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Abstract

Hackers are increasingly launching phishing attacks via SMS and social media. Games and dating apps introduce yet another
attack vector. However, current deep learning-based phishing detection applications are not applicable to mobile devices due to the
computational burden. We propose a lightweight phishing detection algorithm that distinguishes phishing from legitimate websites
solely from URLs to be used in mobile devices. As a baseline performance, we apply Artificial Neural Networks (ANNs) to
URL-based and HTML-based website features. A model search results in 15 ANN models with accuracies >96%, comparable to
state-of-the-art approaches. Next, we test the performance of deep ANNs on URL-based features only; however, all models perform
poorly with the highest accuracy of 86.2%, indicating that URL-based features alone are not adequate to detect phishing websites
even with deep ANN . Since language transformers learn to represent context-dependent text sequences, we hypothesize that they
will be able to learn directly from the text in URLSs to distinguish between legitimate and malicious websites. We apply two state-
of-the-art deep transformers (BERT and ELECTRA) for phishing detection. Testing custom and standard vocabularies, we find
that pre-trained transformers available for immediate use (with fine-tuning) outperform the model trained with the custom URL-
based vocabulary. Using pre-trained transformers to predict phishing websites from only URLs has four advantages: 1) requires
little training time (~8 minutes), 2) is more easily updatable than feature-based approaches because no pre-processing of URLs
is required, 3) is safer to use because phishing websites can be predicted without physically visiting the malicious sites and 4) is
easily deployable for real-time detection and is applicable to run on mobile devices.
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1. Introduction

Phishing is the top Internet crime by victim count as per the FBI [1], resulting in a $54 million loss in 2020.
Phishing attacks are increasingly being launched via SMS text, social media, gaming, and dating applications. People
tend to be less careful when using their mobile devices and are therefore more vulnerable [2]. A lightweight phishing
detection approach that can be installed in mobile devices is very much needed.

Supervised deep learning appears to be a promising approach for phishing detection [3, 4, 5]. Machine learning
requires a large volume of training data; such data may be unavailable and dataset creation is labor-intensive. For
creating phishing datasets, one must visit the malicious websites, understand the code, and extract the relevant features.
Moreover, as attackers modify their approach, the process must be repeated. Phishing detection using only URL
information alleviates these problems, thus recent development in language transformers has motivated us to look into
these as an alternative approach for phishing detection using only URLs.

In this work, we use a dataset developed by Shirazi et al. [6] which consists of 48 URL and HTML-based website
features, and we test the ability of a deep classification Artificial Neural Network (ANN) to detect phishing websites.
First, we test ANNs on URL-based features only. Even after an extensive architecture and hyper-parameter search,
this method did not perform well. We next use URL and HTML-based features which have an accuracy > 96%, which
is comparable to state-of-the-art approaches. We use this as a baseline for our transformer-based model.

Transformers are deep learning Natural Language Processing (NLP) models designed to handle sequential text for
translation and summarization tasks. The well-known Bidirectional Embedding Representations from Transformers
(BERT [7]) has been used in the past eight months to detect spam emails [8, 9, 10]. Following on the success of
transformers in detecting phishing emails, we hypothesize that they can take URLs directly and parse out contextual
information that indicates if a website is legitimate or malicious. Utilizing transformers to detect phishing leverages
data to learn the textual features associated with websites, rather than relying on pre-determined features that are
observed by experts and require manual efforts. We apply BERT and another well-known transformer ELECTRA (Ef-
ficiently Learning an Encoder that Classifies Token Replacements Accurately [11]) to URL-based phishing detection.

To further reduce training time and computing resources while utilizing these state-of-the-art deep learning ap-
proaches, we use pre-trained models that are available for immediate use on language classification tasks, eliminating
the need for extensive training and only requiring fine-tuning of the top model layers. In addition to applying transfer
learning, we custom-train BERT using a URL-specific vocabulary. Our observations on testing pre-trained and custom
models indicate that pre-trained transformers perform well, correctly identifying 96% of the websites tested at a cost
of ~8 minutes to fine-tune. Since these models take text strings as the input, they can be applied directly to URLs,
eliminating pre-processing features and making them easily deployable for real-time detection on mobile devices.

Key Contributions. The contributions of this work are as follows:

(i) We compare the performance of seven state-of-the-art deep learning approaches.

(i1) We show that ANNs can detect phishing from URL and HTML-based features with high performance.

(iii) We demonstrate that using ANNs on URL-based features alone is not well-suited to detect phishing websites.

(iv) We illustrate that NLP models can be applied to website phishing detection solely using URL strings, revealing
that pre-trained transformers provide phishing detection with similar performances to other approaches but with four
distinct advantages: 1) it requires minimal training time (less than 8 minutes); 2) it is easily updatable as it does not
require feature collection, determination, and pre-processing (thus, even if attackers change their strategy it will still
work); 3) it is safer to use, as it removes the requirement of visiting malicious sites; and 4) it is easily deployable for
real-time detection and can be used in mobile devices.

2. Related Work

Website phishing detection using deep learning typically focuses on content and/or URLs to define and obtain
optimal features to eliminate overfitting. Zhu et al. [12] proposed the Optimal Feature Selection Neural Network
(OFS-NN) to combine optimal feature selection into an ANN framework by introducing a feature validity value. Zhu
et al. [5] combined decision trees and local search methods to select optimal features, clustering to remove duplicates,
and parameter optimization in their model DTOF-ANN (Decision Tree and Optimal Features based Artificial Neu-
ral Network). Next, Saravanan et al. [4] used a genetic algorithm to reduce the dimensionality of selected features.
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Once the optimal features are determined, the proposed framework uses the Adaptive Resonance Theory Mapping
(ARTMAP) neural network classifier to determine if a website is legitimate. Finally, Yang et al. [13] utilized synthetic
samples in a novel approach to phishing detection based on the Non-Inverse matrix Online Sequence Extreme Learn-
ing Machine (NIOSELM), using an adaptive sampling algorithm to generate synthetic minority class samples in order
to avoid biases and using an autoencoder to denoise the data and reduce the data dimensionality.

Another strategy to detect phishing websites directly uses URLs. While a number of methods have combined
website content with URL strings (e.g. [14, 15, 16, 17, 18]), here we outline four models that solely utilize URLs. In
2017, Saxe et al. [19] proposed a Convolutional Neural Network (CNN) on raw character input embedded as multi-
dimensional vectors to find patterns in characters, which are then fed into three fully connected ANN layers. In the
past eighteen months alone, we have identified three more such studies. First, Huang et al. [3] proposed a deep learning
approach that uses a CNN module for character-level extraction fused with a Recurrent Neural Network (RNN) for
word-level extraction. Second, Xiao et al. [20] proposed a CNN combined with a multi-head self-attention approach
that learns URLs’ inner structures, exploiting character relationships. Third, Wei et al. [21] used one-hot encoding
combined with an embedding layer in a CNN to focus on sensitizing the network to detect URL distortions. While
solid performers, these methods are more computationally expensive than our proposed method.

3. Approach Overview and Methodology

While extracting both content and URL features results in high-performing phishing detection, it is laborious
and time-consuming. Here we investigate using only URL-based information to yield reliable detection of malicious
websites. Specifically, we determine if deep classification ANNs can be used for this task or if transformers are
necessary to process the text and succinctly find appropriate features. For this, we have defined three tasks:

e Task 1: Determine how deep classification ANNs perform on content and URL-based website features.
We utilize both URL features and website content to provide a baseline top performance expected using a
feature-based approach. Using a synthetically-extended dataset designed to make phishing detection more ro-
bust against adversarial attacks [22, 23], we perform a guided hyper-parameter search to find the best ANN.

o Task 2: Investigate how well deep classification ANNs perform on URL-only website features.
Using only URL-based features, we again perform a guided search to find the best ANN and compare our results
to Task 1, determining the importance of website content in feature-based deep learning approaches.

e Task 3: Explore using transformers to detect phishing directly on URL strings.
We apply BERT and ELECTRA to website phishing detection using transfer learning, fine-tuning them on
website URL strings. Because they learn patterns in text, we hypothesize that they will detect phishing websites
solely from the URL, saving time in collecting and preparing website feature data as well as significantly
reducing training time and resources.

3.1. Datasets Used in Experiments

We use the following three datasets:

e Features: In 2018, Tan et al. [24] created a dataset for phishing detection comprised of 48 URL-based and
HTML-based features extracted from 5000 phishing webpages and 5000 legitimate webpages. The webpages
included in this dataset were downloaded from January to May 2015 and from May to June 2017. The phishing
webpage sources are PhishTank.com and OpenPhish.com, and the legitimate webpage sources are Alexa and
CommonCrawl.org. In 2020, Shirazi et al. [6] extended this dataset using adversarial sample generation. Using
the same features, they used an autoencoder to generate samples mimicking existing websites while containing
features designed to bypass trained machine learning phishing detection models. This extended the dataset by
adding 10,000 phishing webpages and 10,000 legitimate webpages, and we use this version of the dataset.

e URL: To investigate deep-learning approaches on URLSs directly, we create a dataset of 10,955 phishing URLs
from PhishTank.com and 10,955 legitimate URLs from CommonCrawl.org. The phishing URLs include sites
discovered until November 27, 2020, when we downloaded the dataset. The legitimate URLs include websites
from randomly selected files from January 2018 until November 2020.
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e URLYV: To use a URL-specific vocabulary, we create a dataset of 1,730,754 websites from CommonCrawl.org.
Since the CommonCrawl.org corpus contains petabytes of data collected since 2008, to include a variety of
websites, we randomly selected URLs from January 2018 until November 2020.

In all experiments, the training and testing subsets consisting of 80% and 20% of the data, respectively.
3.2. ANN Optimization for Feature-Based Phishing Detection

In order to optimize classification ANNs for feature-based phishing detection, we perform a guided model archi-
tecture and hyperparameter search using Hyperopt [25]. We conduct searches using the Tree of Parzen Estimators
(TPE) algorithm, a sequential model-based optimization approach that sequentially constructs models to approximate
the performance of hyperparameters based on historical measurements [26]. We divide the search space into two ar-
eas: input data options during pre-processing and model options. We search for the optimal number of features to
include in the ANN, ranging from four to the total number of features. The features included per selected number
are pre-calculated using the chi-square statistic on the original dataset. The ANN model architecture search includes
options for the number of epochs (number of times the learning algorithm iterates through the entire training set), the
optimizer (method used to update model weights), the learning rate (rate at which weights can change), the momentum
(influence of previous changes), and the number of model layers.

We perform all ANN experiments with Python using TensorFlow on Google Colab with a GPU. For each opti-
mization, we run 100 model searches. For each search, we use 3-fold cross-validation during training. One 100-model
search takes ~10 hours, with each model taking ~3-5 minutes to train, depending on the size of the model.

3.3. Deep Language Processing Models

As described by Devlin et al. [7], BERT consists of a multi-layer bidirectional encoder that learns contextual
relationships. BERT’s framework consists of two steps: (i) pre-training, during which the model is trained using
unlabeled data on masked language modeling and next sentence prediction tasks, and (ii) fine-tuning, during which
the model is initialized with the pre-trained parameters that are adjusted using task-specific labeled data.

We focus on three pre-trained BERT models.' The first is BERT-Base (uncased), which is a 12-layer model with
110 million parameters. The second is BERT-BaseC (cased), which is the same as BERT-Base but uses case-sensitive
tokens. Last is BERT-Large (uncased), which uses 24-layers and 340 million parameters.

To compare using models pre-trained on a generic corpus versus a URL-specific vocabulary, we create a custom
BERT model trained on an uncased URL-generated corpus. Using the URLV dataset, we tokenize each URL using
the SentencePiece tokenizer, breaking them apart by the forward-slashes and saving punctuation, numbers, and text
groupings (using lowercase text only). We use the maximum vocabulary size (128,000), a maximum sequence length
of 128, and the same hyper-parameter setup as proposed by Devlin et al. [7]. We train the model for one million steps,
which took 60 hours.

ELECTRA is an efficient pre-training approach that uses replaced token detection described by Clark et al. [11].
ELECTRA consists of a generator and a discriminator. After mapping input tokens into contextualized sequences, the
generator learns to predict masked-out tokens while the discriminator learns how to distinguish tokens in the data from
tokens that have been replaced by generator samples. Like BERT, ELECTRA can be fine-tuned for specific tasks.

ELECTRA currently has three released pre-trained models: ELECTRA-Small with 12 layers and 14 million pa-
rameters, ELECTRA-Base with 12 layers and 110 million parameters, and ELECTRA-Large with 24 layers and 335
million parameters.” The vocabulary and pre-training datasets are the same as used for BERT.

We perform all of the transformer-based experiments with Python using TensorFlow on Google Colab with a
TPU. For all BERT and ELECTRA models, we fine-tune the top model layers following the procedure outlined by
TensorFlow?, using the sequence classifier methodology and the URL training dataset (Section 3.1). The specific
parameters used for fine-tuning each of the pre-trained models are discussed in Section 4.3.

! BERT pre-trained models and code are available in the Transformers library [27] and at https://github.com/google-research/bert.
2 ELECTRA pre-trained models and code are available in the Transformers library [27] and at https://github.com/google-research/electra.
3 https://www.TensorFlow.org/official_models/fine_tuning_bert
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4. Approach Details
4.1. Task 1: Website URL-Based and HTML-Based Feature Phishing Detection

After performing the model search using the feature dataset, the top 40 models all achieve testing accuracies
> 91%, with the top 15 models achieving accuracies > 96%. As indicated by 0.98 normalized true-positive and 0.97
true-negative values of the top model (ANNF), the majority of the samples are correctly predicted. The 0.03 false-
negative is slightly higher than the 0.02 false-positive, indicating a higher tendency to predict a website as legitimate
when it is malicious.

Comparisons to the classifiers tested by Shirazi et al. [6] are shown in Figure 1. The ANNF model yields similar
performances to the other top-performing classifiers, GB and RF. Interestingly, the ANNF precision is higher than the
recall, while the opposite is true for the other two top performers. These relationships show that ANNF has a higher
positive predictive value and thus has a lower tendency to predict a website is malicious when it is not; however,
ANNF’s lower recall indicates that it misses more phishing websites overall. These results show that using deep
neural networks is comparable to both GB and RF classifiers for detecting phishing websites.

Classifier Phishing Performance Comparison
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Fig. 1. Phishing detection score comparisons between the neural network in this study (ANNF) and other classifier models tested by [6].
DT=Decision Tree, GNB=Gaussian Naive Bayes, GB=Gradient Boosting, KNN=k-Nearest Neighbor, RF=Random Forest, SVC=Support Vector
Machine (linear), and SVM=Support Vector Machine (gaussian).

4.2. Task 2: URL-Based Feature Only Phishing Detection

To test how ANNSs perform on features obtained only from URLs, we transform the URL dataset into 31 URL
features. We use all of the URL features from the feature dataset and added features for the number of each different
punctuation symbols and counts of the numbers, lowercase and uppercase letters. Even with a 100-model search,
all models perform poorly. The performance is substantially lower than when website content is included, with the
top model (ANNU) only achieving 86.2% accuracy and normalized true-positive and true-negative values of 0.84
and 0.95, respectively. While both the true-positive and true-negative predictions are lower compared to ANNF, the
correct prediction of phishing websites suffers more, indicating that a substantial number of malicious sites will go
undetected. While performance may increase with the selection of different URL features, it seems unlikely that any
additional features based solely on URL will account for the drop in performance by removing website content. This
result indicates that website content (via HTML-based features) is vital in feature-based phishing detection and that
even deep-learning ANNs are not well-suited to detect phishing using pre-determined URL features alone.

4.3. Task 3: Transformer Phishing Detection
We perform five experiments using BERT. First, we train a BERT base model using a URL-specific uncased vocab-

ulary (BERT-URL). Next, we try a hybrid approach and add the BERT-URL predictions (O=legitimate, 1=phishing)
into an ANN that utilizes only URL-based information as in Task 2, again performing a guided search to find the
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best model (BERT-ANN). Last, we perform experiments fine-tuning the BERT-Base, BERT-BaseC, and BERT-Large
pre-trained models using the URL training dataset. For each, we run a series of experiments to tune the parameters.
For BERT-Base, we achieve the highest accuracy using a learning rate of 8 X 1073, 2 epochs, and a batch size of 128,
taking 319 s to fine-tune. For BERT-BaseC, we use the same learning rate and batch size but performed 4 training
epochs, which took 491 s. Finally for BERT-Large, to compensate for a small batch size of 32, we use a learning rate
of 5% 107° and 3 epochs, which took 1867 s.

Figure 2 (left-most five experiments) shows the accuracy, F1-Score, precision, and recall between the BERT mod-
els. The BERT-Base model is the most consistent model across all metrics, with the highest accuracy, F1-Score, and
recall. Adding case sensitivity does not improve the model, but instead slightly lowers all four metrics. BERT-Large
has the highest precision due to its low number of false positives; however, it is the most inconsistent across the metrics
and has the lowest accuracy, F1-Score, and recall. The low recall means that more phishing websites go undetected
with this model. The BERT-Large model may have the worst overall performance for two reasons. The first reason is
the limited data used to fine-tune and test the model. Even the addition of a couple of hundred phishing and legitimate
websites impacted the performance, indicating that this problem could benefit from creating adversarial-generated
synthetic URL data as done for the website features. The second reason is the computational resources. Google Colab
has TPU number and memory limitations, which we tried to exhaust; however, even with this, the small maximum
batch size of 32 is likely insufficient to optimize this large model.

BERT and ELECTRA Phishing Performances
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Fig. 2. Evaluation metrics (colors) for each of the five BERT (left) and three ELECTRA (right) experiments.

The custom BERT model trained on a URL corpus does not perform as well as the pre-trained models. There
are three likely reasons for this. First, we use a dataset of 1.7 million URLs, whereas the BERT pre-trained models
use a dataset of 2,500 million words. Second, because URLs are riddled with punctuation, we include these in the
vocabulary; however, this could very likely be harming the performance. Third, due to computational constraints, we
only use a maximum sequence length of 128 versus the 512 used in the pre-trained models. Since URLs are often
longer than 128, it is possible that not including longer sequences degrades the performance.

Using a hybrid approach by combining BERT-URL predictions with an ANN optimized on pre-created features
from the URLs (BERT-ANN) minimally improves the model performance. All four metrics increase slightly (< 0.005),
indicating that adding URL-based features does not provide any additional information not already captured by the
BERT methodology of language processing. This result shows promise for NLP approaches using URLs solely to
obtain high phishing detection accuracy as these models continue to improve.

We perform three ELECTRA experiments, fine-tuning and optimizing three different pre-trained models. For
ELECTRA-Small, we settle on a learning rate of 8 x 107 with 8 epochs and a batch size of 128, taking 358 s.
ELECTRA-Base uses the same learning rate and batch size, but with 6 epochs, taking 489 s. ELECTRA-Large uses a
learning rate of 8 X 107°, a batch size of 32, and 5 epochs, taking 2100 s.

Figure 2 (right-most three experiments) shows ELECTRA’s performances. ELECTRA-Base has the highest mean
score across all metrics, with a value of 0.963 compared to ELECTRA-Small’s value of 0.96. The ELECTRA-Base
model has the highest accuracy, F1-Score, and precision, while the ELECTRA-Small model has the highest recall.
Like BERT, ELECTRA-Large has the poorest performance, again likely due to data and computation limitations.

Figure 2 shows that BERT and ELECTRA have similar accuracy, with the highest values of 96.1% and 96.3%,
respectively; both models have F1-Scores nearly identical to their accuracy. ELECTRA has slightly higher precision
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and lower recall, whereas the opposite is true for BERT. While ELECTRA has higher positive predictive values, it has
a lower hit rate and is more likely to miss phishing websites than BERT. Based on these reasonable scores, this study
demonstrates that ELECTRA and BERT have skill at predicting phishing websites directly using URLs.

4.4. Evaluation Against Related Works

Evaluation metrics for the top models from Tasks 1 and 3 are shown in Figure 3 (bold), along with a compilation
of results for the state-of-the-art models discussed in the related work (Section 2). To directly compare our BERT
and ELECTRA results, for each transformer we show the model with the highest mean overall score, which was the
pre-trained base configuration for both. We do not include Task 2’s results due to its substantially lower performances,
again emphasizing that website content is important in feature-based phishing detection.

Phishing Performance Comparison
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Fig. 3. Scores for the top ANN, BERT and ELECTRA models in this study (bold) against recently published model results. ACNN results are from
Zhang et al. [18], ARTMAP results are from Saravanan et al. [4], DTOF-ANN results are from Zhu et al. [5], NIOSELM results are from Yang et
al. [13], OFS-NN results are from Zhu et al. [12], Wei-CNN results are from Wei et al. [21], and XGBoost results are from Yang et al. [13].

Figure 3 shows that ANNF performs similarly to current models, outperforming the well-known phishing approach
XGBoost. ANNF is also one of the most consistent models across all metrics. For example, both DTOF-ANN and
OFS-NN have high accuracies but lower recalls than ANNF. This behavior is not optimal in phishing detection because
it indicates that more phishing websites could go undetected using these approaches. Both BERT and ELECTRA have
performances slightly lower than the top models but on par with XGBoost and higher than ARTMAP.

5. Conclusions

Although using website content-based features and creating auxiliary data to train a deep ANN results in the
highest-performing phishing detection model in this study, this methodology is very time-consuming and computa-
tionally expensive. Further, using only URL-based features in an ANN performs poorly, indicating that transformer-
based models are required to achieve high-performance phishing detection solely using URLs directly. To this end,
both BERT and ELECTRA show promise compared to other current approaches. Although they currently have slightly
lower performances than several of the top-performing models, they have the distinct advantage that they require very
little training time, as both models only took ~490 s to fine-tune on a single TPU. Additionally, because no pre-
processing of URLS is required, they are more easily updatable than feature-based approaches. Finally, due to their
ability to predict phishing websites solely from URLs, they are safer to use because malicious sites can be predicted
without physically visiting the page. This combination of advantages makes pre-trained transformers easily deployable
for real-time detection, indicating they are a viable option for website phishing detection on mobile devices.
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