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Abstract—Website phishing continues to persist as one of the
most important security threats of the modern Internet era. A
major concern has been that machine learning based approaches,
which have been the cornerstones of deployed phishing detection
solutions, have not been able to adapt to the evolving nature of
the phishing attacks. To create updated machine learning models,
the collection of a sufficient corpus of real-time phishing data
has always been a challenging problem as most phishing websites
are short-lived. In this work, for the first time, we address these
important concerns and describe an adaptive phishing detection
solution that is able to adapt to changes in phishing attacks.
Our solution has two major contributions. First, our solution
allows for multiple organizations to collaborate in a privacy
preserving manner and generate a robust machine learning model
for phishing detection. Second, our solution is designed to be
flexible in order to adapt to the novel phishing features introduced
by attackers. Our solution not only allows for incorporating novel
features into the existing machine learning model, but also can
help, to a certain extent, the ‘“unlearning” of existing features that
have become obsolete in current phishing attacks. We evaluated
our approach on a large real-world data collected over a period of
six months. Our results achieve a high true positive rate of 97 %,
which is on par with existing state-of-the art centralized solutions.
Importantly, our results demonstrate that, a machine learning
model can incorporate new features while selectively “unlearning”
the older obsolete features.

Index Terms—Phishing detection, Privacy Preserving, Machine
Learning, Adaptive, Collaborative Learning

I. INTRODUCTION

A. Motivation

Phishing attacks on the world-wide web continue to con-
tribute to massive financial losses and sensitive information
leakage [1]. A phishing website clones a legitimate website and
lures users into divulging sensitive information such as pass-
words, identity, and credit card numbers, among others. But,
more than the financial losses, personal information leakage has
far-reaching consequences for the victim of the phishing attack.
Given the impact of these attacks on the safety and security of

1A reference to the movie “X-Men: Days of the Future Past” (2014, Marvel)
where the X-Men glimpse into the past to save their future.
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users, there is a critical need to deploy robust defenses against
phishing attacks.

Machine learning approaches [1]-[16] have been quite ef-
fective in detecting phishing websites with minimal overhead
on the user web-browsing experience. In general, a machine
learning model works as a classifier to distinguish between
a phishing website and a legitimate website. Therefore, these
approaches require a substantial amount of training data, of both
phishing and legitimate websites, and a set of well formulated
features that help to construct an effective classifier. However,
over the years, phishing attacks have adapted to the machine
learning based defenses by targeting the building blocks of
machine learning defenses, i.e., data and feature manipulation.
Therefore, there is a critical need for designing machine learn-
ing based phishing defenses that are resilient to such adaptive
strategies of the attackers.

B. Problem Statement

The problem of website phishing detection is to determine if
a website is a phishing or a legitimate site based on standard
definitions in literature [17], [18]. The general template of a
phishing detection solution is to first identify a good set of
features that can discriminate between a phishing and legitimate
website and, train a machine learning classifier on these features
using the best possible sample data set available at that time pe-
riod. We focus on the problem of phishing detection wherein the
phishing websites show a progressive adaptation to defenses by
masking, adding, perturbing, or removing features of interest in
successive generations of phishing websites. Specifically, we
address the problem of phishing detection wherein some new
important features are not known upfront at the time of training
the machine learning classifier and/or some existing features are
no longer useful.

C. Limitations of Prior Art

Content-based approaches [1]-[16], [19] perform in-depth
analysis of content to classify phishing websites. Uniform
Resource Locator (URL)-based approaches [11]-[16] analyze
various features based on the target URL such as length of the
URL, page rank of the URL, presence of special characters
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in the URL, IP address instead of host name, DNS features
etc. For instance, these days, the URLs generated by websites
like Google and Amazon, are long and contain many non-
alphabetic characters, which dilute the lexical similarity of
legitimate URLSs. Despite their great success, we identified three
key shortcomings of prior work:

o Insufficient Data. Most phishing websites are taken down
within 48-72 hours, making it difficult for any single
security analyst to collect a significant amount of data and
multiple analysts may not be willing to share data. Also,
data from public resources could be noisy.

o New Phishing Features. Attackers keep changing the style
of phishing websites to adapt to the previous generation of
defenses. This creates new features of interest for phishing
detection and need to be considered.

e Dynamic Updates to Machine Learning Models. Once
a machine learning model is deployed, it is difficult to
update it without changing the entire model. Addressing
this challenge is critical to adapt to the strategies of the
phishing attackers.

As a consequence, we emphasize that the key shortcoming of
prior art is the inability to adapt to feature modifications by
the attackers. Research [7], [20] has shown that most existing
classifiers can be ineffective if some or all of the features
originally used for training are made obsolete or redundant.

D. Key Contributions

First contribution is that, our approach is adaptive to changes
in phishing strategies. Our adaptive approach allows for feature
addition and removal from deployed machine learning models.
We illustrate that some phishing features in the past become
obsolete as time passes on data spanning the last three years.

Second contribution is that, we describe an approach to gen-
erate machine learning models in a privacy preserving manner
from disparate data sets, thereby, overcoming the challenges
in data collection. Our approach ensures that multiple parties
have access to the knowledge of multiple data sets without
actually sharing the data sets and are able to build a robust
machine learning model. We show that our approach achieves a
high true-positive rate, for detecting phishing websites, of 97%,
which is the state-of-the-art performance for many existing
centralized solutions.

Our third and final contribution is that, during our investiga-
tion for adaptive features, we identified and engineered several
new features that are not reported in literature thus far. This
makes our approach robust and resilient against known and
possibly future attacks.

II. RELATED WORK

A. Phishing Detection with Standard Data
Cui et al. [7] tried to find similarities between different
attacks during a 10 month study by monitoring around 19000
websites. The study showed that 90% of phishing websites have
similar HTML Document Object Model (DOM) structure and
over 90% of these attacks were actually replicas or variations
of other attacks in the database. Hong et al. [19] created

a data set to make use of the well-known term frequency
inverse document frequency (TF-IDF) algorithm to find the top-
5 important words in a web page and cross-checked using the
Google® search engine. Zhang et al. [3] created a framework
using a Bayesian approach for content-based phishing web
page detection. The model takes into account textual and visual
contents to measure the similarity between the legitimate web
page and a suspicious web page. Miyamoto et al. [21] provide
an overview of nine different machine learning techniques and
analyzed the accuracy of each classifier on the CANTINA
data set [19], reporting a maximum accuracy of 91.34% using
AdaBoost. Xiang et al. [4] proposed a layered anti-phishing
solution with a rich set of features based on the HTML DOM
structure, search engine capabilities, and third-party services.
Marchal er al. [6], [8] propose a client-side detection approach
using proprietary data sets from Intel security. However, their
approach uses over 200+ features for classification, a factor
that needs to be considered when deploying phishing detection
solutions in a client browser. Hossein et al. [22], used domain-
name based features to classify phishing websites with a
positive detection rate of 97%. This model uses less number
of features, but cannot adapt to newer features as standard
statistical classifiers are utilized. In 2015, Verma et al. [13]
described an approach based on textual similarity and frequency
distribution of text characters in URLs. Recently, Rao et al.
[23] proposed a heuristic URL classification technique where
the input to their algorithm is constructed by domain + title
or domain only of the given URL. They achieved an average
positive detection rate of 99.77% for phishing sites. Some
studies ventured into the nature of malicious content in online
social networks. Al-Janabi er al. [14] described a supervised
machine learning classification model to detect the distribution
of malicious content in online social networks (OSNs). A good
survey of phishing detection approaches can be found in [18].

B. Phishing Detection with Evolving Attackers

The attackers have constantly evolved their strategies to
evade phishing detection mechanisms. An illustration is the
use of the “HTTPS” protocol, which was not found in most
phishing websites as shown by Hossein et al. [20], but has
become more prevalent in modern phishing websites. Fernando
et al. [24] have shown that how educating about the good old
URL obfuscation techniques is not as effective an anti-phishing
measure as it was against new URL obfuscation techniques
like “Obfuscating with HTTPS schema” and “Obfuscating
with Internationalized Domain names”. Abuzuraiq et al. [25]
implemented a fuzzy logic algorithm to achieve higher accuracy
but the model becomes less and less accurate as more features
are incorporated in the data set. There has been a rise in extreme
phishing attacks [1] on financial institutions where the phishing
website mimics the legitimate website to an alarming degree.
The high level of noise in such websites is likely to defeat most
content-based machine learning approaches. Mahdi et al. [26]
proposed a framework for dynamic retraining of spam tweets
detection model consisting of two kinds of machine learning
models. The first one is a supervised model that classifies
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the tweets as spam or not-spam. The second model is an
unsupervised one that collects new tweets, annotates them using
clustering algorithms, and prepares a new feature vector with
a predefined set of 17 features. Once they have a sufficient
collection of new tweets, the first model is retrained on the
newly generated feature vector from the second model. This
approach is semi-adaptive, in that, a model is able to learn new
patterns within the same 17 features, but it cannot learn any new
feature as the number and the name of the features are fixed.
With time attackers learn to evade existing phishing detection
models [7], [20] as certain features become obsolete over time
and do not contribute to the classification.

Addressing the evolution of attacker strategies is an impor-
tant challenge and offers a new direction of research. But, we
make a cautious note that, it may not be feasible to arrive at
a solution that can adapt to any kind of attacker strategy. We
propose a first time approach that attempts to adapt to attacker
strategies by learning and unlearning machine learning features
over time.

III. PROPOSED APPROACH

A. Overview of Proposed Approach

The main goal of our approach is to construct a machine
learning model that can detect a phishing website based on
certain features while having the ability to adapt to newer
features as time progresses. Our approach consists of three
key steps. In the first step of feature engineering, we analyzed
some interesting features of phishing websites over the last two
years and discovered some changes in the phishing strategies.
Our analysis has identified new features that are useful for
phishing detection. In the second step of machine learning, we
apply the collaborative learning approach described in [27] to
generate the machine learning model. In this approach, multiple
parties holding different data sets participate in a protocol for
constructing a common machine learning model. Our choice of
collaborative learning addresses the key challenge in phishing
detection, i.e., the lack of sufficient data, as multiple parties
contribute to the learning process with their disparate data sets.
The final step of our approach is the design of a feature vector
that allows for “addition” or “removal” of features. The addition
or removal of a feature is followed by retraining phase where
the machine learning model is updated with new data from
the new feature. The combination of collaborative learning
and feature addition and removal, provide the important ability
to adapt to evolving phishing strategies. This is the spirit of
our X Phish framework wherein the machine learning model
attempts to retain the past while attempting to view the future.

B. Feature Engineering and Validation

As much as feasible, our feature design attempts to be
content-agnostic, i.e., the feature design attempts to model the
principles of phishing attacks and reduce the dependence of the
features on specific data. Our feature set consists of two types of
features: binary, i.e., the feature value is O or 1, and non-binary,
i.e., the feature is real-valued. To validate the intuition behind
each non-binary feature, we tested the empirical cumulative

Table I

BINARY FEATURE DISTRIBUTION

Feature Legitimate | Phishing
HTTPS Present 0.97 0.55
Non-alphabetical Characters 0.02 0.13
Copyright Symbol present 1 0.19
Copyright year (2020/2021) 0.85 0.10
SSL Name and Domain Match 0.79 0.40
SSL Name and Copyright Match 0.65 0.01
Copyright-Domain Match 0.78 0.02
Suspicious Action attribute 0.006 0.18
Suspicious URL 0.06 0.35

distribution function (ECDF) of the feature for 2000 phishing
websites against 2000 legitimate websites. For binary features,
we use our entire collected data of 40000 phishing and 40000
legitimate websites to show the distribution of the features. We
also indicate if the features are “New”, meaning designed by
us, or “Existing”, meaning that other researchers [3], [4], [6],
[22], [28], [29] have designed it. In the following, we describe
the existing and new features, identified by us, in this work.

1) Feature 1 (Existing): Link Ratio in BODY: As described
in [4], [22], this feature is defined as the ratio of the number of
hyper-links pointing to the same domain to the total number of
hyper-links on the web page. This feature is content-agnostic as
the ratio can computed for any phishing website that exhibits
this behavior. Figure 1(b), shows the ECDF of this feature,
of the raw ratios, with sufficient separation between the two
distributions.

2) Feature 2 (Existing): Frequency of Domain Name: As
described in [22], this feature counts the number of times
the domain name appears as a word in the visible text of
the web page. This is a key feature that captures the visual
relationship of the domain name to the web page. Note that, for
classification purpose, we converted this feature into a binary
feature, i.e., if the domain name does not appear in the web
page, we set it to 0 and if it appears, we set it to 1.

3) Feature 3 (Existing): HTTPS Present: Most legitimate
websites use SSL certificates and operate over HTTPS protocol.
Therefore, if a website uses HTTPS, the feature value is 1 and
if not, it is 0. Table I summarizes the percentage distribution of
the binary features in the sample data set. Recently, phishing
websites are using HTTPS as well and this explains the
relatively high distribution.

4) Feature 4 (Existing): Non-alphabetical Characters in
Domain Name: Attackers use non-alphabetical characters, like
numbers or hyphen, to generate newer phishing domain names,
which are very similar to legitimate domain names. If the
domain name has any non-alphabetic character, this feature is
set to 1, and O otherwise.

5) Feature 5 (Existing): Presence of Copyright Symbol:
The copyright symbol is a mark of trust for the end user.
Many legitimate websites use the copyright logo to indicate the
trademark ownership of their organization name. If a copyright
symbol is present in the web page, then this feature evaluates
to 1, otherwise 0.
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Figure 1. ECDF Plots of Link Ratio in BODY and Domain Name Frequency

6) Feature 6 (New): The year along with Copyright Symbol:
For many, the copyright date is seen as a way to determine if
the site is maintained or not. Some websites have just the most
recent year mentioned alongside the copyright symbol while
some others have a range of years from when they got first
published. The intuition behind this is that attackers may use
same old templates to create a fake web page or even if they
do modify the look of the page, they will not bother to check
the copyright information for a temporal feature. This feature
evaluates to 1 if the copyright year is either 2020 or 2021,
otherwise 0.

7) Feature 7 (Existing): Domain Name with Copyright Logo:
Usually, the domain name is placed before or after the copyright
logo for such websites. To generate this feature, we considered
all the characters before and after the copyright logo, removed
the white spaces, and checked for the presence of the domain
name in the resulting string. We found that most of the phishing
websites did not place their actual domain names along with
the copyright logo. As shown in Table I, our intuition proved
right, only 2% of the phishing websites were using this feature,
but over 78% of legitimate websites had this feature.

8) Feature 8 (New): SSL Name and Copyright Name Match:
Secure-Sockets Layer (SSL) Name is the value present in the
Issued to or Common name field of the SSL certificate issued
to the website owner. Many legitimate websites’ SSL name
matched with the organization’s name present alongside the
copyright symbol. The value of this feature is set to 1 if the
SSL name and the name at the copyright symbol matches,
otherwise, 0. As shown in Table I, our intuition proved right,
only 1% of the phishing websites use this feature, but over 65%
of legitimate websites have this feature.

9) Feature 9 (New): SSL Name and Domain Name Match:
The SSL certificates include the domain name in the “issued
to” field of the SSL/TLS certificate to which the certificate is
issued to. SSL Common name mismatch arises when the SSL
name does not match with the domain of the website in the
address bar of the browser. This feature is set to 1 if there is a
match, otherwise, 0.

10) Feature 10 (New): Suspicious Action attribute: Usually,
phishing websites try to steal the user credentials through a
form on the web page. These forms are then submitted to
the desired location, generally, through action attribute. Many

of phishing websites that had the form element, their action
attribute had the following pattern: filename.extension. For
example: login.php. Whereas, legitimate websites usually link
to the URL where the form is submitted for processing. The
value for this feature is set to 1 if there is a suspicious action
attribute, otherwise 0.

11) Feature 11 (New): Suspicious URL: In our data set, a
large number of phishing websites’ URLs end with the page
extension like .Atml or .php. If any URL has such pattern, then
this feature is set to 1, otherwise, it is set to 0. Table I shows
that only 0.6% of legitimate websites have this feature while
over 35% of phishing websites have suspicious URLs.

C. Collaborative Training Framework

Shokri et al. [27] proposed a distributed training technique,
based on selective stochastic gradient descent and differential
privacy. This framework form the basis of our machine learn-
ing model for phishing detection. The collaborative training
framework assumes that there are N-participants in the training
process. Each participant can be referred to as a local client
or just participant. A common neural network architecture is
agreed in advance by all of the participants. The parameter
server is responsible for managing a list of global parameters
which essentially represents the common model trained in
collaboration by all the local clients.

Initially, each local participant i connects to the global
parameter server and receives the structure of a neural network
model, which will be the local model for this client. Each client
maintains a list of local parameters, i.e., weight-gradients and
bias-gradients, which it can either initialize or leave them as it
is. For participant 4, this list is named as w(?.

Then, the local training begins where each participant trains
the neural network on its own private data using an optimization
algorithm such as Stochastic Gradient Descent (SGD) [27]. The
training continues for many epochs until the required condition
to halt the training is met. The local training is independent
of any other participant in the process. They do not impact
each other’s models directly, rather indirectly via the parameter
server. Following is the algorithmic process of local training on
participant’s side.

1) Initialize the model parameters and the learning rate a.

2) Repeat until the set number of epochs or the minimum

error is achieved:
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o After each epoch, compute the gradient vector
Aw™® on all the weights of the neural network as:
dAw® = w; — w;, where w; are the weights after
training and w; are the weights before the training.

+ Select and upload ©, X |w®| most significant
gradients to the server. These are the ©, largest
values of the weight-gradients, from each layer of
the neural network.

o Download the parameters from the server and replace
the corresponding local parameters in the client’s
model.

o Run the next epoch of training on the model with the
replaced parameters on the local data set and update
the local parameters w* accordingly.

Each participant sorts the values inside the weight-gradient
vector. Then, exactly ©, most significant values are picked
from each layer, which contribute more towards the gradient
descent, and are shared with the other participants.

The parameter server manages the global parameter vector
AwY, of the common global model being trained by the
participants, using the process shown here.

1) Initialize the global parameters w(9).

2) When a participant uploads the weight-gradients w(®):
Update the global parameters by adding the correspond-
ing values of w( and w9 as: AwI = AwI + Aw;,
where the value of uploaded gradient for j** parameter
is Aw9.

3) When a participant downloads the parameters w(?): Send
all the parameters in the vector w9 to the participant.

D. Adaptive Learning: The Null Feature Vector

Our approach for adaptive learning is to make the fea-
ture vector flexible in a way to incorporate the feature ad-
dition and removal without changing the architecture of the
learning model. Let the feature vector be denoted as: F' =
{f1, f2, ", fmaz} Where max is the maximum length of F.
Now, out of these features, at any give time only a few features
might be relevant. Therefore, during the training process, the
relevant features will have non-zero values and the remaining
features will have zero values (or “null”) values. Going further,
if over time, a feature becomes less effective or useless for the
classification purpose, instead of designing and training a new
model, we render that feature column in the feature vector, as
the Null feature.
Feature Removal We show an illustrative usage of null feature
vector in the learning process in Figure 2. This figure shows
how features can be removed. In the first phase, a model is
trained on with a feature vector containing all relevant features,
which can be less than M ax features. Then, before the second
phase, two normal features are converted to null features by
replacing their original value with ’0’, the cells shown in red.
Next, the existing model is trained on this updated feature set.
Feature Addition. Now, if any new features are required to
be added into the feature vector, we replace any of the null
feature with the new feature values shown in the dark green
cell. We note that, while our approach of feature removal or

addition may not be formally sound, we have been able to
validate experimentally that it achieves the desired results as
required for an adaptive phishing detection scheme.

IV. PERFORMANCE EVALUATION

A. Experimental Methodology

We implemented our approach using the PyTorch library in
Python 3.8 on a desktop running Mint OS with Intel core®
i5-5200U CPU® 2.7 GHz processor with 8 GB RAM. We
have used multi-layer perceptron (MLP) as the common neural
network architecture for every participant. MLPs are feed-
forward neural network architectures in which neurons in each
layer are fully connected to the neurons in the next layer. The
neural network has 3 hidden layers and 1 output layer. The
number of input neurons is 11, corresponding to the number
of features. Number of neurons in 1st, 2nd, and 3rd hidden
layers are 8, 10, and 32, respectively. The rectified linear
activation function (ReLU) has been used on the hidden layers
and the Sigmoid activation function on the output layer. In
all the experiments, the batch size is 256 and learning rate
is 0.01 with the Binary Cross Entropy (BCELoss) as the loss
function and SGD as the optimization algorithm. The weights
are initialized randomly but any initialization scheme can be
used by participants. During the local training, the participants
communicate asynchronously with the global parameter server.
Once the participant’s local model is updated with new weights
downloaded from the server, the next training epoch starts. In
all the experiments, the value of 6 is set to 0.5.

We conducted four sets of experiments to assess the col-
laborative and adaptive performance of our model. The first
set of experiments were conducted by training the model
on all 11 features directly. The second set of experiments
were conducted by incrementally adding a new feature in
the data set. The third set of experiments were conducted
by removing a feature from the data set. The fourth set of
experiments included simultaneous addition and removal of a
feature from the data set. During classification, we denote the
phishing websites correctly classified by, true positive (TP) and
incorrectly classified as legitimate sites by, false negatives (FN),
and the legitimate sites correctly classified by, true negatives
(TN) and incorrectly classified as phishing websites by, false
positive (FP). We report standard classification metrics such as,
positive predictive value, PPV = —-L_: true positive rate,

TP TP+FP; TP+ FN
TPR = 7pypy; accuracy, ACC = 7prppypnsry and
F-score, F' — score =

2TP
2TP+FPYFN"

B. Data Sets

For the list of legitimate websites, we obtained a to-
tal of 38500 websites from the majestic.com and as-
sumed them as legitimate. For the phishing websites, we
got a total 40000 phishing websites from PhishTank.com,
OpenPhish.com and isitphishing.com.

C. Experiment 1: Performance on Collaborative Learning

In this set of experiments, we compare the performance of
collaboratively trained model in a 4-participant system with a
model trained in centralized way where whole data is pooled
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Figure 4. Performance on varying the fraction of shared weights

at one location for training. The results are shown in Figure 3.
We observe that even with 50% of weight-gradients sharing, our
model’s average performance is really close to the other one.
For example, the average TPR of collaboratively trained model
is 96.8% while the other model achieved a TPR of 97.25%.

In the above experiments, we kept the value of ©, as 0.5.
Figure 4 shows the performance comparison for a 4-client
system in two scenarios: first, when ©, is set to 0.5, and
second, when O, is set to 1, i.e., all the weight-gradients are
shared among the participants. We observe a slight increase
in the average performance when all the weights are shared.
For example, the average value of TPR jumped from 96.8%
to 97.03%. This shows that even when only a fraction of
parameters are shared, we get high-performing models as most
significant parameters from each layer are getting shared among
participants.

D. Experiment 2: Performance on adding new features
We designed four different experiments to evaluate the
performance of the model when new features are added to

the data set. Each one was carried out in 3 different collab-
orative environments; first with 2 participants, second with 4
participants, and third with 8 participants. Data was divided
uniformly, i.e., equal sharing among different participants. We
have performed experiments with unbalanced data sets as well
with similar results, In the first experiment, we selected 6
features to train the model. The values for remaining 5 features
were kept as 0 (value). Once the training is completed, each
client can disconnect from the server and test the model on
their own private data set. In the second experiment, to show
the adaptive nature of training, we included a new feature in
the data set by restoring a previously null feature’s original
values. Then, the trained model from the first experiment was
collaboratively trained again on this new data set. Similarly, in
the third experiment, we included two more features in the data
set and trained the model from second experiment, on this new
data set. In the fourth experiment, we collaboratively trained
the previous model on all the 11 features. All experiments were
repeated in 5 trials for each collaborative scenario, i.e., 2, 4,
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Figure 5. Performance of collaborative model with 6 normal features and 5 null features
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Figure 6. A feature is added by replacing one null feature; 7 normal and 4 null features.
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Figure 7. Two more features are added; 9 normal and 2 null features
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Figure 8. PPV, TPR and F-Score on training on all 11 features.

and 8 participants. To assess the overall performance, we took
average and maximum of the aforementioned metrics across
individual client’s model performance in each trial.

Results when new features are added: The results show
that our model is able to learn the new features using our
null features approach as the performance gets better when a
new feature is added to the data set. We show the results in
Figures 5, 6, 7, and 8. In all the experiments, all three metrics,
PPV, TPR and F-score (accuracy results were similar), were
averaging around 96 — 97%, and the maximum values were
over 97%. These values demonstrate the proof-of-concept of

the proposed adaptive feature vector notion and show that the
phishing detection model can be updated periodically, subject
to the maximum length of the feature vector The results are
for epochs up to 50; beyond this, we can still manage to get a
slightly higher performance parameters.

E. Experiment 3: Performance for Feature Removal

The aim for this experiment is to show that our model can
adapt its learning on a data set in which a feature, which
was previously present, is now removed. For this purpose, we
first trained our model with all the features in a 2-participant
environment where each participant had 20000 samples of
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training data. Then we replaced the values of the feature
HTTPS with O (thus, making it a null feature). After that,
we collaboratively trained the previous model on this new and
modified data set. This experiment corresponds to the scenario
where a feature becomes obsolete after some time, and no
longer helps in learning. The decision to remove HTTPS feature
was taken mainly due to following reasons:

o Statistics [30] show that HTTPS is no longer a strong
classification feature for phishing websites.

o In our data set as well, a lot of phishing websites have
HTTPS in the URL.

To assess the adaptive performance in this set of experiments,
we compared the results of the first model that was trained
on data set without the HTTPS feature, to that of the second
model, which was first trained on all the features and then,
trained again on data set without “HTTPS” feature (10 features
only).

Results when a feature is removed: The results show that
our model is able to unlearn the feature that was removed from
the data set. The results were collected for test data consisting
of 1000, 2000, 3000, 4000, and 10000 data samples. We show
the results in Figure 9. For each of the performance parameters,
we compared the average results of aforementioned models for
varying sized test data. Furthermore, it shows that there isn’t
any significant drop in the performance of the model when it
unlearns a not-so-helpful feature. Instead, we noticed a slight
improvement in PPV, TPR, and F-score after the unlearning,
in some cases. The maximum values were above 97% and the
average remained around 96 — 97%.

F. Experiment 4: Performance on simultaneous addition and
removal of a feature

Finally, both addition and removal of a feature was performed
simultaneously in the data set. For this purpose, we first trained
a model on 10 features only, in 2-participant environment with
20k training data each. When the training was completed, we
made the following changes in the data set. Added the feature
“copyright year” and removed the “https” feature due to the
reasons stated in the above section. After that, the previous
model was collaboratively trained on this modified data set. To
assess the performance of our model on simultaneous addition
and removal of features, we compared the results of our final
model (Model2) with the model (Modell) that was trained with

True Positive Rate (TPR)
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Unlearning performance of collaboratively trained model

100
Modell  mmm Model2 Modell

99

m— Model2

o8

96.3 96.4

3

sequential modification of data set, i.e., the model was first
trained on 10 features data set, then on data set with “copyright
year” feature added, and finally, on the data set with the “https”
feature removed.
Results when simultaneous addition and removal of features
is performed. The results were collected for test data consist-
ing of 1000, 2000, 3000, 4000, and 10000 samples. They show
that the performance of Modell and Model2 is almost similar
in every case as it should be. We show the results in Figure
10. For each of the performance parameters, we compared
the average results of Modell and Model2 for varying sized
test data. The metrics averaged between 95 — 97% for both
models, which demonstrates that the model is able to add and
remove features without noticeable difference in performance.
Some outliers and corner-cases might exist and this will require
deeper exploration of newer data sets in the future.
V. CONCLUSION

In this work, for the first time, we describe a collaborative
phishing detection approach that has the ability to adapt to
evolving phishing strategies. Our approach uses a combination
of collaborative learning with a flexible feature vector design
to achieve this goal. We validated our experiments on data
collected over the last 6 months and dating back up to two
years. We also discover and engineer new phishing features that
were hitherto unexplored in this domain. Our model achieves
a high TPR of 97%, which is comparable to the state-of-the-
art centralized phishing detection approaches. However, as we
mentioned in a cautionary note, our approach is only the first
attempt and adapting to phishing strategies remains a non-trivial
challenge that needs further research and exploration.
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