1.12
85.68 +0.97
86.78 £ 1.12
75.16 £ 0.44
75.01 £0.91

92.10 £ 0.15
95.45+0.11
95.51+0.05
95.34+0.20
95.90 +0.08
92.36 = 0.05
93.13 £ 0.10

84.00 £+ 0.05
85.26 £0.14
88.27 £0.71
83.94 +0.06
86.89 £ 0.85
84.00 £+ 0.03
83.80 £ 0.06

83.77 = 0.05
85.15+0.16
88.24 +£0.72
83.67 +£0.07
86.79 = 0.87
83.76 = 0.03
83.52+£0.07

72.12+1.31
74.09 £1.09
78.85+1.17
76.11 = 1.15
76.41 + 2.22
71.45+2.11
75.79 £1.59

66.77 = 0.80
66.59 +0.71
71.38 +£1.82
67.76 = 1.71
68.34 + 2.62
66.29 +1.73
69.71 + 1.81

66.70 = 0.82
66.48 +£0.72
71.32 £ 1.85
67.52 = 1.75
68.28 + 2.67
66.15 + 1.82
69.67 £ 1.84

Graphwave

Static
SG-7
WTRG-7
SG-¢e
WTRG-¢
TSG-7
TSG-€

91.73 £ 0.00
99.13 £0.00
99.13 £ 0.00
99.48 £ 0.00
99.42 £ 0.00
91.98 £ 0.00
91.96 + 0.00

77.96 £+ 0.00
91.90 £ 0.00
91.36 £ 0.00
91.12 £ 0.00
89.88 £ 0.00
77.26 £ 0.00
76.56 = 0.00

77.25 £ 0.00
91.85 +0.00
91.29 +0.00
91.05 +0.00
89.77 +£0.00
76.46 £ 0.00
75.76 £ 0.00

96.89 + 0.00
96.84 + 0.00
96.89 = 0.00
97.07 = 0.00
97.07 = 0.00
96.96 = 0.00
96.99 + 0.00

84.49 £ 0.00
84.49 £ 0.00
84.51 £ 0.00
84.25 +0.00
84.25 £ 0.00
84.49 £ 0.00
84.25 +0.00

84.26 +£0.00
84.26 = 0.00
84.28 +0.00
83.97 +£0.00
83.97 +£0.00
84.26 +£0.00
83.97 +£0.00

77.55 +0.00
74.25 £ 0.00
75.52 +0.00
71.94 +0.00
74.38 +£0.00
76.77 £ 0.00
78.24 +0.00

71.88 £ 0.00
65.48 + 0.00
67.69 = 0.00
62.35 + 0.00
65.08 + 0.00
70.50 £ 0.00
71.35 £ 0.00

71.84 £ 0.00
65.11 £ 0.00
67.52 +0.00
61.81 £ 0.00
64.83 £ 0.00
70.45 £ 0.00
71.31 £ 0.00

G2G

Static
SG-7

85.16 £ 0.87
72.64 £ 1.56
80.32 £0.92
71.66 + 3.08
77.97 £ 1.37
85.59 £ 0.91
87.20 £ 0.87

76.37 £0.91
67.63 +£1.51
72.04 £1.15
67.00 £ 2.46
71.08 +£2.18
76.20 £ 0.66
77.98 £0.72

75.97 £ 1.02
67.61 +1.52
72.04 £ 1.15
66.96 + 2.47
71.07 £ 2.18
75.75 £ 0.66
77.63 £0.76

93.15+0.10
92.94 +0.18
95.64 +0.30
92.32 +£0.51
95.37 £ 0.24
93.27 £ 0.32
93.83 +£0.10

83.80 £0.11
86.95 +0.28
90.30 £0.17
86.58 £ 0.41
90.67 £ 0.38
83.91 £0.54
84.03 £0.19

83.66 +0.12
86.94 +0.28
90.29 +£0.17
86.58 +0.41
90.65 = 0.39
83.77 £ 0.57
83.86 +£0.19

75.67 £ 0.15
76.99 +0.73
79.12 £ 0.43
76.75 + 0.35
77.85 % 0.48
74.97 +£0.44
75.65 +0.12

71.01 £ 0.38
70.28 £ 0.98
70.87 £ 1.14
70.15 £ 0.72
70.73 £ 0.80
70.26 £ 0.61
69.56 + 0.57

70.92 £ 0.39
70.05 + 1.08
70.82 +£1.21
69.94 + 0.84
70.64 £ 0.81
70.16 £+ 0.63
69.47 £ 0.63

Multilens

91.28 £0.00
82.43 £ 0.00
84.48 £ 0.00
89.56 £ 0.00
87.33 £ 0.00
91.28 £0.00
92.50 £ 0.00

81.85 +0.00
75.47 £ 0.00
77.80 £ 0.00
80.22 £ 0.00
79.13 £0.00
81.85 +0.00
82.01 £ 0.00

81.63 +0.00
75.06 £ 0.00
77.55 £ 0.00
79.99 £ 0.00
78.94 + 0.00
81.63 +0.00
81.67 +0.00

97.12 +0.00
96.95 + 0.00
96.97 £ 0.00
97.24 +0.00
96.79 = 0.00
97.12 +0.00
97.18 = 0.00

90.24 £ 0.00
92.98 £ 0.00
92.16 £ 0.00
92.84 £ 0.00
92.56 = 0.00
90.24 +0.00
89.84 £+ 0.00

90.19 £ 0.00
92.98 +0.00
92.15 £ 0.00
92.84 +0.00
92.55 +0.00
90.19 £ 0.00
89.78 £ 0.00

80.12 +0.00
81.12 £ 0.00
80.28 £ 0.00
81.58 +£0.00
81.46 +0.00
80.12 = 0.00
81.59 +0.00

71.11 £ 0.00
73.80 £ 0.00
74.25 £ 0.00
74.12 £ 0.00
72.58 £ 0.00
71.11 £ 0.00
72.70 £ 0.00

70.83 £+ 0.00
73.68 £+ 0.00
74.10 £ 0.00
74.00 £ 0.00
72.37 +0.00
70.83 £+ 0.00
72.43 £ 0.00

CTDNE
Node2bits
DANE
TIMERS
DynAE
DynAERNN
DySAT

92.70 £ 0.12
88.97 £0.16
73.84 £ 0.00
63.50 = 0.00
61.41+0.21
57.30 £3.93
61.08 £ 0.12

86.29 £0.14
80.69 £ 0.48
67.29 +£0.00
61.68 +0.00
58.57 £ 0.00
58.36 + 0.46
58.10 £ 0.68

86.24 +£0.14
80.43 £ 0.51
64.92 +0.00
58.83 £ 0.00
55.36 £ 0.00
54.83 £ 0.61
58.09 £ 0.68

97.43 +£0.01
97.01 £ 0.03
75.31 £ 0.00
96.30 =+ 0.00
73.23 £0.94
72.48 £0.92
92.97 £ 1.14

91.81+£0.22
90.85 £ 0.15
74.13 £ 0.00
89.00 £ 0.00
71.57 £0.26
71.20 £ 1.32
84.06 £ 0.97

91.79 £ 0.22
90.82 £ 0.15
73.22 +£0.00
88.93 +0.00
70.82 +0.31
70.34 +1.63
84.15 £+ 1.51

67.84 + 2.64
83.95+0.19
86.02 = 0.00
87.72 +£0.00
76.90 +1.23
59.10 £ 0.31
86.75 £ 0.01

63.74 +1.32
76.25 £ 0.35
76.21 £ 0.00
79.78 £ 0.00
70.65 £ 1.64
57.64 £ 1.16
79.83 £0.03

63.72 £ 1.34
76.25 £ 0.35
76.17 £ 0.00
79.77 £ 0.00
70.62 £ 1.66
57.55+1.11
79.82 £0.03

12

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Preliminaries
	5 Framework
	5.1 Graph Time-Series Representations
	5.2 Temporal Network Models
	5.3 Temporal Embeddings

	6 Experiments
	6.1 Experimental Setup
	6.2 WTRG vs. TRG
	6.3 Fixed #edges () vs. time-scale ()
	6.4 Temporal Model Comparison
	6.5 Dynamic Embeddings: Variants vs. SOTA

	7 Conclusion
	Acknowledgments
	References
	8 Data description
	9 Base and dynamic embedding method configuration
	10 Computational Complexity of WTRG
	11 Complete Experimental Results

